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Abstract. Let f , g be C2 expanding maps on the circle which are topologically conjugate.
We assume that the derivatives of f and g at corresponding periodic points coincide for
some large period N. We show that f and g are ‘approximately smoothly conjugate.’
Namely, we construct a C2 conjugacy hN such that hN is exponentially close to h in the
C0 topology, and fN := h−1

N ghN is exponentially close to f in the C1 topology. Our main
tool is a uniform effective version of Bowen’s equidistribution of weighted periodic orbits
to the equilibrium state.
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1. Introduction
A C1 map f : S1 → S1 is called expanding if minx∈S1 |f ′(x)| ≥ λf > 1. We call λf
the minimum expansion rate. Let Expr (S1) (r ≥ 1) be the subspace of all Cr uniformly
expanding maps, and for γ > 1, let Exprγ (S

1) be the space of all Cr expanding maps
whose minimum expansion rate is greater than or equal to γ . Given any continuous map
f : S1 → S1, recall that the degree of f is defined to be value F(x + 1)− F(x), where
F : R → R is any lift of f. In addition to being well-defined independent of the choice of
lift and the point x ∈ S1, it was proved by Shub in [Shu69] that the degree is a complete
topological conjugacy invariant for expanding maps on the circle.

THEOREM 1.1. Let f , g : S1 → S1 be continuous expanding maps. Then there exists a
homeomorphism h : S1 → S1 such that h ◦ f = g ◦ h if and only if deg(f ) = deg(g).

It is easy to check that h is Hölder continuous, but there is an obstruction to h having
higher regularity at the periodic orbits of f. By formally differentiating the conjugacy
equation, it is clear that h will not be differentiable if (f n)′(x) �= (gn)′(h(x)) for at least
one periodic point x ∈ Fix(f n). As the next theorem shows, satisfying this obstruction at
all periodic points is sufficient to conclude differentiability of h.
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2 T. A. O’Hare

THEOREM 1.2. Suppose f , g : S1 → S1 are C1+α (α > 0) expanding maps of the same
degree, and fix a conjugacy h such that h ◦ f = g ◦ h. Then, the map h is C1+α if and only
if for every point p ∈ Fix(f n), n ∈ N, we have (f n)′(p) = (gn)′(h(p)).

While not directly stated in this form, a proof of Theorem 1.2 can be found from de la
Llave [Lla92]. A closely related result is the theorem of Shub and Sullivan [SS85], which
proves that Cr (r ≥ 2) expanding maps of the circle which are conjugated by an absolutely
continuous homeomorphism h1 are in fact conjugated by a Cr diffeomorphism h2, but it
may be that h1 �= h2. Martens and de Melo prove a more general version of Theorem 1.2
[MM99, Corollary 2.9] applying to all Cr Markov maps in one dimension. In particular,
the main theorem of [MM99] applies to unimodal maps (with critical points) without
wild and solenoidal attractors and establishes periodic data rigidity for these systems.
The picture for general unimodal maps is more complicated: Moreira and Smania proved
[MS14] that unimodal maps with Cantor set attractor, such as Feigenbaum maps and
Fibonacci maps with high order at the critical point, are always absolutely continuously
conjugated, but not necessarily smoothly. Thus, Shub and Sullivan’s theorem does not
carry over to these maps. It would be interesting to study finite data rigidity (Theorem 1.3
below) for unimodal and Markov maps as well.

The goal of the present paper is to relax the conditions of Theorem 1.2 to hold at
only finitely many periodic orbits, and then see how close f and g are to being smoothly
conjugated.

THEOREM 1.3. Let γ > 1 be fixed and let W ⊂ Exp2
γ (S

1) be a bounded subset. Then,
there exist constants K > 0 and 0 < λ < 1 depending only on γ > 1 and W such that the
following holds: if f , g ∈ W are conjugated by a homeomorphism h (h ◦ f = g ◦ h) and
if there existsN ∈ N such that (f N)′(p) = (gN)′(h(p)) for every p ∈ Fix(f N), then there
exists a diffeomorphism hN ∈ C2(S1) such that dC0(h, hN) ≤ KλN . Moreover, for every
0 < λ1/2 < λ0 < 1, there exists a constantK ′ > 0, such that if we let fN = h−1

N ◦ g ◦ hN ,
then dC1(f , fN) ≤ K ′λN0 .

Remark 1. The conjugacy hN we construct will not explicitly depend on the parameter N.
Instead, the notation is meant to emphasize how much of the periodic data we can use for
our estimates. A more descriptive notation would be hf ,g,N to emphasize the dependence
on the expanding maps f and g. However, for the sake of brevity (as well as to avoid
confusing notation for fN ), we will use the simplified notation hN .

A key step in the proof of Theorem 1.3 is to prove an effective version of Bowen’s
equidistribution theorem (see Theorem 2.2 below), which allows us to estimate the
difference between h and hN in terms of the periodic orbits of order N. The convergence
rate λ comes from the effective equidistribution rate and depends on the degree of the
expanding maps and γ . The proof of effective equidistribution is postponed until §3 and
relies on the technique of Birkhoff cones for subshifts of finite type, which we recall in
Appendix A. This technique is well known in the case of expanding maps; see for instance
Baladi [Bal00].
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Finite data rigidity for one-dimensional expanding maps 3

2. Finite data rigidity
The goal of this section is to generalize Theorem 1.2 to allow for the derivatives of f and g
to agree only at finitely many periodic points. Of course, f and g will not be C1 conjugate,
but we can find a map C1 close to f which is C1 conjugate to g. Moreover, this new map
converges exponentially to f as the number of periodic points that the derivatives agree on
increases.

Definition 2.1. For a function f ∈ Ck(S1), k ∈ N, let |f |Ck = sup |Dkf | denote the
Ck seminorm. Let ‖f ‖∞ denote the supremum norm of f and let ‖f ‖Ck = ‖f ‖∞ +∑k
i=1 |f |Ci denote the Ck norm. If f : S1 → S1 is α-Hölder continuous (0 < α ≤ 1),

define

|f |α = sup
x �=y

|f (x)− f (y)|
|x − y|α

to be the Hölder seminorm and define ‖f ‖α = ‖f ‖∞ + |f |Lip to be the Hölder norm. For
α = 1, we get the Lipschitz seminorm and Lipschitz norm | · |Lip and ‖ · ‖Lip, respectively.

It well known that for a C1+α expanding map f on a compact manifold M, there
exists a unique invariant probability measure μf which is absolutely continuous with
respect to Lebesgue measure, whose density ρf (x) is Cα and strictly positive. See Baladi
[Bal00] for full details. Moreover, μf is the unique equilibrium state corresponding to
the geometric potential ψf = − log(|f ′(x)|). For the uniformity claims of Theorem 1.3,
it will be important to have uniform bounds on the densities ρf .

LEMMA 2.1. Let W be a bounded set in Exp2
γ (S

1), γ > 1. Then, for every 0 < α < 1,
there exists C > 1 such that for all f ∈ W and every x ∈ S1, C−1 ≤ ρf (x) ≤ C and
|ρf |Cα < C.

Proof. We prove this using a Birkhoff cone argument. See Baladi [Bal00, §2.2] for details
and Appendix A of the present paper for a similar argument for subshifts of finite type. For
L > 0, consider the cone

�L =
{
φ ∈ C0(M)|φ(x) > 0,

φ(x)

φ(y)
≤ eLd(x,y)α for all x, y ∈ S1

}
.

Then, Baladi shows in [Bal00] that there exists L > 0 depending only on γ > 1 and
0 < α < 1 such that ρf ∈ �L. Since ρf is the smooth density of a probability measure,
there exists a point y ∈ S1 such that ρf (y) = 1. Since ρ ∈ �L, for any x ∈ S1, we have

ρf (x) ≤ ρf (y)e
Ld(x,y)α < eL diam(S1)α < eL,

and we likewise get the lower bound for ρ(x) by swapping the roles of x and y. Finally,
notice that ρf ∈ �L is equivalent to log(ρf ) ∈ Cα(S1) with | log(ρf )|α ≤ L. Then,
ρf = exp(log(ρf )) and

|ρf |α ≤ max
x∈S1

elog(ρf (x))| log(ρf )|α ≤ elog(eL)L = LeL.
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4 T. A. O’Hare

Remark 2. One can prove uniform bounds on the densities without a Birkhoff cone
argument by instead carefully going through the arguments of Sacksteder’s proof [Sac74]
of the existence of invariant densities.

