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1. Introduction
Let F ∈ Diff(Cn, 0) be a germ of a biholomorphism tangent to the identity. In dimension
one, the dynamics of F is completely described by the Leau–Fatou flower theorem [6, 9],
which guarantees the existence of simply connected domains with zero in their boundary,
covering a punctured neighborhood of the origin, which are stable either for F or for F−1;
moreover, in each of these domains F is conjugated to the unit translation.

In dimension two, no complete description of the dynamics of F is known. Some partial
analogs of the Leau–Fatou flower theorem have been obtained, guaranteeing the existence
of either one-dimensional [1, 5, 8, 12] or two-dimensional stable manifolds [7, 15]. With
no extra assumptions on F, the most general result is due to Abate [1], who showed that F
always supports some stable dynamics: either F has a curve of fixed points or there exist
one-dimensional stable manifolds of F with the origin in their boundary.

The proof of the above-mentioned results is crucially based on a resolution theorem
for F, which reduces the study of the dynamics of F to some combinatorial data of the
resolution and the study of the local dynamics of some reduced models of the transform
of F. This resolution theorem was introduced by Abate in [1] and is based on the
corresponding result for vector fields due mainly to Seidenberg [4, 14]. Before stating the
resolution theorem, we establish a precise definition of the reduced models suited to our
purposes (see also Remark A.4).

Definition 1.1. The germ of a biholomorphism in dimension two at a fixed point p is called
reduced if it is analytically conjugate to one of the following models.
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2 L. López-Hernanz and R. Rosas

(i) Regular fixed points:

F̃ (x, y) = (x + xMyN [1 + A(x, y)], y + xMyNB(x, y)),

where M , N ≥ 0, (M , N) /∈ {(0, 0), (1, 0)}, ord A ≥ 1 and B ∈ (y) if N ≥ 1.
(ii) Non-degenerate fixed points:

F̃ (x, y) = (x + xM+1yN [a + A(x, y)], y + xMyN [by + B(x, y)]),

where M ≥ 1, N ≥ 0, ab �= 0, a/b /∈ Q>0, ord A ≥ 1, ord B ≥ 2 and B ∈ (y) if
N ≥ 1.

(iii) Saddle-node fixed points:

F̃ (x, y) = (x + xMyN [x + A(x, y)], y + xMyNB(x, y)),

where M , N ≥ 0, M + N ≥ 1, ord A, ord B ≥ 2, A ∈ (x) if M ≥ 1, B ∈ (y) if
N ≥ 1 and x + A and B have no common factors.

The resolution theorem, as we explain in Appendix A, guarantees the existence
of a finite composition of blow-ups π : (M , E) → (C2, 0), with E = π−1(0), which
transforms F into a map F̃ : (M , E) → (M , E) that fixes E pointwise such that for every
p ∈ E the germ of F̃ at p is reduced according to the previous definition.

Model (i) corresponds to the points p ∈ E which are not singular, in Abate’s terminol-
ogy [1] (that is, the points which are non-singular for the saturation of the associated vector
field), and models (ii) and (iii) correspond to the points p ∈ E which are singular; for the
latter, we use the names ‘non-degenerate’ and ‘saddle-node’ by analogy with the standard
terminology for vector fields, according to whether the linear part of the saturation of the
associated vector field has two or one non-zero eigenvalues, respectively. The dynamics of
biholomorphisms of the form (i) is described in [1, Proposition 2.1] when M = 0 and in
[3, Theorem 5.3] when N = 0.

In this paper we study the dynamics of non-degenerate fixed points. These are the only
models that appear at singular points in the resolution of a generic biholomorphism.

Actually, we consider in our study a slightly more general class of biholomorphisms,
since we do not impose the non-resonance condition a/b �∈ Q>0. We distinguish two cases,
according to whether the fixed point set of F has one or two components. As a first case,
we consider biholomorphisms of the form

F(x, y) = (x + xM+1[a + A(x, y)], y + xM [cx + by + B(x, y)]), (A)

where M ≥ 1, a, b, c ∈ C, ab �= 0, ord A ≥ 1 and ord B ≥ 2. Non-degenerate fixed points
with N = 0 are included here. Biholomorphisms of this type appear, for instance, after one
blow-up at the point corresponding to a so-called non-degenerate characteristic direction
(see [8]). Écalle [5] and Hakim [8] showed that in this case there exist one-dimensional
stable manifolds for F with 0 in their boundary, called parabolic curves. Moreover, if
a and b satisfy the condition

Re(b/a) > 0, (A�)
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A flower theorem in dimension two 3

Hakim proved in [7] (see also [2]) the existence of two-dimensional stable manifolds with
0 in their boundary, called parabolic domains, where F is analytically conjugate to the map
(z, w) �→ (z + 1, w).

As a second case, we consider biholomorphisms of the form

F(x, y) = (x + xM+1yN [a + A(x, y)], y + xMyN+1[b + B(x, y)]), (B)

where M , N ≥ 1, ab �= 0 and ord A, ord B ≥ 1. Non-degenerate fixed points with N ≥ 1
are included here. If a and b are such that aM + bN �= 0 and satisfy the condition

Re
(

a

aM + bN

)
> 0 and Re

(
b

aM + bN

)
> 0, (B�)

Vivas proved in [15] the existence of parabolic domains for F.
The main result of this paper is an analog of the Leau–Fatou flower theorem for

biholomorphisms of this type, providing a complete description of the dynamics in a whole
neighborhood of the origin.

THEOREM 1.2. Let F be a local biholomorphism of the form (A) or (B). In the first case,
assume that F satisfies condition (A�) and set d = M and N = 0; in the second case,
assume that F satisfies condition (B�) and set d = gcd(M , N). Then, in any neighborhood
of the origin there exist d pairwise disjoint connected open sets �+

0 , �+
1 , . . . , �+

d−1, with
0 ∈ ∂�+

k for all k, and d pairwise disjoint connected open sets �−
0 , �−

1 , . . . , �−
d−1, with

0 ∈ ∂�−
k for all k, such that the following assertions hold.

(1) The sets �+
k are invariant for F and Fj → 0 as j → +∞ compactly on �+

k for all
k, and the sets �−

k are invariant for F−1 and F−j → 0 as j → +∞ compactly on
�−

k for all k.
(2) The sets �+

0 , . . . , �+
d−1, �−

0 , . . . , �−
d−1 together with the fixed set {xyN = 0} cover

a neighborhood of the origin.
(3) For each k, there exist biholomorphisms ϕ+

k : �+
k → W+

k ⊂ C2 and ϕ−
k : �−

k →
W−

k ⊂ C2, with W+
k , W−

k ⊂ C × C∗ if N ≥ 1, with the following properties:
(a) ϕ+

k and ϕ−
k conjugate F with the map (z, w) �→ (z + 1, w).

(b) The sets W+
k and W−

k satisfy⋃
±j∈N

[W±
k − (j , 0)]=C2 if N =0;

⋃
±j∈N

[W±
k − (j , 0)]=C×C∗ if N ≥ 1.

Our second result shows that if conditions (A�) or (B�) are strictly not satisfied, then F
has generic finite orbits in some neighborhood of the origin and so no two-dimensional
stable sets. A version of this result has already been proved by Lisboa [10] for analytic
vector fields.

THEOREM 1.3. Let F be a local biholomorphism of the form (A) or (B). In the first case,
assume that Re(b/a) < 0; in the second case, assume that either

Re
(

a

aM + bN

)
< 0 or Re

(
b

aM + bN

)
< 0.

https://doi.org/10.1017/etds.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.14


4 L. López-Hernanz and R. Rosas

Then there exists a neighborhood U of the origin and there exist sets P+, P− ⊂ U , which
are one-dimensional submanifolds of U if F is of the form (A) and are empty otherwise,
such that the following properties hold: given p ∈ U \ P+ outside the fixed set, there exists
j ∈ N such that Fj (p) /∈ U ; given p ∈ U \ P− outside the fixed set, there exists j ∈ N

such that F−j (p) /∈ U . If F is of the form (A), then P+ is the set of points in U that are
attracted under F to the parabolic curves of F, and P− is the set of points in U that are
attracted under F−1 to the parabolic curves of F−1.

The following example shows the necessity of the hypotheses in Theorems 1.2 and 1.3.

Example 1.4. For M ≥ 1, N ≥ 0 and a, b ∈ C∗ that do not satisfy the hypotheses in
Theorems 1.2 and 1.3, consider the biholomorphism F given by the time-one flow of the
vector field

X = xMyN

[
ax

∂

∂x
+ by

∂

∂y

]

and let us show that for any neighborhood U of the origin there exists p ∈ U outside the
fixed set such that the orbit {Fj (p) : j ∈ Z} is contained in U and bounded away from the
origin.

Assume first that N = 0, so Re(b/a) = 0. If (x(t), y(t)) is a solution of X and we set
(x0, y0) = (x(0), y(0)), we get by integration that

x(t) = x0[1 − aMxM
0 t]−1/M and y(t) = y0[1 − aMxM

0 t]−b/(aM),

defined for all t ∈ R provided that aMxM
0 /∈ R. We have that |x(t)| ≤ C|x0| for some

C > 0 and for all t ∈ R, and if we set b/(aM) = iβ we have

|y(t)| = |y0|eβ arg(1−aMxM
0 t),

so e−|β|π |y0| ≤ |y(t)| ≤ e|β|π |y0| for all t ∈ R. Therefore, given a neighborhood U of the
origin, if we choose (x0, y0) as above and sufficiently small with y0 �= 0 then its orbit is
contained in U and bounded away from the origin.

Assume now that N ≥ 1, so either aM + bN = 0 or aM + bN �= 0, Re(a/

(aM + bN)) ≥ 0 and Re(b/(aM + bN)) = 0. If (x(t), y(t)) is a solution of X with
(x(0), y(0)) = (x0, y0) and we set P(t) = x(t)My(t)N , we have P ′ = (aM + bN)P 2,
x′ = aPx and y′ = bPy. Suppose first that aM + bN = 0. Then P(t) = P(0), x(t) =
x0e

aP (0)t and y(t) = y0e
bP (0)t , so

(x(t), y(t)) = (x0e
axM

0 yN
0 t , y0e

bxM
0 yN

0 t )

for all t ∈ R. Note that, since a/b = −N/M ∈ R, in any neighborhood U of the
origin we can take (x0, y0) arbitrarily small with x0y0 �= 0 such that Re(axM

0 yN
0 ) =

Re(bxM
0 yN

0 ) = 0. In this case, the expression above shows that |x(t)| = |x0| and
|y(t)| = |y0| for all t ∈ R, so the orbit of (x0, y0) is bounded away from the origin and
contained in U provided (x0, y0) is small enough. Suppose now that aM + bN �= 0,
Re(a/(aM + bN)) ≥ 0 and Re(b/(aM + bN)) = 0. By integration we have that
P(t) = xM

0 yN
0 [1 − (aM + bN)xM

0 yN
0 t]−1 and
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A flower theorem in dimension two 5

x(t) = x0[1 − (aM + bN)xM
0 yN

0 t]−a/(aM+bN),

y(t) = y0[1 − (aM + bN)xM
0 yN

0 t]−b/(aM+bN),

defined for all t ∈ R provided (aM + bN)xM
0 yN

0 /∈ R. If we set a/(aM + bN) =
α1 + iα2, with α1 ≥ 0, and b/(aM + bN) = iβ, we have

|x(t)| = |x0||1 − (aM + bN)xM
0 yN

0 t |−α1eα2 arg(1−(aM+bN)xM
0 yN

0 t)

and

|y(t)| = |y0|eβ arg(1−(aM+bN)xM
0 yN

0 t),

so

|x(t)| ≤ Ce|α2|π |x0|, e−|β|π |y0| ≤ |y(t)| ≤ e|β|π |y0|
for some C > 0 and for all t ∈ R. Therefore, given a neighborhood U of the origin, if we
choose (x0, y0) as above and sufficiently small then its orbit is contained in U and bounded
away from the origin.

