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Optimising stellarators for quasisymmetry leads to strongly reduced collisional transport
and energetic particle losses compared with unoptimised configurations. Although
stellarators with precise quasisymmetry have been obtained in the past, it remains unclear
how broad the parameter space is where good quasisymmetry may be achieved. We study
the range of aspect ratios and rotational transform values for which stellarators with
excellent quasisymmetry on the boundary can be obtained. A large number of Fourier
harmonics is included in the boundary representation, which is made computationally
tractable by the use of adjoint methods to enable fast gradient-based optimisation and
by the direct optimisation of vacuum magnetic fields, which converge more robustly
compared with solutions from magnetohydrostatics. Several novel configurations are
presented, including stellarators with record levels of quasisymmetry on a surface, three
field period quasiaxisymmetric stellarators with substantial magnetic shear, and compact
quasisymmetric stellarators at low aspect ratios similar to tokamaks.
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1. Introduction

Magnetic confinement fusion in toroidal geometry revolves around two main concepts,
the axisymmetric tokamak and the three-dimensionally shaped stellarator (Spitzer 1958).
The axisymmetry of the tokamak leads to greater engineering simplicity and good
confinement of particles, at the cost of difficulty maintaining a stable steady-state plasma
due to the need for a large plasma current. Stellarators avoid these issues by mostly
relying on the external coils to provide the confining magnetic field, but they are generally
plagued by poor neoclassical and energetic particle confinement at reactor-relevant low
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collisionality. However, the confinement may be returned to tokamak-like levels by making
stellarators omnigenous (Hall & McNamara 1975) through careful optimisation of the
three-dimensional geometry, as has been verified experimentally in the Wendelstein-7X
device (Beidler et al. 2021).

As a subset of omnigeneity, quasisymmetry (QS) (Nührenberg & Zille 1988) recovers
tokamak-like guiding-centre dynamics through a symmetry in the magnetic field strength
B = B(s,MθB − NζB), with the flux surface label s, the Boozer poloidal and toroidal
angles θB and ζB, and the QS helicities M and N. Depending on the helicities,
QS configurations may be either quasiaxisymmetric (QA, N = 0), quasihelical (QH,
M,N �= 0) or quasipoloidal (QP, M = 0). Several QS stellarators have been designed, e.g.
the QA NCSX (Zarnstorff et al. 2001) and MUSE (Qian et al. 2023), and the QH HSX
(Anderson et al. 1995), the latter two of which were constructed. Recently, configurations
with record levels of QS have been obtained in optimisations of vacuum fields (Landreman
& Paul 2022) and finite-pressure equilibria (Landreman, Buller & Drevlak 2022).

Most QS optimisations to date have relied on derivative-free algorithms (Drevlak
et al. 2013; Bader et al. 2019; Henneberg et al. 2019; Henneberg, Drevlak & Helander
2020), or on gradient-based algorithms using finite differences to evaluate the gradient
(Landreman & Paul 2022; Landreman et al. 2022). Due to the large parameter space
of the stellarator boundary representation, these schemes are computationally expensive,
which has motivated the introduction of automatic differentiation techniques (Dudt et al.
2023) and adjoint methods (Paul, Landreman & Antonsen 2021). Moreover, the accuracy
of gradients evaluated through finite differences can be sensitive to the step size, requiring
careful scans in the numerical parameters to ensure success in the optimisation, e.g.
avoiding artificial local minima.

Although many configurations with good QS have been obtained in the past, the
degree of compatibility of QS with other objectives remains unclear.1 Furthermore, slower
optimisation algorithms limit the amount of shaping that can be taken advantage of in
the optimisation. To remedy these gaps, we here perform QS optimisation of stellarators
using adjoint methods. The fast optimisation facilitates the exploration of a large parameter
space in the stellarator boundary shape, and the compatibility of QS with aspect ratio and
rotational transform targets. We optimise vacuum magnetic fields, instead of considering
the vacuum limit (zero plasma current and pressure) of magnetohydrostatics (MHS) with
the imposition of nested flux surfaces, as computed e.g. by the codes VMEC (Hirshman,
van Rij & Merkel 1986) and DESC (Dudt & Kolemen 2020). The vacuum magnetic field
solution converges more robustly than the solution from MHS due to the linearity of
Laplace’s equation, allowing us to go to high resolutions reliably.

In § 2, our objective function and optimisation methods are introduced. In §§ 3 and 4,
we then present the obtained quasisymmetric configurations with varying aspect ratio and
rotational transform, respectively. In § 5, we show how the optimised configurations may
be further refined, e.g. by optimising for QS in the full volume (§ 5.1), or by improving
the nestedness of flux surfaces in a QA with substantial magnetic shear (§ 5.2). Finally, we
present our conclusions in § 6.

