
1 A primer on information theory and
MMSE estimation

Theory is the first term in the Taylor series expansion of practice.

Thomas Cover

1.1 Introduction

Information theory deals broadly with the science of information, including compressibil-
ity and storage of data, as well as reliable communication. It is an exceptional discipline in
that it has a precise founder, Claude E. Shannon, and a precise birthdate, 1948. The pub-
lication of Shannon’s seminal treatise, “A mathematical theory of communication” [58],
represents one of the scientific highlights of the twentieth century and, in many respects,
marks the onset of the information age. Shannon was an engineer, yet information the-
ory is perhaps best described as an outpost of probability theory that has extensive ap-
plicability in electrical engineering as well as substantial overlap with computer science,
physics, economics, and even biology. Since its inception, information theory has been
distilling practical problems into mathematical formulations whose solutions cast light on
those problems. A staple of information theory is its appreciation of elegance and harmony,
and indeed many of its results possess a high degree of aesthetic beauty. And, despite their
highly abstract nature, they often do reveal much about the practical problems that moti-
vated them in the first place.

Although Shannon’s teachings are by now well assimilated, they represented a radical
departure from time-honored axioms [52]. In particular, it was believed before Shannon
that error-free communication was only possible in the absence of noise or at vanishingly
small transmission rates. Shannon’s channel coding theorem was nothing short of revolu-
tionary, as it proved that every channel had a characterizing quantity (the capacity) such
that, for transmission rates not exceeding it, the error probability could be made arbitrarily
small. Ridding the communication of errors did not require overwhelming the noise with
signal power or slowing down the transmission rate, but could be achieved in the face of
noise and at positive rates—as long as the capacity was not exceeded—by embracing the
concept of coding: information units should not be transmitted in isolation but rather in
coded blocks, with each unit thinly spread over as many symbols as possible; redundancy
and interdependency as an antidote to the confusion engendered by noise. The notion of
channel capacity is thus all-important in information theory, being something akin to the
speed of light in terms of reliable communication. This analogy with the speed of light,
which is common and enticing, must however be viewed with perspective. While, in the
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4 A primer on information theory and MMSE estimation

early years of information theory, the capacity might have been perceived as remote (wire-
line modems were transmitting on the order of 300 bits/s in telephone channels whose
Shannon capacity was computed as being 2–3 orders of magnitude higher), nowadays it
can be closely approached in important channels. Arguably, then, to the daily lives of peo-
ple the capacity is a far more relevant limitation than the speed of light.

The emergence of information theory also had an important unifying effect, proving
an umbrella under which all channels and forms of communication—each with its own
toolbox of methodologies theretofore—could be studied on a common footing. Before
Shannon, something as obvious today as the transmission of video over a telephone line
would have been inconceivable.

As anecdotal testimony of the timeless value and transcendence of Shannon’s work, we
note that, in 2016, almost seven decades after its publication, “A mathematical theory of
communication” ranked as a top-three download in IEEE Xplore, the digital repository that
archives over four million electrical engineering documents—countlessly many of which
elaborate on aspects of the theory spawned by that one paper.

This chapter begins by describing certain types of signals that are encountered through-
out the text. Then, the chapter goes on to review those concepts in information theory that
are needed throughout, with readers interested in more comprehensive treatments of the
matter referred to dedicated textbooks [14, 59, 60]. In addition to the relatively young dis-
cipline of information theory, the chapter also touches on the much older subject of MMSE
estimation. The packaging of both topics in a single chapter is not coincidental, but rather
a choice that is motivated by the relationship between the two—a relationship made of
bonds that have long been known, and of others that have more recently been unveiled
[61]. Again, we cover only those MMSE estimation concepts that are needed in the book,
with readers interested in broader treatments referred to estimation theory texts [62].

1.2 Signal distributions

The signals described next are in general complex-valued. The interpretation of complex
signals, as well as complex channels and complex noise, as baseband representations of
real-valued passband counterparts is provided in Chapter 2, and readers needing back-
ground on this interpretation are invited to peruse Section 2.2 before proceeding. We ad-
vance that the real and imaginary parts of a signal are respectively termed the in-phase and
the quadrature components.