To conclude the introduction, let us briefly describe the structure of the paper. In §2
we prove some basic dynamic facts in the spirit of the Leau–Fatou flower theorem that we
will use throughout the paper. Sections 3–7 are devoted to the proof of Theorem 1.2. In
§§3 and 4 we show the existence of invariant domains and invariant functions for maps of
the form (B), with N ≥ 0, satisfying the hypotheses of Theorem 1.2; as we will explain
in §7, this will also allow us to obtain Theorem 1.2 for maps of the form (A). In §5 we
construct an approximation of Fatou coordinates (that is, conjugations with (z, w) �→
(z + 1, w)), which we modify to actual Fatou coordinates in §6. The final details of the
proof of Theorem 1.2 are provided in §7. Finally, in §8 we prove Theorem 1.3.

2. Stable subdynamics in two variables
In this section we prove Proposition 2.2, which provides some basic dynamic facts in the
spirit of the Leau–Fatou flower theorem, adapted to our two-dimensional context.

Definition 2.1. Given d ∈ N, ε > 0 and θ ∈ (0, π/2), we define the sets

S(d, ε, θ) = {z ∈ C : |zd | < ε, |arg(zd)| < θ},
whose connected components are the d sectors

Sk(d, ε, θ) =
{
z ∈ C : |z| < ε1/d ,

∣∣∣∣arg z − 2kπ

d

∣∣∣∣ <
θ

d

}
for k = 0, . . . , d − 1, and

S̃(d, ε, θ) = S(d, ε, θ) ∪
{
z ∈ C :

∣∣∣∣zd − ε

2
e−iθ

∣∣∣∣ <
ε

2

}
∪

{
z ∈ C :

∣∣∣∣zd − ε

2
eiθ

∣∣∣∣ <
ε

2

}
,

whose connected components are d sectorial domains S̃k(d, ε, θ) of opening (π + 2θ)/d

bisected by the rays e2kπi/dR+ for k = 0, . . . , d − 1.
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6 L. López-Hernanz and R. Rosas

PROPOSITION 2.2. Let G : � → C2 be a holomorphic function, where � is a neighbor-
hood of 0 ∈ C2. Denote (xj , yj ) = Gj(x, y) for all j ≥ 0. Let m, n, d ∈ Z≥0 be such that
m + n ≥ 1 and d ≥ 1 and suppose that

xm
1 yn

1 = xmyn − 1
d

(xmyn)d+1 + (xmyn)d+1O(x, y).

There exist functions εG, δG, δ̃G : (0, π/2) → R+ with the following properties.
(1) If S is a connected component of S(d, ε, θ) or S̃(d, ε, θ) with θ ∈ (0, π/2) and

ε ≤ εG(θ), then for all (x, y) with xmyn ∈ S, |x| < δG(θ) and |y| < δG(θ) we have
that xm

1 yn
1 ∈ S. Hence, if xmyn ∈ S and |xj | < δG(θ), |yj | < δG(θ) for all j ≥ 0

then xm
j yn

j ∈ S for all j ≥ 0. In this case, if S is a component of S(d, ε, θ) we have
that

1
2

|xmyn|d
1 + j |xmyn|d ≤ |xm

j yn
j |d ≤ 2

cos θ

|xmyn|d
1 + j |xmyn|d

for all j ≥ 0, and if S is a component of S̃(d , ε, θ) we have that

|xm
j yn

j |d ≥ 1
2

|xmyn|d
1 + j |xmyn|d for all j ≥ 0,

|xm
j yn

j |d ≤ 2
|xmyn|d

1 + j |xmyn|d for all j ≥ 6
|xmyn|d .

In particular, xm
j yn

j → 0 as j → +∞.
(2) Consider a component S̃k(d, ε, θ) of S̃(d, ε, θ) with ε ≤ εG(θ) and assume the

following additional hypothesis on G: there exist ν > 0 and δν > 0 such that

|x1| ≤ |x|(1 + ν|xmyn|d) and |y1| ≤ |y|(1 + ν|xmyn|d)

whenever xmyn ∈ S̃k(d, ε, θ), |x| < δν and |y| < δν . Then, given μ > 0, we find
μ̃ > 0 with the following property: if xmyn ∈ S̃k(d, ε, θ), |x| < μ̃ and |y| < μ̃,
there exists j0 ≥ 0 such that xm

j0
yn
j0

∈ Sk(d, ε, θ) and, for every j ≤ j0, xm
j yn

j ∈
S̃k(d, ε, θ), |xj | < μ and |yj | < μ.

(3) Take θ ∈ (0, π/2) and consider a point (x, y) with xmyn �= 0 such that |xj | < δ̃G(θ)

and |yj | < δ̃G(θ) for all j ≥ 0. Then xm
j yn

j → 0 as j → +∞ and there exists
k ∈ {0, . . . , d − 1} such that xm

j yn
j ∈ Sk(d , ε, θ) for any ε > 0 and for j ≥ 0 big

enough. Moreover, the two last inequalities of assertion 1 hold.

We will need the following result.

LEMMA 2.3. There exists κ : (0, π/2) → R+ with the following property. If f (z) = z − z2

for z ∈ C and either S = S(1, ε, θ) or S = S̃(1, ε, θ) with θ ∈ (0, π/2) and ε ≤ κ(θ), then
f (S) ⊂ S and for all z ∈ S,

dist(f (z), ∂S) ≥ κ(θ)|z|2.

Proof. Suppose first that S = S(1, ε, θ). Set κ(θ) = 1
8 sin(θ/2) and assume that ε ≤ κ(θ).

An easy computation shows that the map z �→ w = 1/z conjugates f to
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g(w) = w + 1 + 1
w − 1

and transforms S into

W = {w ∈ C : |w| > 1/ε, |arg w| < θ}.
Fix z ∈ S(1, ε, θ) and set z1 = f (z), w = 1/z and w1 = 1/z1 = g(w). Consider the
sectors Sw(θ) and Sw(θ/2), where

Sw(α) = w + {ζ ∈ C : |ζ | > 0, |arg ζ | < α}.
Clearly, Sw(θ/2) ⊂ Sw(θ) ⊂ W and

dist(w + 1, ∂Sw(θ/2)) = sin(θ/2).

Then, since

dist(w + 1, w1) = 1
|w − 1| <

1
1/κ(θ) − 1

= 1
8/ sin(θ/2) − 1

<
1
4

sin(θ/2) < sin(θ/2),

we see that w1 ∈ Sw(θ/2) ⊂ W , which proves that f (S) ⊂ S. Note that

dist(w1, ∂Sw(θ)) = |w1 − w| sin β,

where β is one of the angles determined by the ray −−→ww1 in the sector Sw(θ). Since
w1 ∈ Sw(θ/2), we have that β ≥ θ/2 and therefore

dist(w1, ∂Sw(θ)) > |w1 − w| sin(θ/2) ≥
(

1 − 1
|w − 1|

)
sin(θ/2)

>
(
1 − 1

4 sin(θ/2)
)

sin(θ/2) > 3
4 sin(θ/2).

Then, since Sw(θ) ⊂ W ,

dist(w1, ∂W) ≥ dist(w1, ∂Sw(θ)) >
3
4

sin(θ/2),

so the disk D = {ζ ∈ C : |ζ − w1| < 3
4 sin(θ/2)} is contained in W. If we set h(ζ ) = 1/ζ ,

we have that h(W) = S and h(D) contains the disk {ξ ∈ C : |ξ − h(w1)| < r}, where

r = min{|h(ζ ) − h(w1)| : ζ ∈ ∂D}.
Notice that if ζ ∈ ∂D, then |ζ | ≤ |w1| + 3/4 < 2|w1|. Then

r = min
{∣∣∣∣ζ − w1

ζw1

∣∣∣∣ : ζ ∈ ∂D
}

>

3
4 sin(θ/2)

2|w1|2 =
3
8 sin(θ/2)

|w1|2 .

Thus, since

1/|w1|2 = |z1|2 ≥ |z|2(1 − |z|)2 ≥ |z|2(1 − κ(θ))2 ≥ |z|2(1 − 1/8)2 > 2
3 |z|2,

we see that r > 1
4 sin(θ/2)|z|2 > κ(θ)|z|2. Therefore we conclude that S contains the disk

{ζ ∈ C : |ζ − z1| < κ(θ)|z|2}, which concludes the proof.

https://doi.org/10.1017/etds.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.14


8 L. López-Hernanz and R. Rosas

Suppose now that S = S̃(1, ε, θ), take κ(θ) = 1
8 sin(π/4 − θ/2) and assume that

ε ≤ κ(θ). Then the map z �→ w = 1/z transforms S into

W̃ = W ∪ {w ∈ C : Re(we−iθ ) > 1/ε} ∪ {w ∈ C : Re(weiθ ) > 1/ε}.
Note that Sw(π/4 − θ/2) ⊂ Sw(π/2 − θ) ⊂ W . Then the proof follows exactly as in
previous case, with π/2 − θ instead of θ . Finally, to unify the selection of κ we can take
κ(θ) = 1

8 min{sin(θ/2), sin(π/4 − θ/2)}, which works for both cases.

Proof of Proposition 2.2. From the expression for xm
1 yn

1 we obtain that

(xm
1 yn

1 )d = (xmyn)d − (xmyn)2d + (xmyn)2dσ (x, y) (1)

and

1
(xm

1 yn
1 )d

= 1
(xmyn)d

+ 1 + σ1(x, y), (2)

where σ = O(x, y) and σ1 = O(x, y). Moreover, notice that xm
1 yn

1 /(xmyn) = 1 +
O(x, y) is arbitrarily close to 1 provided x and y are small enough. Then, given
θ ∈ (0, π/2), we can find δG(θ) > 0 such that for all (x, y) with |x| < δG(θ) and
|y| < δG(θ) we have that

|σ(x, y)| < κ(θ), |σ1(x, y)| <
1
4

and
∣∣∣∣arg

xm
1 yn

1
xmyn

∣∣∣∣ <
π − 2θ

d
,

where κ(θ) is given by Lemma 2.3. Set εG(θ) = κ(θ).
Let us prove assertion 1 of the proposition. Take ε ≤ εG(θ), let S be one of the

components of S(d, ε, θ) or S̃(d , ε, θ) and take (x, y) such that xmyn ∈ S, |x| < δG(θ)

and |y| < δG(θ). Set f (z) = z − z2. Note that S = {zd : z ∈ S} is one of the sets S(1, ε, θ)

or S̃(1, ε, θ), so by equation (1) and Lemma 2.3 we have that

|(xm
1 yn

1 )d − f ((xmyn)d)| < κ(θ)|xmyn|2d ≤ dist(f ((xmyn)d), ∂S),

which means that (xm
1 yn

1 )d ∈ S. Since the components of S(d, ε, θ) or S̃(d, ε, θ)

are separated by a sector of opening at least (π − 2θ)/d and |arg(xm
1 yn

1 /(xmyn))| <

(π − 2θ)/d, we conclude that (xm
1 yn

1 )d belongs to the same component S.
Now, let (x, y) be such that xmyn ∈ S with |xj | < δG(θ) and |yj | < δG(θ) for all j ≥ 0.

From (2) we obtain that

1
(xm

j yn
j )d

= 1
(xmyn)d

+ j +
j−1∑
l=0

σ1(xl , yl),

so

1
|xm

j yn
j |d ≤ 1

|xmyn|d + j + 1
4
j ≤ 2

(
1

|xmyn|d + j

)

for all j ≥ 0, which gives the lower bounds in the inequalities of assertion 1. On the other
hand, from the equation above we have that
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1
|xm

j yn
j |d ≥ Re

1
(xm

j yn
j )d

≥ Re
1

(xmyn)d
+ j −

j−1∑
l=0

|σ1(xl , yl)|

≥ Re
1

(xmyn)d
+ j − 1

4
j = Re

1
(xmyn)d

+ 3
4
j ,

for all j ≥ 0. If S is a component of S(d, ε, θ), since |arg(1/(xmyn)d | < θ , we have that
Re(1/(xmyn)d) ≥ cos θ/|xmyn|d and therefore

1
|xm

j yn
j |d ≥ cos θ

|xmyn|d + 3
4
j ≥ cos θ

2

(
1

|xmyn|d + j

)

for all j ≥ 0, which gives the upper bound in the first inequality of assertion 1. If S is a
component of S̃(d , ε, θ) we obtain that for all j ≥ 6/|xmyn|d ,

1
|xm

j yn
j |d ≥ Re

1
(xmyn)d

+ 3
4
j ≥ − 1

|xmyn|d + 3
4
j ≥ 1

2

(
1

|xmyn|d + j

)
,

which concludes the proof of assertion 1.
Let us prove assertion 2. From the expression for xm

1 yn
1 we can write xm

1 yn
1 = xmyn

(1 − ζ ), where ζ = (1/d + τ)(xmyn)d and τ = O(x, y). Then, up to reducing δν , we have
that if |x| < δν and |y| < δν then

|ζ | < 1, |arg(1 − ζ )| < θ/d, |1/d + τ | > δν , |arg(1/d + τ)| < θ∗,

where θ∗ = min{θ/2, π/4 − θ/2}. Set

μ̃ = e−2πν/(dδν sin θ∗) min{μ, δν , δG}.
Take xmyn ∈ S̃k(d, ε, θ) such that |x| < μ̃ and |y| < μ̃. If |arg(xmyn)d | < θ , we have
that xmyn ∈ Sk(d, ε, θ) and, since μ̃ ≤ μ, we can take j0 = 0 and we are done. Thus we
can assume that |arg(xmyn)d | ∈ [θ , θ + π/2). Moreover, we assume that arg(xmyn)d ∈
[θ , θ + π/2); the other case is analogous. Then

arg ζ = arg(1/d + τ) + arg(xmyn)d ∈ (θ − θ∗, θ + π/2 + θ∗) ⊂ (θ/2, θ/2 + 3π/4)

and hence

Im ζ > |ζ | min{sin(θ/2), sin(θ/2 + 3π/4)} = |ζ | sin θ∗.