2. Methods

The objective function f considered in the optimisations presented herein contains three
targets

f = f �QS+wιfι + wAfA, (2.1)

1A notable exception is the recent study by Buller et al. (2024) exploring the compatibility of QA with varying
rotational transform values for Nfp = 2 (two field-period) stellarators.
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with weights wι and wA. The objective includes a target for QS on the boundary f �QS, defined
in (A4), another for the edge rotational transform ιe

fι = 1
2
(ιe − ιT)

2 , (2.2)

with prescribed ιT , and finally an aspect ratio objective,

fA = 1
2
(A − AT)

2 , (2.3)

with prescribed AT . The aspect ratio definition (see e.g. Landreman & Sengupta 2019)
follows that employed in the VMEC code (Hirshman et al. 1986)

A = Rmaj

amin
, with Rmaj = V

2π2a2
min
, amin =

√
S̄
π
, S̄ = 1

2π

∫ 2π

0
dζ S(ζ ), (2.4)

with S(ζ ) the cross-sectional area of the boundary at fixed toroidal angle ζ , and V the
volume enclosed by the boundary.

The optimisation is performed over a set of harmonics Rmn and Zmn describing the
boundary, here assuming stellarator symmetry

R(θ, ζ ) =
∑
m,n

Rmn cos
(
mθ − nNfpζ

)
, (2.5a)

Z(θ, ζ ) =
∑
m,n

Zmn sin
(
mθ − nNfpζ

)
, (2.5b)

with Nfp the number of field periods of the device, leading to a discrete symmetry under
the transformation ζ → ζ + 2π/Nfp. In the optimisation, the series in (2.5) are truncated
at some chosen mmax and nmax. Furthermore, R00 = 1 is kept constant to set the length scale
of the problem, as the objective (2.1) is invariant under a uniform rescaling of all Rmn and
Zmn coefficients.

The derivatives of the QS and rotational transform targets with respect to the boundary
coefficients is obtained using adjoint methods. The corresponding adjoint equations and
shape gradient were originally derived in Nies et al. (2022), and are here slightly modified
to make the QS objective dimensionless, as shown in Appendix A. The derivative of the
aspect ratio target (2.3) is derived in Appendix B.

Each optimisation begins with small values of mmax and nmax before gradually increasing
them in optimisation ‘stages’, letting the optimisation run in each such stage until progress
has halted. The Fourier space resolution of the solutions to the Laplace equation for the
vacuum magnetic field, to the straight-field-line equation, and to their adjoint equations, is
always higher than the boundary resolution and is also increased at each stage. We found
it generally optimal to start the optimisation with a single poloidal harmonic mmax = 1,
but with a larger number of toroidal harmonics, e.g. nmax = 3. This may be due to
the connection between the axis shape and QS (Rodríguez, Sengupta & Bhattacharjee
2022b). Owing to the use of adjoint methods, a large parameter space in the boundary
representation (2.5) may be explored, such that our optimisations typically involve a
dozen stages or more, incrementally going up to mmax ∼ nmax ∼ 10 − 20. Despite the
high resolution, a typical optimisation requires only O(102) CPU hours, with O(103)
iterations of the optimiser over the multiple stages. All optimisations are performed

https://doi.org/10.1017/S002237782400093X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400093X


4 R. Nies, E.J. Paul, D. Panici, S.R. Hudson and A. Bhattacharjee

using the Broyden-Fletcher-Goldfarb-Shanno algorithm (Fletcher 1987) implemented
in the scipy package (Virtanen et al. 2020), with the initial boundary taken to be that
of a simple rotating ellipse. The Laplace equation for the vacuum magnetic field, as
well as the corresponding adjoint problem (Nies et al. 2022), are solved with the SPEC
code (Hudson et al. 2012; Qu et al. 2020). The rotational transform on the boundary is
obtained by solving the straight-field-line equation B · ∇α = 0, with the field-line label
α = θ − ιζ + λ(θ, ζ ), where λ is a single-valued function of the angular coordinates.

After an optimised vacuum field boundary has been obtained, it may then be input to
VMEC (Hirshman et al. 1986) or DESC (Dudt & Kolemen 2020; Conlin et al. 2023;
Dudt et al. 2023; Panici et al. 2023), solving MHS force balance while setting the
pressure and current profiles to vanish. This procedure yields a good approximation to
the vacuum field, provided the flux surfaces are nested. This is generally the case for the
QH configurations, as well as the QA configurations with Nfp = 2, but not for those with
Nfp = 3 due to their larger magnetic shear, see §§ 3 and 4. The DESC solution is used only
for post-processing, to evaluate volume properties and the magnetic axis. The VMEC code
is used in conjunction with the SIMSOPT (Landreman et al. 2021a) optimisation suite in
§ 5, to further optimise two configurations.

Although f �QS from (A4) is used in the optimisation, for post-processing the degree of
QS is also evaluated using the infinity norm of the symmetry-breaking modes

|Bmn|∞ ≡ max
n/m �=N/M

Bmn, (2.6)

which may be evaluated on the boundary from either the SPEC or the DESC solution.
Here, Bmn are the coefficients of the field strength when Fourier expanded in the Boozer
angles θB and ζB, i.e. B = ∑

Bmn cos(mθB − nNfpζB). For the SPEC vacuum field solution,
the Boozer coordinate transformation required to evaluate (2.6) follows the procedure
presented in Appendix C. From the DESC solution, we further define a metric of QS
in the volume as 〈 |Bmn|∞

B00

〉
=
∫ 1

0
ds

|Bmn|∞
B00

, (2.7)

where s is a normalised flux coordinate ranging from s = 0 on the magnetic axis to s = 1
on the boundary. We note that, although perfect QS would result in both f �QS = 0 and
|Bmn|∞ = 0, the two measures of QS employed in this study do not perfectly correlate as
QS is approached (Rodríguez, Paul & Bhattacharjee 2022a), such that larger |Bmn|∞ values
than expected might be obtained in the configurations optimised for low f �QS. Moreover, we
observe differences in the level of QS on the boundary given by the DESC and vacuum
field solutions, see §§ 3 and 4. These may be due to the different algorithms employed,
or small inaccuracies in the equilibrium solutions becoming important as very small QS
deviations are reached.

