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Abstract

Given a non-isotrivial elliptic curve over an arithmetic surface, one obtains a lisse `-adic
sheaf of rank two over the surface. This lisse sheaf has a number of straightforward
properties: cyclotomic determinant, finite ramification, rational traces of Frobenius
elements, and somewhere not potentially good reduction. We prove that any lisse sheaf
of rank two possessing these properties comes from an elliptic curve.

1. Introduction

Let C/K be a proper, smooth geometrically irreducible curve, with K a number field, let
f : E → U ⊂ C be a non-isotrivial family of elliptic curves over a non-empty open subset
U of C, and let L = R1f∗(Q`) be the associated rank-two lisse `-adic sheaf on U . The following
properties hold.

(a) There is an isomorphism
∧2L ∼= Q`(1).

(b) There exists a proper smooth model C of C over SpecOK [1/N ], an open subset U of C
extending U , and a lisse sheaf L on U extending L.

(c) For every closed point x of U , the trace of the Frobenius element on Lx is a rational number.

(d) There exists a point x of CK at which LK does not have potentially good reduction, i.e.,
the restriction to the inertia subgroup at x of the representation of πét

1 (UK) associated to
LK does not act through a finite order quotient.

To see (d), take x to be a pole of the j-invariant of E.
The purpose of this paper is to prove the following converse of the above statement.

Theorem 1. Let C/K be as above, and let L be an irreducible rank-two lisse Q`-sheaf over an
open subset U ⊂ C. Assume conditions (a)–(d) above hold. Then there exists a family of elliptic
curves f : E → U and an isomorphism L ∼= R1f∗(Q`).

Remark 2. The Fontaine–Mazur conjecture predicts that representations ofGK satisfying certain
natural conditions should appear in the étale cohomology of algebraic varieties. It seems
reasonable to expect some kind of generalization of this conjecture to higher-dimensional bases.
Our theorem can be viewed as confirmation of a very simple case of this.

Remark 3. One can prove a version of Theorem 1 where C is replaced with a higher-dimensional
variety. We just treat the case of curves to keep the exposition simpler.
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Remark 4. The theorem is not true if one assumes only (a)–(c). Recall that a fake elliptic curve

is an abelian surface A such that End(A) is an order R in a non-split quaternion algebra that is

split at infinity. The moduli space of fake elliptic curves corresponding to R is a proper curve.

We therefore can construct a family f : A → C of fake elliptic curves for some C as above. The

sheaf R1f∗Q` decomposes as L⊕2 for some rank-two lisse sheaf L. This L satisfies (a)–(c) but

not (d), and thus does not come from a non-isotrivial family of elliptic curves. (Note that one

can take f so that L is not isotrivial, in which case L does not come from any family of elliptic

curves.)

Question 5. Suppose that for each prime number ` we have an irreducible rank-two Q` sheaf L`
satisfying (a)–(c) such that {L`} forms a compatible system (meaning that the U in part (b) can

be chosen uniformly and that the traces of Frobenius elements are independent of `). Does the

system come from a family of elliptic curves? Note that the fake elliptic curve counterexample

does not apply here: if ` ramifies in R⊗Q then R1f∗Q` does not decompose as L⊕2.

1.1 Summary of the proof

The basic idea is to use Drinfeld’s results on the global Langlands program to construct an

elliptic curve over CFv for most places v of OK , and then piece these together to get one over C.
More precisely, we proceed as follows.

• We first show that we are free to pass to finite covers of C. The main content here is a

descent result that shows that if L comes from an elliptic curve over a cover of C then it

comes from an elliptic curve over C. Using this, we replace C with a cover so that L/`3L is

trivial (after replacing L with an integral form).

• We next consider L over CFv and use Drinfeld’s results on the global Langlands program to

produce a GL2-type abelian variety Av realizing L.

• Using hypotheses (c) and (d), we descend the coefficient field of Av to Q, obtaining an

elliptic curve Ev. (It is likely this could be obtained directly from Drinfeld’s proof.)

• We next consider a certain moduli space M of maps U → Y (`3). From the previous step

(and the triviality of L/`3L), we see that M has Fv-points for infinitely many v. Since M
is of finite type over OK , it therefore has a K-point. This yields an elliptic curve EK over

UK realizing LK .