Then, since |ζ | < 1, sin(arg(1 − ζ )) = −Im ζ/|1 − ζ | < − 1
2 sin θ∗|ζ | and therefore

−θ < arg(1 − ζ )d < d sin(arg(1 − ζ )) < −d

2
sin θ∗|ζ |.

It follows that

0 ≤ arg(xmyn)d − θ < arg(xmyn)d + arg(1 − ζ )d < arg(xmyn)d − d

2
sin θ∗|ζ |

< arg(xmyn)d − d

2
δνsin θ∗|xmyn|d ;
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10 L. López-Hernanz and R. Rosas

that is, arg(xm
1 yn

1 )d = arg(xmyn)d + arg(1 − ζ )d satisfies

0 < arg(xm
1 yn

1 )d < arg(xmyn)d − d

2
δν sin θ∗|xmyn|d . (3)

Then |xmyn|d < (2/(dδν sin θ∗)) arg(xmyn)d < 2π/(dδν sin θ∗) so

|x1| ≤ |x|(1 + ν|xmyn|d) < |x|eν|xmyn|d < μ̃e2πν/(dδν sin θ∗) = min{μ, δν , δG}
and, analogously, |y1| < min{μ, δν , δG}. Thus, if arg(xm

1 yn
1 )d < θ , since xm

1 yn
1 ∈

S̃k(d, ε, θ) because of assertion 1, we have that xm
1 yn

1 ∈ Sk(d, ε, θ), we can choose j0 = 1
and we are done. We assume then that arg(xm

1 yn
1 )d ∈ [θ , θ + π/2). Proceeding exactly as

above, we obtain that

0 < arg(xm
2 yn

2 )d < arg(xm
1 yn

1 )d − d

2
δνsin θ∗|xm

1 yn
1 |d

and, in view of (3),

0 < arg(xm
2 yn

2 )d < arg(xmyn)d − d

2
δνsin θ∗|xmyn|d − d

2
δνsin θ∗|xm

1 yn
1 |d .

Then

|xmyn|d + |xm
1 yn

1 |d <
2

dδνsin θ∗ arg(xmyn)d <
2π

dδνsin θ∗

so

|x2| ≤ |x|(1 + ν|xmyn|d)(1 + ν|xm
1 yn

1 |d) < |x|eν|xmyn|d+ν|xm
1 yn

1 |d

< μ̃e2πν/(dδν sin θ∗) = min{μ, δν , δG}
and, analogously, |y2| < min{μ, δν , δG}. Thus, if arg(xm

2 yn
2 )d < θ , we have that xm

2 yn
2 ∈

Sk(d, ε, θ), we can take j0 = 2 and we are done. We assume then that arg(xm
2 yn

2 )d ∈
[θ , θ + π/2) and repeat the argument. If assertion 2 were false, this process would continue
indefinitely and we would obtain, for every j ≥ 0, that |xj | < δG, |yj | < δG and

|xmyn|d + |xm
1 yn

1 |d + · · · + |xm
j yn

j |d <
2π

dδνsin θ∗ .

But the inequalities in assertion 1 show that
∑

j≥0 |xm
j yn

j |d diverges, which is a contradic-
tion.

Let us prove assertion 3. Let θ ∈ (0, π/2). Choose δ1 > 0 such that for all (x, y) with
|x| < δ1 and |y| < δ1 we have |σ1(x, y)| < 1

2 tan θ and set

δ̃G(θ) = min{δ1, δG, ε
1/((m+n)d)
G }.

Take (x, y) such that |xj | < δ̃G(θ) and |yj | < δ̃G(θ) for all j ≥ 0. From (2) we have

∣∣∣∣Im 1
(xm

j yn
j )d

∣∣∣∣ ≤
∣∣∣∣Im 1

(xmyn)d

∣∣∣∣ +
j−1∑
l=0

|σ1(xl , yl)| ≤
∣∣∣∣Im 1

(xmyn)d

∣∣∣∣ + 1
2
j tan θ .
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On the other hand, as we showed in the proof of assertion 1,

Re
1

(xm
j yn

j )d
≥ Re

1
(xmyn)d

+ 3
4
j .

Therefore, for j big enough,

0 <
|Im(1/(xm

j yn
j )d)|

Re (1/(xm
j yn

j )d)
≤ |Im(1/(xmyn)d)| + (1/2)j tan θ

Re(1/(xmyn)d) + (3/4)j
< tan θ .

This means that |arg(1/(xm
j yn

j )d)| < θ for j big enough, so we can fix j0 ≥ 0 such
that |arg(xm

j0
yn
j0

)d | < θ . Moreover, since |(xm
j0

yn
j0

)d | < δ̃G(θ)(m+n)d ≤ εG(θ), we have that
xm
j0

yn
j0

∈ S(d, εG(θ), θ). Thus xm
j0

yn
j0

∈ Sk(d, εG(θ), θ) for some k ∈ {0, . . . , d − 1} and
it follows from assertion 1 that xm

j yn
j ∈ Sk(d, εG(θ), θ) for all j ≥ j0 and xm

j yn
j → 0.

Clearly, given ε > 0, up to increasing j0, we have that xm
j yn

j ∈ Sk(d , ε, θ) for all j ≥ j0.
Moreover, arguing exactly as in the proof of assertion 1 we have that the two last
inequalities of that assertion hold. This concludes the proof of Proposition 2.2.

3. Existence of parabolic domains
In this section we show the existence of parabolic domains for biholomorphisms of
the form (B) satisfying condition (B�). Actually, we consider a slightly larger class of
biholomorphisms, since we allow N ≥ 0 (note that if N = 0 condition (B�) is precisely
condition (A�)).

Consider a biholomorphism of the form (B), with N ≥ 0, satisfying condition (B�). Set
d = M if N = 0 and d = gcd(M , N) otherwise. Applying a linear change of coordinates
of the form (x, y) �→ (αx, βy), we obtain the same expression for F but with a and b
respectively replaced by ã = −a/(aM + bN) and b̃ = −b/(aM + bN), so hypothesis
(B�) becomes Re ã < 0 and Re b̃ < 0, and we have ãM + b̃N = −1. Thus, we directly
assume that

Re a < 0, Re b < 0 and aM + bN = −1.

Set m = M/d and n = N/d. Given a point (x, y) in the domain of definition of F, we
denote (xj , yj ) = Fj (x, y) for all j ≥ 0. Notice that, from the expression for F, we easily
obtain that

xm
1 yn

1 = xmyn − 1
d

(xmyn)d+1 + (xmyn)d+1O(x, y). (4)

Definition 3.1. Fix γ ∈ (0, 1) such that

γ (m + n) ≤ 1, Re
(

a + γ

d

)
< 0 and Re

(
b + γ

d

)
< 0

and set ι = 0 if n = 0 and ι = 1 if n ≥ 1. Given θ ∈ (0, π/2) and ε, δ ∈ (0, 1], we consider
the sets Dk = Dk(ε, θ , δ), D̃k = D̃k(ε, θ , δ) and Uk = Uk(ε, θ), for k ∈ {0, . . . , d − 1},
defined by
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12 L. López-Hernanz and R. Rosas

Dk = {(x, y) ∈ C2 : xmyn ∈ Sk(d, ε, θ), |ιx| < δ, |y| < δ},
D̃k = {(x, y) ∈ C2 : xmyn ∈ S̃k(d, ε, θ), |ιx| < δ, |y| < δ},

where Sk(d, ε, θ) and S̃k(d, ε, θ) are the sets of Definition 2.1, and

Uk = {(x, y) ∈ C2 : xmyn ∈ Sk(d, ε, θ), |ιx| ≤ |xmyn|γ , |y| ≤ |xmyn|γ }.
Remark 3.2. If n ≥ 1, the condition xmyn ∈ Sk(d , ε, θ) or xmyn ∈ S̃k(d, ε, θ) implies
that the sets Dk , D̃k and Uk are disjoint from the coordinate axes {xy = 0}. If n = 0, we
have that xmyn = x so the sets Dk , D̃k and Uk are disjoint from {x = 0} but they intersect
{y = 0}. On the other hand, if n = 0 notice that Uk = {x ∈ Sk(d , ε, θ), |y| ≤ |x|γ } and,
since ε, γ ≤ 1, the inequality |x| ≤ |x|γ holds in Uk . Therefore, even if n = 0 we can write

Uk = {(x, y) ∈ C2 : xmyn ∈ Sk(d, ε, θ), |x| ≤ |xmyn|γ , |y| ≤ |xmyn|γ }.
Finally note that, because of the condition γ (m + n) ≤ 1, the set Uk is non-empty.

Since |arg(−a)| < π/2 and |arg(−b)| < π/2 and, by the choice of γ , |arg(−a −
γ /d)| < π/2 and |arg(−b − γ /d)| < π/2, we can fix θ0 ∈ (0, π/2) such that

|arg(−a)| + 2θ0 < π/2, |arg(−a − γ /d)| + 2θ0 < π/2,

|arg(−b)| + 2θ0 < π/2, |arg(−b − γ /d)| + 2θ0 < π/2.

PROPOSITION 3.3. Let F be a biholomorphism of the form (B) with N ≥ 0 satisfying
condition (B�) and fix θ0 as above. Given θ ∈ (0, θ0), there exist εθ , δθ ∈ (0, 1] such that
for ε ≤ εθ and δ ≤ δθ the following properties hold.
(1) For every k ∈ {0, . . . , d − 1} we have that

F(Dk(ε, θ , δ)) ⊂ Dk(ε, θ , δ), F(Uk(ε, θ)) ⊂ Uk(ε, θ),

Fj → 0 as j → +∞ uniformly on Uk(ε, θ), Dk(ε, θ , δ) is contained in the basin of
attraction of Uk(ε, θ), and every point (x, y) ∈ Uk(ε, θ) ∪ Dk(ε, θ , δ) satisfies

1
2

|xmyn|d
1 + j |xmyn|d ≤ |xm

j yn
j |d ≤ 2

cos θ

|xmyn|d
1 + j |xmyn|d (5)

for all j ≥ 0. Moreover, any orbit of F that converges to 0 eventually lies in Uk(ε, θ)

for some k ∈ {0, . . . , d − 1}.
(2) There exists δ̃ ∈ (0, 1] such that D̃k(ε, θ , δ̃) is contained in the basin of attraction of

Uk(ε, θ) for all k ∈ {0, . . . , d − 1} and

Fj (D̃k(ε, θ , δ̃)) ⊂ D̃k(ε, θ , δ)

for all j ≥ 0.

Proof. From the expression for F, we can write x1 = x(1 − ζ ), where ζ = (−a + σ)

(xmyn)d and σ = O(x, y). By the choice of θ0, we can take δ0 > 0 such that for all (x, y)

with |x| < δ0 and |y| < δ0 we have

δ0 < |− a + σ | < 1/δ0, |arg(−a + σ)| + 2θ0 < π/2.
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Set η = 1
2δ0cos(π/2 − θ0) > 0 and ε0 = δ0 cos(π/2 − θ0). Let us show that if ε ≤ ε0 and

k ∈ {0, . . . , d − 1} then for all (x, y) ∈ Dk(ε, θ , δ0) we have

|x1| ≤ |x|(1 − η|xmyn|d) ≤ |x|. (6)

Consider (x, y) ∈ Dk(ε, θ , δ0) with ε ≤ ε0. We have that

|ζ | < |xmyn|d/δ0 < ε/δ0 < 1

and

|arg ζ | ≤ |arg(−a + σ)| + |arg(xmyn)d | < (π/2 − 2θ0) + θ < π/2 − θ0.