3. Aspect ratio scan

We first investigate how the choice of aspect ratio A affects the QS optimisation.
We consider QA configurations with Nfp = 2 and Nfp = 3, with a boundary rotational
transform target ιT = 0.42, as had been used for the precise QA configuration obtained
by Landreman & Paul (2022). Optimisations for QA at Nfp = 1 and Nfp = 4 generally
performed poorly, consistent with previous studies (Landreman 2022), and are thus
not shown here. For the QH configurations, Nfp = 3 and Nfp = 4 are considered, with
rotational transform targets of ιT ≈ 1.3. Although it is crucial only for the QA to
prescribe a rotational transform target, as the optimisation would otherwise tend towards
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(a) (b) (c) (d)

(i) ( j) (k) (l)

(e) ( f ) (g) (h)

FIGURE 1. Contours of the magnetic field strength B on the boundary of quasisymmetric
stellarators at small aspect ratio A: top view (a–d), side view (e–h) and in Boozer coordinates
(i–l).

an axisymmetric solution with ι = 0, we also included an ι target for the QH to make
the comparison between different aspect ratio values more meaningful. We do not include
here QH configurations with either Nfp = 2, due to their larger deviations from QS in
our optimisation, or with Nfp ≥ 5, as these could only be optimised at larger aspect ratio
values.

For the QA configuration with Nfp = 2 and A = 6, the optimisation was pushed to very
high resolutions to reach record levels of QS on the boundary. This optimisation was
performed as a proof of principle that the QS error on the boundary could be reduced
substantially, although a large number of boundary harmonics are required in practice,
and an increased computational cost is incurred. We note that reducing the QS error from
|Bmn|∞/B00 ∼ 10−5 to |Bmn|∞/B00 ∼ 10−10 does not substantially change the boundary
shape, or the average QS error in the volume.

The contours of the magnetic field strength on the boundary of the configurations with
the lowest aspect ratio obtained for each case are displayed in figure 1. Configurations
with good QA (i.e. those for which the boundary magnetic field strength contours look
approximately straight in Boozer coordinates) could be found down to A = 2.6 and A =
4.5 for Nfp = 2 and Nfp = 3, respectively. For the QH configurations, the aspect ratio could
be reduced to A = 3.6 and A = 3 for Nfp = 3 and Nfp = 4, respectively. As attested by the
contours in Boozer coordinates (which are perfectly straight in the limit of exact QS),
these configurations have excellent QS on the boundary. Only the low aspect ratio Nfp = 4
QH configuration has visible deviations of the contours from straight lines. For the QA
configurations, the three-dimensional shaping is visibly strongest on the inboard side, in
agreement with the analytical results of Plunk & Helander (2018) for low aspect ratio QA
stellarators close to axisymmetry.

The QS error and rotational transform profiles for all configurations in the aspect ratio
scan are shown in figure 2 as a function of the normalised flux s. Further properties of the
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(a) (b)

FIGURE 2. Volume properties of stellarators optimised for QS on the boundary, with varying
aspect ratio A. The QS error (a) and rotational transform (b) profiles were obtained using the
DESC code. The QS error reaches record levels on the boundary (s = 1), and generally remains
relatively low in the core. The rotational transform profiles are flat for all configurations except
for Nfp = 3 QA.

A f �QS

( |Bmn|∞
B00

)
e,SPEC

( |Bmn|∞
B00

)
e,DESC

〈 |Bmn|∞
B00

〉
�ι κminR00

QA Nfp = 2 10.0 5 × 10−8 3 × 10−9 7 × 10−9 4 × 10−4 −1 × 10−3 0.50
8.0 4 × 10−8 2 × 10−9 4 × 10−7 1 × 10−3 −6 × 10−3 0.51
6.0 2 × 10−9 2 × 10−10 9 × 10−8 9 × 10−4 −4 × 10−3 0.49
4.0 1 × 10−5 5 × 10−7 8 × 10−7 1 × 10−3 −2 × 10−4 0.48
2.6 3 × 10−4 2 × 10−5 3 × 10−5 2 × 10−3 +7 × 10−3 0.43

QA Nfp = 3 10.0 1 × 10−5 3 × 10−7 2 × 10−6 5 × 10−4 −0.088 0.54
8.0 3 × 10−5 7 × 10−7 2 × 10−5 9 × 10−4 −0.120 0.52
6.5 2 × 10−5 1 × 10−6 2 × 10−5 2 × 10−3 −0.184 0.51
4.5 3 × 10−3 6 × 10−5 4 × 10−4 3 × 10−3 −0.343 0.51