• Our hypotheses imply that LK is irreducible. A simple representation theory argument

thus shows that there is a finite extension K ′/K such that E descends to UK′ and its Tate

module agrees with LK′ . We have already shown that it suffices to prove the result over a

finite cover of C, so we are now finished.

We note that we use Faltings’ proof of the Tate conjecture in the third and fifth steps.

1.2 Outline

In § 2 we recall the relevant background material. In § 3, we prove a few descent results for abelian

varieties. In § 4, we package Drinfeld’s results on the global Langlands program into the form we

need; in particular, we use the results of § 3 to produce elliptic curves (as opposed to GL2-type

abelian varieties). In § 5, we construct a mapping space parametrizing maps between two affine

curves. Finally, in § 6, we prove Theorem 1.
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2. Background

2.1 Abelian varieties
Let A be an abelian variety over a field K such that EndK(A) ⊗Q contains a number field F .
Let V`(A) denote the rational Tate module of A at the rational prime `. This is a module over
F ⊗ Q` =

∏
w|` Fw, and thus decomposes as

⊕
w|` Vw(A) where each Vw(A) is a continuous

representation of GK over the field Fw. We recall the following standard results.

Proposition 6. Let σ ∈ EndK(A) commute with F . Then the characteristic polynomial of σ
on Vw(A) (regarded as an Fw-vector space) has coefficients in F and is independent of w. In
particular, each Vw(A) has the same dimension over Fw.

Proof. See [Shi67, § 11.10] and (for F = Q) [Mil, Proposition 9.23]. 2

Proposition 7. Assume K is a number field and EndK(A) ⊗ Q = F . Let w be a place of F
above a prime p. Then EndQp[GK ](Vw(A)) = Fw. In particular, Vw(A) is absolutely irreducible
as a representation of GK over Fw.

Proof. We have

F ⊗Qp = EndQp[GK ](Vp(A)) = EndQp[GK ]

(⊕
w|p

Vw(A)

)
⊃
⊕
w|p

EndQp[GK ](Vw(A)) ⊃
⊕
w|p

Fw,

where the first equality is the Tate conjecture proved by Faltings [FWGSS92, Theorem 1, p. 211].
Since the endmost spaces have the same dimension, we conclude that the containments are
equalities, and so EndQp[GK ](Vw(A)) = Fw. 2

2.2 Arithmetic fundamental groups
Let X be an affine normal integral scheme of finite type over Z and consider πét

1 (X). For each
closed point x of X there is a conjugacy class of Frobenius elements Fx. We recall the following
generalization of the Chebotarev density theorem.

Proposition 8. The elements {Fx}x∈X are dense in πét
1 (X).

Proof. This follows from [Ser65, Theorem 7]. 2

Corollary 9. Suppose that ρ1 and ρ2 are semi-simple continuous representations πét
1 (X) →

GLn(Q`) such that tr(ρ1(Fx)) = tr(ρ2(Fx)) for all x. Then ρ1 and ρ2 are equivalent.

2.3 Ramification of characters
Lemma 10. Let C be a curve over a number field K, and let U be an open subset. Suppose
that α : π1(U) → Q

×
` is a continuous homomorphism. Then for every point x of CK , the inertia

subgroup of π1(UK) at x has finite image under α.

Proof. We are free to replace K with a finite extension, so we may as well assume x is a K-point.
The decomposition group at x has the form ẐoGK , where Ẑ is the geometric inertia group and
GK acts on it through the cyclotomic character χ. Let T be a topological generator of Ẑ, written
multiplicatively. Then for σ ∈ GK we have α(T ) = α(σTσ−1) = α(Tχ(σ)) = α(T )χ(σ). It follows
that α(T ) has finite order. 2
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2.4 Some lemmas from representation theory
Lemma 11. Let ρ and ρ′ be finite-dimensional representations of a group G with equal
determinant. Suppose there exists a normal subgroup H of G such that ρ|H and ρ′|H are
absolutely irreducible and isomorphic. Then there exists a finite-index subgroup G′ of G such
that ρ|G′ and ρ′|G′ are isomorphic.