Thus |ζ | < ε/δ0 ≤ cos(π/2 − θ0) < cos(arg ζ ) and so |ζ |2 < Re ζ . Then

|1 − ζ |2 = 1 − 2 Re ζ + |ζ |2 < 1 − Re ζ < 1 − Re ζ + 1
4 (Re ζ )2 = (1 − 1

2 Re ζ )2

and therefore |1 − ζ | < |1 − 1
2 Re ζ | = 1 − 1

2 Re ζ , so

|1 − ζ | < 1 − 1
2 Re ζ = 1 − 1

2 cos(arg ζ )|ζ | < 1 − 1
2 cos(π/2 − θ0)|ζ |

and hence |1 − ζ | < 1 − 1
2δ0 cos(π/2 − θ0)|xmyn|d , which proves (6). Proceeding in the

same way, up to reducing δ0 if necessary, we get that for all (x, y) ∈ Dk(ε, θ , δ0) with
ε ≤ ε0,

|y1| ≤ |y|(1 − η|xmyn|d) ≤ |y|. (7)

From the expression for F, if x, y ∈ C∗ are small enough, we have that

|y1|
|xm

1 yn
1 |γ = |y||1 + b(xmyn)d(1 + O(x, y))|

|xmyn|γ |1 − (γ /d)(xmyn)d(1 + O(x, y))|
= |y|

|xmyn|γ
∣∣∣∣1 + (xmyn)d

[
b + γ

d
+ O(x, y)

]∣∣∣∣,
so we can write

|y1|
|xm

1 yn
1 |γ = |y|

|xmyn|γ |1 − ζ1|,

where ζ1 = (−b − γ /d + τ)(xmyn)d with τ = O(x, y). By the choice of θ0, reducing δ0

if necessary, we get that for all (x, y) with |x| < δ0 and |y| < δ0 we have

δ0 < | − b − γ /d + τ | < 1/δ0, |arg(−b − γ /d + τ)| + 2θ0 < π/2.

Let us show that if ε ≤ ε0 and k ∈ {0, . . . , d − 1}, then for all (x, y) ∈ Dk(ε, θ , δ0) we
have

|y1|
|xm

1 yn
1 |γ ≤ |y|

|xmyn|γ (1 − η|xmyn|d) ≤ |y|
|xmyn|γ . (8)

Consider (x, y) ∈ Dk(ε, θ , δ0) with ε ≤ ε0. We have that

|ζ1| < |xmyn|d/δ0 < ε/δ0 ≤ 1
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14 L. López-Hernanz and R. Rosas

and

|arg ζ1| ≤ |arg(−b − γ /d + τ)| + |arg(xmyn)d | < (π/2 − 2θ0) + θ < π/2 − θ0,

so proceeding exactly as above, we obtain that |1 − ζ1| < 1 − η|xmyn|d which proves (8).
If n ≥ 1, analogously we get, up to reducing δ0 if necessary, that for (x, y) ∈ Dk(ε, θ , δ0)

with ε ≤ ε0 we have

|x1|
|xm

1 yn
1 |γ ≤ |x|

|xmyn|γ (1 − η|xmyn|d) ≤ |x|
|xmyn|γ . (9)

Notice that, because of equation (4), F satisfies the hypotheses of Proposition 2.2. Set

δθ = min{1, δ0, δF (θ)} and εθ = min{1, ε0, εF (θ), δ
d/γ

0 , δF (θ)d/γ },

where εF (θ) and δF (θ) are the constants given by Proposition 2.2. Now, consider
ε ≤ εθ , δ ≤ δθ and k ∈ {0, . . . , d − 1} and let us show that Dk(ε, θ , δ) and Uk(ε, θ) are
invariant by F and that estimates (5) hold. First, take (x, y) ∈ Dk(ε, θ , δ). Then, it follows
from (6) and (7) that |x1| ≤ |x| < δ and |y1| ≤ |y| < δ. Moreover, since ε ≤ εF (θ),
δ ≤ δF (θ) and xmyn ∈ Sk(d, ε, θ), we have by assertion 1 of Proposition 2.2 that xm

1 yn
1 ∈

Sk(d, ε, θ). Therefore (x1, y1) ∈ Dk(ε, θ , δ) and so Dk(ε, θ , δ) is invariant by F. Now,
take (x, y) ∈ Uk(ε, θ). Then |y| < |xmyn|γ < εγ/d ≤ δ0 and in the same way |x| < δ0,
so (x, y) ∈ Dk(ε, θ , δ0). It follows from (8) and (9) that |y1| < |xm

1 yn
1 |γ and analogously

|x1| < |xm
1 yn

1 |γ . Moreover, since xmyn ∈ Sk(d , ε, θ), ε ≤ εF (θ), |y| < εγ/d < δF (θ) and
|x| < εγ/d < δF (θ), we have by assertion 1 of Proposition 2.2 that xm

1 yn
1 ∈ Sk(d, ε, θ),

which proves that Uk(ε, θ) is invariant by F. Moreover, if (x, y) ∈ Uk(ε, δ) ∪ Dk(ε, δ, θ)

we have estimates (5) directly from assertion 1 of Proposition 2.2.
Let us prove now that Fj → 0 uniformly on Uk(ε, θ). Take (x, y) ∈ Uk(ε, θ). Since

(xj , yj ) ∈ Uk(ε, θ) for all j ≥ 0, by (5) we have

|xm
j yn

j |d ≤ 2
cos θ

|xmyn|d
1 + j |xmyn|d ≤ 2

cos θ

1
j

for all j ≥ 0, which shows that xm
j yn

j → 0 uniformly on Uk(ε, θ). Then, since
|yj | < |xm

j yn
j |γ and |xj | < |xm

j yn
j |γ , we have that xj → 0 and yj → 0 uniformly on

Uk(ε, θ).
Consider now an orbit (xj , yj ) converging to 0 and let us show that it eventually lies

in Uk = Uk(ε, θ) for some k. Let δ̃F (θ) be the constant given by Proposition 2.2. Since
(xj , yj ) → 0, there exists j0 ≥ 0 such that |xj | < δ̃F (θ) and |yj | < δ̃F (θ) for all j ≥ j0.
By assertion 3 of Proposition 2.2, up to increasing j0, we have that xm

j yn
j ∈ Sk(d , ε, θ) for

all j ≥ j0 and for some k ∈ {0, . . . , d − 1} so, increasing j0 again if necessary, we get
that (xj , yj ) ∈ Dk(ε, θ , δ0) for all j ≥ j0. Then, by iterated applications of (8),

|yj |
|xm

j yn
j |γ ≤ |yj0 |

|xm
j0

yn
j0

|γ
j−1∏
l=j0

(1 − η|xm
l yn

l |d)
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for all j ≥ j0. The estimate

|xm
j yn

j |d ≥ 1
2

|xmyn|d
1 + j |xmyn|d

from (5) implies that
∏j−1

l=j0
(1 − η|xm

l yn
l |d) tends to 0 as j → +∞ and so does

|yj |/|xm
j yn

j |γ . Hence |yj | ≤ |xm
j yn

j |γ for j big enough and, if n ≥ 1, analogously
|xj | ≤ |xm

j yn
j |γ for j big enough, which proves that eventually (xj , yj ) ∈ Uk . Then, to

prove that Dk(ε, θ , δ) is contained in the basin of attraction of Uk(ε, θ) it suffices to show
that the orbit of any point in Dk(ε, θ , δ) converges to 0. Take (x, y) ∈ Dk(ε, θ , δ). Since
(xj , yj ) ∈ Dk(ε, θ , δ) for all j ≥ 0, we can apply (6) and (7) for each (xj , yj ) and we have

|xj | ≤ |x0|
j−1∏
l=0

(1 − η|xm
l yn

l |d), |yj | ≤ |y0|
j−1∏
l=0

(1 − η|xm
l yn

l |d).

We have as before, by estimates (5), that the product above tends to zero and so do xj and
yj . This concludes the proof of assertion 1.

Let us prove assertion 2. From the expression for F we have in a neighborhood
of 0 ∈ C2 that |x1| ≤ |x|(1 + ν|xmyn|d) and |y1| ≤ |y|(1 + ν|xmyn|d) for some ν > 0.
Let δ̃ = min{1, μ̃}, where μ̃ is given by assertion 2 of Proposition 2.2 for μ = δ. If
xmyn ∈ D̃k(ε, θ , δ̃), by Proposition 2.2 there exists j0 ≥ 0 such that |xj | < δ, |yj | < δ

and xm
j yn

j ∈ S̃k(d, ε, θ) for all j ≤ j0 and xm
j0

yn
j0

∈ Sk(d, ε, θ). In particular, (xj0 , yj0) ∈
Dk(ε, θ , δ) so by assertion 1 (xj , yj ) ∈ Dk(ε, θ , δ) for all j ≥ j0 so it eventually lies in
Uk(ε, θ). Moreover, since |xj | < δ, |yj | < δ and xm

j yn
j ∈ S̃k(d , ε, θ) for all j ≥ 0, we

have that Fj (D̃k(ε, θ , δ̃)) ⊂ D̃k(ε, θ , δ) for all j ≥ 0. This concludes the proof of the
proposition.

4. Existence of invariant functions
In this section we show the existence of invariant functions for F on the domains
Uk = Uk(ε, θ) given by Proposition 3.3 (up to reducing ε).

Since F is close to the time-one flow of the vector field

xMyN

(
ax

∂

∂x
+ by

∂

∂y

)

and the vector field ax(∂/∂x) + by(∂/∂y) has the Liouvillian first integrals xηby−ηa ,
η ∈ C∗, our aim is to find an invariant function close to one of these first integrals,
for which we start by defining a suitable branch g(x, y) of xdby−da on Uk , where
0 ≤ k ≤ d − 1. From now on, if z ∈ C\[−∞, 0] and λ ∈ C\Z, we denote zλ = eλ log z,
where log is the main branch of the logarithm. Note that, since m and n are coprime if
n ≥ 1, there exist p, q ∈ N such that qm − pn = 1; if n = 0, we set p = 0, q = 1. Denote
λ = d(ap + bq) and define g : Uk → C as

g(x, y) = xpyq(xmyn)λ, (10)

which is well defined since xmyn belongs to C\[−∞, 0] for all (x, y) ∈ Uk . We point out
that if n ≥ 1, since Uk is disjoint from {xy = 0}, the function g is non-vanishing whereas if
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16 L. López-Hernanz and R. Rosas

n = 0, since g(x, y) = yxMb and Uk intersects {y = 0}, the function g has Uk ∩ {y = 0}
as zero set.

If x and y belong to a small sector bisected by R+ we have, in view of the identity
dma + dnb = −1, that

g(x, y) = xpyq(xmyn)λ = xp+mλyq+nλ = xdby−da ,

so g is a branch of xdby−da on Uk .

PROPOSITION 4.1. Let F be a biholomorphism of the form (B) with N ≥ 0 satisfying
condition (B�) and fix θ0 as in §3. Consider θ ∈ (0, θ0) and let εθ be the constant
given by Proposition 3.3. Then there exist ε̃θ ∈ (0, εθ ] and functions ψk ∈ O(Uk) for all
k ∈ {0, . . . , d − 1}, where Uk = Uk(ε̃θ , θ), such that ψk ◦ F = ψk . Moreover, ψk = ug,
where g is the function defined above and u ∈ O(Uk) satisfies |u(x, y) − 1| < 1/2 for all
(x, y) ∈ Uk; in particular, ψk is non-vanishing if n ≥ 1 and has Uk ∩ {y = 0} as zero set
if n = 0.

Proof. Take ε̃θ ≤ εθ . Note that the domains Uk = Uk(ε̃θ , θ) for k ∈ {0, . . . , d − 1}
satisfy the conclusion of Proposition 3.3.