QH Nfp = 4 9.0 2 × 10−5 9 × 10−7 9 × 10−7 2 × 10−3 +2 × 10−3 1.12
6.0 5 × 10−4 2 × 10−5 1 × 10−4 3 × 10−3 −8 × 10−3 1.32
3.0 3 × 10−2 2 × 10−3 2 × 10−3 1 × 10−2 +6 × 10−3 1.12

QH Nfp = 3 7.0 2 × 10−3 7 × 10−5 7 × 10−5 7 × 10−4 +0.011 0.67
4.8 2 × 10−4 1 × 10−5 1 × 10−5 3 × 10−3 +0.044 0.66
3.6 2 × 10−3 1 × 10−4 1 × 10−4 7 × 10−3 +0.063 0.62

TABLE 1. Properties of stellarators optimised for QS at varying aspect ratio A: QS figure of merit
f �QS, maximum symmetry-breaking mode on boundary from vacuum solution (SPEC) and MHS
solution (DESC), volume-averaged QS error in MHS solution, difference between ι on axis and
at the edge �ι = ι(s = 1)− ι(s = 0) and minimum value of axis curvature κmin.

configurations are listed in table 1. As expected, the QS is best on the boundary, down to
record normalised values of |Bmn|∞/B00 ∼ 10−8 in the DESC solution, and |Bmn|∞/B00 ∼
10−10 in the SPEC solution. The QS error also remains low throughout the volume in most
cases, |Bmn|∞/B00 � 10−2 at small aspect ratio, and |Bmn|∞/B00 � 10−3 at large aspect
ratio. The good QS levels throughout the volume suggest that, in practice, the optimisation
of QS on a boundary is achieved by approximating a globally QS configuration, see § 5.1.
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The QA Nfp = 2 and Nfp = 3, 4 QH configurations all have small magnetic shear, as
attested by the flatness of the rotational transform profiles, in accordance with previous
QS optimisations of vacuum fields (Landreman & Paul 2022). However, the Nfp = 3 QA
stellarators attain substantial magnetic shear, with ι varying from 0.42 on the boundary up
to 0.75 on axis. In those cases, the magnetic shear dι/dψ is positive (tokamak-like) and
approximately constant, such that �ι = ι(s = 1)− ι(s = 0) ∼ dι/dψ �ψ ∝ 1/A2, as the
change in flux �ψ ∼ Br2 ∼ (BR2)/A2.

The substantial magnetic shear of the Nfp = 3 QA configurations means the rotational
transform generally crosses low-order rational values in the core, leading to island chains
and chaotic regions. In those cases, the DESC solution may not be trustworthy, as it
assumes nested flux surfaces a priori. However, the integrability may be improved in an
auxiliary optimisation, as shown in § 5.2. We note that large chaotic regions are found for
the lowest aspect ratio Nfp = 3 QA with A = 4.5. One may hypothesise that the aspect ratio
is here limited by the chaotic region increasing in size until it encounters the boundary.

4. Rotational transform scan

We now vary the boundary rotational transform target ιT in the QS optimisation. We
again consider Nfp = 2 and Nfp = 3 QA, with a fixed aspect ratio of A = 6. We also
optimise Nfp = 4 QH stellarators at a higher aspect ratio A = 8. The aspect ratio targets
were chosen to be identical to the precise Nfp = 2 QA and Nfp = 4 QH configurations of
Landreman & Paul (2022). Good QS could be obtained for rotational transform values up
to ιe ∼ 0.7 and ιe ∼ 0.8 for the Nfp = 2 and Nfp = 3 QA configurations, respectively, and
in the range ιe ∼ 1 to ιe ∼ 2 for the Nfp = 4 QH.

The contours of the magnetic field strength for the QA configurations with highest
rotational transform obtained (ιe = 0.65 and ιe = 0.82 for Nfp = 2 and Nfp = 3,
respectively) are shown in figure 3, alongside the contours for the QH with the lowest
and highest rotational transform values obtained (ιe = 1.12 and ιe = 1.97). The contours
of the field strength in Boozer coordinates are straight to the naked eye, attesting to the
high level of QS.

The QS error in the volume and the rotational transform profile for all configurations
obtained in the rotational transform scan are shown in figure 4. Further properties of
the configurations are listed in table 2. The QS error is again very low at the edge in
most configurations, down to |Bmn|∞/B00 ∼ 10−8. The QS error in the core also remains
low, with |Bmn|∞/B00 � 10−3 for most QA configurations and the high ι QH, while
|Bmn|∞/B00 � 10−2 for the high ι Nfp = 3 QA and lower ι QH. The magnetic shear is
again found to be small for the Nfp = 2 QA, and for the Nfp = 4 QH configurations at
lower ιe � 1.75. Substantial magnetic shear is found for the Nfp = 3 QA configurations,
with a nearly constant difference between the transform in the core and in the edge,
�ι = ι(s = 1)− ι(s = 0) ≈ 0.2. Noticeable magnetic shear is also found for the highest
ιe = 1.97 QH configuration.

