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Existence and symmetry breaking results
for positive solutions of elliptic
Hamiltonian systems
Abbas Moameni and Kok Lin Wong
Abstract. In this paper, we are interested in positive solutions of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = a(x)v p−1 , in Ω,
−Δv = b(x)uq−1 , in Ω,
u, v > 0, in Ω,
u = v = 0, on ∂Ω,

where Ω is a bounded annular domain (not necessarily an annulus) in R
N(N ≥ 3) and a(x), b(x)

are positive continuous functions. We show the existence of a positive solution for a range of
supercritical values of p and q when the problem enjoys certain mild symmetry and monotonicity
conditions. We shall also address the symmetry breaking phenomena where the system is fully
symmetric. Indeed, as a consequence of our results, we shall show that problem (1) has ⌊ N

2 ⌋ (the
floor of N

2 ) positive non-radial solutions when a(x) = b(x) = 1 and Ω is an annulus with certain
assumptions on the radii. In general, for the radial case where the domain is an annulus, we prove
the existence of a non-radial solution provided

(p − 1)(q − 1) > (1 + 2N
λH
)

2
( q

p
) ,

where λH is the best constant for the Hardy inequality on Ω. We remark that the best constant λH
for the Hardy inequality is just the characteristic of the domain, and is independent of the choices
of p and q. For this reason, the aforementioned inequality plays a major role to prove the existence
and multiplicity of non-radial solutions when the problem is fully symmetric. Our proofs use a
variational formulation on appropriate convex subsets for which the lack of compactness is recovered
for the supercritical problem.

1 Introduction

The main purpose of the paper is to study the existence and multiplicity of positive
solutions for the following system of supercritical nonlinear elliptic equations:
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2 A. Moameni and K.L. Wong

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = a(x)v p−1 , in Ω,
−Δv = b(x)uq−1 , in Ω,
u, v > 0, in Ω,
u = v = 0, on ∂Ω,

(1)

where Ω is a bounded annular domain (not necessarily an annulus) in R
N , (N ≥ 3),

q ≥ p > 2, and a, b ∈ C(Ω̄) with a(x) ≥ a0 > 0 and b(x) ≥ b0 > 0, where a0 and b0
are constants. In addition, for the case when a(x) = b(x) = 1 and Ω is an annulus
defined as

Ω = {x ∈ RN ∶ R1 < ∣x∣ < R2} ,

we shall address the symmetry breaking of the solutions by proving the existence and
multiplicity of positive non-radial solutions provided that R1 and R2 satisfy certain
conditions. Symmetry considerations dominate modern fundamental physics, both
in quantum theory and in relativity. Such symmetry breaking is responsible for the
existence of magnetism in which rotational invariance is broken.

Introduced independently by Mitidieri [21] and Van der Vorst [31], the Sobolev
critical hyperbola

1
p
+ 1

q
= 1 − 2

N
(2)

plays a crucial role in the analysis of (1). Our main contribution is to prove existence
and multiplicity of positive solutions for the supercritical case by means of the Sobolev
critical hyperbola 1/p + 1/q = 1 − 2/N .

Over the past 30 years, Hamiltonian systems have been widely studied with
results including, but not limited to, existence, multiplicity, concentration phenomena,
positivity, symmetry, and Liouville theorems. We redirect the interested reader to the
surveys [3, 13, 25] for an overview of the topic and to the works [2, 6, 7, 16] for some
recent results. One of the first mathematical works studying systems of Hardy–Hénon-
type equations were done by Calanchi and Ruf in [5]. The system of Hardy–Hénon-
type equations is given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = ∣x∣βvq−1 , in Ω,
−Δv = ∣x∣αup−1 , in Ω,
u, v > 0, in Ω,
u = v = 0, on ∂Ω,

(3)

where Ω is a bounded domain in R
N , (N ≥ 3), with 0 ∈ Ω, p, q > 2, and α, β > −N .

The authors in [5] presented existence and nonexistence of positive solutions
along with symmetry breaking results for ground states when Ω is the unit ball
in R

N . Calanchi and Ruf remarked that systems of type (3) are closely related
to the double weighted Hardy–Littlewood–Sobolev inequality (see [18, 29] for
instance). Later on, the authors Bonheure, Moreira dos Santos, and Ramos in [1]
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Existence and symmetry breaking results for positive solutions 3

presented qualitative properties of ground state solutions corresponding to the fol-
lowing system of equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δu = ∣x∣β ∣v∣q−2v , in B,
−Δv = ∣x∣α ∣u∣p−2u, in B,
u = v = 0, on ∂B,

(4)

where B denotes the open unit ball in R
N , N ≥ 1, α, β ≥ 0, and p, q > 1. Here, the

authors describe the system (4) as a Lane–Emden system with Hénon-type weights.
Consider the following Hénon equation:

{−Δu = ∣x∣α ∣u∣p−2u, in B,
u = 0, on ∂B,

where α > 0, and p > 2. As ∣x∣α increases with respect to ∣x∣, we observe that reflection
and symmetric arguments are inapplicable to prove radial symmetry of either positive
or ground state solutions to the Hénon equation. According to [26], the authors Smets,
Su, and Willem proved that the radial symmetry holds for small values of α whereas
the symmetry breaks for sufficiently large values of α. However, in [23, 27], the authors
showed that the ground state solutions still possess a residual symmetry, namely, the
foliated Schwarz symmetry.

We would like to remark that in the Hardy–Hénon system, one gets improved
compactness due to the presence of the terms ∣x∣α and ∣x∣β . In this paper, we assume
that the functions a and b in (1) are strictly positive and away from zero. As a result,
no improved compactness is induced from these functions.

As we are dealing with Hamiltonian systems, we highlight some further contribu-
tions on problems of type (4) presented in [14, 19]. As for nonexistence of solutions,
we refer the interested reader to the works of [14, 19] and in particular, Theorem 2(a)
in [5]. Specifically speaking, Theorem 2(a) states that the problem (4) possesses no
positive solutions, u, v in the open unit ball B in R

N for the case

N + α
p

+ N + β
q

≤ N − 2, provided that p, q > 1, N ≥ 3.

As a result, this is a consequence of a suitable Pohoz˘aev-type identity. The authors in
[1] presented that the hyperbola

N + α
p

+ N + β
q

= N − 2

is in fact, the exact threshold for the existence of positive solutions associated with (4).
Prior to introducing the main results of this paper, we conclude with some works

pertaining to the Dirichlet problem for the generalized Hénon equation

{−Δu + κu = ∣x∣α ∣u∣p−2u, in Ω,
u = 0, on ∂Ω,(5)
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4 A. Moameni and K.L. Wong

and its corresponding problem for a Hénon–Schrödinger system

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δu + κ1u = ∣x∣α ∂u F(u, v), in Ω,
−Δv + κ2v = ∣x∣α ∂v F(u, v), in Ω,
u = v = 0, on ∂Ω,

(6)

where Ω is the unit ball in R
N , N ≥ 2,κ,κ1 ,κ2 ≥ 0, p > 2, α > −1 and where

F ∶ R2 → R is homogeneous of degree p > 2.
We remark that problem (5) is called the Hénon equation when κ ≡ 0. In [20],

Lou, Weth, and Zhang observed that the Morse index of nontrivial radial solutions
corresponding to (6) (positive or sign-changing) tends to infinity as α tends to infinity.
Moreover in [9], Clapp and Soares studied a related problem

−Δu i + u i =
l
∑
j=1

β i j ∣u j ∣p ∣u i ∣p−2u i , u i ∈ H1(RN), i = 1, . . . , l ,

where N ≥ 4, 1 < p < N/(N − 2), and (β i j) represents a symmetric matrix admitting
a block decomposition with entries either positive or zero within each block and neg-
ative for all remaining entries. The authors resulted in the existence of fully nontrivial
solutions, that is, nontrivial solutions component-wise, provided certain conditions
are satisfied for the symmetric matrix (β i j). Furthermore, the authors derived the
existence of solutions with positive and non-radial sign-changing components to the
system of singularly perturbed elliptic equations

−ε2Δu i + u i =
l
∑
j=1

β i j ∣u j ∣p ∣u i ∣p−2u i , u i ∈ H1
0(B1(0)), i = 1, . . . , l ,

where B1(0) is the unit ball exhibiting two different kinds of asymptotic behavior—the
first being solutions whose components decouple as ε → 0, while the second behavior
being solutions whose components remain coupled up to their limit.