We define ψk as

ψk(x, y) = lim
j→∞ g(xj , yj ), (x, y) ∈ Uk ,

where (xj , yj ) = Fj (x, y). It is clear that this function, if well defined, will be invariant
by F. Let us show that it is well defined and holomorphic. Using the expression for F and
equation (4), we have that

x
p

1 y
q

1
xpyq

= 1 + (xmyn)d [ap + bq + O(x, y)]

and

(xm
1 yn

1 )λ

(xmyn)λ
= 1 − (xmyn)d

[
λ

d
+ O(x, y)

]
for all (x, y), so

g(x1, y1)

g(x, y)
= 1 + �(x, y), with �(x, y) = (xmyn)dO(x, y). (11)

Since (xj , yj ) ∈ Uk for all j, we have that |yj | ≤ |xm
j yn

j |γ and |xj | ≤ |xm
j yn

j |γ so

|�(xj , yj )| ≤ K|xm
j yn

j |d+γ

for some K > 0. Therefore, by estimates (5), the product
∏

j≥0(g(xj+1, yj+1)/g(xj , yj ))

converges uniformly for (x, y) ∈ Uk and defines a holomorphic function u ∈ O(Uk). Then
g(xj , yj ) → u(x, y)g(x, y) uniformly on Uk , so ψk is well defined and holomorphic
in Uk , and we have ψk = ug. Note that the function u is arbitrarily close to 1 if
we suppose |xmyn| to be small enough: if n ∈ N is large enough the finite product∏

0≤j≤n(g(xj+1, yj+1)/g(xj , yj )) is arbitrarily uniformly close to u and we have from
(11) that this finite product is arbitrarily uniformly close to 1 if |xmyn| is small enough.
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A flower theorem in dimension two 17

Therefore, since |xmyn| < ε̃
1/d
θ in Uk , we get that |u(x, y) − 1| < 1/2 for all (x, y) ∈ Uk ,

provided ε̃θ is small enough.

5. Approximate Fatou coordinates
In this section we find a change of coordinates φk on each of the domains
Uk(ε, θ) provided by Propositions 3.3 and 4.1 (up to reducing ε and θ ) which
gives a first approximation of Fatou coordinates (that is, conjugations with (z, w) �→
(z + 1, w)).

Definition 5.1. Given θ ∈ (0, π/2) and ε ∈ (0, 1] such that Proposition 4.1 holds in
Uk = Uk(ε, θ), we consider the map φk : Uk → C2 given by

φk(x, y) =
(

1
(xmyn)d

, ψk(x, y)

)
,

where ψk ∈ O(Uk) is the invariant function for F given by Proposition 4.1. Note that
φk(Uk) ⊂ C × C∗ if n ≥ 1. We also define the set V = V (ε, θ , r), for 0 < r < 1, as

V = {(z, w) ∈ C2 : |z| > ε−1, |arg z| < θ , |w| < r|z|−Re b/m−γ /(dm)}
if n = 0 and

V = {(z, w) ∈ C2 : |z| > ε−1, |arg z| < θ ,

r−1|z|Re a/n+γ /(dn) < |w| < r|z|−Re b/m−γ /(dm)}
if n ≥ 1. Since Re a + γ /d < 0 < − Re b − γ /d, V is non-empty. Notice also that V is
homeomorphic to C2 if n = 0 and to C × C∗ if n ≥ 1.

PROPOSITION 5.2. Let F be a biholomorphism of the form (B) with N ≥ 0 satisfying
condition (B�) and fix θ0 as in §3. There exist θ1 ∈ (0, θ0) and ε1 ∈ (0, ε̃θ1 ], where ε̃θ1 is
the constant given by Proposition 4.1, such that if ε < ε1, θ < θ1 and r is small enough and
we denote V = V (ε, θ , r) then the following properties hold for each k ∈ {0, . . . , d − 1}.
(1) V ⊂ φk(Uk) and φk : φ−1

k (V ) → V is a biholomorphism.
(2) Uk(ε, θ) is in the basin of attraction of φ−1

k (V ).
(3) The map F̃ = φk ◦ F ◦ φ−1

k maps V into V and has the form F̃ (z, w) = (z + 1 +
h(z, w), w) with

|z + 1 + h(z, w)|> |z| + 1
2

, |h(z, w)|<K|z|−γ /d and
∣∣∣∣∂h

∂z
(z, w)

∣∣∣∣<K ′|z|−1−γ /d

for some K , K ′ > 0 and for all (x, y) ∈ V .

Proof. Consider θ1 ∈ (0, θ0) with cos θ1 > 2/3 and let ε1 = ε̃θ1 be the constant given by
Proposition 4.1. From equation (4) we have that

1
(xm

1 yn
1 )d

= 1
(xmyn)d

+ 1 + O(x, y).
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18 L. López-Hernanz and R. Rosas

Thus, since |x| ≤ |xmyn|γ and |y| ≤ |xmyn|γ for all (x, y) ∈ Uk(ε1, θ1), there exists
K > 0 such that ∣∣∣∣ 1

(xm
1 yn

1 )d
− 1

(xmyn)d
− 1

∣∣∣∣ < K|xmyn|γ < Kε
γ/d

1 (12)

for all (x, y) ∈ Uk(ε1, θ1) and all k ∈ {0, . . . , d − 1}. Then, up to reducing ε1 if necessary,
we can assume that ∣∣∣∣ 1

(xm
1 yn

1 )d
− 1

(xmyn)d
− 1

∣∣∣∣ <
1
6

(13)

for all (x, y) ∈ Uk(ε1, θ1) and all k ∈ {1, . . . , d − 1}. We now fix θ < θ1 and ε < ε1 and
we denote Uk = Uk(ε, θ).

Let us prove assertion 1; without loss of generality we assume that k = 0. Let g be
the function defined by (10). Using the fact that qm − pn = 1 and adm + bdn = −1, a
straightforward computation shows that the map ϕ : U0 → C2 given by

ϕ(x, y) =
(

1
(xmyn)d

, g(x, y)

)
is injective and its inverse is given by

ϕ−1(z, w) = (zaw−n, zbwm).

Consider a point (z0, w0) ∈ V , and set

Az0 = {(x, y) ∈ C2 : xmyn = z
−1/d

0 , |ιx| < |z0|−γ /d , |y| < |z0|−γ /d}.
Notice that Az0 ⊂ U0 and Az0 is a Riemann surface with boundary. If we set x = za

0w−n
0

and y = zb
0w

m
0 , then xmyn = z

−1/d

0 and g(x, y) = w0. Moreover, |y| = |zb
0w

m
0 | <

rm|zb
0||z0|−Re b−γ /d ≤ rme|b|θ |z0|−γ /d and, if n ≥ 1, analogously |x| = |za

0w−n
0 | <

rne|a|θ |z0|−γ /d , so (x, y) ∈ Az0 if r is small enough. Therefore, since ϕ is injective,
g|Az0

assumes the value w0 once. If we show that

|ψ0(x, y) − g(x, y)| < |g(x, y) − w0| whenever (x, y) ∈ ∂Az0 (14)

then, by Rouché’s theorem, the function ψ0|Az0
will also assume the value w0 exactly once,

showing that V ⊂ φ0(U0) and that φ0 is injective in φ−1
0 (V ). Let us prove that inequality

(14) holds. If n ≥ 1, the boundary ∂Az0 of Az0 is composed by two connected components,

∂1Az0 = {(x, y) ∈ C2 : xmyn = z
−1/d

0 , |x| = |z0|−γ /d},
∂2Az0 = {(x, y) ∈ C2 : xmyn = z

−1/d

0 , |y| = |z0|−γ /d},
whereas if n = 0 we have ∂Az0 = ∂2Az0 . Consider a point (x, y) ∈ ∂Az0 ⊂ U0. Since
xmyn = z

−1/d

0 , it follows from the computation of ϕ−1 that

g(x, y)n = x−1za
0 and g(x, y)m = yz−b

0 .

We suppose first that (x, y) ∈ ∂2Az0 . Then

|g(x, y)| = |y|1/m|z−b/m

0 | = |z0|−γ /(dm)|z−b/m

0 | ≥ e−|b|θ/m|z0|− Re b/m−γ /(dm)
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so |g(x, y)| > e−|b|θ/mr−1|w0|. Then

|g(x, y) − w0| ≥ |g(x, y)| − |w0| > (1 − e|b|θ/mr)|g(x, y)| ≥ 1
2 |g(x, y)|

if r is small enough. This relation, together with the fact that

|ψ0(x, y) − g(x, y)| < 1
2 |g(x, y)|

for all (x, y) ∈ U0, as was shown in Proposition 4.1, implies (14). Analogously, if (x, y) ∈
∂1Az0 (so n ≥ 1) then

|g(x, y)| = |x|−1/n|za/n

0 | = |z0|γ /(dn)|za/n

0 | ≤ e|a|θ/n|z0|Re a/n+γ /(dn)

so |g(x, y)| < e|a|θ/nr|w0| and hence

|g(x, y) − w0| ≥ |w0| − |g(x, y)| > (e−|a|θ/nr−1 − 1)|g(x, y)| ≥ 1
2 |g(x, y)|

if r is sufficiently small, which again implies (14) and assertion 1 is proved.
Now take (x, y) ∈ Uk . If we set (zj , wj) = φk(xj , yj ), then clearly |zj | > ε−1 and

|arg zj | < θ ; moreover, since ψk is invariant by F we have that wj is constant for all j
while zj → +∞ because of (5), so for j large enough we get |wj | < r|zj |− Re b/m−γ /(dm)

and if n ≥ 1, since wj �= 0, |wj | > r−1|zj |Re a/n+γ /(dn), so (zj , wj) ∈ V and assertion 2
is proved.

Let us prove assertion 3. For r1 ∈ (0, 1), consider the set V1 = V (ε1, θ1, r1). Proceeding
exactly as in the proof of assertion 1, we can choose r1 ∈ (0, 1) such that V1 ⊂
φk(Uk(ε1, θ1)) and φk : φ−1

k (V1) → V1 is a biholomorphism for every k. Then φ−1
k is

well defined on V1 and takes values in Uk(ε1, θ1), so F̃ = φk ◦ F ◦ φ−1
k is well defined

on V1. Since ψk is invariant by F, we can express F̃ (z, w) = (f (z, w), w). Then, if we
write φ−1

k (z, w) = (x, y) ∈ Uk(ε1, θ1) and F(x, y) = (x1, y1), we have from equation (4)
that

f (z, w) = 1
(xm

1 yn
1 )d

= 1
(xmyn)d

+ 1 + h̃(x, y),

where h̃(x, y) = O(x, y). That is,

f (z, w) = z + 1 + h(z, w),

where by (12) and (13)

|h(z, w)| < K|z|−γ /d and |h(z, w)| < 1
6

for all (z, w) ∈ V1. Thus, since cos θ1 > 2/3, we have

|f (z, w)|2 = |z + 1 + h(z, w)|2 = |z|2 + 2 Re z + 2 Re(zh(z, w)) + |1 + h(z, w)|2
≥ |z|2 + 2 cos θ1|z| − 2|z||h(z, w)| + |1 + h(z, w)|2
> |z|2 + 4|z|/3 − |z|/3 + (5/6)2 > (|z| + 1/2)2,

so |f (z, w)| > |z| + 1/2 for all (z, w) ∈ V1.
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20 L. López-Hernanz and R. Rosas

We now fix r satisfying assertion 1 and such that r < r1. Consider a point (z, w) ∈ V .
Since (f (z, w), w) ∈ φk(Uk), it is clear that |f (z, w)| > ε−1 and |arg(f (z, w))| < θ and,
since |w| < r|z|− Re b/m−γ /(dm) and |f (z, w)| > |z|, we also have that

|w| < r|f (z, w)|− Re b/m−γ /(dm).