We are now ready to introduce the main technical tools needed to prove Theorem 1.3.
We will use the notation Sf ,nψ(x) to denote the nth ergodic sum of ψ at the point x with
respect to the dynamics of f :

Sf ,nψ(x) =
n−1∑
i=0

ψ(f i(x)).

Definition 2.2. Let (X, f ) be a dynamical system and ψ : X → [0, ∞) a non-negative
potential function. Whenever Fix(f n) �= ∅, we can define a measure μnf ,ψ by

μnf ,ψ = 1
Zn(f , ψ)

∑
x∈Fix(f n)

eSf ,nψ(x)δx ,

where

Zn(f , ψ) =
∑

x∈Fix(f n)

eSf ,nψ(x)

is a normalization constant so that μnf ,ψ is a probability measure. We call μnf ,ψ the nth
weighted discrete measure associated to the dynamics of f and the potential ψ .

The measure μnf ,ψ depends on three ingredients: the length n of periodic orbits
under consideration, the dynamical system f : X → X, and the potential function
φ : X → [0, ∞). In our setting, we will be considering a smooth expanding map
f : S1 → S1 together with the associated geometric potential ψf (x) = − log(|f ′(x)|).
When this is the case, since the potential depends on the dynamics, we will use the more
compact notation μnf in place of μnf ,ψf .

Let us recall the following theorem of Bowen [Bow74].

THEOREM 2.2. (Bowen’s equidistribution theorem) Let (X, d) be a compact metric
space, f : X → X an expansive homeomorphism with the specification property, and
ψ ∈ Cf (X). Then, there exists a unique equilibrium state μψ ∈ M(f ) given by

μψ = lim
n→∞ μnf ,ψ ,

where the limit converges in the weak∗-topology.

Remark 3. Theorem 2.2 is sufficient for proving Theorem 1.2 (though Bowen’s theorem
is stated for invertible systems, the same result is true for uniformly expanding maps on
the circle with essentially the same proof; see also Theorem 2.3 below). Indeed, from the
assumption on periodic data, it follows that μnf = h∗μng for all n ∈ N, where h∗μg denotes
the pullback measure by h. Then, taking weak∗-limits and using Theorem 2.2, we conclude
that μf = h∗μg . Defining the functions

If (x) =
∫ x

0
ρf (y) dy, Ig(x) =

∫ x

0
ρg(y) dy,
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Finite data rigidity for one-dimensional expanding maps 5

and integrating μf = h∗μg from 0 to x, we find that If (x) = Ig(h(x)) or

h = I−1
g ◦ If ∈ C1+α . (2.1)

Equation (2.1) provides us with insight as to how we should define hN in the proof of
Theorem 1.3.

To estimate dC0(h, hN) in Theorem 1.3, we will need the following effective version of
Theorem 2.2.

THEOREM 2.3. (Effective equidistribution) Let W be as bounded set in Exp2
γ (S

1), γ > 1.
Let f ∈ W , ψf : S1 → C be the geometric potential of f with unique equilibrium state
μf , and let μNf be the Nth weighted discrete measure associated to f and ψf . Then, there
exist constants C′ > 0 and 0 < τ < 1, depending only on W , such that for every Lipschitz
function φ : S1 → C, we have∣∣∣∣

∫
φ dμf −

∫
φ dμNf

∣∣∣∣ ≤ C′‖φ‖Lipτ
N . (2.2)

We will defer the proof of Theorem 2.3 to §3. See Kadyrov [Kad16, Theorem 1.5] for a
more general result for the measure of maximal entropy of a subshift of finite type, and
Rühr [Rüh21] for a version applying to equilibrium states of countable state shifts.

To prove Theorem 1.3, we will need to apply a version of Theorem 2.3 to the
characteristic functions χ[0,x] for every x ∈ S1.

LEMMA 2.4. There exist constants K > 0 and 0 < λ < 1 such that for every f ∈ W ,
every x ∈ S1, and every N ∈ N,∣∣∣∣

∫ x

0
dμf −

∫ x

0
dμNf

∣∣∣∣ ≤ KλN . (2.3)

Here and throughout the paper, we write
∫ x

0 dμNf as shorthand notation for∫
χ[0,x] dμ

N
f = μNf ([0, x]).

Proof. We would like to apply Theorem 2.3 but cannot do so directly since the char-
acteristic function χ[0,x] is not Lipschitz continuous. Instead, we will approximate χ[0,x]

by a Lipschitz function φx and show that the effective equidistribution in equation (2.2)
of φx can be passed on to χ[0,x], albeit with a slower rate of convergence. To find an
appropriate choice of φx , we will construct a one-parameter family of Lipschitz functions
φsx for s ∈ [0, τN/2], where τ is as in Theorem 2.3, satisfying the following properties:
(1) the family φsx varies continuously with s in the C0-topology;
(2) φ0

x ≤ χ[0,x] and φτ
N/2

x ≥ χ[0,x];
(3) for every s ∈ [0, τN/2], |φsx |Lip ≤ τ−N/2;
(4) for every s ∈ [0, τN/2], |φsx − χ[0,x]| = 0 except on a set �N of Lebesgue measure

m(�N) ≤ 2τN/2.
The definition of the families φsx depends on the point x ∈ S1, though the typical graph

of the functions are all similar and illustrated in Figure 1. We split the construction of the
φsx into three general cases.
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6 T. A. O’Hare

FIGURE 1. The family φsx at s = 0 (below χ[0,x]) and s = τN/2 (above χ[0,x]).

Case 1. Assume that 2τN/2 ≤ x ≤ 1 − 2τN/2: Fix 2τN/2 ≤ x ≤ 1 − 2τN/2 and define
a family of continuous functions as follows:

φsx(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ−N/2(y + s), −s ≤ y ≤ τN/2 − s,

1, τN/2 − s ≤ y ≤ s − (τN/2 − x),

−τ−N/2(y − s)+ τ−N/2x, s − (τN/2 − x) ≤ y ≤ x + s,

0, x + s ≤ y ≤ 1 − s.

It can be easily shown that the above family has the stated properties. Next, we estimate∣∣∣∣
∫ x

0
dμf −

∫ x

0
dμNf

∣∣∣∣
≤

∣∣∣∣
∫ x

0
dμf −

∫
φsx dμf

∣∣∣∣ +
∣∣∣∣
∫
φsx dμf −

∫
φsx dμ

N
f

∣∣∣∣ +
∣∣∣∣
∫
φsx dμ

N
f −

∫ x

0
dμNf

∣∣∣∣.
(2.4)

Let us consider each term on the right side of equation (2.4) separately. The first term
can be rewritten as∣∣∣∣

∫ x

0
dμf −

∫
φsx dμf

∣∣∣∣ =
∣∣∣∣
∫
(χ[0,x](y)− φsx(y))ρf (y) dy

∣∣∣∣.
By property (4) of the family φsx , |χ[0,x](y)− φsx(y)| = 0 except on a set of Lebesgue
measure less than 2τN/2 (depending on s), and is otherwise bounded above by 1.
Furthermore, by Lemma 2.1, there exists C > 1 such that the density ρf of μf is bounded
above by C. Hence, |χ[0,x](y)− φsx(y)| = 0 except on a set of μf -measure less than
2CτN/2, and is otherwise bounded above by 1. Therefore,∣∣∣∣

∫
(χ[0,x](y)− φsx(y))ρ(y) dy

∣∣∣∣ ≤ 2CτN/2.