In this work, we are concerned with domains Ω ⊂ R
N that are invariant by the

group action O(m) × O(n) for N = m + n and m, n ≥ 1. We refer to Section 2 for the
official definitions and further details. Here, we briefly introduce this class of domains
in order to be able to state our main results in this paper. Inspired by the work [4],
for each x = (x1 , x2 , . . . , xN) ∈ Ω ⊂ R

N = R
m ×R

n , we shall consider the change of
variable

s ∶= {x2
1 + ⋅ ⋅ ⋅ + x2

m} 1
2 , t ∶= {x2

m+1 + ⋅ ⋅ ⋅ + x2
N}

1
2 .

Thus the domain Ω can be represented in the (s, t) variable as follows:

Ω̂ = {(s, t) ∈ U ∶ s > 0, t > 0},

for some appropriate domain U ∈ R2. Using polar coordinates, we can set s =
r cos(θ), t = r sin(θ), where r = ∣x∣ = ∣(s, t)∣ and θ the usual polar angle in the (s, t)-
plane. To describe the domains in terms of the above polar coordinates, we write

Ω̃ ∶= {(θ , r) ∶ (s, t) ∈ Ω̂}.(7)
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Existence and symmetry breaking results for positive solutions 5

We say that Ω is an annular domain if its associated domain given by Ω̂ in the (s, t)-
plane in R

2 is of the form

Ω̃ = {(θ , r) ∶ g1(θ) < r < g2(θ), θ ∈ (0, π
2
)}

in polar coordinates. Here, g i > 0 is smooth on [0, π
2 ] with g′i(0) = g′i( π

2 ) = 0 and
g2(θ) > g1(θ) on [0, π

2 ] . Moreover, we say that Ω is an annular domain with mono-
tonicity if g1 is increasing and g2 is decreasing on (0, π

2 ) . The class of annular domains
with monotonicity is indeed quite rich. For instance, a regular annulus

Ω = {x ∈ RN ∶ R1 < ∣x∣ < R2} ,

is an annular domain with monotonicity. We can also consider a slightly more general
version where the inner and outer boundaries are replaced with ellipsoids instead of
balls. Take Ω to have outer boundary given by the ellipsoid

m
∑
k=1

x2
k

A2 +
N
∑

k=m+1

x2
k

B2 = 1,

and the inner boundary given by

m
∑
k=1

x2
k

C2 +
N
∑

k=m+1

x2
k

D2 = 1,

where A, B, C , D > 0 are chosen such that the resulting domain is an annular region.
We also assume that the function a (resp. b) is a continuous and strictly positive

function of (s, t) that is a(x) = a(s, t). Moreover, we say that a (resp. b) satisfies
(A) if a (resp. b) is a continuously differentiable function with respect to (s, t) and
sat − tas ≤ 0 (resp. sbt − tbs ≤ 0) in Ω̂.

As observed in [8], for problems having the O(m) × O(n) symmetry (with
N = m + n) on an annular domain that is also invariant by O(m) × O(n), the hyper-
bola

1
p
+ 1

q
= 1 − 2

N
,

is no longer the critical hyperbola, as one has the required compactness for the
following improved inequality:

1
p
+ 1

q
≥ max{1 − 2

n + 1
, 1 − 2

m + 1
}.

Our main contribution in this paper is to go well beyond the latter inequality for the
lower bound of 1/p + 1/q and to prove the existence for

1
p
+ 1

q
≥ min{1 − 2

n + 1
, 1 − 2

m + 1
}.

We begin with the statement of the first main result arising in this paper.
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6 A. Moameni and K.L. Wong

Theorem 1.1 Suppose Ω is an annular domain with monotonicity in R
N for N ≥ 3. Let

N = m + n for 1 ≤ n ≤ m. In addition, assume that a and b satisfy (A). Let q ≥ p > 2. If

1
p
+ 1

q
> 1 − 2

n + 1
= min{1 − 2

n + 1
, 1 − 2

m + 1
} for n > p + 1

p − 1
,

then equation (1) has a positive weak solution (u, v) that is invariant under the group
action O(m) × O(n).

We would like to remark that in Theorem 1.1, we are not imposing any lower bound
condition on 1/p + 1/q for the case where n ≤ (p + 1)/(p − 1). We would also like to
remind the reader that the functions a and b do not add any compactness to the
problem. In addition, we note that the same proof in Theorem 1.1 is valid for the case
when a = b = 1. Similar results have been proved in an influential paper by Y. Y. Li [17]
in the scalar version.

As for our remaining results, we consider a specific problem of (1) given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = v p−1 , in Ω,
−Δv = uq−1 , in Ω,
u, v > 0, in Ω,
u = v = 0, on ∂Ω,

(8)

where the conditions in problem (1) are carried over to problem (8) with the exception
that a = b = 1 and Ω is an annulus defined as

Ω = {x ∈ RN ∶ R1 < ∣x∣ < R2} ,

where the radii R1 and R2 satisfy certain conditions. We shall see in the following
theorem that the solution obtained from Theorem 1.1 is non-radial.

Theorem 1.2 Let m, n ≥ 1 with N = m + n, and q ≥ p > 2. Suppose (u, v) is the
solution of (8) obtained in Theorem 1.1 that is invariant under the group action O(m) ×
O(n). Define

λH ∶= inf
0≠η∈H1

0(Ω)

∫Ω ∣∇η∣2

∫Ω
∣η∣2
∣x ∣2

dx .

If

(p − 1)(q − 1) > (1 + 2N
λH

)
2
( q

p
) ,

then (u, v) is non-radial.

We remark that λH is the optimal constant in the classical Hardy inequality on Ω,
and is independent of the choices of p and q. Indeed, λH is the characteristic of the
domain Ω and not the supercritical nonlinearities in the system of equations (1). The
following theorem addresses the multiplicity of positive solutions corresponding to
problem (8).
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Existence and symmetry breaking results for positive solutions 7

Theorem 1.3 For each 1 ≤ k ≤ ⌊ N
2 ⌋, where ⌊x⌋ is the floor function of x , and q ≥ p > 2,

the equation (8) has k distinct positive non-radial solutions if

(p − 1)(q − 1) > (1 + 2N
λH

)
2
( q

p
)

and either of the following two conditions hold:
1. k > (p + 1)/(p − 1) and

1
p
+ 1

q
> 1 − 2

k + 1
or;

2. k ≤ (p + 1)/(p − 1) and no lower bound condition imposed for 1/p + 1/q.

The following corollary states that under certain conditions on the radii, we
conclude that there is a range of p and q for which λH becomes sufficiently large. We
intend to use Theorem 1.3 to validate this corollary.

Corollary 1.4 The following assertions hold:
1. For 0 < R1 < R2 < ∞ and sufficiently large (p − 1)(q − 1)(p/q), there are at least

⌊ p+1
p−1 ⌋ distinct positive non-radial solutions of (8).

2. For fixed
1
p
+ 1

q
> 1 − 2

⌊ N
2 ⌋ + 1

and

(p − 1)(q − 1) > q
p

with λH sufficiently large, there are ⌊ N
2 ⌋ distinct positive non-radial solutions of (8).

For instance, under either of the following conditions, λH can be sufficiently large and
therefore there are ⌊ N

2 ⌋ distinct positive non-radial solutions of (8):
2.(a): Let R1 = R and R2 = R + 1. Then λH is sufficiently large for large values of R.

Note by scaling, we can take R1 = 1 and R2 = 1 + 1
R and obtain the same result

for large R.
2.(b): Let R < γ(R) with γ(R)

R → 1 as R → ∞. With ΩR = {x ∈ RN ∶
R < ∣x∣ < γ(R)}, we have that for R large enough, the λH corresponding
to ΩR is sufficiently large.

The structure of the paper is presented as follows. In Section 2, we present
some fundamental background on domains of double revolution along with some
important definitions and results arising from convex analysis and minimax principles
for lower semi-continuous functions. Afterward in Section 3, we use a variational
formulation on convex closed subsets of an appropriate Sobolev space that plays a
detrimental role in proving our main results of the paper. We conclude the paper with
Section 4 on the proofs of the remaining results which deal with multiplicity results
of positive non-radial solutions when Ω is an annulus.
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8 A. Moameni and K.L. Wong

2 Preliminaries

2.1 Domains of double revolution

We dedicate this section to introduce some fundamental background on domains of
double revolution. Unless otherwise stated, we assume that our domain is of double
revolution. We begin with some notations. Let RN = R

m ×R
n , where m, n ≥ 1 and

m + n = N . For each x = (x1 , x2 , . . . , xN) ∈ Ω ⊂ R
N , we shall consider the change of

variables in terms of s and t as

s ∶= {x2
1 + ⋅ ⋅ ⋅ + x2

m} 1
2 , t ∶= {x2

m+1 + ⋅ ⋅ ⋅ + x2
N}

1
2 .