Proof. Let V and V ′ be the spaces for ρ and ρ′ and let f : V → V ′ be an isomorphism of H
representations. One easily verifies that for g ∈ G the endomorphism g−1f−1gf of V commutes
withH, and is therefore given by multiplication by some scalar χ(g). Thus we have f−1gf = χ(g)g
for all g ∈ G. It follows easily from this that χ is a homomorphism, i.e., χ(gg′) = χ(g)χ(g′). We
thus see that χ⊗ ρ and ρ′ are isomorphic as representations of G. Taking determinants, we see
that χn is trivial, where n is the dimension of ρ. The result follows by taking G′ to be the kernel
of χ; this has finite index since the image of χ is contained in the group of nth roots of unity
of k. (In fact, the index of G′ divides n.) 2

Lemma 12. Let G be a group and H a normal subgroup of G. Consider a two-dimensional
irreducible representation ρ : G → GL2(Q`). Assume that for some element h ∈ H, the matrix
ρ(h) is a non-trivial unipotent element. Then ρ|H is irreducible.

Proof. Suppose not. Then by the existence of h, there exists a unique one-dimensional subspace
V invariant under H. But since H is normal in G, it follows that V is invariant under G as well.
This contradicts the supposition. 2

3. Descent results for abelian varieties

For this section, fix a finitely generated field K. We consider the following condition on a
continuous representation ρ : GK → GLn(Q`).

(∗) There exists an integral scheme X of finite type over Spec(Z) with function field K and a
lisse Q`-sheaf L on X with generic fiber ρ such that at every closed point x of X the trace
of the Frobenius element on Lx is rational.

In our proof of Theorem 1, we will show that ρ comes from an elliptic curve over some finite
extension of K ′. We use the following result to conclude that we actually get an elliptic curve
over K.

Proposition 13. Let ρ : GK → GL2(Q`) be a Galois representation satisfying condition (∗).
Suppose that there exists a finite extension K ′/K such that ρ|K′ comes from a non-CM elliptic
curve E. Then ρ comes from an elliptic curve.1

We proceed with a number of lemmas.

Lemma 14. Let ρ : G→ GLn(Q`) a continuous representation of the profinite group G. Suppose
there exists an open subgroup H of G such that ρ(H) is contained in GLn(Z`) and contains an
open subgroup of GLn(Z`). Suppose also that there is a dense set of elements {gi}i∈I of G such
that tr ρ(gi) ∈ Q` for all i ∈ I. Then ρ(G) is contained in GLn(Q`).

1 The non-CM condition is in fact necessary. Let K = Fp, K′′ = Fp2 and ` be such that p has a square root mod `.
Now let ρ have eigenvalues ±√p. Then ρ cannot come from an elliptic curve because the determinant is not the
cyclotomic character but ρ|K′ corresponds to a supersingular elliptic curve.
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Proof. Let eij be the n×n matrix with a 1 in the (i, j) position and 0 elsewhere. By assumption,
there exists m such that ρ(H) contains 1 + `meij for all i, j, and so eij ∈ Q`[ρ(G)]. For any
A ∈ ρ(G) we have Ai,j = tr(eiiAejj) ∈ tr(Q`[ρ(G)]) = Q`, where the last equality follows from
the fact that tr ◦ ρ : G → Q` is continuous and tr(ρ(gi)) ∈ Q` for all i. It thus follows that
ρ(G) ⊂ GLn(Q`) as claimed. 2

The following lemma is basically [Tay02, Corollary 2.4].

Lemma 15. Let ρ : GK → GL2(Q`) be a continuous irreducible Galois representation. Suppose
that there is a finite separable extension K ′/K such that ρ|GK′ comes from a non-CM elliptic
curve E. Then there is an abelian variety A/K with F = End(A)⊗Q a number field of degree
dim(A) such that ρ ∼= Q` ⊗Fw Vw(A) for some place w of A.