The magnetic axes of the configurations at varying rotational transform are shown
in figure 5. For the QA configurations, as the rotational transform is increased, the
axis develops regions of low curvature, as may also be seen from the straightening of
the axis, and of high torsion. The straightening of the magnetic axis with increasing
ι is in agreement with a near-axis model of QS (Rodríguez et al. 2022b) that showed
how higher values of ι move QA configurations towards a phase transition where the
configuration would be quasi-isodynamic, which requires the axis to have regions of
vanishing curvature. For the QH configurations, the phase transition is approached as ι
is decreased, corresponding again to a straightening of the magnetic axis at lower ι in
figure 5, although it is less pronounced than for the QA cases.
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(a) (b) (c) (d )

(i) ( j) (k) (l)

(e) ( f ) (g) (h)

FIGURE 3. Contours of the magnetic field strength B on the boundary of quasisymmetric
stellarators at varying edge rotational transform ιe: top view (a–d), side view (e–h) and in Boozer
coordinates (i–l).

(a) (b)

FIGURE 4. Volume properties of stellarators optimised for QS on the boundary, with varying
edge rotational transform ιe. The QS error (a) and rotational transform (b) profiles were obtained
using the DESC code. The QS error reaches record levels on the boundary (s = 1), and generally
remains relatively low in the core. The rotational transform profiles are flat for all configurations
except for Nfp = 3 QA and the high ιe = 1.97 QH.

5. Optimisation refinement for volume properties

We here use the SIMSOPT (Landreman et al. 2021a) optimisation suite in conjunction
with the VMEC code Hirshman et al. (1986) to refine the optimisation of two
configurations with good QS on the boundary. We first demonstrate improvement of QS
in the volume in § 5.1, and then show how a Nfp = 3 QA can be made integrable in § 5.2.
We note that the VMEC code struggles to obtain a converged equilibrium for the QH
configurations at high resolutions, such that only QA configurations were considered.
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ιe f �QS

( |Bmn|∞
B00

)
e,SPEC

( |Bmn|∞
B00

)
e,DESC

〈 |Bmn|∞
B00

〉
�ι κminR00

QA Nfp = 2 0.22 2 × 10−7 8 × 10−9 1 × 10−8 8 × 10−4 −8 × 10−3 0.65
0.37 4 × 10−6 3 × 10−7 3 × 10−7 1 × 10−3 −2 × 10−3 0.52
0.52 4 × 10−5 2 × 10−6 2 × 10−6 8 × 10−4 +5 × 10−3 0.40
0.65 2 × 10−5 2 × 10−6 2 × 10−6 1 × 10−3 +1 × 10−2 0.31

QA Nfp = 3 0.32 2 × 10−4 3 × 10−6 2 × 10−5 8 × 10−4 −0.152 0.53
0.52 4 × 10−4 1 × 10−5 2 × 10−4 1 × 10−3 −0.161 0.42
0.72 3 × 10−4 7 × 10−6 3 × 10−4 5 × 10−3 −0.203 0.34
0.82 1 × 10−3 6 × 10−5 9 × 10−5 4 × 10−3 −0.187 0.33

QH Nfp = 4 1.12 1 × 10−3 6 × 10−5 6 × 10−5 1 × 10−3 +0.015 1.11
1.27 8 × 10−5 2 × 10−6 2 × 10−6 3 × 10−3 +3 × 10−3 1.11
1.42 7 × 10−6 3 × 10−7 3 × 10−7 3 × 10−3 −2 × 10−3 1.18
1.62 2 × 10−6 1 × 10−7 1 × 10−6 1 × 10−3 +0.033 1.19
1.82 9 × 10−6 3 × 10−7 8 × 10−7 5 × 10−4 +0.075 1.20
1.97 8 × 10−6 1 × 10−6 2 × 10−4 5 × 10−4 +0.173 1.24

TABLE 2. Properties of stellarators optimised for QS at varying edge rotational transform ιe: QS
figure of merit f �QS, maximum symmetry-breaking mode on boundary from vacuum solution
(SPEC) and MHS solution (DESC), volume-averaged QS error in MHS solution, difference
between ι on axis and at the edge�ι = ι(s = 1)− ι(s = 0) and minimum value of axis curvature
κmin.

FIGURE 5. Magnetic axes’ top view (a), curvature (b) and torsion (c), of the stellarators
optimised for QS on the boundary with varying edge rotational transform ιe. The DESC solution
is used to obtain the magnetic axis. Regions of reduced curvature develop at high ι for the QA,
and at low ι for the QH configurations, as predicted by Rodríguez et al. (2022b). The legend for
the various colours and shadings is given in figure 4.

5.1. Volume quasisymmetry
We here optimise for QS in the volume of the Nfp = 2 QA configuration with aspect ratio
A = 6 and high rotational transform ι = 0.65. The optimisation follows the procedure of
Landreman & Paul (2022). Because of the large number of harmonics employed in the
adjoint optimisation (nmax = 11 and mmax = 7 for the ιT = 0.65 case under consideration),
only a small number of steps in the SIMSOPT optimisation are computationally feasible
due to the use of finite differences to evaluate the objective function’s derivative.
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(a) (b)

FIGURE 6. Two field-period QA with large edge rotational transform ιe = 0.65 before
(Boundary QA) and after (Global QA) auxiliary optimisation for QS in the volume. The QS
error (a), evaluated using the VMEC code, shows an improvement in the global QS level,
at the cost of higher QS error on the boundary. The optimisation did not require a large
modification to the stellarator shape, as attested by the cross-sections of the boundary (b), shown
for ζ/(2π/5Nfp) ∈ {0, 1, 2, 3, 4}.