For the second term on the right side of equation (2.4), we observe that by property (3),
we have ‖φsx‖Lip = 1 + τ−N/2. We can therefore apply Theorem 2.3 to find∣∣∣∣

∫
φsx dμf −

∫
φsx dμ

N
f

∣∣∣∣ ≤ C(1 + τ−N/2)τN = C(τN + τN/2) ≤ CτN/2.
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Finite data rigidity for one-dimensional expanding maps 7

We claim that the final term on the right side of equation (2.4) is zero for some choice
of s. Define


(s) =
∫
φsx dμ

N
f −

∫ x

0
dμNf .

Then by property (2), since 
(0) is the integral of a strictly negative function with respect
to a positive measure, we have 
(0) ≤ 0, and likewise 
(τN/2) ≥ 0. We claim that 
(s)
is a continuous function of s. Indeed, by property (1), fixing ε > 0, we can find a δ > 0
such that if |s1 − s2| < δ, then ‖φs1x − φ

s2
x ‖∞ < ε. Then,

|
(s1)−
(s2)| =
∣∣∣∣
∫
(φs1x − φs2x ) dμ

N
f

∣∣∣∣ < εμNf (0, 1) = ε.

By the intermediate value theorem, we can therefore choose some 0 < s < τN/2 so that

(s) = 0. Therefore, combining these three bounds, we have the following bound on
equation (2.4):

∣∣∣∣
∫ x

0
dμf −

∫ x

0
dμNf

∣∣∣∣ ≤ 2CτN/2 + CτN/2 + 0 = KτN/2,

which is exactly equation (2.3), with λ = τ 1/2.
Case 2. Assume that x > 1 − 2τN/2: The proof is nearly identical as in Case 1, but we

use a slightly different family of Lipschitz functions:

φsx(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ−N/2(y + s), −s ≤ y ≤ τN/2 − s,

1, τN/2 − s ≤ y ≤ s − (τN/2 − x),

−τ−N/2(y − s)+ τ−N/2x, s − (τN/2 − x) ≤ y ≤ x + s,

0, x + s ≤ y ≤ 1 − s,

for 0 ≤ s ≤ (1 + x)/2, and

φsx(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, τN/2 − s ≤ y ≤ s − (τN/2 − x),

−τ−N/2(y − s)+ τ−N/2x, s − (τN/2 − x) ≤ y ≤ 1 + x

2
,

τ−N/2(y − 1 + s),
1 + x

2
≤ y ≤ 1 − s,

for (1 + x)/2 ≤ s ≤ τN/2. The remainder of the proof is identical to Case 1.
Case 3. Assume that x ≤ 2τN/2: The proof is again identical to Case 1 but with the

following family:

φsx(y) =

⎧⎪⎪⎨
⎪⎪⎩
τ−N/2(y + s), −s ≤ y ≤ x

2
,

−τ−N/2(y − s)+ τ−N/2x,
x

2
≤ y ≤ s,

0, s ≤ y ≤ 1 − s,
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8 T. A. O’Hare

for 0 ≤ s ≤ τN/2 − x/2, and

φsx(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ−N/2(y + s, ) −s ≤ y ≤ τN/2 − s,

1, τN/2 − s ≤ y ≤ s + τNx − τ−N/2,

−τ−N/2(y − s)+ τ−N/2x, s + τNx − τ−N/2 ≤ y ≤ s,

0, s ≤ y ≤ 1 − s,

for τN/2 − x/2 ≤ s ≤ τN/2. Observe that for every 0 ≤ s ≤ τN/2, ‖φsx‖∞ ≤ 1, so
that ‖φsx‖Lip ≤ 1 + τ−N/2, so the remainder of the argument in Case 1 carries over
verbatim.

Proof of Theorem 1.3. We begin by recalling that when we have matching of all periodic
data, the conjugacy h could be expressed as the smooth composition in equation (2.1).
Observe that the latter expression I−1

g ◦ If is a well-defined C1+α function without any
hypotheses on the periodic data. For this reason, we define hN := I−1

g ◦ If .
Observe that since (f N)′(p) = (gN)′(h(p)) for every p ∈ Fix(f N), we have that

μNf = h∗μNg :

h∗
(

1
ZN(ψg)

∑
x∈Fix(gN )

exp(SNψg(x))δx

)

= 1
ZN(ψg)

∑
x∈Fix(gN )

exp(SNψg(h(h−1x)))δh−1(x)

= 1
ZN(ψf )

∑
y∈Fix(f N )

exp(SNψf (y))δy = μNf .

We now calculate

|hN(x)− h(x)|
= |I−1

g ◦ If (x)− h(x)| = |I−1
g ◦ If (x)− I−1

g ◦ Ig ◦ h(x)| ≤ C|If (x)− Ig(h(x))|

= C

∣∣∣∣
∫ x

0
dμf −

∫ h(x)

0
dμg

∣∣∣∣ ≤ C

∣∣∣∣
∫ x

0
dμf −

∫ h(x)

0
dμNg

∣∣∣∣
+ C

∣∣∣∣
∫ h(x)

0
dμNg −

∫ h(x)

0
dμg

∣∣∣∣
= C

∣∣∣∣
∫ x

0
dμf −

∫ x

0
d(h∗μNg )

∣∣∣∣ + C

∣∣∣∣
∫ h(x)

0
dμNg −

∫ h(x)

0
dμg

∣∣∣∣
= C

∣∣∣∣
∫ x

0
dμf −

∫ x

0
dμNf

∣∣∣∣ + C

∣∣∣∣
∫ h(x)

0
dμNg −

∫ h(x)

0
dμg

∣∣∣∣,
where sup |(I−1

g )′| = sup |ρ−1
g | ≤ C. By symmetry, it suffices to show that
∣∣∣∣
∫ x

0
dμf −

∫ x

0
dμNf

∣∣∣∣ ≤ KλN ,
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Finite data rigidity for one-dimensional expanding maps 9

uniformly in x ∈ S1. This is precisely the content of Lemma 2.4. Therefore, we have
shown that for every x ∈ S1, |hN(x)− h(x)| ≤ KλN , where λ = τN/2. This proves the
first statement of Theorem 1.3.

As a first consequence, we obtain a bound on the C0 distance between f and fN :

|f (x)− fN(x)| = |h−1(g((h(x))− h−1
N (g(hN(x))|

≤ |h−1(g((h(x))− h−1
N (g(h(x))| + |h−1

N (g((h(x))− h−1
N (g(hN(x))|

≤ dC0(h
−1, h−1

N )+ Lip(h−1
N ◦ g)dC0(h, hN)≤K(1+Lip(h−1

N ◦ g))λN .

Note thatLip(h−1
N ◦ g) = sup |D(h−1

N ◦ g)| = sup(|D(I−1
f ◦ Ig ◦ g)| ≤ (max ρg/min ρf )

max |g′|, which is uniformly bounded in W . Absorbing these uniform constants into K,
we get

dC0(f , fN) < KλN . (2.5)

To finish the proof, it remains to establish the stated C1 exponential closeness of f and
fN . We will do so by interpolating between the C0 exponential bound in equation (2.5)
and a uniform C1+α bound we will establish below. The following interpolation lemma we
will use is elementary, but we include the proof for completeness.

LEMMA 2.5. Fix M > 0 and 0 < α ≤ 1. Let φ : S1 → S1 be a C1+α function with
|φ′|Cα < M , and let ε, δ > 0 be such that

sup
|x−y|>δ

|φ(x)− φ(y)|
|x − y| < ε,

then |φ|C1 < (M/(α + 1))δα + ε.

Proof of Lemma 2.5. Suppose first that φ(0) = 0 and φ′(0) = sup |φ′| =: ε′, and take
|x| > δ. Then, since the α-Hölder seminorm of φ′ is bounded by M, we have

max
y �=0

|φ′(0)− φ′(y)|
|y|α < M �⇒ −M|y|α ≤ φ′(0)− φ′(y)

≤ M|y|α �⇒ φ′(y) ≥ φ′(0)−M|y|α .

Putting this together with

φ(x)

x
= 1
x

∫ x

0
φ′(y) dy,

we find
φ(x)

x
≥ 1
x

∫ x

0
(ε′ −Myα) dy = ε′ − Mxα

α + 1
.