Definition 2.1 We say that Ω ⊂ R
N is a domain of double revolution if it is invariant

under rotations of the first m variables and invariant under rotations of the last
n variables. Equivalently, Ω is of the form Ω = {x ∈ RN ∶ (s, t) ∈ U}, where U is a
domain in R

2 which is symmetric with respect to the two coordinate axes. In fact,

U = {(s, t) ∈ R2 ∶ x = (x1 = s, x2 = 0, . . . , xm = 0, xm+1 = t, . . . , xN = 0) ∈ Ω},

is the intersection of Ω with the (x1 , xm+1)-plane.

We remark that U is smooth if and only if Ω is smooth. Next, we denote Ω̂ to be
the intersection of U with the first quadrant of R2 , in other words,

Ω̂ = {(s, t) ∈ U ∶ s > 0, t > 0}.(9)

Using polar coordinates, we can set s = r cos(θ), t = r sin(θ) where r = ∣x∣ = ∣(s, t)∣
and θ the usual polar angle in the (s, t)-plane.

In this paper, we consider domains to be annular with a certain monotonicity (or
convexity) assumption with respect to the polar angle. In addition, all domains under
consideration will be bounded in R

N with smooth boundary unless explicitly stated.
We describe the domains in terms of the above polar coordinates by

Ω̃ ∶= {(θ , r) ∶ (s, t) ∈ Ω̂}.(10)

Now, we can formally define an annular domain stated as follows.

Definition 2.2 Let Ω ⊂ R
N be a domain of double revolution in R

N with N = m + n
for m, n ≥ 1. We say that Ω is an annular domain if its associated domain given by Ω̂
in the (s, t)-plane in R

2 is of the form

Ω̃ = {(θ , r) ∶ g1(θ) < r < g2(θ), θ ∈ (0, π
2
)}

in polar coordinates. Here, g i > 0 is smooth on [0, π
2 ] with g′i(0) = g′i( π

2 ) = 0 and
g2(θ) > g1(θ) on [0, π

2 ] . Moreover, we say that Ω is an annular domain with mono-
tonicity if g1 is increasing and g2 is decreasing on (0, π

2 ) .

We refer the interested reader to the paper [11] and [12] for further explicit examples
of annular domains. Now, we provide some assumptions on the functions a and b in
which we encounter later in the paper.
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Existence and symmetry breaking results for positive solutions 9

Definition 2.3 We assume that a and b are continuous and strictly positive functions
of (s, t) that is a(x) = a(s, t) (resp. b(x) = b(s, t)). Moreover, we say that a (resp. b)
satisfies (A) if a (resp. b) is a continuously differentiable function with respect to (s, t)
and sat − tas ≤ 0 (resp. sbt − tbs ≤ 0) in Ω̂.

2.2 Convex analysis and minimax principles for lower semi-continuous functions

In this section, we lay out some important definitions and fundamental results
from convex analysis and minimax principles for lower semi-continuous functions.
Consider V to be a real Banach space, V∗ to be its topological dual, and we denote the
pairing of V and V∗ by ⟨⋅, ⋅⟩. We denote the weak topology on V induced by the pairing
⟨⋅, ⋅⟩ to be σ(V , V∗). We say a function Ψ ∶ V → R is weakly lower semi-continuous
if for each u ∈ V and for any sequence {un}∞n=1 approaching u in the weak topology
σ(V , V∗),

Ψ(u) ≤ lim inf
n→∞

Ψ(un).

Consider Φ ∶ V → R ∪ {∞} to be a proper convex function. We define the subdif-
ferential ∂Ψ of Ψ to be the following set-valued operator: if u ∈ Dom(Ψ) = {v ∈ V ∶
Ψ(v) < ∞}, then we set

∂Ψ(u) = {u∗ ∈ V∗; ⟨u∗ , v − u⟩ + Ψ(u) ≤ Ψ(v),∀v ∈ V}

and if u ∉ Dom(Ψ), we set ∂Ψ(u) = ∅. If Ψ is Gâteaux differentiable at u, then we
denote the derivative of Ψ at u by DΨ(u). In this case, ∂Ψ(u) = {DΨ(u)}.

Now, we arrive to the topic on minimax principles for lower semi-continuous
functions. We begin with the definition of a critical point arising in Szulkin [30].

Definition 2.4 Let V be a real Banach space, Φ ∈ C1(V ,R), and Ψ ∶ V → (−∞,∞]
be a proper (i.e., Dom(Ψ) ≠ ∅), convex and lower semi-continuous function. A point
u ∈ V is said to be a critical point of

I ∶= Ψ − Φ

if u ∈ Dom(Ψ) and if it satisfies the inequality

⟨DΦ(u), u − v⟩ + Ψ(v) − Ψ(u) ≥ 0, ∀v ∈ V .

We utilize the following important property of uniformly convex spaces.

Proposition 2.1 Suppose that V is a uniformly convex Banach space. Let {un}∞n=1 be a
sequence in V such that un ⇀ u weakly σ(V , V∗) and

lim sup
n→∞

∥un∥ ≤ ∥u∥.

Then un → u strongly.

The following definition leads to the mountain pass theorem in which we primarily
use to prove our first main result.
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10 A. Moameni and K.L. Wong

Definition 2.5 We say that I satisfies the Palais–Smale compactness condition (PS)
if for every sequence {un}∞n=1 such that:
(i) I(un) → c ∈ R,

(ii) ⟨DΦ(un), un − v⟩ + Ψ(v) − Ψ(un) ≥ −εn∥v − un∥, ∀v ∈ V ,
where εn → 0, we have {un}∞n=1 possessing a convergent subsequence.

Now, we present the mountain pass theorem provided by Szulkin [30].

Theorem 2.6 (Mountain Pass Theorem) Let I ∶ V → (−∞,∞] be of the form

I ∶= Ψ − Φ,

where Ψ ∶ V → (−∞,∞] is a proper convex and lower semi-continuous function and
Φ ∈ C1(V ,R). Suppose that I satisfies the Palais–Smale condition and the mountain
pass geometry (MPG):

(i) I(0) = 0,
(ii) there exists e ∈ V such that I(e) ≤ 0,

(iii) there exists some ρ such that 0 < ρ < ∥e∥ and for every u ∈ V with ∥u∥ = ρ one has
I(u) > 0.

Then I has a critical value c > 0 which is characterized by

c = inf
γ∈Γ

sup
t∈[0,1]

I[γ(t)],

where Γ = {γ ∈ C([0, 1], V) ∶ γ(0) = 0, γ(1) = e}.

3 A variational formulation and the proof of Theorem 1.1

Our interest in this paper lies within solving the following system:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = a(x)v p−1 , in Ω,
−Δv = b(x)uq−1 , in Ω,
u, v > 0, in Ω,
u = v = 0, on ∂Ω,

(11)

where Ω is a bounded annular domain (not necessarily an annulus) in R
N , (N ≥ 3),

q ≥ p > 2, and a, b ∈ C(Ω̄) with a(x) ≥ a0 > 0 and b(x) ≥ b0 > 0 where a0 and b0
are constants. Let p′ = p/(p − 1) and consider the Banach space V = W2, p′(Ω) ∩
W 1, p′

0 (Ω) ∩ Lq(Ω) equipped with the following norm:

∥u∥V = ∥u∥W2, p′(Ω) + ∥u∥W 1, p′
0 (Ω) + ∥u∥Lq(Ω).

Recall the duality pairing between V and its dual space V∗ is defined by

⟨u, u∗⟩ = ∫
Ω

u(x)u∗(x)dx , ∀u ∈ V , u∗ ∈ V∗ .

Following for instance the work by Wang [32], one can get from (11) that

v = (−Δu)
1

p−1 a(x)−
1

p−1 .
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Inserting this equation into the second equation of (11) results in the following scalar
equation corresponding to the u-component:

−Δ ((−Δu)
1

p−1 a(x)−
1

p−1 ) = b(x)uq−1 .

Considering the fact that p′ − 1 = 1/(p − 1) we arrive at

−Δ ((−Δu)p′−1a(x)−(p′−1)) = b(x)uq−1 .(12)

Formally, the Euler–Lagrange functional associated with problem (12) is given by

I(u) ∶= 1
p′ ∫Ω

∣ − Δu∣p′

a(x)p′−1 dx − 1
q ∫

Ω
b(x)∣u∣qdx .