Proof. Consider B = ResK
′

K E, an abelian variety over K of dimension [K ′ : K] [BLR90, § 7.6].
Write B =

∏r
i=1Bi (up to isogeny) where each Bi is a power of a simple abelian variety. Thus

EndK(B)⊗Q =
r⊕
i=1

Di,

where Di = EndK(Bi)⊗Q is a simple algebra. We have

HomGK
(ρ,Q` ⊗ V`(B)) = HomGK′ (ρ|GK′ ,Q` ⊗ V`(E)) = Q`,

where the latter follows from Faltings’ proof of the Tate conjecture [FWGSS92, Theorem 1,
p. 211] since E is non-CM. We thus see that ρ occurs uniquely in Q` ⊗ V`(Bi) for some i. Let
A be this Bi. Since A is a power of a simple abelian variety and ρ occurs uniquely in its Tate
module, A must itself be simple. The endomorphism ring Di must preserve ρ, and thus the
action of ρ comes from an algebra homomorphism ψ : Di → Q`, which is injective since Di is
simple. We thus see that Di = F is a number field, and ψ corresponds to a place w of F above `.
Since Vw(A) ⊗Fw Q` contains ρ and is absolutely irreducible by Proposition 7, it is equal to ρ.
Therefore Vw(A) is two dimensional over Fw, and so [F : Q] = dim(A) by Proposition 6. 2

Lemma 16. Proposition 13 holds if K ′/K is separable.

Proof. By Lemma 15, we can find an abelian variety A/K with End(A)⊗Q = F a number field
of degree dim(A), and a place w0 of F such that ρ ∼= Q` ⊗Fw0

Vw0(A).
Choose an integral scheme X of finite type over Spec(Z) with fraction field K and a family

of abelian varieties A → X extending A. The representation of GK on Vw(A) factors through
πét

1 (X), for all w. Since Vw0(A) satisfies (∗), we can replace X with a dense open subscheme
such that the Frobenius elements in πét

1 (X) have rational traces on Vw0(A). By Proposition 6, it
follows that the Frobenius elements in πét

1 (X) have rational traces on Vw(A) for all w.
By assumption, ρ|GK′

∼= Q`⊗V`(E) for some non-CM elliptic curve E/K ′. As above, pick an
integral scheme X ′ of finite type over Spec(Z) with fraction field K ′ such that there is an elliptic
curve E → X ′ extending E. Further shrinking X,X ′ we can assume X ′ maps to X inducing the
inclusion K ⊂ K ′.

Pick a place w | p of F . As we saw above, Frobenius elements of πét
1 (X) have equal traces on

ρ ∼= Q` ⊗Fw0
Vw0(A) and Qp ⊗Fw Vw(A). Similarly, the traces of Frobenius elements of πét

1 (X ′)

on V`(E) and Vp(E) are equal. We thus see by Corollary 9 that Qp ⊗Fw Vw(A) is isomorphic
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to Qp ⊗Qp Vp(E) as representations of πét
1 (X ′). By the Tate conjecture proved by Faltings

[FWGSS92, Theorem 1, p. 211], the image of GK′ in GL(Vp(E)) contains an open subgroup
of GL2(Zp).

It follows that the conditions of Lemma 14 are fulfilled for Vw(A)⊗Fw Qp, and so

Vw(A)⊗Fw Qp is defined over Qp; that is, there exists some representation V of GK over Qp

such that Vw(A)⊗Fw Qp
∼= Qp⊗Qp V . Since Vw(A) and V ⊗Qp Fw have the same character, and

are irreducible, it follows that they are isomorphic. We thus see that EndQp[GK ](Vw(A)) ∼=
EndQp(Fw), where on the right side we are taking endomorphisms of Fw as a vector space.
By Proposition 7 we have that EndQp[GK ](Vw(A)) ∼= Fw, and so EndQp(Fw) = Fw, which implies
Fw = Qp. We thus see that all places of F are split, and so F = Q. Thus A is actually an elliptic
curve, and the proof is complete. 2

Lemma 17. Proposition 13 holds if K ′/K is purely inseparable.