After only 15 iterations of the optimiser, the QS in the volume is reduced by
approximately an order of magnitude, although the QS on the boundary is degraded,
as shown in figure 6. The QS error is now highest on the boundary, similar to previous
optimisation results (e.g. Landreman & Paul 2022). The improvement of the QS in the
volume does not require large changes in the boundary shape, as demonstrated by the
small changes to the boundary cross-sections. This further supports the hypothesis that
the stellarators optimised for boundary QS are close to solutions with good volume QS.
Finally, we note that the already small magnetic shear is further reduced by the global QA
optimisation, decreasing from �ι = ι(s = 1)− ι(s = 0) = 0.012 to �ι = 0.002.

5.2. Flux surface nestedness
Generally, the QA configurations with Nfp = 3 are not integrable, i.e. they do not possess
nested magnetic flux surfaces, as the magnetic shear is large enough to cause the ι profile
to cross low-order rational values. Depending on the configuration at hand, this leads
to magnetic island chains, or stochastic regions. In contrast, the QH and Nfp = 2 QA
configurations all have nested flux surfaces, as they have small magnetic shear and the
targeted ι was chosen so as to avoid low-order rationals.

Even for the non-integrable Nfp = 3 QA configurations, the integrability may be
improved in a subsequent optimisation, as shown here for the Nfp = 3 QA configuration
with high edge rotational transform ιe = 0.72 and aspect ratio A = 6. The integrability is
targeted by minimising Greene’s residue (Greene 1979) on a set of rational values of ι
seen to cause islands in the Poincaré plot, as in Landreman, Medasani & Zhu (2021b). An
objective targeting QS in the volume is further included.

The Greene residue is targeted for the ι = 3/4 and ι = 6/7 resonances. Although the
boundary coefficients go up to mmax = nmax = 10, the optimisation space is limited to a
small number of coefficients in the boundary representation (2.5), up to m = 2 and n = 4
to make the optimisation computationally tractable.

Before the integrability optimisation, the Poincaré plots clearly reveal the presence of
multiple magnetic island chains, see figure 7(a). These are removed by the optimisation,
as shown in figure 7(b). Furthermore, the QS error in the core could be reduced, although
the QS error on the boundary is degraded, see figure 7(c). The changes in the QS
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(a) (b)

(d )(c)

FIGURE 7. Optimisation for integrability and volume QS of Nfp = 3 QA with high edge
rotational transform ιe = 0.72. The integrability optimisation leads to the disappearance of
the magnetic island chains, such that the final configuration has optimised configuration.
Furthermore, the volume QS error (evaluated using the VMEC code) is also reduced. The
required change in the stellarator shape is minimal, as attested by the cross-sections of the
boundary at ζ/(2π/5Nfp) ∈ {0, 1, 2, 3, 4}. (a) Poincaré before integrability optimisation. (b)
Poincaré after integrability optimisation. (c) Quasisymmetry error. (d) Boundary cross-sections
at varying ζ .

and integrability do not require a substantial modification to the boundary shape, as
demonstrated by the cross-sections in figure 7(d).

6. Conclusions

We leveraged the computational efficiency of adjoint methods to optimise for QS on the
boundary of stellarator vacuum fields, reaching record levels of QS on the boundary. For a
Nfp = 2 quasi-axisymmetric configuration with A = 6 and ιe similar to (Landreman & Paul
2022), where a volume symmetry-breaking mode amplitude of |Bmn|∞/B00 ≈ 3 × 10−5

was achieved, we could optimise QS to |Bmn|∞/B00 ≈ 2 × 10−10 on the boundary. The
configurations optimised for boundary QS appear close to solutions with precise global
QS, such that the boundary QS optimisation may be followed by a global QS optimisation,
the latter requiring only small changes to the boundary, see § 5.1.

We were also able to obtain QA configurations at Nfp = 3, which possess substantial
magnetic shear compared with the QH and Nfp = 2 QA configurations (see also
Landreman & Paul 2022). An increased magnetic shear could be beneficial, e.g. to reduce
the turbulent transport. However, the larger magnetic shear generally leads to the rotational
transform crossing resonances, causing magnetic island chains and stochastic regions. We
showed in § 5.2 how these may be removed in an auxiliary optimisation, restoring flux
surface nestedness.

We studied in § 3 the range of aspect ratio values for which good QS could be obtained,
leading to designs with small aspect ratios similar to those of tokamaks, e.g. an A = 2.6
QA with Nfp = 2, and QH configurations with A = 3.6 for Nfp = 3, and A = 3 for Nfp = 4.
Reaching such low aspect ratios could prove crucial for a stellarator fusion power plant,
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as a large aspect ratio might require a prohibitively large major radius for a prescribed
volume target. However, configurations with tight aspect ratios have degraded levels of
QS and generally have a large amount of shaping, for which economical coils could be
precluded.