We define Ψ ∶ V → R and Φ ∶ V → R by

Ψ(u) = 1
p′ ∫Ω

∣ − Δu∣p′

a(x)p′−1 dx

and

Φ(u) = 1
q ∫

Ω
b(x)∣u∣qdx ,

respectively. Let K be a convex subset of V . Finally, we introduce the functional
IK ∶ V → (−∞,∞] to be defined by

IK(u) ∶= ΨK(u) − Φ(u),(13)

where the restriction of Ψ on K at u, denoted by ΨK(u) is defined by

ΨK(u) =
⎧⎪⎪⎨⎪⎪⎩

1
p′ ∫Ω

∣−Δu∣p
′

a(x)p′−1 dx , u ∈ K ,
+∞, u /∈ K .

We denote the functional IK the Euler–Lagrange functional corresponding to (12)
restricted on K .

The following proposition states the existence of a critical point for the functional
IK and we use Theorem 2.6 to prove the proposition.

Proposition 3.1 Let Ω be a domain in R
N , and let q ≥ p > 2. Let a, b ∈ C(Ω̄) with

a(x) ≥ a0 > 0 and b(x) ≥ b0 > 0 where a0 and b0 are constants. Consider the Euler–
Lagrange functional I ∶ V → R associated with problem (12)

I(u) ∶= 1
p′ ∫Ω

∣ − Δu∣p′

a(x)p′−1 dx − 1
q ∫

Ω
b(x)∣u∣qdx .

Let K be a weakly closed convex subset of W2, p′(Ω) ∩ W 1, p′
0 (Ω) which is compactly

embedded in Lq(Ω). Then the functional I has a critical point ū on K by means of
Definition 2.4.
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12 A. Moameni and K.L. Wong

Proof Note that the function a is bounded from above, and is also away from zero.
Thus, an equivalent norm on W2, p′(Ω) ∩ W 1, p′

0 (Ω) can be defined by

∥u∥p′

W2, p′(Ω) = ∫
Ω

∣ − Δu∣p′

a(x)p′−1 dx , ∀u ∈ W2, p′(Ω) ∩ W 1, p′
0 (Ω).

By assumption, K is compactly embedded in Lq(Ω). So there exists a constant C > 0
such that

∥u∥W2, p′(Ω) ≤ ∥u∥V ≤ C∥u∥W2, p′(Ω) ∀u ∈ K .(14)

In order to satisfy the mountain pass theorem, we must satisfy the (PS)-compactness
condition and the mountain pass geometry. We begin by verifying the (PS)-
compactness condition. Suppose that {un}∞n=1 is a sequence in K such that I(un) →
c ∈ R, εn → 0, and

ΨK(v) − ΨK(un) + ⟨DΦ(un), un − v⟩ ≥ −εn∥v − un∥V ∀v ∈ V .(15)

We want to prove that {un}∞n=1 has a converging subsequence in V . First, we prove
that {un}∞n=1 is bounded in W2, p′(Ω). Since I(un) → c, it follows that for large values
of n, we obtain

I(un) = 1
p′ ∫Ω

∣ − Δun ∣p
′

a(x)p′−1 dx − 1
q ∫

Ω
b(x)∣un ∣qdx

= 1
p′
∥un∥p′

W2, p′(Ω) −
1
q ∫

Ω
b(x)∣un ∣qdx

≤ c + 1.(16)

Note that

⟨DΦ(un), un⟩ = ∫
Ω

b(x)∣un ∣q−1un ⋅ undx = ∫
Ω

b(x)∣un ∣qdx .

Since q > 2 > p′ , there exists δ > 0 such that

δ + 1 > (1 + δ
q
)p′ .

Setting v = run in (15) with r = 1 + δ/q, we get

1
p′ ∫Ω

∣ − Δrun ∣p
′

a(x)p′−1 dx − 1
p′ ∫Ω

∣ − Δun ∣p
′

a(x)p′−1 dx

+ ∫
Ω

b(x)∣un ∣q−2un ⋅ (un − run)dx ≥ −εn∥run − un∥V

5⇒ rp′

p′ ∫Ω

∣ − Δun ∣p
′

a(x)p′−1 dx − 1
p′ ∫Ω

∣ − Δun ∣p
′

a(x)p′−1 dx

+ ∫
Ω

b(x)∣un ∣q−2un ⋅ (un − run)dx ≥ −(r − 1)εn∥un∥V
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5⇒ rp′ − 1
p′

∥un∥p′

W2, p′(Ω) + (1 − r)∫
Ω

b(x)∣un ∣qdx ≥ −(r − 1)εn∥un∥V

5⇒ 1 − rp′

p′
∥un∥p′

W2, p′(Ω) + (r − 1)∫
Ω

b(x)∣un ∣qdx ≤ (r − 1)εn∥un∥V .(17)

Multiplying (16) by δ and adding the result by (17) yield that

( δ
p′

+ 1 − rp′

p′
)∥un∥p′

W2, p′(Ω) ≤ δc + δ + εn δ
q

∥un∥V .

Note that for n large enough, by applying (14), we obtain

∥un∥p′

W2, p′(Ω) < C0(1 + ∥un∥V)

≤ C0(1 + C∥un∥W2, p′(Ω)),

for a constant C0 . Thus, we conclude that {un}∞n=1 is bounded in W2, p′(Ω). Since
{un}∞n=1 is bounded in W2, p′(Ω), it follows that, up to a subsequence, there exists
ū ∈ W2, p′(Ω) such that un ⇀ ū weakly in W2, p′(Ω) and un → ū a.e.. By assumption
that K is compactly embedded in Lq(Ω), we can deduce from boundedness of
{un}∞n=1 ⊂ K in W2, p′(Ω) strong convergence of un to ū in Lq(Ω). Setting v = ū in
(15), we get

1
p′
(∥ū∥p′

W2, p′(Ω) − ∥un∥p′

W2, p′(Ω)) + ∫
Ω

b(x)∣un ∣q−2un ⋅ (un − ū)dx ≥ −εn∥un − ū∥V .

(18)

Taking lim supn→∞ on both sides of (18), we obtain
1
p′
( lim sup

n→∞
∥un∥p′

W2, p′(Ω) − ∥ū∥p′

W2, p′(Ω)) ≤ 0.

By Proposition 2.1, we have

un → ū strongly in W2, p′(Ω),

and therefore, we conclude that un → ū strongly in V , as desired. Now, we verify
the mountain pass geometry for the functional IK . Clearly, IK(0) = 0 which satisfies
condition (i). For condition (ii), let u ∈ K . Then for t ≥ 0,

IK(tu) = 1
p′ ∫Ω

∣ − Δtu∣p′

a(x)p′−1 dx − 1
q ∫

Ω
b(x)∣tu∣qdx

= t p′

p′ ∫Ω

∣ − Δu∣p′

a(x)p′−1 dx − tq

q ∫
Ω

b(x)∣u∣qdx .

Since q > 2 > p′ , it follows that for t large enough, we obtain IK(tu) < 0 and setting
e ∶= tu, condition (ii) holds. To satisfy condition (iii), take u ∈ K with ∥u∥V = ρ > 0.
Then

IK(u) = 1
p′
∥u∥p′

W2, p′(Ω) −
1
q ∫

Ω
b(x)∣u∣qdx .
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14 A. Moameni and K.L. Wong

By (14), there exists a constant C > 0 such that for all u ∈ K , we have

∥u∥W2, p′(Ω) ≤ ∥u∥V ≤ C∥u∥W2, p′(Ω) .(19)

In addition, we have

∫
Ω

b(x)∣u∣qdx ≤ C1∥u∥q
V ,

for some constant C1 > 0. So,

IK(u) = 1
p′
∥u∥p′

W2, p′(Ω) −
1
q ∫

Ω
b(x)∣u∣qdx

≥ 1
p′
∥u∥p′

W2, p′(Ω) −
C1

q
∥u∥q

V

≥ 1
p′C p′ ∥u∥p′

V − C1

q
∥u∥q

V

= 1
p′C p′ ρp′ − C1

q
ρq > 0,

provided ρ is small enough as q > 2 > p′ . Note that if u /∈ K , then IK(u) > 0 by
definition of ΨK(u). Thus, the mountain pass geometry holds for the functional IK .
By the mountain pass theorem, IK has a critical point ū ∈ K with IK(ū) = c, where
c > 0 is the critical value characterized by

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], V) ∶ γ(0) = 0, γ(1) = e , IK(γ(1)) ≤ 0}. ∎

Lemma 3.1 Let V be a reflexive Banach space, and let f ∶ V → R be a convex and
differentiable functional. If

f (u) − f (ū) ≥ ⟨D f (u), u − ū⟩,(20)

then D f (u) = D f (ū), where ⟨., .⟩ is the duality pairing between V and V∗ . In particu-
lar, if f is strictly convex, then u = ū.

