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Abstract. We study the effect of poloidal magnetic field on type I planetary migration by
linear perturbation analysis with the shearing-sheet approximation and the analytic results
are compared with numerical calculation. We investigate the cases where magneto-rotational
instability (MRI) does not occur: either the disk is two-dimensional, or a very strong field is
exerted. We derive formulae for torque exerted on the planet for both cases. We find that two-
dimensional torque is suppressed when plasma beta is less than 1 and three-dimensional modes
dominate, in contrast to unmagnetized case.
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1. Introduction
Type I planetary migration is an important issue in the theory of giant planet formation

and there have been a lot of work on this topic. For an unmagnetized disk, Tanaka
et al. (2002) showed that the protoplanet of 5M⊕ located at 5AU and embedded in the
minimum-mass solar nebula (Hayashi et al. 1985) migrates inward in 8×105 years, which
is shorter than the observed lifetime of a protoplanetary disk [∼ 107 years, see e.g., Haisch
et al. 2001].

Magnetic fields are supposed to be present in protoplanetary disks. Significant mass
accretion onto the central star requires an effective mechanism for angular momentum
transfer, which is most likely driven by magneto-rotational instability, or MRI (Balbus
& Hawley 1991).

The property of planetary migration may be totally different if a magnetic field is
exerted on the disk. Terquem (2003) performed a linear analysis of the torque for a two-
dimensional laminar disk with toroidal magnetic field and showed that when the toroidal
magnetic field inside the planet’s orbital radius is larger than outside, inward migration
may be halted.

In this paper, we investigate the type I planetary migration assuming a poloidal mag-
netic field, which is a complementary analysis to Terquem (2003). As a first step to
understand the nature of migration in a magnetized disk, we perform a shearing-sheet
analysis and calculate the one-sided torque. We restrict ourselves to a laminar disk, the
case without MRI, and derive analytic formulae of torque. For two-dimensional modes,
we derive an analytic formula which generalizes that of Artymowicz (1993). For three-
dimensional modes, we use the WKB approximation and derive an analytic torque for-
mula in a strong field limit. We show that two-dimensional modes are suppressed by
poloidal magnetic field and three-dimensional modes will dominate the total torque. We
then compare the results of the linear analysis with a numerical calculation, and show
good agreement between them.
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2. Basic Equations and Linear Analysis
The basic equations are ideal MHD equations.

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇ψeff − 2Ωp(ez × v) − 1

4πρ
B × (∇× B), (2.2)

∂B

∂t
= ∇× (v × B), (2.3)

where ρ, v, P , ψeff , Ωp, ez , and B are the gas density, velocity, gas pressure, effective
potential including tidal force and the planet’s gravitational potential, Keplerian angular
velocity of the protoplanet, a unit vector directed to the z-axis, and the magnetic flux
density, respectively. The Keplerian angular velocity of the protoplanet is given by

Ωp =
(

GMc

r3
p

)1/2

, (2.4)

where G, Mc , and rp are the gravitational constant, mass of the central star, and the
distance between the protoplanet and the central star, respectively. In the shearing-sheet
approximation, effective potential ψeff is given by

ψeff = −3
2
Ω2

px
2 − GMp

r
, (2.5)

where Mp is the mass of the planet and r = (x2+y2+z2)1/2 is the distance from the planet
(see e.g., Narayan et al. 1987). The first term includes the gravitational potential of the
central star and the centrifugal potential, and higher orders in x, y, and z are neglected.
We also neglect the z dependence of the effective potential for simplicity, and neglect
vertical stratification. This greatly simplifies the calculation, and it does not seriously
affect the results. The second term is the gravitational potential of the protoplanet. We
adopt an isothermal equation of state, P = c2ρ, where c is sound speed.

We solve these equations by linear perturbation analysis by the following steps:
(a) We assume that the background disk has no planet, constant density ρ0 , constant

poloidal magnetic field B0ez and constant Keplerian shear v0 = −(3/2)Ωpxey

(b) We assume the steady state, ∂/∂t = 0, and perturbations are Fourier decomposed
in y- and z- directions.

(c) For each Fourier mode, we solve the resulting ordinary differential equation under
outgoing boundary condition.