We further investigated in § 4 the range of ι values compatible with good QS on the
boundary. Quasiaxisymmetric configurations could be found up to ι ∼ 0.7 − 0.8, while the
QH configurations at Nfp = 4 had a range of ι between ∼ 1 and 2. The value of ι is crucial
in many ways, e.g. to avoid prompt losses of energetic particles (Paul et al. 2022), as the
orbit width scales inversely with |ι− N/M|. For the QA configurations, good QS is most
easily obtained at low rotational transform values, as these are closer to the axisymmetric
case. For the QH configurations, good QS is most readily obtained at intermediate values
of ιe ∼ 1.5, though the high ιe ∼ 2 configurations might prove interesting due to their
increased magnetic shear.

We note that, although the inclusion of thermal pressure and plasma current can
lead to significant changes to the QS solutions (e.g. Landreman et al. 2022), vacuum
configurations can provide useful guidance for finite-pressure equilibria (Boozer 2019).
Furthermore, although the present study was mostly limited to optimisation of QS on the
boundary, this might be sufficient to guarantee good confinement by effectively creating
an edge transport barrier (for the guiding-centre trajectories). Moreover, reducing the
confinement in the plasma core may be desirable to avoid impurity and ash accumulation.
If global QS is desired, however, the configurations presented generally possess good
levels of QS even in the core, which may be further improved by a subsequent global
QS optimisation, see § 5.1.

In this study, we focused on the compatibility of QS with aspect ratio and rotational
transform targets. Future work ought to consider the trade-offs between QS and other
targets typically considered in the design of a stellarator, such as MHD stability,
turbulent transport optimisation or engineering feasibility. Furthermore, adjoint-based
fixed-boundary optimisation could be combined with coil optimisation for an efficient
derivative-based single-stage approach simultaneously optimising the plasma and the
coils, as studied by Jorge et al. (2023).
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Appendix A. Normalised quasisymmetry objective

We introduce two normalisations in our QS objective, compared with Nies et al. (2022).
As a reminder, our objective is based on the definition of QS as

B · ∇ψ × ∇B
B · ∇B

= −MG + NI
N − ιM

, (A1)

with the magnetic field B, the toroidal flux ψ and the enclosed poloidal and toroidal
currents, G and I, respectively. We further consider a vacuum magnetic field

B = G∇(ζ + ω) ≡ GB̆, (A2)

with I = 0, ω a single-valued scalar function and S the stellarator boundary. The QS
objective in Nies et al. (2022) was defined as

fQS =
∫
S

dS
1
2
v2

QS, with vQS = B̆ · ∇B̆ − B̆ × ğψ · ∇B̆ (ι− N/M) , (A3)

where B̆ = B/G, and ğψ is a vector defined on the boundary that reduces to ∇ψ/G in the
limit of an integrable magnetic field, see Nies et al. (2022). In this study, we consider the
objective

f �QS=
√∫

S
dS w2

QS with wQS = vQS/B̆2. (A4)

The normalisation to wQS makes the objective function dimensionless (as wQS ∼ 1/L),
and should lend itself better to QP optimisation, as fQS is dominated by contributions from
high-field regions and QP configurations typically exhibit significant variation of B on the
surface. Finally, the square root is motivated by the fact that the Fourier expansion of wQS
in Boozer coordinates (Rodríguez et al. 2022a) is

wQS = −i
1
G

∑
n,m

(n − mN/M)Bmn exp(i(mθB − nζB)), (A5)

so that we can expect our objective to scale linearly in the size of the symmetry-breaking
Fourier components.

We now compute the shape derivative of the new QS objective (A4). First, note that

δf �QS=
1

f �QS
δ

(∫
S

dS
1
2

w2
QS

)
, (A6)

and

δ

(∫
dS

1
2

w2
QS

)
=
∫
S

dS
[

wQS δwQS + 1
2

(
δx · n̂

)
(n̂ · ∇ + h)w2

QS

]
(A7)

=
∫
S

dS

{
vQS

B̆4
δvQS + δω∇Γ ·

(
2
v2

QS

B̆6
B̆

)
+ (δx · n̂)

[
vQS

B̆4
n̂ · ∇vQS − 2

v2
QS

B̆5
n̂ · ∇B̆ + h

2

v2
QS

B̆4

]}
,

(A8)

where we used δB̆ = B̆ · ∇(δω)/B̆ and partially integrated the second term. Here, h is
the summed curvature, and n̂ is a unit vector normal to the surface. We can now proceed
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entirely analogously to the derivation of δfQS in (B24) of Nies et al. (2022), normalising
by B̆−4 where vQS appears, leading to

δf �QS = 1
f �QS

∫
S

dS

{
δω ∇Γ ·

[
−vQS

B̆4
∇Γ B̆ + B̆

B̆
∇Γ ·

(
vQS

B̆4
B̆
)

+ (ι− N/M)
(
vQS

B̆4
ğψ × ∇Γ B̆ − B̆ ∇Γ ·

(
1

B̆

vQS

B̆4
B̆ × ğψ

))
+ 2

v2
QS

B̆6
B̆

]

− δι
vQS

B̆4
B̆ × ğψ · ∇Γ B̆

[
(ι− N/M)

∇Γ α · ∇Γ ζ

|∇Γ α|2 + 1
]