Proof By the convexity of f ,

f (ū) − f (u) ≥ ⟨D f (u), ū − u⟩ 5⇒ f (u) − f (ū) ≤ ⟨D f (u), u − ū⟩.(21)

So, (20) and (21) implies that

f (u) − f (ū) = ⟨D f (u), u − ū⟩.

Note that for all v ∈ V ,

f (v) − f (u) ≥ ⟨D f (u), v − u⟩.

Equivalently,

f (v) ≥ f (u) + ⟨D f (u), v − u⟩ 5⇒ f (v) ≥ f (u) + ⟨D f (u), v⟩ − ⟨D f (u), u⟩
5⇒ f (v) − ⟨D f (u), v⟩ ≥ f (u) − ⟨D f (u), u⟩.
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Let G(v) = f (v) − ⟨D f (u), v⟩. Then for all v ∈ V ,

G(v) = f (v) − ⟨D f (u), v⟩ ≥ f (u) − ⟨D f (u), u⟩ = G(u),

and when v = ū,

G(ū) = f (ū) − ⟨D f (u), ū⟩ = f (u) − ⟨D f (u), u⟩ = G(u).

So G attains its minimum at v = ū, i.e., DG(ū) = 0. Thus,

D f (ū) − D f (u) = 0.

Now, we show that u = ū provided that f is strictly convex. Indeed, it follows that

⟨D f (u) − D f (ū), u − ū⟩ = 0,

from which we obtain the desired result. ∎

Inspired by an argument in [22], the following proposition links the critical points
of IK to the solutions of the system (11).

Proposition 3.2 Let ū be a critical point of the functional IK . If there exists ũ ∈ K and
ṽ ∈ W2,q′(Ω) ∩ W 1,q′

0 (Ω), where 1/q + 1/q′ = 1 such that

{−Δũ = a(x)∣ṽ∣p−2ṽ ,
−Δṽ = b(x)∣ū∣q−2ū,(22)

then ū = ũ, and (ũ, ṽ) is a solution of

{−Δu = a(x)∣v∣p−2v ,
−Δv = b(x)∣u∣q−2u.

Proof Define the functional F ∶ W2, p′(Ω) ∩ W 1, p′
0 (Ω) → R by

F(w) = 1
p′ ∫Ω

∣ − Δw∣p′

a(x)p′−1 dx − ∫
Ω

b(x)∣ū∣q−2ūwdx .

We first show that ũ is a critical point of F . By (22), we have that

{−Δũ = a(x)∣ṽ∣p−2ṽ ,
−Δṽ = b(x)∣ū∣q−2ū.

Therefore,
⎧⎪⎪⎨⎪⎪⎩

ṽ = 1
a(x)p′−1 ∣ − Δũ∣p′−2(−Δũ),

ū = 1
b(x)q′−1 ∣ − Δṽ∣q′−2(−Δṽ).

(23)

Now, take η ∈ W2, p′(Ω) ∩ W 1, p′
0 (Ω). It follows that

⟨F′(ũ), η⟩ = ∫
Ω

1
a(x)p′−1 ∣ − Δũ∣p

′−2(−Δũ)(−Δη)dx − ∫
Ω

b(x)∣ū∣q−2ūηdx

= ∫
Ω

ṽ(−Δη)dx − ∫
Ω

b(x)∣ū∣q−2ūηdx , (as a result of (23))
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= ∫
Ω
(−Δṽ)ηdx − ∫

Ω
b(x)∣ū∣q−2ūηdx

= ∫
Ω

b(x)∣ū∣q−2ūηdx − ∫
Ω

b(x)∣ū∣q−2ūηdx , (as a result of (22))

= 0.

Thus, ũ is a critical point of F. It then follows that

0 = ⟨F′(ũ), ũ − ū⟩

= ∫
Ω

1
a(x)p′−1 ∣ − Δũ∣p

′−2(−Δũ)(−Δ(ũ − ū))dx − ∫
Ω

b(x)∣ū∣q−2ū(ũ − ū)dx ,

from which we obtain

∫
Ω

1
a(x)p′−1 ∣ − Δũ∣p

′−2(−Δũ)(−Δ(ũ − ū))dx = ∫
Ω

b(x)∣ū∣q−2ū(ũ − ū)dx .(24)

Since ū is a critical point on IK , by definition of a critical point, we have

1
p′ ∫Ω

∣ − Δw∣p′

a(x)p′−1 dx − 1
p′ ∫Ω

∣ − Δū∣p′

a(x)p′−1 dx ≥ ⟨b(x)∣ū∣q−2ū, w − ū⟩, ∀w ∈ K .(25)

Plugging (24) into (25) for w = ũ, we get

1
p′ ∫Ω

∣ − Δũ∣p
′

a(x)p′−1 dx − 1
p′ ∫Ω

∣ − Δū∣p
′

a(x)p′−1 dx ≥ ∫
Ω

1
a(x)p′−1 ∣ − Δũ∣p

′−2(−Δũ)(−Δ(ũ − ū))dx .

Thus, by Lemma 3.1, we obtain

ũ = ū.

The result now follows from (22) considering ũ = ū. ∎

So far, we have considered K to be a weakly closed convex subset of W2, p′(Ω)
which is compactly embedded in Lq(Ω). Now, we explicitly define our convex set K
to be given by

K = K(m, n) ∶= {0 ≤ u = u(s, t) ∈ W2, p′
G (Ω) ∩ W 1, p′

0 (Ω) ∶ sut − tus ≤ 0 a.e. in Ω̂} ,
(26)

where W2, p′
G (Ω) ∶= {u ∈ W2, p′(Ω) ∶ gu = u, ∀g ∈ G} where G ∶= O(m) × O(n).

Here, O(k) is the orthogonal group in R
k with gu(x) ∶= u(g−1x). We remind the

reader that we can express K as functions u such that if we write (s, t) in terms of polar
coordinates, we have uθ ≤ 0 on Ω̃ defined in (10). Before we introduce the embedding
theorem for annular domains, for the convenience of the reader, we recall the following
standard embedding theorem for which we make frequent use in this paper.

Theorem 3.2 Let O be a bounded domain in R
k . Let j ≥ 1 be an integer, and let

1 ≤ P < ∞. Suppose O satisfies the cone condition. Then the following embeddings are
compact:
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(i) If jP < k, then

W j,P(O) ↪ Ld(O), for 1 ≤ d < P∗ = kP/(k − jP).

(ii) If jP ≥ k, then

W j,P(O) ↪ Ld(O), for 1 ≤ d < ∞.

Theorem 3.3 Let Ω ⊂ R
N = R

m+n be an annular domain of double revolution.
(i) (Embedding without monotonicity). Let P > 1. Suppose Ω has no monotonicity and

1 ≤ d < min{ (m + 1)P
(m + 1) − 2P

, (n + 1)P
(n + 1) − 2P

} .

Then the embedding W2,P
G (Ω) ↪ Ld(Ω) is compact with the obvious interpreta-

tion if (m + 1) − 2P ≤ 0 and (n + 1) − 2P ≤ 0.
(ii) (Embedding with monotonicity). Let p′ > 1 and suppose Ω is a domain of double

revolution with monotonicity, n ≤ m and

1 ≤ d < (n + 1)p′

(n + 1) − 2p′
= max{ (m + 1)p′

(m + 1) − 2p′
, (n + 1)p′

(n + 1) − 2p′
} .

In addition, let

K ∶= {0 ≤ u = u(s, t) ∈ W2, p′
G (Ω) ∩ W 1, p′

0 (Ω) ∶ sut − tus ≤ 0 a.e. in Ω̂} .

Then the embedding K ↪ Ld(Ω) is compact with the obvious interpretation if
(n + 1) − 2p′ ≤ 0.

Proof We begin by proving (i). Assume that N = m + n. Then, expressing in terms
of s and t, i.e., u(x) = u(s, t), we obtain

∫
Ω
∣u∣d dx = c ∫

Ω̂
∣u(s, t)∣d sm−1 tn−1dsdt.