(d) For each Fourier mode, the torque exerted on the disk by the planet is calculated
by

Tky ,kz
= −2LyLzρ0rpky

∫
dxIm

(
δρky ,kz

(x)
ρ0

)
ψpky kz (x), (2.6)

where ky and kz are wavenumber of y- and z- directions and Ly and Lz are box size of
the searing-sheet. Note that the box size Ly (Lz ) and the wavenumber are related by
ky = 2πny/Ly (kz = 2πnz/Lz ) where ny (nz ) is an integer. The total torque is the sum
of all the Fourier modes.

Two-dimensional mode
For two-dimensional modes, kz = 0, magnetic pressure changes the effective sound

speed by

c →
√

c2 + v2
A (2.7)
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where vA = B0/
√

4πρ0 is Alfvén speed. The position of effective Lindblad resonances is
given by

σ2(xeff ) − Ω2
p − c2k2

y (1 + β−1) = 0, (2.8)

where β = c2/v2
A and σ(x) = (3/2)Ωpkyx (it is analyzed by Artymowicz (1993) for an

unmagnetized disk). Waves are excited at the effective Lindblad resonances and propagate
away from the planet, carrying angular momentum away.

We find a formula for the two-dimensional mode torque exerted at the effective Lind-
blad resonances, which extends the formula given by Artymowicz (1993). It reads,

T2D =
2π

3
rpρ0LyLz

Ωp

Ω2
p + 4c2k2

y (1 + β−1)
1√

Ω2
p + c2k2

y (1 + β−1)
Ψ2

eff , (2.9)

where

Ψeff =
dψp

dx
(xeff ) − 2ky

√
Ω2

p + c2k2
y (1 + β−1)

Ωp
ψp(xeff ) (2.10)

and the subscript “eff” denotes the value at the effective Lindblad resonances.
Three-dimensional mode
For three-dimensional modes, kz �= 0, we find that magnetic resonances, which is found

by Terquem (2003) in toroidal field case, also appears in poloidal case. This becomes
important when magnetic field is strong. The location of the magnetic resonances is
given by

σ2 =
c2v2

Ak2
z

c2 + v2
A

. (2.11)

We find that the perturbed surface density is singular at the location of the magnetic
resonances and strong point-like torque is exerted.

In the strong field limit, β → 0, we find an analytic expression of the torque at the
magnetic resonances. This reads

TMR =
2π

3
LyLz

ρ0rpkz

Ωpc
ψ2

p,MR , (2.12)

where subscript MR denotes the value at the magnetic resonances. Note that this torque
expression does not depend on β and hence strength of magnetic field. This indicates
that three-dimensional torque converges to one value when magnetic field is very strong.
For details of the analyses, we refer the readers to our full paper (Muto et al. 2007).

3. Numerical Method
We have performed numerical calculations in order to investigate how well the equa-

tions (2.9) and (2.12) agree with the realistic values of the torque. We have done two
sets of runs. One is for a two-dimensional disk. The other is for a three-dimensional thick
disk. We adopt the nested grid method (see, e.g., Machida et al. 2005, Matsumoto &
Hanawa 2003) to obtain high spatial resolution near the planet. Each level of rectangular
grid has the same number of cells (= 64×256) for 2D run, while (= 64×256×16) for 3D
run. The cell width ∆s(l) depends on the grid level l. The cell width is divided by two
in each direction with increasing grid level (l → l +1). We use four grid levels (l =1,2 · · ·
4) for 2D run and five levels for 3D run. We normalize time by Kepler time of the planet
Ωp and velocity by sound speed c and therefore, length scale is normalized by scale hight
h = c/Ωp. The box size of the coarsest grid l = 1 is chosen so that (Lx, Ly ) = (64h, 256h)

https://doi.org/10.1017/S1743921308016906 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308016906


