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ABSTRACT We explore the application of optimal inversion techniques 
to astronomical data with a goal of developing a set of procedures for the 
determination of the three dimensional structure of astronomical sources. 
Astronomical data present a particularly difficult problem in inversion 
because: In any observation, 3 of 6 spatial and velocity dimensions 
are lost in projection onto the plane of the sky and the line of sight 
velocity. In any inversion, we would like to solve for a number of physical 
parameters. Generally, these parameters are closely related in their effect 
on the single observable, the sky brightness. 
The dimensional deficiency leaves us with an unavoidably large degree 

of ambiguity (non-uniqueness) in any solution, while the inter-related 
parameters lead to a high probability of correlated errors and hence 
instability in the presence of to noise. 
We show how constraints of symmetry and smoothness source allow 

us to handle an inversion with an insufficiently sampled data base and 
mutually dependent solution parameters (mathematically ill-posed 
and ill-conditioned). The constraints represent a priori information 
incorporated into the solution; thus very highly constrained inversions are 
similar to model fitting. In any case the inversion procedure provides us 
with quantitative statistics on the goodness of fit which may be used to 
assess the degree of ambiguity in a particular model, and the expected 
errors and cross-correlated errors on the parameters defining the source 
structure. 
We briefly discuss the background and motivation, and outline the 

procedure in general terms. We refer to papers published in the 
Ap. J. where different aspects of the inversion are applied to observational 
data bases collected at the VLA. 
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MOTIVATION 

There is an invertible relationship between information collected by an observer 
at different sky positions and information on the internal structure of an 
astronomical source. 
Astronomical data collected by an observer consist of brightness which 
represents an integral average of emission and absorption along an entire line 
of sight through a source. 

I(x) = / S(r')e-(T-Odr 
Jo 

Thus each individual line of sight contains information about the structure 
of the source along the missing third dimension while different lines of sight 
contain information on the structure across the plane of the sky. To take 
a simple example, assume the source has a radially symmetric structure. 
Different lines of sight sample different ranges of regions in the source. 
Measurements at different sky positions can be used to reconstruct the internal 
three dimensional density structure. Assume the Rayleigh-Jeans approximation 
ehV/kT _> i + fo/kT and the optically thin approximation, S(r')e"(,'~T') - • S(r). 
Then the brightness can be written as a Fredholm Integral of the first kind 

«*) = lR (^KM* 

where a incorporates the quantum constants of the line emission process, 
nu(r) is the density of the upper state of the line transition and /i is a constant 
geometric factor relating to the offset of the line of sight from the radially 
symmetric cloud's center, n - T^rz^rpi-
The radial density profile may be determined by inversion of this equation. 
Binning the radial dimension and discretizing the integral, 

;' 

where Oij = — ds and ds is the bin size, leads to a matrix equation with the 
matrix in upper triangular form. 

/ = [A]nu with [A] = *'"' 

In simple physical terms, this says that in order to determine the radially 
symmetric density profile, begin at the outer most radius, compute the density 
of the outer most radial bin nJ_Rmtx. Next, take the next data point inward, 
and knowing the density of the outer most zone, compute the density of next 
inner zone, nj_^, etc. See Keto, E. 1990, Ap. J., in press, The Spectred Signatures 
of Collapse and Outflow Around Young Stars 
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PROBLEMS TO BE OVERCOME 

In general in any optimal inversion of astronomical data there are two 
difficulties. 

Problem 1. 
Non-uniqueness or ambiguity arising from: 

a. Undersampling - The data do not cover the solution space, but only a 
projection of the solution space onto a smaller subset. Spatial structure 
smaller than the sampling interval are undetermined. The effect is 
similar to a low pass filtering of the structure, or typically in astronomy 
a convolution / / ( x — x')s(x)dx. 

b. Geometric Projection - Astronomical data are always projected onto the 
two dimensional sky plane. In the absence of any other information we 
have no knowledge of where to place the emitting gas along the line of 
sight. 

Thus the inversion problem is ill-posed. In the example above, this problem is 
overcome by assuming a bin size for the radial structure and assuming that the 
structure is radially symmetric. 