Analogously, if n ≥ 1, since |w| > r−1|z|Re a/n+γ /(dn) and |f (z, w)| > |z|, we have |w| >

r−1|f (z, w)|Re a/n+γ /(dn), so F̃ (z, w) ∈ V .
To prove the bound for ∂h/∂z let us first show that there exists ρ > 0 such that if

(z0, w0) ∈ V and |z − z0| < ρ|z0| then (z, w0) ∈ V1. Consider (z0, w0) ∈ V and assume
that |z − z0| < ρ|z0|. Then

|z| > (1 − ρ)|z0| > (1 − ρ)ε−1,

so |z| > ε−1
1 for ρ sufficiently small. Since |z/z0 − 1| < ρ, we have |arg(z/z0)| <

arcsin ρ, so

|arg z| ≤ |arg z0| + arcsin ρ < θ + arcsin ρ,

hence |arg z| < θ1 if ρ is small enough. Since |z0| < (1 − ρ)−1|z|, it follows that

|w0| < r|z0|− Re b/m−γ /(dm) < r[(1 − ρ)−1|z|]− Re b/m−γ /(dm),

so |w0| < r1|z|− Re b/m−γ /(dm) if ρ is small enough and, if n ≥ 1,

|w0| > r−1|z0|Re a/n+γ /(dn) > r−1[(1 − ρ)−1|z|]Re a/n+γ /(dn),

so |w0| > r−1
1 |z|Re a/n+γ /(dn) if ρ is small enough. Hence, (z, w0) ∈ V1 if ρ is small

enough. Now, take a point (z0, w0) ∈ V . As we have seen, if D ⊂ C is the disk of radius
ρ|z0| centered at z0, then D × {w0} is contained in V1, so the function

hw0 : z ∈ D �→ h(z, w0)

is well defined and

|hw0(z)| < K|z|−γ /d < K(1 − ρ)−γ /d |z0|−γ /d .

Thus, it follows from Cauchy’s inequality that∣∣∣∣∂h

∂z
(z0, w0)

∣∣∣∣ = |(hw0)
′(z0)| ≤ K(1 − ρ)−γ /d |z0|−γ /d(ρ|z0|)−1 = K ′|z0|−1−γ /d ,

which finishes the proof of assertion 3.

6. Existence of Fatou coordinates
In this section we construct Fatou coordinates for F on the domains φ−1

k (V ) ⊂ Uk given
by Proposition 5.2.

PROPOSITION 6.1. Let F be a biholomorphism of the form (B) with N ≥ 0 satisfying
condition (B�), let ε, θ and r be as in Proposition 5.2 and denote Uk = Uk(ε, θ)

and V = V (ε, θ , r). Then, for each k ∈ {0, . . . , d − 1}, there exists a biholomorphism
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ϕ+
k : φ−1

k (V ) → W ⊂ C2, with W ⊂ C × C∗ if n ≥ 1, conjugating F with the map
(z, w) �→ (z + 1, w) and satisfying⋃

j∈N
[W − (j , 0)] = C2 if n = 0;

⋃
j∈N

[W − (j , 0)] = C × C∗ if n ≥ 1. (15)

Proof. By Proposition 5.2, we have that φk : φ−1
k (V ) → V is a biholomorphism conju-

gating F with F̃ = φk ◦ F ◦ φ−1
k : V → V . Thus, it is enough to find a biholomorphism

� : V → W ⊂ C2, with W ⊂ C × C∗ if n ≥ 1, conjugating F̃ with the map (z, w) �→
(z + 1, w). Since F̃ : V → V is written F̃ (z, w) = (f (z, w), w), each function fw : z �→
f (z, w) maps the domain Vw = {z ∈ C : (z, w) ∈ V } into itself. Thus, we start consider-
ing w ∈ C fixed (w ∈ C∗ if n ≥ 1) and we will find, following the ideas in [13, Lemma
10.10], a map βw : Vw → C conjugating fw with z �→ z + 1. We will also show, arguing
as in [13, Lemma 10.11], that ⋃

j∈N
(βw(Vw) − j) = C. (16)

Finally, from the maps βw we will construct a global map β : V → C such
that β ◦ F̃ (z, w) = β(z, w) + 1, so the function � : V → C2 given by �(z, w) =
(β(z, w), w) is a Fatou coordinate for F̃ .

From the definition of V we have

Vw = {z ∈ C : |z| > Rw, |arg(z)| < θ},
where

Rw = max{ε−1, (r−1|w|)−dm/(d Re b+γ ), ι(r|w|)dn/(d Re a+γ )}
(recall that ι = 0 if n = 0 and ι = 1 if n ≥ 1).

Take a base point p ∈ Vw. The map βw conjugating fw with z �→ z + 1 will be
constructed as the limit of the functions

βj (z) = f j
w(z) − f j

w(p), j ∈ N.

In order to simplify the proof of the convergence of these functions we assume p to be
large enough so that for all z ∈ Vw the Euclidean segment [z, p] is contained in Vw, which
is possible because θ < π/2. Since |fw(p)| ≥ |p| + 1/2 by Proposition 5.2, the sequence
|f j

w(p)| is increasing, hence the property above also holds for f
j
w(p). In particular we have,

for all z ∈ Vw and all j ∈ N,

[f j
w(z), f j

w(p)] ⊂ Vw.

Since fw(z) = z + 1 + h(z, w) and |∂h/∂z(z, w)| < K ′|z|−1−γ /d by Proposition 5.2, it
follows from the mean value inequality that, if [z1, z2] ⊂ Vw, then∣∣∣∣fw(z1) − fw(z2)

z1 − z2
− 1

∣∣∣∣ =
∣∣∣∣h(z1, w) − h(z2, w)

z1 − z2

∣∣∣∣ ≤ max
z∈[z1,z2]

K ′

|z|1+γ /d
.
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Since the angle between z1R
+ and z2R

+ is bounded by 2θ < π , there is a constant τ > 0
depending only on θ such that min{|z| : z ∈ [z1, z2]} ≥ τ min{|z1|, |z2|}, so∣∣∣∣fw(z1) − fw(z2)

z1 − z2
− 1

∣∣∣∣ ≤ K ′

(τ min{|z1|, |z2|})1+γ /d
.

In particular, setting z1 = f
j
w(z) and z2 = f

j
w(p), we obtain

∣∣∣∣βj+1(z)

βj (z)
− 1

∣∣∣∣ =
∣∣∣∣f

j+1
w (z) − f

j+1
w (p)

f
j
w(z) − f

j
w(p)

− 1
∣∣∣∣ ≤ K ′

(τ min{|f j
w(z)|, |f j

w(p)|})1+γ /d

for all z ∈ Vw and j ∈ N. Therefore, since |f j
w(z)| ≥ j/2 and |f j

w(p)| ≥ j/2, we obtain∣∣∣∣βj+1(z)

βj (z)
− 1

∣∣∣∣ ≤ K ′(2τ−1)1+γ /dj−1−γ /d

for all z ∈ Vw and j ∈ N. This shows that the product
∏

(βj+1(z)/βj (z)) is uniformly
convergent in Vw and therefore βj converges uniformly to a function βw ∈ O(Vw). Let us
show that βw is one-to-one and conjugates fw with the map z �→ z + 1. Since fw(z) =
z + 1 + h(z, w) and |h(z, w)| < K|z|−γ /d by Proposition 5.2, we have

|f j+1
w (p) − f j

w(p) − 1| = |h(f j
w(p), w)| ≤ K

|f j
w(p)|γ /d

→ 0 as j → ∞.

Thus, since βj (fw(z)) = βj+1(z) + f
j+1
w (p) − f

j
w(p), we obtain, taking j → ∞,

βw(fw(z)) = βw(z) + 1, z ∈ Vw.

Finally, since βj is injective for all j and βw is not constant, we conclude that βw is
injective.

Now, as in [13, Lemma 10.11], we prove that βw satisfies (16). We show first that
limz→∞(βw(z)/z) = 1. Since βj tends uniformly to βw, for some l ∈ N we have that
|βw − βl | is bounded, whence

|βw − f l
w| ≤ |βw − βl | + |βl − f l

w|

is bounded. Then, since fw(z) = z + 1 + h(z, w) and |h(z, w)| < K|z|−γ /d ,

lim
z→∞

βw(z)

z
= lim

z→∞
f l

w(z)

z
= 1.

Consider ζ ∈ C. In order to prove (16) we will show that for j ∈ N large enough the point
ζj = ζ + j belongs to βw(Vw). Since Vw is essentially a sector of opening 2θ , if we take a
positive number ρ < sin θ , it is not difficult to see that, for j large enough, the closed disk
Dj of radius rj = ρ|ζj | centered at ζj is contained in Vw. By Rouché’s theorem, if

|βw(z) − z| < rj
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for all z ∈ ∂Dj , then ζj ∈ βw(Dj ) ⊂ βw(Vw). Since βw(z)/z → 1 when z → ∞, for z
large enough we have |βw(z) − z| < τ |z|, where τ > 0 is taken such that τ(1 + ρ) < ρ.
Then, if z ∈ ∂Dj and j is large enough,

|βw(z) − z| < τ |z| ≤ τ(|ζj | + rj ) = τ(1 + ρ)|ζj | < ρ|ζj | = rj

and (16) follows.
The function βw that we have constructed depends on the choice of the base point

p ∈ Vw, but its derivative does not, as we can check from the definition of βj :

(βw)′(z) = lim
j→∞(f j

w)′(z).

It is easy to see that the same choice of p also works for any w′ in a neighborhood
of w and the function βw′ will depend holomorphically on w′. That is, βw′(z) is a
holomorphic function of (z, w′). Thus, we can find an open covering C = ⋃

i∈I Wi if
n = 0 or C∗ = ⋃

i∈I Wi if n ≥ 1 and, for each i ∈ I , a holomorphic function

βi(z, w), for z ∈ Vw, w ∈ Wi

such that, for each w ∈ Wi , the map z ∈ Vw �→ βi(z, w) ∈ C is univalent and satisfies
βi(f (z, w), w) = βi(z, w) + 1. Moreover, from the observation above, the partial deriva-
tive ∂βi/∂z does not depend on i ∈ I , that is,

∂βi

∂z
(z, w) = ∂βj

∂z
(z, w) for z ∈ Vw, w ∈ Wi ∩ Wj , i, j ∈ I .

Therefore, if Wi ∩ Wj �= ∅, there is a function gij ∈ O(Wi ∩ Wj) such that

βj (z, w) − βi(z, w) = gij (w) for z ∈ Vw, w ∈ Wi ∩ Wj , (17)

hence gij + gjk + gki = 0 on Wi ∩ Wj ∩ Wk , for i, j , k ∈ I . Then, since the first Cousin
problem can be solved in C and C∗, there exist functions gi ∈ O(Wi), i ∈ I , such that
gij = gi − gj on Wi ∩ Wj and it follows from (17) that

βj (z, w) + gj (w) = βi(z, w) + gi(w) for z ∈ Vw, w ∈ Wi ∩ Wj .

Therefore we can define a global function β ∈ O(V ) by

β(z, w) = βi(z, w) + gi(w) for z ∈ Vw, w ∈ Wi ,

and we can see that for each w ∈ C∗, the map

z ∈ Vw �→ β(z, w) ∈ C

is univalent and β(f (z, w), w) = β(z, w) + 1 for every (z, w) ∈ V . Now it is easy to
check that the holomorphic function

�(z, w) = (β(z, w), w), (z, w) ∈ V ,

is univalent and satisfies � ◦ F̃ (z, w) = �(z, w) + (1, 0) for every (z, w) ∈ V . To show
that W = �(V ) satisfies (15), consider a point (z0, w0) ∈ C2, with (z0, w0) ∈ C × C∗ if
n ≥ 1. If w0 ∈ Wi , we have

β(z, w0) = βi(z, w0) + gi(w0) = βw0(z) + gi(w0)
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for all z ∈ Vw0 . By (16) there exist z ∈ Vw0 and j ∈ N such that [z0 − gi(w0)] + j =
βw0(z), thus

�(z, w0) = (β(z, w0), w0) = (z0 + j , w0)

and therefore (z0, w0) ∈ W − (j , 0).

7. The flower theorem
In this section we prove Theorem 1.2. We do this first in the case we have been dealing with
in the previous sections: a biholomorphism F of the form (B) with N ≥ 0 and satisfying
condition (B�). At the end of the section we deal with biholomorphisms of the form (A).

Let ε, θ be as in Proposition 5.2 and denote Uk = Uk(ε, θ). Let δ̃ > 0 be the
constant given by assertion 2 of Proposition 3.3 and consider the sets D̃k(ε, θ , δ̃). Since
gcd(m, n) = 1, it is easy to see that these sets are connected. For each k ∈ {0, . . . , d − 1}
we define

�+
k =

⋃
j≥0

Fj (D̃k(ε, θ , δ̃)).