Proof. It suffices to treat the case where (K ′)p = K. Let E/K ′ be the elliptic curve giving rise
to ρ|K′ . Let E(p) = E×K′,F0K

′ where F0 : K ′ → K ′ is the absolute Frobenius map. Then E(p) is
defined over K, and there is a canonical isogeny (relative Frobenius map) F : E → E(p) defined
over K ′ inducing an isomorphism on rational `-adic Tate modules. Thus V`(E

(p))|GK′
∼= ρ|GK′

and so V`(E
(p)) ∼= ρ since K ′/K is purely inseparable. 2

Proposition 13 in general follows from the previous two lemmas. We now prove a slightly
different descent result. Recall that for an elliptic curve E and a number field F , one has an
abelian variety E ⊗OF with multiplication by OF : as an abelian variety, E ⊗OF is simply En

where n = [F : Q].

Proposition 18. Let k be a finite field, let C/k be a proper smooth geometrically irreducible
curve, and let f : A → U be a family of g-dimensional abelian varieties over a non-empty open
subset U of C such that End(A) ⊗Q contains a number field F of degree g. For a finite place
v of F , let Lv be the v-adic Tate module of A. Assume that for all closed points x of U , the trace
of the Frobenius element at x on Lv,x belongs to Q. Also assume that there is some place of C
where A does not have potentially good reduction. Then there exists an elliptic curve E → U
such that A is isogenous to E ⊗OF .

Proof. Let ` be a rational prime that splits completely in F . Then the `-adic Tate module L`
of A decomposes as

⊕
v|` Lv. The Lv form a compatible system with coefficients in F , so for

each closed point x ∈ U there exists α ∈ F such that the trace of the Frobenius element at x
on Lv,x is the image of α in Fv. By our assumptions, α is a rational number, and so if v, w | `
then the traces of Frobenius elements on Lv,x and Lw,x are the same element of Q` ⊂ Fv, Fw. It
follows that the characters of Lv and Lw are equal at Frobenius elements, and so Lv ∼= Lw. Thus
dim(End(L`)) > g2. By Faltings’ isogeny theorem, it follows that dim(End(A)⊗Q) > g2.

Let C ′ → C be a cover such that A has semi-stable reduction, and let x be a point at which A′

(the pullback of A) has bad reduction. Let A′ be the Néron model of A′ over C ′, and let T be the
torus quotient of the identity component of A′x. The dimension h of T is at least 1, and at most g.
Under the map End(A) ⊗Q → End(T ) ⊗Q ⊂ Mh(Q), the field F must inject, and so h = g.
Thus T is the entire identity component of A′x, and so the map End(A)⊗Q → End(T )⊗Q ⊂
Mg(Q) is injective. Combined with the previous paragraph, we find that dim(End(A)⊗Q) = g2,
and so the map End(A) ⊗ Q → Mg(Q) is an isomorphism. The statement now follows by
projecting under an idempotent. 2
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4. Drinfeld’s work on the global Langlands program

Proposition 19. Let k be a finite field, and C/k be a smooth proper geometrically irreducible
curve. Let L be an irreducible rank-two lisse Q`-sheaf over a non-empty open subset U ⊂ C,
such that the following hold.

(a) There is an isomorphism
∧2L ∼= Q`(1).

(b) For every closed point x of C, the trace of the Frobenius element on Lx is a rational number.

(c) There exists a point x of Ck at which Lk does not have potentially good reduction.

Then there exists an elliptic curve f : E → U such that R1f∗(Q`)
∼= L.

Proof. By Drinfeld’s theorem ([Dri83, Main theorem, Remark 5], see also [Dri78]) there is a
cuspidal automorphic representation π of GL2(Ak(C)) which is compatible with L. Since inertia
at x does not have finite order, π must be special at x. It follows by another theorem of Drinfeld
[Dri77, Theorem 1] that there exists a number field E and a GL2(E)-type abelian variety A over
U which is compatible with π and thus also with L, in the sense that the `-adic Tate module L′

of A is isomorphic with L when tensored up to Q`; that is, L′ ⊗E Q`
∼= L. By Proposition 18,

we may take A to be an elliptic curve. 2

Remark 20. By following Drinfeld’s proof carefully, one may directly see that we can take E to
be the field generated by the Frobenius traces of L, and is thus Q, which can replace the use of
Proposition 18.

5. Mapping spaces

Let S be a noetherian scheme. For i = 1, 2, let Ci be a proper smooth scheme over S with
geometric fibers irreducible curves, let Zi be a closed subscheme of Ci that is a finite union of
sections S → Ci, and let Ui be the complement of Zi in Ci. Fix d > 1.