It follows that

ε′ ≤ M

α + 1
|x|α + |φ(x)|

|x| ≤ M

α + 1
|x|α + ε → M

α + 1
δα + ε,

where in the last line, we let |x| → δ. Finally, if |φ|C0 is attained at some other point
x0 ∈ S1, then simply apply the preceding argument to φ̃(x) = φ(x + x0)− φ(0).
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10 T. A. O’Hare

We now return to finish the proof of Theorem 1.3. We will apply Lemma 2.5 to the
function F = fN − f . Let ε = 2K ′λN/2 and δ = λN/2. Then,

sup
|x−y|>δ

|F(x)− F(y)|
|x − y| <

2|F |C0

δ
≤ 2K ′dC0(h, hN)

λN/2
≤ 2K ′λN

λN/2
= 2K ′λN/2.

It remains to prove that |F ′|Cα is uniformly bounded for f ∈ W for every α < 1.
We have

|F ′|Cα ≤ |f ′|Cα + |f ′
N |Cα ,

and since f is uniformly bounded in the C2 seminorm, it will be uniformly bounded in
the C1+α seminorm. So it remains to uniformly bound |f ′

N |Cα = |(h−1
N ◦ g ◦ hN)′|Cα =

|((h−1
N )′ ◦ g ◦ hN)(g′ ◦ hN)h′

N |Cα . By the product rule for the α−Hölder seminorm
and symmetry between hN = I−1

g ◦ If and h−1
N = I−1

f ◦ Ig , it suffices to uniformly
bound |h′

N |Cα = |ρf /(ρg ◦ hN)|Cα . By Lemma 2.1, we can uniformly bound |ρf |Cα
for f ∈ W and hence, by properties of the α−Hölder seminorm, we can uniformly
bound |ρf /(ρg ◦ hN)|Cα . Therefore, we may apply Lemma 2.5 and we find that
|F |C1 ≤ (M/(α + 1))δα + ε = (M/(α + 1))(2K ′λαN/2)+ λN/2 = K ′′λαN/2. For α < 1
such that λα/2 = λ0, we get the desired conclusion.

COROLLARY 2.6. Let f , g ∈ Expr+1+α
γ (S1) for r ∈ N, r ≥ 2, and suppose that

dCr+1+α (f , g) < C0. Under the same hypotheses of Theorem 1.3, we have that there
exists a constant Kr > 0 independent of f such that dCr (f , fN) ≤ Krλ

2−rN .

Proof. We proceed by induction. The base case r = 2 follows exactly as in Theorem 1.3,
except the added assumption that our systems are C2+α allow us to get uniform bounds
on |F ′|C1 (using the argument of Lemma 2.1) and apply Lemma 2.5 with α = 1.
Letting F = fN − f , we assume by induction that we have proven |F |Cr ≤ Krλ

2−rN .
To obtain a similar estimate for |F |Cr+1 , we apply Lemma 2.5 to the function F (r), with
ε = 2Krλ2−r−1N and δ = λ2−r−1N . For these choices, we find

sup
|x−y|>δ

|F (r)(x)− F (r)(y)|
|x − y| <

2|F |Cr
λ2−rN ≤ 2Krλ2−rN

λ2−r−1N
= Krλ

2−r−1N .

The assumption that maps are Cr+2+α is so that we can compactly embed the set
W in Cr+2, thereby getting uniform bounds on |F (r+1)|C1 . The conclusion now follows
Lemma 2.5 exactly as in the proof of Theorem 1.3.

The next corollary establishes a similar estimate on the exponential decay of dCr (f , fN)
without such a loss of exponent under the stronger assumption that f and g are close in the
Ck-topology for all k.

COROLLARY 2.7. Let f , g ∈ Exp∞
γ (S

1) and suppose that supk≥0 dCk (f , g) < C0. Then,
for any r ∈ N and any 0 < λ1/2 < λ0 < 1, there exists a constant K ′

r > 0 such that under
the hypotheses of Theorem 1.3, we have dCr (f , fN) ≤ K ′

rλ
N
0 .

Proof. The proof follows from interpolation theory on the spaces Cr(S1)

(see Lunardi [Lun18, Remark 1.22]). For k1 < m < k2 ∈ N, we have that
‖φ‖Cm ≤ Ck1,k2,m‖φ‖1−t

Ck1
‖φ‖t

Ck2
for any φ ∈ Ck2(S1), where t = (m− k1)/(k2 − k1).
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Finite data rigidity for one-dimensional expanding maps 11

We will apply this with φ = F = fN − f , k1 = 1, and by taking k2 sufficiently large, we
have that t can be made arbitrarily close to 0. We choose k2 so that λ(1−t)/2 ≤ λ0. We want
to bound the term ‖F‖Ck2 using the bound dCk2+2(f , g) < C0. Applying Corollary 2.1
gives us ‖F‖Ck2 ≤ Kk2λ

tN/2k2 ≤ Kk2 . Hence, by our interpolation inequality (collecting
all constants into C),

‖F‖Cm ≤ Ck1,k2,m‖F‖1−t
Ck1

‖F‖t
Ck2

≤ Ck1,k2,mK
1−t
1 Kt

k2
(λ(1−t)/2)N ≤ CλN0 .

3. Effective equidistribution
We begin by reviewing the basic definitions of subshifts of finite type and transfer
operators. For a more detailed treatment, see Baladi [Bal00], and Parry and Pollicott
[PP90]. Let A be an irreducible and aperiodic 0, 1-matrix, which we will refer to as a
transition matrix, and consider the set

�+
A := {x ∈ {1, . . . , m}Z≥0 | A(xi , xi+1) = 1 for all i ≥ 0}.

We interpret �+
A as the set of all sequences in m-symbols that are allowed by the transition

matrix A. Consider the left shift map σ+
A : �+

A → �+
A defined by (σ+

A (x))n = xn+1. We
refer to the dynamical system (�+

A , σ+
A ) as a one-sided subshift of finite type. We can

analogously define two-sided subshifts of finite types. When our transition matrix is clear,
we shall denote the left shift map simply as σ .

We topologize �+
A with the metric dθ (x, y) = θmax{n≥0|xi=yi ,0≤i<n}, where 0 < θ < 1

is a fixed constant. Notice that with respect to this metric, σ is a θ -expansion. Let F+
θ

denote the Banach space of all functions φ : �+
A → C which are Lipschitz continuous

with respect to this metric. Denote by | · |θ and ‖ · ‖θ the Lipschitz seminorm and Lipschitz
norm with respect to this metric, respectively. For 1 ≤ i ≤ m, let [i] = {x ∈ �+

A |x0 = i},
which we call the cylinder set at i. We will use the following important but simple estimate.

LEMMA 3.1. If φ ∈ Fθ and [i] is a cylinder set, then ‖χ[i]φ‖θ < 2‖φ‖θ .

Proof. Note that we always have ‖χ[i]φ‖∞ ≤ ‖φ‖∞ ≤ ‖φ‖θ , so it remains to prove that
|χ[i]φ|θ ≤ ‖φ‖θ . Suppose that x �= y. If x, y ∈ [i], we have

|(χ[i]φ)(x)− (χ[i]φ)(y)|
dθ (x, y)

= |φ(x)− φ(y)|
dθ (x, y)

≤ |φ|θ ≤ ‖φ‖θ .

If x �∈ [i] and y �∈ [i], then

|(χ[i]φ)(x)− (χ[i]φ)(y)|
dθ (x, y)

= 0 ≤ ‖φ‖θ .

Finally, if x ∈ [i] and y �∈ [i], then since dθ (x, y) = 1, we have

|(χ[i]φ)(x)− (χ[i]φ)(y)|
dθ (x, y)

= |φ(x)|
dθ (x, y)

= |φ(x)| ≤ ‖φ‖∞ ≤ ‖φ‖θ .

Taking the supremum over x �= y yields |χ[i]φ|θ ≤ ‖φ‖θ , as desired.

Our primary tool in this section will be the Ruelle transfer operator.
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12 T. A. O’Hare

Definition 3.1. Fix a weight function ψ ∈ F+
θ and define the Ruelle transfer operator

Lψ : F+
θ → F+

θ by the formula

Lψ(φ)(x) =
∑

σ(y)=x
eψ(y)φ(y).