− δλ (ι− N/M)∇Γ ·
[
vQS

B̆4

∇Γ α

|∇Γ α|2 B̆ × ğψ · ∇Γ B̆
]

+ (δx · n̂)
[
(ι− N/M)

∣∣ğψ ∣∣ B̆ × ∇B̆ ·
(

∇Γ

(
vQS

B̆4

)
− vQS

B̆4

∇Γ |∇Γ α|
|∇Γ α|

)

+ h
2

v2
QS

B̆4
− (n̂ · ∇B̆)∇Γ ·

(
vQS

B̆4
B̆
)

− vQS

B̆4

(
B̆ · ∇n̂ − n̂ · ∇B̆

)
· ∇Γ B̆

−vQS

B̆4
B̆ × ğψ · ∇B̆ (ι− N/M)

(∇Γ α · ∇n̂ · ∇Γ α

|∇Γ α|2 − h
)

− 2
v2

QS

B̆5
n̂ · ∇B̆

]}
,

(A9)

where ∇Γ is the tangential derivative. These modifications then carry through to the
adjoint equations and shape gradient, reproduced here for convenience.

First, the adjoint qα to the straight-field-line equation B · ∇α = 0, with α = θ − ιζ + λ
and single-valued λ, is given by

∇Γ ·
(

qαB̆
)

= − 1
f �QS

∇Γ ·
[
∇Γ α

(
vQS

B̆4
B̆ × ğψ · ∇B̆

ι− N/M
|∇Γ α|2

)]
, (A10a)

0 =
∫
S

dS

{
qαB̆ · ∇ζ + vQS

f �QSB̆4
B̆ × ğψ · ∇B̆

[∇Γ α · ∇Γ ζ

|∇Γ α|2 (ι− N/M)+ 1
]}
. (A10b)

Second, the adjoint qω to the Laplace equation �ω = 0 may be written as

�qω = 0, in V, (A11a)

∇qω · n̂ = −∇Γ ·
{

qα∇Γ α + vQS

f �QSB̆4
∇Γ B̆ − B̆

f �QSB̆
∇Γ ·

(
vQS

B̆4
B̆
)

− 2
v2

QS

f �QSB̆6
B̆

+ 1
f �QS

(ι− N/M)
[
vQS

B̆4
ğψ × ∇Γ B̆ − B̆ ∇Γ ·

(
1

B̆

vQS

B̆4
B̆ × ğψ

)]}
, on S, (A11b)

with V the volume enclosed by S .
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Finally, the shape gradient follows as

G�QS = − 1
f �QS

(n̂ · ∇B̆)∇Γ ·
(
vQS

B̆4
B̆
)

− 1
f �QS

vQS

B̆4

(
B̆ · ∇n̂ − n̂ · ∇B̆

)
· ∇Γ B̆

+ ι− N/M
f �QS

∣∣ğψ ∣∣ B̆ × ∇B̆ ·
[
|∇Γ α|∇Γ

(
vQS

B̆4|∇Γ α|

)
+ n̂

vQS

B̆4

(∇Γ α · ∇n̂ · ∇Γ α

|∇Γ α|2 − h
)]

+ B̆ · ∇qω + qα
(

n̂ · ∇B̆ − B̆ · ∇n̂
)

· ∇Γ α + 1
f �QS

h
2

v2
QS

B̆4
− 2

1
f �QS

v2
QS

B̆5
n̂ · ∇B̆. (A12)

Appendix B. Shape gradient for aspect ratio objective

The definition of the aspect ratio A is given in (2.4). Note that the mean cross-sectional
area may be written as

S̄ = 1
2π

∫
dζ
∫
Sζ

dS = 1
2π

∫
V

dV

√
gssgθθ − g2

sθ

g
, (B1)

with the metric elements gij and its determinant g. The shape derivative follows as (see
e.g. Walker 2015)

δS̄ = 1
2π

∫
S

dS (δx · n̂)

√
gssgθθ − g2

sθ

g
. (B2)

One may then obtain the shape derivative of the aspect ratio (2.4) as

δA = A
(
δV
V − 3

2
δS̄
S̄

)
, (B3)

with the enclosed volume’s shape derivative (see e.g. Walker 2015) δV = ∫
S dS (δx · n̂).

Appendix C. Boozer coordinate transformation for a vacuum magnetic field

The covariant coordinates of the magnetic field in Boozer coordinates (ψ, θB, ζB) are
given by

B = G(ψ)∇ζB + I(ψ)∇θB + K(r)∇ψ, (C1)

which reduces to B = G∇ζB for a vacuum magnetic field. Starting from a general set of
coordinates (s, θ, ζ ), one may also write the vacuum field as

B = G∇(ζ + ω), (C2)

with ω a single-valued function. The toroidal Boozer angle may thus be simply identified
as

ζB = ζ + ω. (C3)

The poloidal Boozer angle can be obtained after solving the magnetic differential equation
B · ∇α = 0 for the field-line label α = θ − ιζ + λ(θ, ζ ), with the single-valued function
λ. Then, employing the fact that Boozer coordinates are straight-field-line coordinates
(λ = 0), the Boozer poloidal angle may be evaluated as

θB = α + ιζB. (C4)
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