Proposition 21. There exists a schemeM of finite type over S and a map φ : (U1)M → (U2)M
with the following property: if k is a field, s ∈ S(k), and f : U1,s → U2,s is a map of curves over k
of degree d (meaning the corresponding function field extension has degree d), then there exists
t ∈M(k) over s such that f = φt.

Proof. Let P be the image of a section S → C1. Define P̃ to be the dth nilpotent thickening
of P . Precisely, if P is defined by the ideal sheaf IP then P̃ is defined by IdP . Let Q be the image

of a section S → C2, and define Q̃ similarly. Let 0 6 e 6 d be an integer. For an S-scheme S′, let
CP,Q,e(S′) be the set of maps f : P̃S′ → Q̃S′ such that f∗(IQ) ⊂ IeP . As these are finite schemes
over S, this functor is represented by a scheme CP,Q,E of finite type over S.

Write Z1 =
∐n
i=1 Pi and Z2 =

∐m
j=1Qj . (Here

∐
denotes disjoint union.) By a ramification

datum we mean a tuple ρ = (ρ1, . . . , ρn) where each ρi is either null (denoted ∅), or a pair (ki, ei),
where 1 6 ki 6 m and 0 6 ei 6 d, such that the following condition holds: for any 1 6 j 6 m,
we have

∑
ki=j

ei = d (the sum taken over i for which ρi 6= ∅). Obviously, there are only finitely
many ramification data. For a ramification datum ρ, define Cρ =

∏
ρi 6=∅
CPi,Qki

,ei . Finally, define
C =

∐
ρ Cρ, where the union is taken over all ramification data ρ.

For an S-scheme S′, let A(S′) be the set of morphisms (C1)S′ → (C2)S′ having degree d in
each geometric fiber. The theory of the Hilbert scheme shows that A is represented by a scheme
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of finite type over S. For 1 6 i 6 n, let Bi(S′) be the set of all maps (P̃i)S′ → (C2)S′ . This is
easily seen to be a scheme of finite type over S. Let B =

∐n
i=1 B̃i.

We have restriction maps A → B and C → B. Define M to be the fiber product A ×B C,
which is a scheme of finite type over S. We can write M =

∐
ρMρ, where Mρ = A ×B Cρ.

If s ∈ S(k) then Mρ,s(k) is the set of degree d maps f : C1,s → C2,s satisfying the following
conditions at the Pi: if ρi = ∅ then there is no condition at Pi; otherwise, f(Pi) = Qki and the
ramification index e(Pi | Qki) is at least ei. (In fact, the ramification index is exactly ei, since
the total ramification is d and the ei with ki = j add up to d.) It is clear that such a map carries
U1,s into U2,s, and that any map U1,s → U2,s of degree d comes from a point of someMρ,s. Thus
every map f : U1,s → U2,s comes from some k-point ofMs. Finally, note that the universal map
(C1)M → (C2)M carries (U1)M to (U2)M, as this can be checked at field points of M. This
proves the proposition. 2

6. Proof of Theorem 1

Keep notation as in Theorem 1, and put S = Spec(OK [1/N ]).

Lemma 22. The restriction of L to any open subgroup of πét
1 (UK) is irreducible.

Proof. Suppose not. Then there exists an open normal subgroup H of G = πét
1 (UK) such that

L|H is reducible. It is semi-simple by Lemma 12, and therefore a sum of two characters. Since
characters have finite ramification by Lemma 10, we have contradicted assumption (d). 2

Choose r � 0 so that X = X(`r) has genus at least 2 and Y = Y (`r) is a fine moduli space;
in fact, r = 3 suffices for any `. We replace L with a rank-two OE-sheaf, where E/Q` is a finite
extension. Proposition 13 and Lemma 22 show that it suffices to prove the proposition after
passing to a finite cover of C. By passing to an appropriate cover, we can therefore assume that
L/`r is trivial. The image of the Galois representation ρ : πét

1 (U) → GL2(OE) has order M · `∞
(in the sense of profinite groups) for some positive integer M . By enlarging N , we can assume
that M · ` | N and that the complement of U in C spreads out to a divisor on C that is smooth
over S.