Consider a complex scalar s, zero-mean and normalized to be of unit variance, which is
to serve as a signal. From a theoretical vantage, a distribution that is all-important because
of its optimality in many respects is the complex Gaussian, s ∼ NC(0, 1), details of which
are offered in Appendix C.1.9. In practice though, a scalar signal s is drawn from a discrete
distribution defined by M points, say s0, . . . , sM−1, taken with probabilities p0, . . . , pM−1.
These points are arranged into constellations such as the following.
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5 1.2 Signal distributions

Table 1.1 Constellation minimum distances

Constellation dmin

M -PSK 2 sin
(

π
M

)
Square M -QAM

√
6

M−1

M -ary phase shift keying (M -PSK), where

sm = ej2π
m
M +φ0 m = 0, . . . ,M − 1 (1.1)

with φ0 an arbitrary phase. Because of symmetry, the points are always equiprobable,
pm = 1/M for m = 0, . . . ,M − 1. Special mention must be made of binary phase-shift
keying (BPSK), corresponding to M = 2, and quadrature phase-shift keying (QPSK),
which corresponds to M = 4.
Square M -ary quadrature amplitude modulation (M -QAM), where the in-phase and
quadrature components of s independently take values in the set{√

3
2 (M−1)

(
2m− 1−√

M
)}

m = 0, . . . ,
√
M − 1 (1.2)

with
√
M integer. (Nonsquare M -QAM constellations also exist, and they are employed

regularly in wireline systems, but seldom in wireless.) Although making the points in a
M -QAM constellation equiprobable is not in general optimum, it is commonplace. Note
that, except for perhaps an innocuous rotation, 4-QAM coincides with QPSK.

For both M -PSK and square M -QAM, the minimum distance between constellation
points is provided in Table 1.1.

Example 1.1

Depict the 8-PSK and 16-QAM constellations and indicate the distance between nearest
neighbors within each.

Solution

See Fig. 1.1.

It is sometimes analytically convenient to approximate discrete constellations by means
of continuous distributions over a suitable region on the complex plane. These continuous
distributions can be interpreted as limits of dense M -ary constellations for M → ∞. For
equiprobable M -PSK and M -QAM, the appropriate unit-variance continuous distributions
are:

∞-PSK, where s = ejφ with φ uniform on [0, 2π).
∞-QAM, where s is uniform over the square

[ − √
3/2,

√
3/2

] × [ − √
3/2,

√
3/2

]
on the complex plane.

https://doi.org/10.1017/9781139049276.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139049276.002


6 A primer on information theory and MMSE estimation

1

In-phase

Qu
ad

ra
tu

re

8-PSK 16-QAM

In-phase

Qu
ad

ra
tu

re

dmin = 2 sin(π/8)

dmin =
√
(2/5)

000

001010

011

100

101

110

111

�Fig. 1.1 Unit-variance 8-PSK and 16-QAM constellations.

Except for BPSK, all the foregoing distributions, both continuous and discrete, are
proper complex in the sense of Section C.1.4.

Lastly, a distribution that is relevant for ultrawideband communication is “on–off” key-
ing [63, 64]

s =

{
0 with probability 1− ε√
1/ε with probability ε

(1.3)

parameterized by ε. Practical embodiments of this distribution include pulse-position mod-
ulation [65] and impulse radio [66]. Generalizations of (1.3) to multiple “on” states are
also possible.

1.3 Information content

Information equals uncertainty. If a given quantity is certain, then knowledge of it provides
no information. It is therefore only natural, as Shannon recognized, to model information
and data communication using probability theory. All the elements that play a role in com-
munications (signals, channel, noise) are thereby abstracted using random variables and
random processes. For the reader’s convenience, reviews of the basic results on random
variables and random processes that are necessary for the derivations in this chapter are
respectively available in Appendices C.1 and C.3.

As the starting point of our exposition, let us see how to quantify the information content
of random variables and processes. We adopt the bit as our information currency and,
consequently, all applicable logarithms are to the base 2; other information units can be
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7 1.3 Information content

obtained by merely modifying that base, e.g., the byte (base 256), the nat (base e), and the
ban (base 10).

All the summations and integrals that follow should be taken over the support of the
corresponding random variables, i.e., the set of values on which their probabilities are
nonzero.

1.3.1 Entropy

Let x be a discrete random variable with PMF px(·). Its entropy, denoted by H(x), is
defined as

H(x) = −
∑
x

px(x) log2 px(x) (1.4)

= −E
[
log2 px(x)

]
. (1.5)

Although the entropy is a function of px(·) rather than of x, it is rather standard to slightly
abuse notation and write it as H(x). The entropy is nonnegative and it quantifies the amount
of uncertainty associated with x: the larger the entropy, the more unpredictable x. Not
surprisingly then, the uniform PMF is the entropy-maximizing one. If the cardinality of x
is M , then its entropy under a uniform PMF trivially equals H(x) = log2 M bits and
thus we can affirm that, for any x with cardinality M , H(x) ≤ log2 M bits. At the other
extreme, variables with only one possible outcome (i.e., deterministic quantities) have an
entropy of zero. The entropy H(x) gives the number of bits required to describe x on
average. Note that the actual values taken by x are immaterial in terms of H(x); only the
probabilities of those values matter.