By the Ruelle–Perron–Frobenius theorem (see [Bal00, Theorem 1.5]), the operator
Lψ is quasi-compact, with a unique maximal positive simple eigenvalue λ = eP (ψ)

corresponding to a strictly positive eigenfunction ρ, and all other points of the spectrum
lie in a strictly smaller disc. Let us further assume that the transfer operator is normalized
so that Lψ(1) = eP (ψ) (which can always be accomplished by replacing the weight
ψ with ψ = ψ + log(ρ)− log(ρ) ◦ σ , and observing that P(ψ) = P(ψ)). Then the
eigenmeasure μψ corresponding to the eigenvalue eP (ψ) of the dual operator L∗

ψ is the
unique equilibrium state of the potential ψ . Observe that

Lnψ(φ)(x) =
∑

σn(y)=x
eSnψ(y)φ(y).

What follows is the analog of Theorem 3.2 for subshifts of finite type.

THEOREM 3.2. (Effective equidistribution for equilibrium states) Let (�+
A , σ+

A ) be a
subshift of finite type, where the m×m transition matrix A is irreducible and aperiodic,
and let ψ ∈ F+

θ be a Lipschitz continuous potential. Then, there exists constants C > 0
and 0 < τ < 1 such that for any φ ∈ F+

θ and all n ∈ N,∣∣∣∣
∫
φ dμnψ −

∫
φ dμψ

∣∣∣∣ ≤ C‖φ‖θ τn,

where μψ is the unique equilibrium state of ψ .

Remark 4. To be consistent with our previous notation in §2, we should write μnσ ,ψ for
the weighted discrete measure. However, since the dynamics on the shift space will always
be the left shift map σ , we do not need to specify in our notation and will instead simply
write μnψ .

Proof. By replacing φ by φ − ∫
φ dμψ , we may assume that

∫
φ dμψ = 0. We need to

show that ∣∣∣∣ 1
Zn

∑
σn(x)=x

eSnψ(x)φ(x)

∣∣∣∣ ≤ C‖φ‖θ τn, (3.1)

where Zn is the normalization constant. By Katok and Hasselblatt [KH95, Proposition
20.3.3], there exists a constant D > 0 such that (1/D)enP (ψ) ≤ Zn ≤ DenP(ψ) (an
inspection of the proof reveals that this constant D can be made uniform). Let
[i] = {x ∈ �+

A |x0 = i}, and for a string i = (i0, . . . , in−1), let us denote its length by
|i| = n and its cylinder set by [i] = {x ∈ �+

A |x0 = i0, . . . , xn−1}. For each 1 ≤ i ≤ m,
fix any point xi ∈ [i], and for each string i, fix a point of period n, xi ∈ [i], if one exists,
and let xi ∈ [i] be arbitrary otherwise. We first claim that∑

σn(x)=x
eSnψ(x)φ(x) =

∑
|i|=n

Lnψ(χ[i]φ)(xi).
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Finite data rigidity for one-dimensional expanding maps 13

To see this, we expand out each term in the right sum:

Lnψ(χ[i]φ)(xi) =
∑

σn(y)=xi
eSnψ(y)χ[i](y)φ(y) = eSnψ(ixi )φ(ixi) = eSnψ(xi )φ(xi),

where ix = (i0, . . . , in−1, x0, x1, . . .) denotes the only inverse branch of σn that con-
tributes to the sum due to the characteristic function. Since each point of Fix(σ n) lies in a
unique cylinder set [i], and each such cylinder set contains at most one period-n point, we
see that all periodic points are accounted for in the sum over |i| = n. Consider the estimate∣∣∣∣

∑
σn(x)=x

eSnψ(x)φ(x)

∣∣∣∣ ≤
∣∣∣∣

∑
σn(x)=x

eSnψ(x)φ(x)−
m∑
k=1

Lnψ(χ[i]φ)(xi)

∣∣∣∣

+
∣∣∣∣
m∑
k=1

Lnψ(χ[i]φ)(xi)

∣∣∣∣. (3.2)

To estimate both terms on the right, we will first decompose the transfer operator as a
sum of its projection onto the eigenspace of eP (ψ), and the orthogonal projection: Lψ =
P + N , where P(φ) = eP (ψ)

∫
φ dμψ , and N has spectral radius reP (ψ) with 0 < r < 1.

The second term can thus be estimated as∣∣∣∣
m∑
k=1

Lnψ(χ[i]φ)(xi)

∣∣∣∣ ≤
∣∣∣∣
m∑
k=1

[
Pn(χ[i]φ)(xi)+ N n(χ[i]φ)(xi)

]∣∣∣∣

=
∣∣∣∣
m∑
k=1

[
enP (ψ)

∫
[i]
φ dμψ + N n(χ[i]φ)(xi)

]∣∣∣∣

=
∣∣∣∣enP (ψ)

∫
φ dμψ +

m∑
k=1

N n(χ[i]φ)(xi)

∣∣∣∣ =
∣∣∣∣
m∑
k=1

N n(χ[i]φ)(xi)

∣∣∣∣

≤
m∑
k=1

‖N n‖‖χ[i]φ‖θ ≤ C(r + ε)nenP (ψ)‖φ‖θ , (3.3)

using Lemma 3.1 and the spectral radius formula (see also Lemma 3.3 for the uniform
version we will need later in the case of the symbolic coding of expanding maps), where
ε > 0 is arbitrary and C > 0 depends on ε (recall that m is the size of our alphabet and is
independent of n).

It remains to estimate∣∣∣∣
∑

σn(x)=x
eSnψ(x)φ(x)−

m∑
k=1

Lnψ(χ[i]φ)(xi)

∣∣∣∣ =
∣∣∣∣
∑
|i|=n

Lnψ(χ[i]φ)(xi)−
m∑
k=1

Lnψ(χ[i]φ)(xi)

∣∣∣∣.
If i = (i0, . . . , in−1), we let j(i) = (i0, . . . , in−2). We now telescope our above series:

∑
|i|=n

Lnψ(χ[i]φ)(xi)−
m∑
k=1

Lnψ(χ[i]φ)(xi)

=
n∑

m=2

( ∑
|i|=m

Lnψ(χ[i]φ)(xi)−
∑

|i|=m−1

Lnψ(χ[j ]φ)(xj )

)

https://doi.org/10.1017/etds.2024.83 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.83


14 T. A. O’Hare

=
n∑

m=2

∑
|i|=m

(Lnψ(χ[i]φ)(xi)− Lnψ(χ[i]φ)(xj(i)))

=
n∑

m=2

∑
|i|=m

((Pn + N n)(χ[i]φ)(xi)− (Pn + N n)(χ[i]φ)(xj(i)))

=
n∑

m=2

∑
|i|=m

(N n(χ[i]φ)(xi)− N n(χ[i]φ)(xj(i))).

(The preceding expansion was not novel, and can be found for instance in [PS01,
Lemma 3].) We now take the absolute value of both sides and observe that
dθ (xi , xj(i)) = θm−1:

∣∣∣∣
n∑

m=2

∑
|i|=m

(N n(χ[i]φ)(xi)− N n(χ[i]φ)(xj(i)))

∣∣∣∣

≤
n∑

m=2

∑
|i|=m

‖N nχ[i]φ‖θ θm−1 ≤
n∑

m=2

‖N n−m‖
∑
|i|=m

‖Lmψχ[i]φ‖θ θm−1.

In this last inequality, we made use of the fact that NP = 0 to get the bound

‖N n(χ[i]φ)‖θ = ‖N n−m(Nm(χ[i]φ)+ Pm(χ[i]φ))‖θ
= ‖N n−m(Lmψ(χ[i]φ))‖θ ≤ ‖N n−m‖‖Lmψ(χ[i]φ))‖θ .