We make the following definitions.
• Let D be an integer greater than (g(C) − 1)/(g(X) − 1), where g(−) denotes genus. Let
Md be the space of maps U → Y of degree d, in the sense of Proposition 21, and let
M =

∐D
d=1Md.

• Let T be the (integral) `-adic Tate module of the universal elliptic curve over Y , and let
T ′ = T ⊗ OE . Also let Ln = L/`nL and let T ′n = T ′/`nT ′.

• Let M̃n be the moduli space of pairs (f, ψ) where f ∈ M and ψ is an isomorphism of
OE-sheaves f∗(Tn) → Ln.

Lemma 23. The map π : M̃n →M is finite.

Proof. Note that for every field-valued point f of M there are only finitely many choices for ψ
and so the map M̃n →M is quasi-finite. Thus, to prove the lemma it is sufficient to show that
π is proper.

We use the valuative criterion. Let R be a discrete valuation ring with fraction field F . Let
f ∈M(R) and (ψ, f) ∈ M̃n(F ). Thus, f corresponds to a map f : UR → YR and ψ : f∗(Tn)F →

(Ln)F is an isomorphism. Since f∗(Tn) and Ln are finite étale sheaves on UR, which is a normal
scheme, ψ extends uniquely over UR. 2
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Let Mn be the image of M̃n in M, which is closed by Lemma 23. We endow it with the
reduced subscheme structure. As the Mn form a descending chain of closed subschemes of M,
they stabilize. Let M∞ be Mn for n� 0.

Lemma 24. The fiber of M∞ over all closed points of S is non-empty.

Proof. Let s be a closed point of S of characteristic p. By Lemma 12, LK is an irreducible sheaf.
Let S be the strict Hensilization of S at s, s the geometric point corresponding to s, and Ks the
fraction field of S. By [SGA1, XIII, 2.10, p. 289],

π
ét,(p)
1 (Us) ∼= π

ét,(p)
1 (US)� πét

1 (UKs) ⊃ πét
1 (UKs

) = πét
1 (UK), (∗)

where π
ét,(p)
1 denotes the prime to p quotient of πét

1 . We can regard L as a representation of πét
1 (U)

and then restrict it to a representation of πét
1 (US); since the image of the representation has

order M`∞, which is prime to p, it factors through π
ét,(p)
1 (US). We thus obtain a representation

of π
ét,(p)
1 (Us). The pullback of this representation to πét

1 (UK) is irreducible. It follows now that
Ls is an irreducible sheaf on Us.

By Proposition 19, we can find a family of elliptic curves E → Us and an isomorphism
Ls|Us ∼= T (E)⊗OE , where T (E) is the relative Tate module of E . It follows that T (E)/`r is the
trivial sheaf, and so we can find a basis for E [`r] over Us. We thus have a map f : Us → Y such
that T (E) ∼= f∗(T ). Factor f as g◦Fn, where g : Us → Y is separable and F : Yκ(s) → Yκ(s) is the
absolute Frobenius element. Note that F ∗(T ) ∼= T , and so T (E) ∼= g∗(T ). Let g be the extension
of g to a map Cs → X. Since g is separable, it has degree 6D. Thus g, and the isomorphism
L ∼= g∗(T )⊗OE , define a κ(s) points of Mn for all n, which proves the lemma. 2

Proof of Theorem 1. Since M∞ is finite type over S and all of its fibers over closed points are
non-empty, it follows that the generic fiber of M∞ is non-empty. Choose a point x in M∞(L′),
for some finite extension L′/L, corresponding to a family of elliptic curves E → UL′ . Now, x lifts

to M̃n(L) for all n. Thus Ln and T (E) ⊗ OE/`n are isomorphic for all n, as sheaves on UL. It
follows that L and T (E)⊗OE are isomorphic over UL (by compactness). By Lemma 11, L[1/`]
and T (E) ⊗ E are isomorphic over UL′′ , for some finite (even quadratic) extension L′′ of L′.
Passing to the generic fibers, we see that ρ|KL′′ comes from an elliptic curve, which completes
the proof by Proposition 13. 2
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