404 T. Muto et al.

10-7
10-6
10-5
10-4
10-3
10-2

10-2 10-1 100 101

no
rm

al
is

ed
 to

rq
ue

kyh

β=100

10-7
10-6
10-5
10-4
10-3
10-2

10-2 10-1 100 101

no
rm

al
is

ed
 to

rq
ue

kyh

β=100

10-7

10-6

10-5

10-4

10-3

10-2 10-1 100 101

no
rm

al
is

ed
 to

rq
ue

kyh

β=2

10-7

10-6

10-5

10-4

10-3

10-2 10-1 100 101

no
rm

al
is

ed
 to

rq
ue

kyh

β=2

10-7

10-6

10-5

10-4

10-3

10-2 10-1 100 101

no
rm

al
is

ed
 to

rq
ue

kyh

β=0.1

analytic

10-7

10-6

10-5

10-4

10-3

10-2 10-1 100 101

no
rm

al
is

ed
 to

rq
ue

kyh

β=0.1

analytic
numerical

Figure 1. Comparison of the torque obtained by the two-dimensional numerical calculation
(plus) and the linear analysis (line), the equation (2.9) for β = 100 (top left), β = 2 (top right),
and β = 0.1 (bottom). Horizontal axis is the azimuthal mode number and the vertical axis is
normalized torque.

for 2D run and (Lx, Ly , Lz/2) = (64h, 256h, 16h) for 3D run. Note that in z-direction,
the simulation box extends from midplane to z = Lz/2. The box size of the finest grid is
(x, y) = (2h, 8h) for 2D run and (x, y, z) = (2h, 8h, h) for 3D run. The cell width of the
coarsest grid is ∆s(1) = h, while that of the finest grid has ∆s(4) = 0.125h for 2D run
and ∆s(5) = 0.0625h for 3D run. We use a fixed boundary condition in the x-direction
and a periodic boundary condition in the y-direction. In the z-direction, we impose a
periodic boundary condition between z = −Lz/2 and z = Lz/2. The planet-to-primary
mass ratio is q = 9 × 10−6 and the disk aspect ratio is h/r = c/Ωprp = 0.05, and the
strength of magnetic field is varied.

4. Results
We compare the results of numerical calculation with the analytic torque formula

(2.9) for two-dimensional calculations. Also, we compare the formula (2.12) for three-
dimensional calculations in which we do not observe MRI.

For two-dimensional calculation, we find that the larger B0 , the larger the effective
sound speed [see Eq. (2.7)], the more Lindblad resonances are shifted away from the
orbit, and the more the one-sided Lindblad torque decreases. We show in figure 1 the
comparison between the results of numerical calculation and linear analysis [the equation
(2.9)]. They show reasonably good agreement, to within an order of magnitude, even
though the equation (2.9) estimates the torque by the value of density perturbation only
at the position of effective Lindblad resonances. Therefore, the equation (2.9) is useful
to estimate two-dimensional torque when poloidal magnetic field is exerted on the disk.

Figure 2 compares the torque obtained from the three-dimensional numerical calcu-
lations and that calculated from linear analysis of kz = 2π/Lz (nz = 1) modes [the
equation (2.12)]. The formula (2.12) shows a very good agreement.
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Figure 2. The comparison of kz = 2π/Lz (nz = 1) mode torque between three-dimensional
numerical calculation (symbols) and the linear analysis (line) for β = 0.001 (plus) and β = 0.01
(cross). The horizontal axis shows the azimuthal mode number and the vertical axis shows the
normalized torque.

From linear analysis and numerical calculation, it is indicated that the stronger the
magnetic field, the weaker the two-dimensional mode. For β < 0.01, three-dimensional
modes dominate the total torque, in contrast to unmagnetized case where three-dimensional
modes are always subdominant (see e.g., Tanaka et al. 2002).

5. Summary
We performed a linear perturbation analysis to calculate the torque exerted on a low-

mass planet by a disk with poloidal magnetic field. We derived torque expressions in the
shearing-sheet approximation, in two-dimensions [Eq. (2.9)], and in three dimensions [in
the strong field limit, Eq. (2.12)]. Our torque analytic expressions are in good agreement
with the results of numerical simulations.

Since we have been working on the shearing-sheet approximation and derived the
torque formulae in some restricted cases, the analysis of more general cases and other
resonances is necessary (T. Muto and S. Inutsuka 2008, in preparation). We also need
more quantitative analysis of the differential torque, which gives the actual value of the
torque exerted on the planet.
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