We next estimate the term ‖Lmψ(χ[i]φ))‖θ = ‖e(Smψ)◦σ−1
i (φ ◦ σ−1

i )‖θ , where σ−1
i (x) = ix

is an inverse branch of σn:

‖e(Smψ)◦σ−1
i (φ ◦ σ−1

i )‖θ = |e(Smψ)◦σ−1
i (φ ◦ σ−1

i )|∞ + |e(Smψ)◦σ−1
i (φ ◦ σ−1

i )|θ
≤ |e(Smψ)◦σ−1

i |∞|φ|∞ + |e(Smψ)◦σ−1
i |∞|(φ ◦ σ−1

i )|θ + |e(Smψ)◦σ−1
i |θ |(φ ◦ σ−1

i )|∞
≤ |e(Smψ)◦σ−1

i |∞|φ|∞ + |e(Smψ)◦σ−1
i |∞|(φ ◦ σ−1

i )|θ
+ |e(Smψ)◦σ−1

i |∞|Smψ ◦ σ−1
i |θ |(φ ◦ σ−1

i )|∞
= |e(Smψ)◦σ−1

i |∞(|φ|∞ + |φ ◦ σ−1
i |θ + |Smψ ◦ σ−1

i |θ |(φ ◦ σ−1
i )|∞)

≤ |e(Smψ)◦σ−1
i |∞(‖φ‖θ + |φ ◦ σ−1

i |θ + |Smψ ◦ σ−1
i |θ‖φ‖|θ ).

To calculate the seminorms |φ ◦ σ−1
i |θ and |Smψ ◦ σ−1

i |θ , we use the fact that σ−1
i is a

θm-contraction:

|Smψ ◦ σ−1
i |θ = sup

x �=y

|Smψ ◦ σ−1
i (x)− Smψ ◦ σ−1

i (y)|
dθ (x, y)

≤
m−1∑
i=0

|ψ(σ i(σ−1
i (x)))− ψ(σ i(σ−1

i (y)))|
dθ (x, y)

≤
m−1∑
i=0

|ψ |θ θm−i ≤ 1
1 − θ

|ψ |θ .
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A similar (and simpler) calculation shows that |φ ◦ σ−1
i |θ ≤ θm‖φ‖θ . Putting this all

together, we find that

‖Lmψχ[i]φ‖θ θm−1 ≤ |e(Smψ)◦σ−1
i |∞

(
‖φ‖θ θm−1 + ‖φ‖θ θ2m−1 + |ψ |θ

1 − θ
‖φ‖θ θm

)

≤ C′|e(Smψ)◦σ−1
i |∞‖φ‖θ θm,

where C′ = max{1, |ψ |θ /(1 − θ)}. Thus, using the spectral radius bound for N , we find
that

n∑
m=2

‖N n−m‖
∑
|i|=m

‖Lmψχ[i]φ‖θ θm−1

≤
n∑

m=2

C(r + ε)n−me(n−m)P (ψ)C′θm‖φ‖θ
∑
|i|=m

|e(Smψ)◦σ−1
i |∞

≤ C′′‖φ‖θ κn
n∑

m=2

e(n−m)P (ψ)
∑
|i|=m

|e(Smψ)◦σ−1
i |∞,

where κ = max{θ , r + ε} < 1. We have seen previously that |Smψ ◦ σ−1
i (x)− Smψ ◦

σ−1
i (y)| ≤ (|ψ |θ /(1 − θ)) dθ (x, y) ≤ K < ∞ (since the diameter of�+

A is finite). Taking
the exponential of both sides, we obtain the following bounded distortion estimate:

e
(Smψ)◦σ−1

i (x) ≤ Ce
(Smψ)◦σ−1

i (y)

for any x, y in the domain of σ−1
i . Notice that the domain of σ−1

i is completely determined

by the last symbol in the string i. For each i, let yi be such that e(Smψ)◦σ
−1
i (yi ) =

|e(Smψ)◦σ−1
i |∞, and let zi be any point in the domain of σ−1

i that only depends on the
last symbol im. Then,

∑
|i|=m

|e(Smψ)◦σ−1
i |∞ ≤ C

∑
|i|=m

e
(Smψ)◦σ−1

i (zi )

= C

m∑
im=1

Lmψ1(zi) ≤ Cm‖Lmψ1‖θ ≤ Cem(P (ψ)+ε).

Therefore,
∣∣∣∣
∑
|i|=n

Lnψ(χ[i]φ)(xi)−
m∑
k=1

Lnψ(χ[i]φ)(xi)

∣∣∣∣

≤ C′′‖φ‖θ κn
n∑

m=2

e(n−m)P (ψ)
∑
|i|=m

|e(Smψ)◦σ−1
i |∞

≤ C′′′‖φ‖θ κnen(P (ψ)+ε)(n− 2) ≤ C′′′‖φ‖θ (κ + ε)nen(P (ψ)+ε). (3.4)
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Combining the estimates in equations (3.2), (3.3), and (3.4), we have shown∣∣∣∣
∑

σn(x)=x
eSnψ(x)φ(x)

∣∣∣∣ ≤ C‖φ‖θ (κ + ε)nen(P (ψ)+ε)

with κ + ε < 1. We therefore have∣∣∣∣ 1
Zn

∑
σn(x)=x

eSnψ(x)φ(x)

∣∣∣∣ ≤ De−nP (ψ)C‖φ‖θ (κ + ε)nen(P (ψ)+ε) ≤ C‖φ‖θ (κ + ε)nenε.

Finally, letting τ = (κ + ε)eε < 1 for sufficiently small ε > 0, this gives equation (3.1).

Remark 5. By standard arguments, it is easy to deduce the same equidistribution result for
two-sided shifts.

To pass to the proof of Theorem 2.3, we will use Markov partitions. It is well known that
repellers and Axiom A diffeomorphisms admit finite Markov partitions; see Przytycki and
Urbanski [PU10, Theorem 3.5.2] in the case of expanding maps and Bowen [Bow70] for
the case of Axiom A diffeomorphisms. More precisely, if (J , T ) is a repeller or (�(T ), T )
is an Axiom A diffeomorphism, then there exists a subshift of finite type (�+

A , σ) and a
semiconjugacy π : �+

A → J (respectively (�A, σ) for (�(T ), T )). If the transformation
T is mixing, then the transition matrix A is irreducible and aperiodic. For an appropriately
chosen θ , Lipschitz functions f defined on J or �(T ) can be lifted to a Lipschitz function
f ◦ π . We proceed to prove Theorem 2.3 in the case of one-dimensional expanding
maps, where the passage to a Markov partition is simplest. However, to obtain a uniform
effective equidistribution for expanding maps, we need uniform effective equidistribution
of corresponding lifted systems in Theorem 3.2. Uniformity is lost in Theorem 3.2 when
we apply the spectral radius formula to get bounds on ‖N n‖θ . However, for the particular
systems we are considering, we can obtain uniform bounds on ‖N n‖θ by using the
Birkhoff cone technique, adapted to subshifts of finite type by Naud in [Nau04].

LEMMA 3.3. There exists CW > 0 and 0 < τW < 1 such that the following is true. Given
f ∈ W , let πf be the associated semiconjugacy to the full shift on deg(f )-symbols, and
let ψf = − log(f ′ ◦ πf ). If Lψf hf = eP (ψf )hf , we consider the normalized potential

ψf = ψf + log(hf )− log(hf ◦ σ). Then, for all n ∈ N, ‖N n

ψf
‖θ < CWτnWe

nP (ψf ).

We review the Birkhoff cone construction and prove Lemma 3.3 in Appendix A.

Proof of Theorem 2.3. Consider a degree k expanding map f : S1 → S1. Then, the
Markov partition of (f , S1) consists of k closed intervals which are each mapped under
f to the entirety of S1. Consequentially, (f , S1) is semiconjugated to the full shift
on k symbols, (σ , �+). Let φ : S1 → C be a Lipschitz function. We can then lift φ
to a Lipschitz function φ ◦ π : �+ → C. Likewise, let ψf : S1 → C be the geometric
potential with equilibrium state μf , and let ψf ◦ π : �+ → C be the lifted potential with
equilibrium state μψf ◦π . We claim that the pushforward of μψf ◦π under π is μf , that is,
π∗μψf ◦π = μf . Unfortunately, it is not true that π∗μnψf ◦π = μnf . Since the semiconjugacy
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is not injective, we may have multiple distinct periodic orbits for (�+, σ) get mapped under
π to the same periodic orbit of (S1, f ).

