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ON THE WEAK BASIS THEOREM IN F-SPACES 

JOEL H. SHAPIRO 

In t roduc t ion . It is well-known that every weak basis in a Fréchet space 
is actually a basis. This result, called the weak basis theorem was first given for 
Banach spaces in 1932 by Banach [1, p. 238], and extended to Fréchet spaces 
by Bessaga and Petczynski [3]. McArthur [12] proved an analogue for bases 
of subspaces in Fréchet spaces, and recently W. J. Stiles [18, Corollary 4.5, 
p. 413] showed that the theorem fails in the non-locally convex spaces lp 

(0 < p < 1). The purpose of this paper is to prove the following generalization 
of Stiles' result. 

THEOREM 1. The weak basis theorem fails in every locally bounded, non-locally 
convex F-space which has a weak basis. 

In other words, if a locally bounded F-space is not locally convex and has a 
weak basis, then it has a weak basis that is not a basis (of course, if the space 
does not have a weak basis, then the weak basis theorem holds vacuously). 
Theorem 1 resembles our earlier result [13, Theorem 1, p. 644]: the Hahn 
Banach Extension Theorem fails in every non-locally convex F-space with a basis. 
In fact, some of the elements of that proof, along with the Krein-Milman-
Rutman theorem on perturbation of bases, provide the tools needed for the 
proof of Theorem 1. We present this proof in section 2, after setting out some 
preliminary material in section 1. In the third section we generalize Theorem 1 
to i^-spaces which admit continuous norms, and in the fourth section we apply 
Theorem 1 to the Hv spaces of functions analytic in the unit disc. We close by 
recording some open problems. 

1. Pre l iminar ies . A complete, metrizable topological vector space is called 
an F-space; and a locally convex F-space is a Fréchet space. A topological vector 
space is locally bounded if it has a bounded neighborhood of zero [8, section 6, 
p. 55, Problem M]. Every locally bounded space is pseudo-metrizable; and if 
it is locally convex, then by a theorem of Kolmogorov [8, Theorem 6.1, p. 44] 
it must be normable. 

A sequence (en) in a topological vector space E is called a basis if for each / 
in E there exists a unique scalar sequence (en'(f)) such that the series 
£ en (f )en converges to / in the topology of E. The linear functionals (en

f) 
are called the coordinate functionals of the basis: if E is an F-space then they 
must be continuous [11, IX.5, Theorem 2, p 126]. A basis for E taken in its 
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weak topology is called a weak basis. We call a sequence in E regular if it lies 
entirely outside some neighborhood of zero. 

The notion of Mackey topology will play a fundamental role in our work. If E 
is a linear space and F is a linear subspace of its algebraic dual, then there is a 
unique strongest locally convex topology r on E such that F is the r-dual of E 
[8, section 18]. This topology is called the Mackey topology of the pair (E, F), 
and we will denote it by m{E, F). It is well-known that the topology of a pseudo-
metrizable locally convex space E is already the Mackey topology of the pair 
(£, £ ' ) [8, Corollary 22.3, p. 210]. 

From these remarks it follows quickly that if £ is a metrizable topological 
vector space with dual E', then a local base for m(E, E') can be formed by 
taking the convex hulls of the members of a local base for the original topology 
of E [13, Proposition 3, p. 641]. Thus the Mackey topology of a metrizable 
topological vector space is the unique locally convex pseudometrizable topology 
which is weaker than the original topology, and has the same continuous linear 
Junctionals. For example, if 0 < p < 1, then Lp([0, 1])' = {0}, and (lp)' = Z00; 
so the Mackey topology of Lp([0, 1]) is the indiscrete topology, while the 
Mackey topology of lv is the ^-topology. 

It is easy to see from our remark about local bases for m(E, Ef) that if E 
is locally bounded in its original topology, then it is locally bounded in its 
Mackey topology. If in addition E has enough continuous linear functional to 
separate points, then its weak topology is Hausdorff, so its Mackey topology is 
also Hausdorff, and therefore normable by the previously mentioned theorem 
of Kolmogorov. 

2. Proof of Theorem 1. The outline of the proof is straightforward. 
Suppose £ is a locally bounded, non-locally convex £-space with a weak basis 
(en). We will show that it is possible to make a perturbation of (en) that is so 
small in the Mackey topology that the new sequence is still a weak basis, yet 
so large in the original topology that it is not a basis. The next three proposi­
tions, contain the means for accomplishing this plan. The first is the Krein-
Milman-Rutman theorem [9], which was used by Stiles [18] to show that lp 

has a weak basis that is not a basis when 0 < p < 1. The second is an observa­
tion about equicontinuity of the coordinate functionals of a basis, which occurs 
in the work o£ N. J. Kalton [7]; and the third is a standard criterion for a 
biorthogonal system to be a basis. 

PROPOSITION A [9; 11, IV. 3, Theorem 3, p. 63]. Suppose E is a Banach 
space and (en) is a basis Jor E with coordinate Junctionals (en

f). Suppose (Jn) is 
a sequence in E such that 

(3.1) £ \\en^fn\\ \W\\ < I-

Then (Jn) is also a basis Jor E. 