Take δ small enough so that t ≥ δ if and only if s ≤ δ. So

∫
Ω̂
∣u(s, t)∣d sm−1 tn−1dsdt(27)

= ∫
{Ω̂,t≥δ}

∣u(s, t)∣d sm−1 tn−1dsdt + ∫
{Ω̂,s≥δ}

∣u(s, t)∣d sm−1 tn−1dsdt.

Looking at the first term on the right-hand side of (27),

∫
{Ω̂,t≥δ}

∣u(s, t)∣d sm−1 tn−1dsdt ≤ c1 ∫
Ω̂
∣u(s, t)∣d sm−1dsdt.

Let u(s, t) = u(y, z), where s = ∣y∣ and t = ∣z∣. Then by change of variables,

∫
Ω̂
∣u(s, t)∣d sm−1dsdt = c0 ∫

Ω1
∣u(y, t)∣d d ydt,

where Ω1 = {(y, t) ∶ (∣y∣, t) ∈ Ω̂} ∈ Rm ×R. Note that Ω1 ⊂ R
m+1 . If

d < (m + 1)P
(m + 1) − 2P

,
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then by Theorem 3.2,

(∫
Ω1

∣u(y, t)∣d d ydt)
P/d

≤ c2∥u∥PW2,P(Ω1)

≤ c3 ∫
Ω1

(∣D2u(y, t)∣P + ∣∇u(y, t)∣P + ∣u(y, t)∣P)tn−1d ydt

≤ c4 ∫
Ω
(∣D2u(y, z)∣P + ∣∇u(y, z)∣P + ∣u(y, z)∣P)d ydz

= c4∥u∥PW2,P(Ω).

So we have the compact embedding W2,P
G (Ω) ↪ Ld(Ω) for

d < (m + 1)P
(m + 1) − 2P

.

For the second term on the right-hand side of (27), we have that

∫
{Ω̂,s≥δ}

∣u(s, t)∣d sm−1 tn−1dsdt ≤ c′1 ∫Ω̂
∣u(s, t)∣d tn−1dsdt

= c
′′

1 ∫
Ω2

∣u(s, z)∣d dsdz,

where Ω2 = {(s, z) ∶ (s, ∣z∣) ∈ Ω̂} ∈ Rn ×R. Note that Ω2 ⊂ R
n+1 . If

d < (n + 1)P
(n + 1) − 2P

,

then by Theorem 3.2,

(∫
Ω2

∣u(s, z)∣d dsdz)
P/d

≤ c′2∥u∥PW2,P(Ω2)

≤ c′3 ∫Ω2
(∣D2u(s, z)∣P + ∣∇u(s, z)∣P + ∣u(s, z)∣P)sm−1dsdz

≤ c′4 ∫Ω
(∣D2u(y, z)∣P + ∣∇u(y, z)∣P + ∣u(y, z)∣P)d ydz

= c′4∥u∥PW2,P(Ω).

So we have the embedding W2,P
G (Ω) ↪ Ld(Ω) is compact for

d < (n + 1)P
(n + 1) − 2P

.

Taking

min{ (m + 1)P
(m + 1) − 2P

, (n + 1)P
(n + 1) − 2P

} ,

we obtain the desired result in part (i). Now, we proceed with proving part (ii). Let
1 ≤ n ≤ m and
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d < (n + 1)p′

(n + 1) − 2p′
.

Using polar coordinates with s = r cos(θ) and t = r sin(θ), we obtain

∫
Ω̂

u(s, t)d sm−1 tn−1dsdt = ∫
π/2

0
∫

g2

g1
rm−1 cosm−1(θ)rn−1 sinn−1(θ)u(r, θ)d rdrdθ .

For θ ∈ [π/3, π/2], we have that sin(θ) ≤ c sin(θ − π/4) for some constant c > 0.
According to the monotonicity properties of g1 , g2 and θ ↦ u(r, θ), we obtain that

∫
π/2

π/3
∫

g2(θ)

g1(θ)
rm−1 cosm−1(θ)rn−1 sinn−1 u(r, θ)d rdrdθ

≤ cn−1 ∫
π/2

π/3
∫

g2(θ−π/4)

g1(θ−π/4)
rm−1 cosm−1(θ − π/4)rn−1 sinn−1(θ − π/4)u(r, θ − π/4)d rdrdθ

= cn−1 ∫
π/4

π/12
∫

g2(θ)

g1(θ)
rm−1 cosm−1(θ)rn−1 sinn−1(θ)u(r, θ)d rdrdθ .

Thus, there is a constant C1 > 0 such that

∫
π/2

0
∫

g2

g1
rm−1 cosm−1(θ)rn−1 sinn−1(θ)u(r, θ)d rdrdθ

≤ C1 ∫
π/3

0
∫

g2

g1
rm−1 cosm−1(θ)rn−1 sinn−1(θ)u(r, θ)d rdrdθ .

On the other hand,

∫
π/3

0
∫

g2

g1
rm−1 cosm−1(θ)rn−1 sinn−1(θ)u(r, θ)d rdrdθ = ∫

{Ω̂,s≥β}
u(s, t)d sm−1 tn−1dsdt

for some positive constant β. Hence,

(∫
{Ω̂,s≥β}

u(s, t)d sm−1 tn−1dsdt)
p′/d

≤ C2(∫
{Ω̂,s≥β}

u(s, t)d tn−1dsdt)
p′/d

.

Thus, by part (i), we have

(∫
{Ω̂,s≥β}

u(s, t)d tn−1dsdt)
p′/d

≤ C3 ∫
{Ω̂,s≥β}

(∣D2u(s, t)∣p
′

+ ∣∇u(s, t)∣p
′

+ ∣u(s, t)∣p
′

)tn−1dsdt

≤ C4 ∫
{Ω̂,s≥β}

(∣D2u(s, t)∣p
′

+ ∣∇u(s, t)∣p
′

+ ∣u(s, t)∣p
′

)tn−1sm−1dsdt

≤ C5 ∫
Ω̂
(∣D2u(s, t)∣p

′

+ ∣∇u(s, t)∣p
′

+ ∣u(s, t)∣p
′

)tn−1sm−1dsdt

= C6 ∫
Ω
(∣D2u∣p

′

+ ∣∇u∣p
′

+ ∣u∣p
′

)dx

= C6∥u∥p′

W2, p′(Ω) .

This completes the proof. ∎
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Remark 3.4 Let p > 1, and let p′ be the conjugate of p, that is,
1
p
+ 1

p′
= 1.

Suppose Ω is an annular domain with monotonicity, and n ≤ m. We can rewrite the
condition in Theorem 3.3(ii) given by

1 ≤ d < (n + 1)p′

(n + 1) − 2p′
= max{ (m + 1)p′

(m + 1) − 2p′
, (n + 1)p′

(n + 1) − 2p′
} , for n > 2p′ − 1,

1 ≤ d < ∞, for n ≤ 2p′ − 1,

as follows:
1
p
+ 1

d
> 1 − 2

n + 1
= min{1 − 2

m + 1
, 1 − 2

n + 1
} , for n > p + 1

p − 1
,

no lower bound condition imposed on 1
p
+ 1

d
, for n ≤ p + 1

p − 1
.

Proof By Theorem 3.3(ii), we have compactness when

1 ≤ d < (n + 1)p′

(n + 1) − 2p′
= max{ (m + 1)p′

(m + 1) − 2p′
, (n + 1)p′

(n + 1) − 2p′
} , for n + 1 − 2p′ > 0,

and

1 ≤ d < ∞, for n + 1 − 2p′ ≤ 0.

Equivalently,

1 ≤ d < (n + 1)p
(n + 1)(p − 1) − 2p

, for (n + 1)(p − 1) − 2p > 0,

and

1 ≤ d < ∞, for (n + 1)(p − 1) − 2p ≤ 0.

Simplifying, we obtain
1
p
+ 1

d
> 1 − 2

n + 1
, for (n + 1)(p − 1) − 2p > 0,

and with no lower bound condition on 1/p + 1/d for (n + 1)(p − 1) − 2p ≤ 0. On the
other hand,

(n + 1)(p − 1) − 2p ≤ 0 ⇐⇒ n ≤ p + 1
p − 1

.