We know that | Fix(σn)| = kn and | Fix(f n)| = kn − 1. Moreover, distinct periodic
orbits of f can be lifted to distinct periodic orbits of σ with the same period, so we have
that for each n, only two distinct points of �+ of period n get mapped under π to the same
point. Let νnψf ◦π be any measure on �+ such that π∗νnψf ◦π = μnf . Then,

∣∣∣∣
∫
φ dμnf −

∫
φ dμf

∣∣∣∣ =
∣∣∣∣
∫
φ ◦ πdνnψ◦π −

∫
φ ◦ π dμψf ◦π

∣∣∣∣
≤

∣∣∣∣
∫
φ ◦ π dμnψf ◦π −

∫
φ ◦ π dμψf ◦π

∣∣∣∣ +
∣∣∣∣
∫
φ ◦ πdνnψf ◦π −

∫
φ ◦ π dμnψf ◦π

∣∣∣∣.
(3.5)

The first term in equation (3.5) can be bounded by C‖φ ◦ π‖θ τn using Theorem 3.2. To
estimate the last term of equation (3.5), we write

νnψf ◦π = 1
Zn(ψf )

∑
x∈An

eSn(ψf )(π(x))δx ,

where An is any subset of Fix(σn) that is mapped bijectively to Fix(f n), and Zn(ψ) is a
normalization constant. Then, if we let y ∈ Fix(σ n)/An, we have
∣∣∣∣
∫
φ ◦ πdνnψf ◦π −

∫
φ ◦ π dμnψf ◦π

∣∣∣∣
=

∣∣∣∣ 1
Zn(ψf )

∑
x∈An

eSn(ψf )(π(x))φ(π(x))− 1
Zn(ψf ◦ π)

∑
x∈Fix(σn)

eSn(ψf )(π(x))φ(π(x))

∣∣∣∣
≤

∣∣∣∣
(

1
Zn(ψf )

− 1
Zn(ψf ◦ π)

) ∑
x∈Fix(σn)

eSn(ψf )(π(x))φ(π(x))

∣∣∣∣
+ 1
Zn(ψf )

∣∣∣∣
∑
x∈An

eSn(ψf )(π(x))φ(π(x))−
∑

x∈Fix(σn)

eSn(ψf )(π(x))φ(π(x))

∣∣∣∣
≤

(
Zn(ψf ◦ π)
Zn(ψf )

− 1
)

‖φ ◦ π‖∞ + 1
Zn(ψf )

eSn(ψf )(π(y))|φ(π(y))|

≤
(
Zn(ψf )+ eSn(ψf )(π(y))

Zn(ψf )
− 1

)
‖φ ◦ π‖∞ + 1

Zn(ψf )
eSn(ψf )(π(y))|φ(π(y))|

≤ 2
Zn(ψf )

eSn(ψf )(π(y))‖φ ◦ π‖θ ≤ D‖φ ◦ π‖θ eSn(ψf )(π(y))e−nP (ψf ).

In the case of expanding maps, we have that P(ψf ) = 0 and Sn(ψf )(π(y)) ≤ −n log λf ,
where λf > 1 is the expansion constant for f, that is, |f ′(x)| ≥ λf for all x ∈ S1. This
proves that

∣∣∣∣
∫
φ dμnf −

∫
φ dμf

∣∣∣∣ ≤ C′‖φ ◦ π‖θ τn
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18 T. A. O’Hare

for some 0 < τ < 1 (not necessarily the same τ as in Theorem 3.2). Clearly, ‖φ ◦ π‖∞ ≤
‖φ‖∞. Moreover,

|φ ◦ π |θ = sup
x �=y

|φ(π(x)− φ(π(y))|
dθ (x, y)

≤ |φ|Lip
d(π(x), π(y))
dθ (x, y)

≤ |π |θ |φ|Lip,

so that ‖φ ◦ π‖θ ≤ max{1, |π |θ }‖φ‖Lip. Thus, absorbing all constants into C, we have
∣∣∣∣
∫
φ dμnf −

∫
φ dμf

∣∣∣∣ ≤ C‖φ‖Lipτ
N ,

as desired.

Remark 6. One can prove effective equidistribution for general expanding repellers and
Axiom A diffeomorphism using Markov partitions in the same way, but more care is
needed to handle the difference between the measure νnψf ◦π and μnψf ◦π .
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A. Appendix. Birkhoff cones for subshifts of finite type
Rather than deducing our desired bounds on ‖N n

ψf
‖θ as a consequence of quasi-

compactness of the transfer operator (the standard approach of the Ruelle–Perron–
Frobenius theorem), we use the technique of Birkhoff cones. The idea is to show that
the transfer operator contracts a certain cone of Lipschitz functions with respect to a
‘pseudo-metric’ and to then establish the leading eigenfunction as a fixed point with
respect to this pseudo-metric. The benefit to this approach is that we can establish explicit
bounds on ‖N n

ψf
‖θ which will be uniform in our set W . Then, one can actually deduce

quasi-compactness as a consequence of this bound. This approach is standard for uniformly
expanding maps; see Baladi [Bal00, §2.2]. For subshifts of finite type, we follow Naud
[Nau04] closely, applied to the specific case of the full shift that we need, and for which
certain technical difficulties vanish.

Definition A.1. A subset � ⊂ B/{0} of a Banach space B is called a cone if λφ ∈ � for
all φ ∈ � and all λ > 0. The cone is called closed if � ∪ {0} is closed, and � is called
convex if ψ1 + ψ2 ∈ � for every ψ1, ψ2 ∈ �. A cone � induces a partial order ≤� on B
by defining ψ ≤� φ ⇐⇒ φ − ψ ∈ � ∪ {0}.

Definition A.2. For ψ and φ in a cone �, define

α(φ, ψ) = sup{λ > 0 | λφ ≤� ψ}, β(φ, ψ) = inf{λ > 0 | ψ ≤� λφ}.
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Finite data rigidity for one-dimensional expanding maps 19

Then, we define the Hilbert pseudo-metric �� on λ by

��(φ, ψ) = log
β(φ, ψ)
α(φ, ψ)

.

THEOREM A.1. (Birkhoff’s inequality) Let � be a convex cone in a Banach space B.
If T : B → B is a linear operator such that T (�) ⊂ �, then for each φ, ψ ∈ �, we have

��(T φ, T ψ) ≤ tanh
(

diam��(T�)

4

)
��(φ, ψ).

LEMMA A.2. Let � be a closed convex cone in a Banach space B endowed with two
(not necessarily equivalent norms ‖ · ‖i , i = 1, 2, and assume that for all φ, ψ ∈ B,

−φ ≤� ψ ≤� φ �⇒ ‖ψ‖i ≤ ‖φ‖i , i = 1, 2.

Then, for any φ, ψ ∈ � with ‖φ‖1 = ‖ψ‖1, we have

‖φ − ψ‖2 ≤ (e��(φ,ψ)) − 1)‖φ‖2.

If �+ is the one-sided full shift on k-symbols, and if F+
θ is the Banach space of

Lipschitz continuous functions on�+ with respect to the dθ -metric, then given any L > 0,
we have a cone in F+

θ given by

CL = {φ ∈ F+
θ |φ ≥ 0, φ �≡ 0, dθ (x, y) ≤ θ �⇒ φ(x) ≤ eLdθ (x,y)φ(y)}.

To apply Birkhoff’s inequality, we will need the following lemmas.

LEMMA A.3. Fix 0 < ξ < 1. Then, for every φ, ψ ∈ CξL with φ, ψ > 0, we have

�L(φ, ψ) ≤ 2 log
(

1 + ξ

1 − ξ

)
+ log sup

x,y∈�+

(
φ(x)ψ(y)

φ(y)ψ(x)

)
.

See Naud [Nau04, Proposition 5.3] for the proof, which is unchanged in our setting.