PROPOSITION B [7; Proposition 2.1, p. 92]. Suppose (en) is a basis Jor a 
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topological vector space E. If the coordinate junctionals (en') are equicontinuous, 
then (en) is regular. Conversely, if E is an F-space and (en) is regular, then the 
coordinate functionals are equicontinuous. 

PROPOSITION C [11, III.2, Theorem 2 and Corollary 3, p. 31]. Suppose 
(en, en

r) is a bi-orthogonal sequence in an F-space E in which (en) spans a dense 
sub space. Then (en) is a basis for E if and only if the partial sum operators (sn) 
defined by 

(3.2) snf= £ ek'(f)ek (finE) 

form an equicontinuous family. 

Although Proposition C is given in [11] for Banach spaces, the proof, 
suitably interpreted, works for general F-spaces, and we omit it. 

Recall that we are assuming £ is a locally bounded F-space with a weak 
basis (en), and we want to find a weak basis for E that is not a basis. We may 
as well assume that (en) is actually a basis: otherwise we are done. The co­
ordinate functionals (en

f) are then continuous, so E has enough continuous 
linear functionals to separate points. It follows from this and the discussion in 
section 1 that the Mackey topology m(E, Ef) is normable. Thus the Mackey 
completion £ of £ is a Banach space to which the coordinate functionals en

f 

extend continuously and uniquely. We can therefore consider (en, en
r) to be a 

biorthogonal system in E. 
We claim that (en) is a basis for Ê. Indeed, by Proposition C the partial sum 

operators (sn) defined by equation (3.2) are equicontinuous on E; and hence 
m(E, E') -equicontinuous since the convex hulls of the E-neighborhoods of zero 
form a basis for the m(E, £ ' ) -n e ighD O rh°0d s- ^qow e^fr Sn extends uniquely 
to Ê, and its extension is still given by equation (3.2), where en

f is now regarded 
as the continuous linear extension of the original coordinate functional to Ê. 
It follows that the extended operators (sn) are equicontinuous on Ê, so again 
by Proposition C, (en) is a basis for E. 

Let the symbol || • || denote the norm on E, and also the dual norm it induces 
on £ ' = (£) ' . Since E is not locally convex, its Mackey topology is strictly 
weaker than its original topology, so there is a sequence (un) in E which is 
regular in the original topology, but Mac key-convergent to zero. By multiplying 
the elements of the basis (en) by appropriate non-zero scalars if necessary we 
can assume that en —» 0 in the original topology. Passing to a suitable sub­
sequence of (un) we can therefore arrange that the sequence (en + un) is 
regular in the original topology, and that 2Z IWIIkn'll < 1. Let/W = en + un. 
Then (fn) is a sequence in E that satisfies (3.1), so by Proposition A it is a 
basis for Ê, and hence a weak basis for E. But (fn) tends to zero in the Mackey 
topology, since (en) and (un) do, and is regular in the original topology. This 
implies that (fn) cannot be a basis for E. For if it is a basis, then by Proposition 
B the coordinate functionals (/«') are equicontinuous in the original topology; 
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and hence, as in the last paragraph, equicontinuous in the Mackey topology. 
So by Proposition B the sequence (fn) is regular in the Mackey topology: a 
contradiction. This completes the proof of Theorem 1. 

3. Generalization of Theorem 1. The proof of Theorem 1 can be modified 
to work for a more general class of jp-spaces. 

THEOREM 2. Let E be an F-space which admits a continuous norm. If E is not 
locally convex, and has a weak basis, then E has a weak basis that is not a basis. 

The proof requires a generalization of the Krein-Milman-Rutman Theorem 
(Proposition A) to Fréchet spaces. 

PROPOSITION D [7, Proposition 4.1, p. 97]. Suppose E is a Fréchet space, and 
(en) is a basis for E with coordinate functionals {en

r). Suppose further that p0 is a 
continuous seminorm on E with \en' (f )| ^ po(f ) for all n and all f in E. If 
{fn) is a sequence in E with 

HP^n-fn) < 1 
and 

for every continuous seminorm p on E, then (fn) is also a basis for E. 

Proof of Theorem 2. Let E be a non-locally convex F-space. As before we may 
assume that E has a basis (en)£Li. We are assuming that E has a continuous 
norm p, hence p extends uniquely to a continuous norm on Ê, the Mackey 
completion of E. As before, (en) is also a basis for E. At this point the original 
proof requires some rearranging. By replacing en by en/p(en) if necessary, we 
can insure that (en) is a regular sequence in Ê, and hence that the coordinate 
functionals (en)

f are equicontinuous on E, by Proposition B. Thus all the 
functionals en' are dominated by a single continuous seminorm p0. Let po ^ 
pi ^ f 2 . . . be a sequence of seminorms yielding the topology of Ê. Choose 
scalars an 9e 0 such that anen —» 0 in E. Since m(E, E') is strictly weaker than 
the original topology of E, we can choose a sequence (un) in E which is regular 
in the original topology yet for which 

Pn(ujan) < 1/2" (n = 1,2, . . . ). 