Therefore, we conclude that
1
p
+ 1

d
> 1 − 2

n + 1
= min{1 − 2

m + 1
, 1 − 2

n + 1
} , for n > p + 1

p − 1
,

no lower bound condition imposed on 1
p
+ 1

d
, for n ≤ p + 1

p − 1
. ∎

We require the following proposition arising from Cowan and Moameni in [11].
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Proposition 3.3 Suppose Ω ⊂ R
m ×R

n is an annular domain with monotonicity (see
Definition 2.2), and assume that κ(x) satisfies (A) as in Definition 2.3. Let 0 ≤ ũ ∈
H1

0,G(Ω) ∩ LP(Ω) with sũt − tũs ≤ 0 a.e. on Ω̂ where P > 2, and

H1
0,G(Ω) ∶= {u ∈ H1

0(Ω) ∶ gu = u, ∀g ∈ G = O(m) × O(n)}.

Suppose that ṽ is the solution of

{−Δṽ = κ(x)ũP−1 , in Ω,
ṽ = 0, on ∂Ω.

Then 0 ≤ ṽ ∈ H1
0,G(Ω) ∩ LP(Ω) with sṽt − tṽs ≤ 0 a.e. on Ω̂.

Now, we can prove the first main result of the paper.

Proof of Theorem 1.1. First, we recall the convex cone K ∶= K(m, n) as in (26),
namely,

K = K(m, n) ∶= {0 ≤ u = u(s, t) ∈ W2, p′
G (Ω) ∩ W 1, p′

0 (Ω) ∶ sut − tus ≤ 0 a.e. in Ω̂} ,

where W2, p′
G (Ω) ∶= {u ∈ W2, p′(Ω) ∶ gu = u, ∀g ∈ G}, where G ∶= O(m) × O(n),

and where O(k) is the orthogonal group in R
k with gu(x) ∶= u(g−1x). By Theorem

3.3(ii), we have that the embedding K ↪ Lq(Ω) is compact for

1 ≤ q < (n + 1) − p′

(n + 1) − 2p′
, if (n + 1) − 2p′ > 0,

1 ≤ q < ∞, if (n + 1) − 2p′ ≤ 0.

By Remark 3.4, this can be rewritten as

1
p
+ 1

q
> 1 − 2

n + 1
= min{1 − 2

m + 1
, 1 − 2

n + 1
} , for n > p + 1

p − 1

with no condition on the lower bound of

1
p
+ 1

q
, for 1 ≤ n ≤ p + 1

p − 1
.

It follows from Proposition 3.1 that IK has a critical point ū in K with IK(ū) = c, where
c > 0 is the critical value characterized by

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], V) ∶ γ(0) = 0, γ(1) = e , IK(γ(1)) ≤ 0.} Since IK(ū) > 0, it
follows that ū is nonzero. Now, we want to show that there exists ũ ∈ K and
ṽ ∈ W2,q′(Ω) ∩ W 1,q

0 (Ω) satisfying
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{−Δũ = a(x)∣ṽ∣p−2ṽ ,
−Δṽ = b(x)∣ū∣q−2ū,

so that we can conclude by Proposition 3.2 that (ũ, ṽ) is a solution of

{−Δu = a(x)∣v∣p−2v ,
−Δv = b(x)∣u∣q−2u.

Indeed, it follows from Proposition 3.3 that there exists ṽ ∈ K such that

−Δṽ = b̃(x)∣ū∣q−2ū.

Applying Proposition 3.3 once again, there exists ũ ∈ K satisfying

−Δũ = ã(x)∣ṽ∣p−2ṽ .

Thus, (ũ, ṽ) satisfies the equation

{−Δũ = a(x)∣ṽ∣p−2ṽ ,
−Δṽ = b(x)∣ū∣q−2ū,

and by Proposition 3.2, we conclude that (ũ, ṽ) is a solution of

{−Δu = a(x)∣v∣p−2v ,
−Δv = b(x)∣u∣q−2u.

Note that both ũ and ṽ are nonzero and nonnegative. It now follows from the strong
maximum principle [15, Theorem 8.19] that both ũ and ṽ are strictly positive. ∎

4 Non-radial solutions when Ω is an annulus

In this section, we discuss the case when a(x) = b(x) = 1, and Ω is an annulus, that
is, Ω = {x ∶ R1 < ∣x∣ < R2},

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = v p−1 , in Ω,
−Δv = uq−1 , in Ω,
u, v > 0, in Ω,
u = v = 0, on ∂Ω.

(28)

We shall prove that the solution obtained in Theorem 1.1 is non-radial when radii
R1 , R2 satisfy certain conditions. We first begin with the following general result for
positive solutions of (28).

Theorem 4.1 Let q ≥ p ≥ 2. Assume that (u, v) is a positive solution of (28). The
following assertion hold:

inf
0≠η∈H1

0(Ω)

∫Ω ∣∇η∣2 dx

∫Ω η2v(x) p−2
2 u(x) q−2

2 dx
≤
√

q
p

.(29)
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Proof We first prove that

qv(x)p ≥ pu(x)q , ∀x ∈ Ω.(30)

Let σ = p/q ∈ (0, 1] and e = σ−
1
q . Define z(x) = u(x) − ev(x)σ . It follows that

Δz = Δu − eσvσ−1Δv − eσ(σ − 1)vσ−2∣∇v∣2

≥ Δu − eσvσ−1Δv

= vσ−1 (uq−1

eq−1 − vσ(q−1)) ,

from which we obtain that Δz ≥ 0 on the set

{x ∈ Ω ∶ z(x) ≥ 0}.

Take ε > 0. It follows that

(z − ε)+Δz ≥ 0,

and therefore

∫
Ω
∣∇(z − ε)+∣2 dx ≤ 0.

This implies that z ≤ ε, and since ε is arbitrary the inequality (30) follows.
We shall now prove inequality (29). It follows from inequality (30) that

v ≥ ( p
q
)

1
p

u
q
p .

Therefore,

v
p−2

2 u
q−2

2 v2 = u
q−2

2 v
p
2 v ≥

√
p
q

u
q−2

2 u
q
2 v =

√
p
q

uq−1v .

It then follows that

inf
0≠η∈H1

0(Ω)

∫Ω ∣∇η∣2 dx

∫Ω η2v(x)
p−2

2 u(x)
q−2

2 dx
≤ ∫Ω ∣∇v∣2 dx

∫Ω v2v(x)
p−2

2 u(x)
q−2

2 dx
≤ ∫Ω uq−1v dx

∫Ω

√
p
q uq−1v dx

=
√

q
p

.

∎

Remark 4.2 We would like to remark that inequalities of the type (30) were first
developed to study Liouville-type theorems for stable Lane–Emden systems and
Hardy–Hénon elliptic systems on R

N . We refer the interested reader to [10, 24, 28].

Let w(x) = w(s, t)be a function of (s, t). If we write w in terms of polar coordinates
(recall we have s = r cos(θ), t = r sin(θ)), we obtain that w(x) = w(r, θ). Writing the
Laplace operator in polar coordinates gives

−Δw(x) = −wrr −
(N − 1)wr

r
− wθθ

r2 + wθ

r2 h(θ),(31)
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where

h(θ) = (m − 1) tan(θ) − (n − 1)
tan(θ) .(32)

Let (μ1 , ψ1) be the second eigenpair of the following eigenvalue problem:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−ψ′′1 (θ) + ψ′1(θ)h(θ) = μ1ψ1(θ), in (0, π
2 ),

ψ′(θ) > 0, in (0, π
2 ),

ψ′1(0) = ψ′1( π
2 ) = 0,

(33)

and note that the first eigenpair is given by (μ0 , ψ0) = (0, 1). Note in this problem, one
can find an explicit solution given by

μ1 = 2N , ψ1(θ) = m − n
N

− cos(2θ),

and note we can apply Sturm–Liouville theory and count the number of zeros of ψ1 to
see it is in fact the second pair.

Proof of Theorem 1.2. Let us assume the solution (u, v) of (28) obtained in Theorem
1.1 is radial. Let (λ1 , φ) be the first eigenpair of the following eigenvalue problem:

{−φ′′(r) − (N−1)φ′(r)
r + 2N φ(r)

r2 = λ1v(r)
p−2

2 u(r)
q−2

2 φ(r), r ∈ (R1 , R2),
φ(r) = 0, r ∈ {R1 , R2}.

Set w(x) = φ(r)ψ1(θ) and note that

−Δw(x) = −wrr −
(N − 1)wr

r
− wθθ

r2 + wθ

r2 h(θ)

= −φrr(r)ψ1(θ) − (N − 1)φr(r)ψ1(θ)
r

− φ(r)ψ′′1 (θ)
r2 + φ(r)ψ′1(θ)

r2 h(θ)

= −φrr(r)ψ1(θ) − (N − 1)φr(r)ψ1(θ)
r

+ 2Nφ(r)ψ1(θ)
r2

= λ1v(∣x∣)
p−2

2 u(∣x∣)
q−2

2 w(x).