This set is connected and invariant by F. Moreover, in view of Proposition 3.3, we have
that �+

k is in the basin of attraction of Uk and

D̃k(ε, θ , δ̃) ⊂ �+
k ⊂ D̃k(ε, θ , δθ ).

It is easy to see that the diffeomorphism F−1 is also of the form (B), with the same pair
(M , N) and (−a, −b) instead of (a, b). Thus, if we work with F−1 instead of F, our
constructions allow us to find connected open sets �−

0 , . . . , �−
d−1, which play for F−1 the

role of the sets �+
k in the case of F. We can assume that the constructions are done with

the same constants ε, δ, δ̃, etc. Thus, the sets �−
k are defined by

�−
k =

⋃
j≥0

F−j (D̃−
k (ε, θ , δ̃)),

where

D̃−
k (ε, θ , δ̃) = {(x, y) ∈ C2 : xmyn ∈ S̃−

k (d, ε, θ), |ιx| < δ̃, |y| < δ̃},
in which S̃−

k (d, ε, θ) is one of the connected components of

{z∈C : |zd |<ε, |arg(zd)−π |<θ}∪
{∣∣∣∣zd − ε

2
ei(π − θ)

∣∣∣∣< ε

2

}
∪

{∣∣∣∣zd− ε

2
ei(π+θ)

∣∣∣∣< ε

2

}
.

In each �−
k , we have that F−j → 0 and

D̃−
k (ε, θ , δ̃) ⊂ �−

k ⊂ D̃−
k (ε, θ , δθ ).

Since the opening of the sets S̃k(d, ε, θ) and S̃−
k (d, ε, θ) is greater than π/d, it is clear that

the domains �+
0 , . . . , �+

d−1, �−
0 , . . . , �−

d−1, together with the fixed point set {xyι = 0},
cover the open set

{(x, y) ∈ C2 : |xmyn| < ε1/d , |ιx| < δ̃, |y| < δ̃},
so assertions 1 and 2 of Theorem 1.2 are proved.
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For each k, let ϕ+
k : φ−1

k (V ) → W ⊂ C2 be the biholomorphism given by Proposition 6.1,
which conjugates F with the map (z, w) �→ (z + 1, w). It is straightforward to extend ϕ+

k

as a biholomorphism

ϕ+
k : �+

k → W+
k ⊂ C2,

with W+
k ⊂ C × C∗ if n ≥ 1, defining, for each p ∈ �+

k ,

ϕ+
k (p) = ϕ+

k (F j (p)) − (j , 0)

for any j ≥ 0 such that Fj (p) ∈ φ−1
k (V ); this is possible because �+

k is in the basin of
attraction of Uk and, by Proposition 5.2, Uk is in the basin of attraction of φ−1

k (V ). This
shows assertion 3a of Theorem 1.2 for the domains �+

0 , . . . , �+
d−1; property 3b follows

from (15). We can proceed analogously with the sets �−
0 , . . . , �−

d−1 and this finishes the
proof of Theorem 1.2 for F of the form (B) with N ≥ 0.

Suppose now that F is of the form (A) satisfying (A�). Up to a linear change of
coordinates of the form (x, y) �→ (αx, y), we can assume that a ∈ R−. In this case, Hakim
proved in [8] that if r is small enough then for any k ∈ {0, . . . , M − 1} there exists a
holomorphic map uk : Dr ,k → C, with |uk(x)| ≤ K|x log x| for some K > 0 and for all
x ∈ Dr ,k , such that uk(F1(x, uk(x))) = F2(x, uk(x)), where Dr ,k is the component of
{x ∈ C : |xM − r| < r} bisected by e2πik/MR+. Moreover, with the small modification
of her proof introduced in [11, Lemma 4.4], we can enlarge the domain of definition of
uk to the set S̃k(M , ε0, θ) for any θ ∈ (0, π/2) and for ε0 small enough. Then, making the
sectorial change of coordinates

(x, y) ∈ S̃k(M , ε0, θ) × C �→ (x, zk) = (x, y − uk(x)),

we can write

F(x, zk) = (x + xM+1[a + O1(x, zk)], zk + xMzk[b + O1(x, zk)]),

where we use the notation O1(x, zk) = O(x, x log x, zk). The key point to note is that
all the constructions we made in the previous sections to obtain the invariant sets �+

k

for a map F of the form (B) with N = 0 were performed in S̃k(M , ε, θ) × C, and all the
calculations involved work similarly if we have O1(x, y) instead of O(x, y). Then, for
some ε ≤ ε0, the domains �+

k can be defined in the same way, but in sectorial coordinates
(x, zk) depending on k, and the same holds for �−

k . Assertions 1 and 3 of Theorem 1.2,
since referred to a fixed k ∈ {0, . . . , M − 1}, follow exactly as above if we work in the
corresponding sectorial coordinates. For the proof of assertion 2, it is enough to show that
each �+

k contains, in the original coordinates (x, y), a set of the form

D′
k = {(x, y) ∈ C2 : x ∈ S̃k(M , ε′, θ), |y| < δ′}

for some ε′, δ′ > 0, and the same for each �−
k . By definition, �+

k contains the set

D̃k = {(x, zk) ∈ C2 : x ∈ S̃k(M , ε, θ), |zk| < δ̃}.
Take δ′ ≤ δ̃/2 and let ε′ ≤ ε be such that |uk(x)| < δ̃/2 for all x ∈ Sk(M , ε′, θ) and
k ∈ {0, . . . , d − 1}. Take (x, y) ∈ D′

k . In the sectorial coordinates this point is given by
(x, zk) with zk = y − uk(x). Then |zk| ≤ |y| + |uk(x)| < δ′ + δ̃/2 ≤ δ̃, so (x, zk) ∈ D̃k .
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This proves that �+
k contains D′

k and clearly the analogous property holds for each �−
k , so

Theorem 1.2 is proved.

8. Proof of Theorem 1.3
Suppose first that F is of the form (B). As in §3, up to a linear change of coordinates, we
can write F as

F(x, y) = (x + xM+1yN [a + O(x, y)], y + xMyN+1[b + O(x, y)]),

with M ≥ 1, N ≥ 1 and aM + bN = −1, so the hypothesis of Theorem 1.3 means that
either Re a > 0 or Re b > 0. We assume without loss of generality that Re b > 0. Also as
in §3, put d = gcd(M , N) and set m = M/d , n = N/d. Since aM + bN = −1, we have
that

xm
1 yn

1 = xmyn − 1
d

(xmyn)d+1 + (xmyn)d+1O(x, y).

Since y1 = y(1 + [b + O(x, y)](xmyn)d) and Re b > 0, with a similar argument to the
one we used for equation (6) we find ε, δ, ν > 0 and θ ∈ (0, π/2) such that, for each
k ∈ {0, . . . , d − 1}, if xmyn ∈ Sk(d, ε, θ) with |x| < δ and |y| < δ then

|y1| ≥ |y|(1 + ν|xmyn|d). (18)

Take δ′ = min{δ, δ̃F (θ)}, where δ̃F (θ) is given by Proposition 2.2, and set

U = {(x, y) ∈ C2 : |x| < δ′, |y| < δ′}.
Consider a point (x, y) ∈ U outside the fixed set {xy = 0} and let us show that there
exists j ∈ N such that (xj , yj ) �∈ U . Assume by contradiction that (xj , yj ) ∈ U for all
j. Then, by assertion 3 of Proposition 2.2, we find k ∈ {0, . . . , d − 1} and j0 ≥ 0 such that
xm
j yn

j ∈ Sk(d, ε, θ) for all j ≥ j0. Thus, by iterated applications of (18) we obtain, for all
j ≥ j0, that

|yj | ≥ |yj0 |
j−1∏
l=j0

(1 + ν|xm
l yn

l |d).

But the estimate

|xm
j yn

j |d ≥ 1
2

|xmyn|d
1 + j |xmyn|d

from assertion 3 of Proposition 2.2 shows that
∑ |xm

l yn
l |d = +∞, so |yj | → ∞, which is

a contradiction. In the same way, up to reducing δ′, we can prove that the negative orbit of
any (x, y) ∈ U\{xy = 0} leaves U .

Suppose now that F is of the form (A). Again as in §3, up to a linear change of
coordinates, we have

F(x, y) = (x + xM+1[−1/M + O(x, y)], y + xM [by + O(x, y2)]),

where Re b > 0. As explained in the previous section, for some ε0 > 0 there exists
a holomorphic map uk : Sk(M , ε0, π/4) → C such that in the sectorial coordinates
(x, zk) = (x, y − uk(x)) defined in Sk(M , ε0, π/4) × C we can write
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F(x, zk) = (x + xM+1[−1/M + O1(x, zk)], zk + xMzk[b + O1(x, zk)]).

Since zk
1 = zk(1 + [b + O1(x, zk)]xM) and Re b > 0, as in the previous case we can

find constants ε, δ, ν > 0 and θ ∈ (0, π/4) such that, for each k ∈ {0, . . . , M − 1}, if
x ∈ Sk(M , ε, θ) with |x| < δ and |zk| < δ then

|zk
1| ≥ |zk|(1 + ν|x|M). (19)

Take δ0 ≤ δ/2 such that |uk(x)| < δ/2 for all |x| < δ0 and k ∈ {0, . . . , M − 1}. Notice
that the equation

x1 = x + xM+1[−1/M + O(x, y)]

satisfies the hypothesis of Proposition 2.2 with m = 1, n = 0 and d = M , so there exists a
constant δ̃F (θ) satisfying assertion 3. Set δ′ = min{δ0, δ̃F (θ)} and

U = {(x, y) ∈ C2 : |x| < δ′, |y| < δ′}.
Consider a point (x, y) ∈ U outside the fixed set {x = 0} and let us show that there
exists j ∈ N such that (xj , yj ) �∈ U . Assume by contradiction that (xj , yj ) ∈ U for all
j. Then, by assertion 3 of Proposition 2.2, we find k ∈ {0, . . . , M − 1} and j0 ≥ 0 such
that xj ∈ Sk(M , ε, θ) for all j ≥ j0. Since |xj | < δ′ ≤ δ0 ≤ δ for all j ≥ 0, we have that

|zk
j | ≤ |yj | + |uk(xj )| < δ′ + δ/2 ≤ δ

for all j ≥ 0. Thus, by iterated applications of (19) we obtain, for all j ≥ j0, that

|zk
j | ≥ |zk

j0
|

j−1∏
l=j0

(1 + ν|xl |M).

But the estimate

|xj |M ≥ 1
2

|x|M
1 + j |x|M

from assertion 3 of Proposition 2.2 shows that if zk
j0

�= 0 then zk
j → +∞, which

is a contradiction. Hence zk
j0

= 0, which means that the orbit of (x, y) eventually
lies in the parabolic curve zk = 0 of F in the domain Sk(M , ε, π/4) × C. For each
k ∈ {0, . . . , M − 1}, let Pk be the set of points in U attracted by F |U into the parabolic
curve of F in Sk(M , ε, π/4) × C; it is not difficult to see that Pk is a one-dimensional
complex submanifold of U , and we have shown that every point in U outside the fixed set
{x = 0} and outside the manifold P+ = P0 ∪ · · · ∪ PM−1 has a finite positive orbit in U .
In the same way, up to reducing δ′, if P−

k is the one-dimensional complex submanifold
of U of points attracted by F−1|U into the parabolic curve of F−1 in the domain
S−

k (M , ε, π/4) × C, then every point in U outside the fixed set {x = 0} and outside the
manifold P− = P−

0 ∪ · · · ∪ P−
M−1 has a finite negative orbit in U . This concludes the

proof of Theorem 1.3.
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A. Appendix. Resolution theorem for biholomorphisms
The resolution theorem for two-dimensional biholomorphisms stated in the introduction
is valid not only for biholomorphisms tangent to the identity, but more generally for
unipotent biholomorphisms, and is based on the corresponding theorem for vector fields
and foliations in C2. A formal vector field X in (C2, 0) can be written, in a unique way up to
multiplication by a unit, as X = f (A(∂/∂x) + B(∂/∂y)), where f , A, B ∈ C[[x, y]] and
A and B have no common factor. The vector field Sat X = A(∂/∂x) + B(∂/∂y) is called
the saturation of X. If f is not a unit, we say that Sing X = √

(f ) is the singular locus of
X; if f is a unit, we say that X is saturated and define Sing X = {0} if A and B are not
units and Sing X = ∅ otherwise. An irreducible formal curve (g) in (C2, 0) is said to be a
separatrix of a formal vector field X if X(g) ∈ (g). If X is not singular, its formal integral
curve through the origin is its only separatrix. The branches of the singular locus of X are
separatrices, which are called fixed.