Thus 

J2po(un/an) < 1 

while 

Z) Pk(un/an) ^ 2 pn(un/an) < Z) 2~n < °° 
n^k n^k n^k 

for k = 1, 2, . . . ; so the sequence (en + ujan) satisfies the hypotheses of 
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Proposiiton D, and is therefore a basis for Ê. It follows that 

fn = <*nen + un (n = 1, 2, . . . ) 

defines a sequence in E which is a basis for E, and hence a weak basis for E. 
Moreover /„ —> 0 in the Mackey topology of E, and is a regular sequence in 
the original topology (since anen —» 0 in E; and (wn) is regular, but Mackey 
convergent to zero). Thus (fn) is not a basis for E by Proposition B, and the 
proof is complete. 

We do not know if the requirement that E have a continuous norm in 
Theorem 2 can be removed. For example, let co denote the space of all scalar 
sequences, with the topology of coordinatewise convergence. Then co is an 
F-space which does not admit a continuous norm [2, Corollary 1, p. 375], so 
the same is true of the direct sum space lp ® co. But if (en) is the standard 
basis for co and (fn) is a weak basis for lp that is not a basis, then the set of 
pairs {( fn, en)) is a weak basis for lp ® co that is not a basis. Thus the weak 
basis theorem fails in lp © co, even though Theorem 2 does not apply. 

However Theorem 2 still covers many spaces which arise naturally, and are 
not locally bounded. For example if pn —» 0, then the space l(pn) consisting of 
sequences/ = (f(n)) such that 

11/11 = EI/Wh, 
falls into this class; as does the space C\p>pQ lv for 0 :g po < 1, taken in its 
natural least upper bound topology (cf. [15, section 2; 17]). The ll norm is 
clearly a continuous norm on these spaces. 

4. The weak basis theorem fails in Hp (0 < p < 1). The Hardy class 
Hv (0 < p < oo ) is the linear space of functions / analytic in the open unit 
disc \z\ < 1 such that 

/

• 2 T T 

\f(reu)\'dt<co. 

For 0 < p < 1 the functional || • | | / induces a translation invariant metric on 
Hp which turns it into a complete, locally bounded, non-locally convex space 
[4, section 3.2, p. 37] with a separating family of continuous linear functionals 
(evaluation at points of \z\ < 1, for example). The Mackey completion of Hp 

(0 < p < 1) has been identified by Duren, Romberg, and Shields [5, section 3] 
as the space Bp of functions/ analytic in \z\ < 1 with 

imu*= J j \m\dlh{z\ 
UKi 

where 

dnv(z) = (1 - MY1"»-* dxdy. 
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In [16] Shields and Williams show that Bp is a complemented subspace of 
Ll(ixv), and Lindenstrauss and Pelczynski [10, p. 248] use this result to show 
that Bp is isomorphic to ll. We use this last fact to prove: 

THEOREM 3. If 0 < p < 1, then Hp has a weak basis that is not a basis. 

Proof. According to Theorem 1 we need only show that Hp has a weak basis. 
But the Mackey completion Bp of Hp, being isomorphic to ll, has a basis; and 
since Hp is dense in Bp it follows from the Krein-Milman-Rutman Theorem 
(Proposition A, section 2) that there is a basis for Bp contained in Hp. This 
latter basis is therefore a weak basis for Hp, and the proof is complete. 

5. Open problems, (a) It would be of interest to know if the perturbed 
sequence (fn) which occurs in the proofs of Theorems 1 and 2 could be taken 
so that its closed linear span is not all of E. If so, then since the closed linear 
span of (fn) is weakly dense in E {{fn) is a weak basis), wTe would have a proof 
that every non-locally convex F-space which has a basis and admits a continu­
ous norm has a proper, closed, weakly dense subspace. It is not known if this 
is true, although for 0 < p < 1 the spaces lp [14, p. 372] [18, p. 413], and Hp 

[5, Theorem 13, p. 53]; along with some other spaces of analytic functions [14] 
are known to contain such subspaces. From [13, Theorem 1, p. 644] and [5, 
Theorem 17, p. 59] it follows that every non-locally convex -F-space with a 
basis has a closed subspace that is not weakly closed. 

(b) Does Theorem 2 hold for all ^-spaces with weak basis? If we omit the 
F-space hypothesis, then Theorem 2 fails. For it was shown in [6] that if £ is a 
topological vector space whose weak and Adackey topologies differ (for example 
if E is an infinite dimensional Banach space), then there is a non-locally 
convex vector topology r between them. So if £ is a Fréchet space, then any 
weak basis for E is a basis (by the weak basis theorem), and hence a r-basis. 
Thus the weak basis theorem holds for (E, r) ; and if E has a basis, then it 
holds non-trivially. 

(c) Although we have shown that Hp (0 < p < 1) has a weak basis, we 
do not know if it has a basis. 
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