Problem 2. 
The physical parameters we seek to determine are often inter-related and 
therefore form a set of basis vectors for the solution space which are not 
linearly independent. For example, in astronomy the gas density and 
temperature both contribute to the line brightness. An error in one may be 
compensated by an error in the other to produce a line brightness nearly 
identical to that produced by the correct temperature and density, but 
nevertheless incorrect. Thus the solution may be sensitive to correlated error 
and noise. Thus the inversion problem is ill-conditioned. 
In the example above where we determine the radial density profile, the 
densities in the different bins are dependent on one another. Thus if our data 
fluctuates up and down in brightness across the source, the derived density 
profile may contain zones of "negative density". 

PROCEDURE 

To effect an inversion of astronomical data we need an assumption of source 
structure and an assumption of structural smoothness. In our simple example, 
a better solution would be: 

1. Assume radial structure as before. 
2. Assume a degree of smoothness. 

Mathematically, this could be accomplished by minimizing the squared 
difference of predicted and observed brightness subject to a constraint on 
smoothness. 

N M—l u 0*iu _l_ *iu 

x'=E(^-g)'^E(^:X?"1)a 
«=1 j = 2 J + 1 J _ 1 
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This solution for the radial densities would represent the best fit radially 
symmetric model subject to the constraint. The Lagrange multiplier, A, may 
be set by requiring the solution to be smooth on a level consistent with the 
noise in the data. See Jeffrey, W. 1988 Ap. J., 327, 987 

In cases where the astronomical data are not of sufficient quality to define the 
physical properties of a source to such detail, an alternative approach is to 
parameterize the source properties and solve instead for the parameters. 

For example, instead of solving for a binned radial density profile, the radial 
profile may be parameterized as a power law, n"(r) — no(r/ro)a, or some other 
function based on an a prior expectation. In this case we would solve for the 
two parameters n[j and a. The smoothing is implicit in the parameterization 
and we need only minimize \2 = YKk — A*)2-

See Keto, E. 1990, Ap. J., 350, 772, "The Collapse of Self-Gravitating 
Condensations in DR21", and Ap. J., 355, 190, "Radiative Transfer Modeling 
of Spectral Line Data: Accretion onto G10.6-0.4". 

The trade off is a fewer number of parameters for a more highly constrained 
model. We may address the question of whether the adopted model is correct 
by asking whether the adopted model achieves a significantly better solution 
than another model. The significance of a model fit may be quantified as 
the probability that if we "observed the model", the statistical errors of our 
measurement would by chance result in a fit as "poor" as achieved. The 
probability is computed as an incomplete gamma function. 

P = i-r(£.£) 

where v is the number of independent data points less the number of 
parameters in the fit, and \2 is a s above, the squared difference of the model 
and the data. 

Using other standard statistical techniques, the expected errors on each of 
the modeled parameters may be determined from the covariance matrix or by 
Monte Carlo methods. The degree of correlation of the parameters which is 
related to the degree of dependence of the parameters as basis vectors in the 
inversion may be determined using parametric rank-order correlation statistics. 

PROGNOSIS 

Advancements in instrumentation such as the VLA have provided astronomical 
data of exceptional quality. Advances in computational power now make 
imaging and analysis techniques such as optimal inversion feasible for even 
relatively complex problems in remote sensing such as three dimensional 
radiative transfer modeling of astronomical sources. 
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Barry Clark: Are the numerical goodness-of-fit measures available for the 
three examples you showed? 
E. Keto: No. This research is observationally motivated; as we collect new 
data we apply new techniques of inversion to the data and improve our 
understanding of the inversion process. Two of the examples, G10.6-0.4 
and DR21, illustrate the feasibility of the numerical inversion technique by 
showing that the modeled maps and the data are sensitive to changes in model 
temperature, density, and velocities of a scientifically interesting level. The 
third example on NGC7538 derives from a limited inversion of the temperature 
and density structure and includes an error analysis on the derived parameter, 
but not the overall fit. We have recently finished a complete inversion of data 
in G34.3+011 including the goodness-of-fit. This will be published soon. 
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