LEMMA A.4. Fix θ < ξ < 1. Then, for everyL ≥ θ |ψ |θ /(ξ − θ), we have Lψ(CL) ⊂ CξL
and we have

diam�L(Lψ(CL)) ≤ 2 log
(

1 + ξ

1 − ξ

)
+ 2ξL.

Proof. Let φ ∈ CL and let x, y ∈ �+ be such that dθ (x, y) ≤ θ . We obtain

Lψφ(x) =
k∑
i=1

eψ(ix)φ(ix) ≤ eθ(|ψ |θ+L)dθ (x,y)
k∑
i=1

eψ(iy)φ(iy)

= eθ(|ψ |θ+L)dθ (x,y)Lψφ(y).
The condition θ |ψ |θ + Lθ ≤ ξL holds if and only if L ≥ θ |ψ |θ /(ξ − θ). Notice that
φ ∈ CL implies that there exists at least one cylinder set Ci = {x ∈ �+|x0 = i} such
that φ|Ci > 0. Thus, Lψφ(x) ≥ eψ(ix)φ(ix) > 0. We may therefore apply Lemma A.3
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20 T. A. O’Hare

to functions Lψφ1 and Lψφ2:

�L(Lψφ1, Lψφ2 ≤ 2 log
(

1 + ξ

1 − ξ

)
+ log sup

x,y∈�+

(Lψφ1(x)Lψφ2(y)

Lψφ1(y)Lψφ2(x)

)

≤ 2 log
(

1 + ξ

1 − ξ

)
+ log(e2ξL) = 2 log

(
1 + ξ

1 − ξ

)
+ 2ξL.

For φ ∈ F+, define the seminorm

V (φ) := sup
dθ (x,y)≤θ ,x �=y

|φ(x)− φ(y)|
dθ (x, y)

,

and set ‖φ‖L := max(‖φ‖∞, (1/2L)V (φ)). The next lemma gives the essential properties
of the norm ‖ · ‖L.

LEMMA A.5. The norm ‖ · ‖L is equivalent to ‖ · ‖θ , and for all φ, ψ ∈ F+, we have that
−φ2 ≤CL φ1 ≤CL φ2 implies that ‖φ1‖L ≤ ‖φ2‖L.

Proof. Given φ ∈ CL, ε > 0, and x, y ∈ �+ such that dθ (x, y) ≤ θ , we have

|φ(x)− φ(y)| = |e(φ(x)+ε) − e(φ(y)+ε)| ≤ (‖φ‖∞ + ε)

∣∣∣∣φ(x)+ ε

φ(y)+ ε

∣∣∣∣ ≤ (‖φ‖∞ + ε)Ldθ (x, y).

Letting ε → 0 and taking the supremum, we get the estimate V (φ) ≤ ‖φ‖∞. This gives us
that ‖φ‖L ≤ C‖φ‖θ for some C > 0. Likewise, it is easy to see that |φ|θ ≤ 2‖φ‖L, so we
have that the norms are equivalent.

Now suppose that −φ2 ≤L φ1 ≤L φ2. Then, φ2 − φ1 ≥ 0 and φ2 + φ1 ≥ 0. In other
words, for every x ∈ �+, −φ2(x) ≤ φ1(x) ≤ φ2(x), which implies that ‖φ1‖∞ ≤ ‖φ2‖∞.
To prove that ‖φ1‖L ≤ ‖φ2‖L, it suffices to prove that V (φ1) ≤ 2L‖φ2‖∞. We have

V (φ1) = V

(
φ1 − φ2

2
− φ1 + φ2

2

)
≤ 1

2
(V (φ2 − φ1)+ V (φ2 + φ1))

≤ L

2
(‖φ2 − φ1‖∞ + ‖φ2 + φ1‖∞) ≤ 2L‖φ2‖∞.

Observe that for φ ∈ F+, φ ≥ 0, and α = |φ|θ /L > 0. we have for all x, y ∈ �+,

φ(x)+ α

φ(y)+ α
= elog(φ(x)+α)−log(φ(y)+α) ≤ e(|φ|θ /α)dθ (x,y) = eLdθ (x,y).

Hence, φ + α ∈ CL.

Proof of Lemma 3.1. Note that for every f ∈ W , if we take θ > 1/γ , we have |πf |θ ≤ 1.
Thus, for uniformity in Lemma 3.3, we need to take

L ≥ θM

ξ − θ
,

whereM := max{| log(f ′)|C1 | f ∈ W}. Let hf be such that Lψf hf = eP (ψf )hf , and let
νf be the corresponding measure such that L∗

ψf
νf = eP (ψf )νf . Note that for all f ∈ W ,

P(ψf ) = 0. It can be shown that hf ∈ CL for L taken as above. Hence, for any x, y ∈ �+,
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we have

hf (x) = Lψf hf (x) =
k∑
i=1

eψf (ix)hf (ix)

≤ eθ(L+|ψf |θ )dθ (x,y)
k∑
i=1

eψf (iy)hf (iy) ≤ eθ(L+M)dθ (x,y)hf (y),

and hence | log(hf )|θ ≤ θ(L+M), and so |ψf |θ ≤ M + θ(L+M)+ L+M =
(2 + θ)M + (1 + θ)L. Thus, for the normalized operators Lψf , we take

L0 ≥ θ((2 + θ)M + (1 + θ)L)

ξ − θ
.

Moreover, one can show that −φ ≤CL ψ ≤CL φ implies that∫
ψ dμf ≤

∫
φ dμf ,

where μf is the equilibrium state corresponding to ψf .
Observe that for every n ∈ N,∫

Lψf φ dμf =
∫
φ dμf .

Therefore, we may apply Lemma A.2 with ‖ · ‖1 = ‖ · ‖L1 , ‖ · ‖2 = ‖ · ‖L, φ = Ln
ψf
φ,

and ψ = ∫
φ dμf = Ln

ψf
(
∫
φ dμf ):

∥∥∥∥Lnψf φ −
∫
φ dμf

∥∥∥∥
L

≤
(
e
�L(Ln

ψf
φ,Ln

ψf
(
∫
φ dμf )) − 1

)∥∥∥∥
∫
φ dμf

∥∥∥∥
L

≤
(
e
�L(Ln

ψf
φ,Ln

ψf
(
∫
φ dμf )) − 1

)
‖φ‖L.

Let � = diam�L(Lψf (CL)), and observe that Birkhoff’s inequality implies that for
φ ∈ CL,

�L

(
Ln
ψf
φ, Ln

ψf

( ∫
φ dμf

))
≤

(
tanh

(
�

4

))n−1

� ≤ �τn−1
W

for uniform τW . Therefore, for φ ∈ CL, we have
∥∥∥∥Lnψf φ −

∫
φ dμf

∥∥∥∥
L

≤
( ∞∑
j=1

(�τn−1
W )j

j !

)
‖φ‖L = CWτnW‖φ‖L,

where CW is uniform. Since the norms are equivalent, we may replace ‖ · ‖L by ‖ · ‖θ .
It remains to extend this bound to all φ ∈ F+

θ . If φ ≥ 0, then φ + |φ|θ /L ∈ CL, so∥∥∥∥Lnψf φ −
∫
φ dμf

∥∥∥∥
θ

=
∥∥∥∥Lnψf

(
φ + |φ|θ

L

)
−

∫ (
φ + |φ|θ

L

)
dμf

∥∥∥∥
θ

≤ CWτnW

(
‖φ‖θ + |φ|θ

L

)
≤ CWτnW‖φ‖θ
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22 T. A. O’Hare

for a different (but still uniform) CW . For general real-valued φ ∈ F+
θ , we decompose φ

as φ = φ+ − φ−, where φ+, φ− ≥ 0. Then,∥∥∥∥Lnψf φ −
∫
φ dμf

∥∥∥∥
θ

≤
∥∥∥∥Lnψf φ+ −

∫
φ+ dμf

∥∥∥∥
θ

+
∥∥∥∥Lnψf φ−

∫
φ− dμf

∥∥∥∥
θ

≤ CWτnW (‖φ+‖θ + ‖φ−‖θ ) ≤ 2CWτnW‖φ‖θ .

The case of complex-valued φ is handled similarly.
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