We say that a saturated singular vector field X in (C2, 0) is reduced if the eigenvalues
λ1, λ2 of its linear part satisfy λ1 �= 0 and λ2/λ1 �∈ Q>0; if λ2 �= 0 we say that X is
non-degenerate, otherwise X is called a saddle-node. A reduced vector field X has exactly
two formal separatrices, which are non-singular and transverse, and each one is tangent to
an eigenspace of the linear part of X. The resolution theorem for vector fields (see [4, 14])
asserts the following (throughout this section, if g is any analytic or formal object, we
denote by gp its germ at the point p).

THEOREM A.1. Let X be a singular formal vector field in (C2, 0). There exist a finite
composition of blow-ups π : (M , E) → (C2, 0), a formal vector field X̃ along E with
π∗X̃ = X, and finitely many points p1, . . . , pk ∈ E such that Sat X̃p1 , . . . , Sat X̃pk

are
reduced and Sat X̃p is not singular for any p ∈ E\{p1, . . . , pk}.

The set E, called the exceptional divisor, is a finite union of smooth rational curves
with normal crossings; we say that a point in E is a corner if it is the intersection of two
components of D. Up to composing π with some additional blow-ups, we can assume that
the family of separatrices of X, even if it is infinite, is desingularized by π :
(a) the strict transform of each separatrix is a non-singular curve at a non-corner point

of E and is transverse to E;
(b) the strict transforms of different separatrices are curves at different points of E.

Any map π as above is called a resolution of X and we also say that X̃ is a resolution
of X. Any further blow-up at a singular point of X̃ in E gives another resolution of X.
As may be expected, there exists a unique minimal resolution of X in the sense that any
other resolution is obtained from the minimal one by performing finitely many additional
blow-ups. If X is a nilpotent vector field in (C2, 0) (that is, its linear part is nilpotent) and X̃

is a resolution of X, then X̃p is nilpotent for any point p ∈ E. In particular, if X is nilpotent
then the singular points of X̃ in E are not isolated: an isolated singularity p of X̃ would be
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saturated and reduced, so X̃p would not be nilpotent. Therefore the set SingE X̃ of singular
points of X̃ in E is a union of components of E. We define the singular locus Sing X̃ of
X̃ as the union of SingE X̃ with the strict transform of Sing X by π . It is easy to see that
(Sing X̃)p = Sing X̃p for all p ∈ E. Observe that E ∪ Sing X̃ is the transform of Sing X,
so it is a finite union of smooth curves with normal crossings, and so is Sing X̃.

LEMMA A.2. Let X̃ be a resolution of X and let p ∈ E such that Sat X̃p is singular (hence
a reduced singularity). Then each branch of (E ∪ Sing X̃)p is one of the two separatrices
of Sat X̃p.

Proof. Let S1 and S2 be the separatrices of Sat X̃p. If both S1 and S2 were not contained
in E, they would be the strict transforms of different separatrices of X passing through the
same point in E, contradicting (a), so we can assume that S1 is contained in a component
of E. Suppose that there is a branch S of (E ∪ Sing X̃)p different from S1 and S2. If S is a
component of E then p is a corner and S2 is the strict transform of a separatrix of X passing
through p, which contradicts (a). If S is a branch of Sing X̃p not contained in E then S is
the strict transform of a separatrix of X, so by (a) p is not a corner and then S2 is also the
strict transform of a separatrix of X passing through p, contradicting (b).

If X̃ is a resolution of X, we classify the components of the exceptional divisor into two
types.
(1) A component D of E is invariant if for some point p ∈ D the germ Dp is a separatrix

of Sat X̃p. In this case the same happens for any other point in D.
(2) If a component D of E is not invariant, we say that it is dicritical. In this case

D ⊂ Sing X̃ and, as we will see next, the vector field Sat X̃p is non-singular and
transverse to D for all p ∈ D, and any other component of E intersecting D is
invariant.

Let us show the assertions in (2). By Lemma A.2, if Sat X̃p were singular for some
p ∈ D then D would be invariant, so Sat X̃p is not singular and its formal integral curve
C is different from Dp because D is not invariant. If p is not a corner, then C is the strict
transform of a separatrix of X, so C is transverse to D; if p is a corner, from (a) we conclude
that C = D′

p, where D′ is the other component of E through p and therefore Sat X̃p is
transverse to D. This also shows that any component D′ of E intersecting D is invariant.

Consider now a unipotent biholomorphism F, that is, DF(0) = I + N where I is
the identity and N is nilpotent. In a formal sense, F is the time-one flow of a unique
formal vector field in (C2, 0), denoted log F , which is singular at the origin and has N
as linear part. In particular, if F is tangent to the identity then log F has order at least
two. Moreover, the fixed point set of F coincides with the singular locus of log F , which
is therefore convergent. If π is the blow-up at the origin, the map F̃ = π−1 ◦ F ◦ π is a
biholomorphism in a neighborhood of E = π−1(0) which leaves E invariant, and satisfies
log F̃p = X̃p for any fixed point p ∈ E of F̃ .

THEOREM A.3. Let F be a unipotent biholomorphism in (C2, 0), let π be a resolution of
log F and let F̃ = π−1 ◦ F ◦ π be the transform of F by π . Then, if p ∈ E = π−1(0) is a
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fixed point of F̃ , the germ F̃p is reduced, according to Definition 1.1. If F is tangent to the
identity and π is the minimal resolution of log F , then E is fixed pointwise by F̃ .

Proof. Let X̃ be the transform of X = log F by π and let p ∈ E be a fixed point of F̃ , so
p ∈ Sing X̃.

Suppose first that p belongs to a dicritical component D of E. Then D ⊂ Sing X̃p

and Sat X̃p is non-singular and transverse to D. Since (D ∪ Sing X̃)p is smooth or has
two smooth transverse branches, we can take holomorphic coordinates (x, y) at p such
that D = {x = 0} and such that {y = 0} is the other branch of Sing X̃p if it exists, so
Sing X̃p ⊂ {xy = 0}. Then, up to rescaling the coordinates, we have

X̃p = xMyN

[
(1 + Ã(x, y))

∂

∂x
+ B̃(x, y)

∂

∂y

]
,

where ord Ã ≥ 1, M ≥ 1, N ≥ 0 and (M , N) �= (1, 0) because X̃p is nilpotent. Therefore
its time-one flow F̃p will be of the form (i) once we show that B̃ ∈ (y) if N ≥ 1.
Suppose that N ≥ 1, so {y = 0} ⊂ Sing X̃p, and let C be the formal integral curve of
(1 + Ã)(∂/∂x) + B̃(∂/∂y) through the origin. If {y = 0} is a component of E then p is a
corner and, in view of (a), necessarily C = {y = 0} and therefore B̃ ∈ (y). If {y = 0} is
not a component of E, then it is the strict transform of a (fixed) separatrix of X so, in view
of (b), it has to coincide with C and again B̃ ∈ (y).

Suppose now that p does not belong to a dicritical component of E. We assume
first that Sat X̃p is not singular. Take a component D of E such that p ∈ D. As in the
previous case, we have holomorphic coordinates (x, y) at p such that D = {y = 0} and
Sing X̃p ⊂ {xy = 0}. Since D is invariant, {y = 0} is the formal integral curve of Sat X̃p

through p, so we can write Sat X̃p = (1 + Â)(∂/∂x) + B̂(∂/∂y) with B̂ ∈ (y). Then, up
to rescaling the coordinates, we have

X̃p = xMyN

[
(1 + Ã)

∂

∂x
+ B̃

∂

∂y

]
,

where M , N ≥ 0 and M , N /∈ {(0, 0), (1, 0)} because X̃p is singular and nilpotent, so F̃p

is of the form (i).
Assume now that Sat X̃p is singular, hence reduced. We suppose first that it is

a saddle-node. Let S be the separatrix of Sat X̃p that is tangent to the eigenspace
associated to the non-zero eigenvalue of the linear part of Sat X̃p, and let S0 be the other
separatrix. Let (x, y) be holomorphic coordinates at p such that {x = 0} and {y = 0} are
respectively tangent to S0 and S, so we can write Sat X̃p = (x + Â)(∂/∂x) + B̂(∂/∂y),
where ord Â, ord B̂ ≥ 2 and x + Â and B̂ have no common factors. We know that Sing X̃p

has one or two branches, which by Lemma A.2 are contained in {S, S0}. Thus, we
can assume that the coordinates are chosen in such a way that if S0 ⊂ Sing X̃p then
S0 = {x = 0}, so Â ∈ (x), and if S ⊂ Sing X̃p then S = {y = 0}, so B̂ ∈ (y); hence
Sing X̃p ⊂ {xy = 0}. Thus, up to rescaling the coordinates, we have

X̃p = xMyN

[
(x + Ã)

∂

∂x
+ B̃

∂

∂y

]
,
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where M + N ≥ 1, ord Ã, ord B̃ ≥ 2, Ã ∈ (x) if M ≥ 1, B̃ ∈ (y) if N ≥ 1 and x + Ã and
B̃ have no common factors. Hence, F̃p is of the form (iii).

Finally, suppose that Sat X̃p is non-degenerate. Since Sing X̃p contains at least one
branch, in suitable coordinates (x, y) we have {x = 0} ⊂ Sing X̃p so, by Lemma A.2,
the curve {x = 0} is a separatrix of Sat X̃p. As in the previous case, we can assume that
the other separatrix S of Sat X̃p is tangent to {y = 0} and that S = {y = 0} ⊂ Sing X̃p if
Sing X̃p has two branches, so Sing X̃p ⊂ {xy = 0}. Therefore we have

X̃p = xMyN

[
(ax + Ãx)

∂

∂x
+ (by + B̃)

∂

∂y

]
,

where M ≥ 1, N ≥ 0, a, b ∈ C∗, a/b /∈ Q>0, ord Ã ≥ 1, ord B̃ ≥ 2 and B̃ ∈ (y) if
N ≥ 1, so F̃p is of the form (ii).

In order to prove the last assertion of the theorem it suffices to show that if a vector
field X has order at least two and π is its minimal resolution, then π−1(0) ⊂ Sing X̃.
Suppose that this property holds when the minimal resolution of X is achieved with fewer
than n ∈ N blow-ups, and let X be a formal vector field with ord X ≥ 2 whose minimal
resolution is obtained with n blow-ups. Let σ be the blow-up at the origin and let X̂

be the transform of X by σ . Since ord X ≥ 2, we have that X̂ vanishes on D = σ−1(0)

with order ν ≥ 1 if D is invariant or ν ≥ 2 if D is dicritical. So D will be in the singular
locus of the resolution of X and, in view of the inductive hypothesis, it is enough to show
that X̂ has order at least two at each point in D that is blown up in the resolution. Let
p ∈ D be one such point. Since ord X̂p ≥ ν, it suffices to consider the case where D is
invariant and ν = 1. We can also assume that Sing X̂p = Dp and that X̂p vanishes on
Dp with multiplicity one, because otherwise ord X̂p ≥ 2. Then, if (x, y) are holomorphic
coordinates at p such that Dp = {y = 0}, we have

X̂p = y

[
(a + Ã)

∂

∂x
+ (b + B̃)

∂

∂y

]
,

where ord Ã, ord B̃ ≥ 1, and necessarily b = 0 because X̂p is nilpotent. If a �= 0, we see
that X̂p is actually in final form, so no further blow-up at p would be necessary. Therefore
a = 0 and ord X̂p ≥ 2.

Remark A.4. The reduced models (i), (ii) and (iii) of Definition 1.1 correspond to the
standard final models for vector fields, and are not exactly the same ones that appear in
the resolution theorem in [1]. Our set of reduced fixed points is stable under blow-ups, in
the sense that any further blow-up will produce only reduced fixed points (for example,
the dicritical fixed points considered as final models in [1] can be reduced by additional
blow-ups to non-dicritical models). In our final models, the blow-up of a fixed point of the
form (i) produces fixed points of the form (i), the blow-up of a fixed point of the form (ii)
produces fixed points of the form (i) and (ii), and the blow-up of a fixed point of the form
(iii) produces fixed points of the form (i), (ii) and (iii).
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