Recall that IK(u) = c > 0, where the critical value c is characterized by

c = inf
γ∈Γ

max
τ∈[0,1]

IK[γ(τ)],

where

Γ = {γ ∈ C([0, 1], V) ∶ γ(0) = 0 ≠ γ(1), IK(γ(1)) ≤ 0}.

For the sake of simplifying the notations, we use I instead of IK in the rest of the proof.
Set γσ(τ) = τ(u + σw)l , where l > 0 is chosen in such a way that I((u + σw)l) ≤ 0

for all ∣σ ∣ ≤ 1. Note that γσ ∈ Γ. We shall show that there exists σ > 0 such that for every
τ ∈ [0, 1] one has I(γσ(τ)) < I(u), and therefore,

c ≤ max
τ∈[0,1]

I(γσ(τ)) < I(u),

which leads to a contradiction since I(u) = c. Note first that there exists a unique
twice differentiable real function g on a small neighborhood of zero with g′(0) = 0
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and g(0) = 1/l such that maxτ∈[0,1] I(γσ(τ)) = I(g(σ)(u + σw)l). We now define h ∶
R → R by

h(σ) = I(g(σ)(u + σw)l) − I(u).

Clearly, we have h(0) = 0. Note also that h′(0) = 0 due to the fact that I′(u) = 0. We
now show that h′′(0) < 0. Indeed,

h′′(0) = (p′ − 1)∫
Ω
∣Δu∣p

′−2(−Δw)2 dx − (q − 1)∫
Ω
∣u∣q−2(w)2 dx

= (p′ − 1)λ2
1 ∫

Ω
∣Δu∣p

′−2v(∣x∣)p−2u(∣x∣)q−2w2(x) dx − (q − 1)∫
Ω
∣u∣q−2(w)2 dx

= (p′ − 1)λ2
1 ∫

Ω
(v(∣x∣)p−1)p′−2v(∣x∣)p−2u(∣x∣)q−2w2(x) dx − (q − 1)∫

Ω
∣u∣q−2(w)2 dx

= (p′ − 1)λ2
1 ∫

Ω
u(∣x∣)q−2w2(x) dx − (q − 1)∫

Ω
∣u∣q−2(w)2 dx

= ((p′ − 1)λ2
1 − (q − 1))∫

Ω
u(∣x∣)q−2w2(x) dx .

Note that

(p′ − 1)λ2
1 − (q − 1) < 0 if and only if λ2

1 < (p − 1)(q − 1).

Let λH denote the best constant in the Hardy inequality

λH = inf
0≠η∈H1

0(Ω)

∫Ω ∣∇η∣2 dx

∫Ω
∣η∣2
∣x ∣2 dx

.

It follows that

λ1 = inf
0≠η∈H1

0(Ω)

∫Ω ∣∇η∣2 dx + 2N ∫Ω
∣η∣2
∣x ∣2 dx

∫Ω η2v(x) p−2
2 u(x) q−2

2 dx

≤ inf
0≠η∈H1

0(Ω)

(1 + 2N
λH

) ∫Ω ∣∇η∣2 dx

∫Ω η2v(x) p−2
2 u(x) q−2

2 dx
≤
√

q
p
(1 + 2N

λH
) ,

where the last inequality follows from Theorem 4.1. In particular, if

q
p
(1 + 2N

λH
)

2
< (p − 1)(q − 1),

then (p′ − 1)λ2
1 − (q − 1) < 0. This implies that h′′(0) < 0. This in fact shows that

max
τ∈[0,1]

I(γσ(τ)) = I(g(σ)(u + σv)l) < I(u),

for small σ > 0 as desired. ∎

Recall from (26) that

K = K(m, n) ∶= {0 ≤ u = u(s, t) ∈ W2, p′
G (Ω) ∩ W 1, p′

0 (Ω) ∶ sut − tus ≤ 0 a.e. in Ω̂} ,
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which corresponds to the decomposition R
m ×R

n of the annulus
Ω = {x ∶ R1 < ∣x∣ < R2} in R

N with N = m + n. We have the following result
regarding the distinction of solutions for different decompositions of RN .

Lemma 4.3 Let 1 < n < n′ ≤ ⌊ N
2 ⌋ and set m = N − n, m′ = N − n′ . Let um ,n ∈

K(m, n) and um′ ,n′ ∈ K(m′ , n′) be the solutions obtained in Theorem 1.1 corresponding
to the decomposition R

m ×R
n and R

m′ ×R
n′ of RN , respectively. Then um ,n /= um′ ,n′

unless they are both radial functions.

Proof Let um ,n = um′ ,n′ = u. We shall show that u must be radial. It follows that
u(x) = f (s, t) = g(s′ , t′) for two functions f and g , where

s2 ∶= x2
1 + ⋅ ⋅ ⋅ + x2

m , t2 ∶= x2
m+1 + ⋅ ⋅ ⋅ + x2

N ,

and

s′2 ∶= x2
1 + ⋅ ⋅ ⋅ + x2

m′ , t′2 ∶= x2
m′+1 + ⋅ ⋅ ⋅ + x2

N .

By assuming x i = 0 for i /= x1 , xm , we obtain that

g (∣x1∣, ∣xm ∣) = g (
√

x2
1 + x2

m , 0) ,

from which we obtain that g must be a radial function. To show that f is a radial
function, we assume that x i = 0 for i ≠ xm′+1 , xN . Then

f (∣xm′+1∣, ∣xN ∣) = g (0,
√

x2
m′+1 + x2

N)

from which we obtain that f is a radial function. ∎

Proof of Theorem 1.3. We begin by proving the existence of a positive solution.
Afterward, we show that the positive solution is in fact, non-radial.

Part 1. It follows from Theorem 1.1 that for each n ≤ k and q ≥ p > 2, equation (28)
has a solution of the form (um ,n , vm ,n) = (um ,n(s, t), vm ,n(s, t)), where

s2 ∶= x2
1 + ⋅ ⋅ ⋅ + x2

m , t2 ∶= x2
m+1 + ⋅ ⋅ ⋅ + x2

N ,

provided
1
p
+ 1

q
> 1 − 2

n + 1
, for n > p + 1

p − 1
.

Since n ≤ k, it follows that

1 − 2
n + 1

≤ 1 − 2
k + 1

, for k > p + 1
p − 1

.

Thus, for each n ≤ k, we have a positive solution provided
1
p
+ 1

q
> 1 − 2

k + 1
.

Part 2. If k ≤ (p + 1)/(p − 1), then n ≤ (p + 1)/(p − 1). So, by Theorem 1.1, there exists
a positive solution of (28).
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Now, we proceed to prove that the solution in parts 1 and 2 are non-radial. Indeed,
by Theorem 1.2, the solution (um ,n , vm ,n) is non-radial provided

(p − 1)(q − 1) > (1 + 2N
λH

)
2
( q

p
) .

Thus, for each n ∈ {1, . . . , k} we have a non-radial solution (um ,n , vm ,n). On the other
hand, by Lemma 4.3, we have that um ,n /= um′ ,n′ for all n /= n′ . Similarly, by Lemma
4.3, we obtain vm ,n /= vm′ ,n′ for all n /= n′ . This indeed implies that we have k distinct
positive non-radial solutions. ∎

Proof of Corollary 1.4. 1. For each k ∈ Nwith 1 ≤ k ≤ ⌊ p+1
p−1 ⌋, by part 2 of Theorem 1.3,

there exists a solution provided

(p − 1)(q − 1) > (1 + 2N
λH

)
2
( q

p
) .

Thus, if

(p − 1)(q − 1)( p
q
) > (1 + 2N

λH
)

2
,

then we must have ⌊ p+1
p−1 ⌋ positive non-radial solutions.

2. Assuming k = ⌊ N
2 ⌋ in Theorem 1.3, we obtain that there are ⌊ N

2 ⌋ positive non-
radial solutions provided that

(p − 1)(q − 1) > (1 + 2N
λH

)
2
( q

p
)

and
1
p
+ 1

q
> 1 − 2

⌊ N
2 ⌋ + 1

.

Now, to obtain

(p − 1)(q − 1) > q
p

,

we want to show that λH can be sufficiently large under conditions 2(a) and 2(b) and
hence, we conclude that there are ⌊ N

2 ⌋ positive non-radial solutions. As for the proof
of 2(a) and 2(b), we refer the interested reader to [11]. ∎
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