Similar to Boltzmann’s entropy in statistical mechanics, the entropy was introduced as
a measure of information by Shannon with the rationale of being the only measure that is
continuous in the probabilities, increasing in the support if px(·) is uniform, and additive
when x is the result of multiple choices [67].

Example 1.2

Express the entropy of the Bernoulli random variable

x =

{
0 with probability p

1 with probability 1− p.
(1.6)

Solution

The entropy of x is the so-called binary entropy function,

H(x) = −p log2 p− (1− p) log2(1− p), (1.7)

which satisfies H(x) ≤ 1 with equality for p = 1/2.

Example 1.3

Express the entropy of an equiprobable M -ary constellation.
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8 A primer on information theory and MMSE estimation

Solution

For s conforming to a discrete constellation with M equiprobable points,

H(s) = −
M−1∑
m=0

1

M
log

1

M
(1.8)

= log2 M. (1.9)

These log2 M bits can be mapped onto the M constellation points in various ways. Par-
ticularly relevant is the so-called Gray mapping, characterized by nearest-neighbor con-
stellation points differing by a single bit. This ensures that, in the most likely error event,
when a constellation point is confused with its closest neighbor, a single bit is flipped. Gray
mapping is illustrated for a PSK constellation in Fig. 1.1.

Having seen how to quantify the amount of information in an individual variable, we
now extend the concept to multiple ones. Indeed, because of the multiple inputs and out-
puts, the most convenient MIMO representation uses vectors for the signals and matrices
for the channels.

Let x0 and x1 be discrete random variables with joint PMF px0x1(·, ·) and marginals
px0

(·) and px1
(·). The joint entropy of x0 and x1 is

H(x0, x1) = −
∑
x0

∑
x1

px0x1(x0, x1) log2 px0x1(x0, x1) (1.10)

= −E
[
log2 px0x1

(x0, x1)
]
. (1.11)

If x0 and x1 are independent, then H(x0, x1) = H(x0)+H(x1). Furthermore, by regarding
x0 and x1 as entries of a vector, we can claim (1.10) as the entropy of such a vector. More
generally, for any discrete random vector x,

H(x) = −E
[
log2 px(x)

]
. (1.12)

Often, it is necessary to appraise the uncertainty that remains in a random variable x

once a related random variable y has been observed. This is quantified by the conditional
entropy of x given y,

H(x|y) = −
∑
x

∑
y

pxy(x, y) log2 px|y(x|y). (1.13)

If x and y are independent, then naturally H(x|y) = H(x) whereas, if x is a deterministic
function of y, then H(x|y) = 0.

The joint and conditional entropies are related by the chain rule

H(x, y) = H(x) +H(y|x), (1.14)

which extends immediately to vectors. When more than two variables are involved, the
chain rule generalizes as

H(x0, . . . , xN−1) =

N−1∑
n=0

H(xn|x0, . . . , xn−1). (1.15)
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9 1.3 Information content

1.3.2 Differential entropy

A quantity seemingly analogous to the entropy, the differential entropy, can be defined for
continuous random variables. If fx(·) is the probability density function (PDF) of x, its
differential entropy is

h(x) = −
∫

fx(x) log2 fx(x) dx (1.16)

= −E
[
log2 fx(x)

]
(1.17)

where the integration in (1.16) is over the complex plane. Care must be exercised when
dealing with differential entropies, because they may be negative. Indeed, despite the sim-
ilarity in their forms, the entropy and differential entropy do not admit the same interpre-
tation: the former measures the information contained in a random variable whereas the
latter does not. Tempting as it may be, h(x) cannot be approached by discretizing fx(·)
into progressively smaller bins and computing the entropy of the ensuing discrete random
variable. The entropy of a b-bit quantization of x is approximately h(x)+b, which diverges
as b → ∞. This merely confirms what one may have intuitively guessed, namely that the
amount of information in a continuous variable, i.e., the number of bits required to describe
it, is generally infinite. The physical meaning of h(x) is thus not the amount of information
in x. In fact, the differential entropy is devoid—from an engineering viewpoint—of oper-
ational meaning and ends up serving mostly as a stepping stone to the mutual information,
which does have plenty of engineering significance.

Example 1.4

Calculate the differential entropy of a real random variable x uniformly distributed in [0, b].

Solution

h(x) = −
∫ b

0

1

b
log2

(
1

b

)
dx (1.18)

= log2 b. (1.19)

Note that h(x) < 0 for b < 1.

Example 1.5 (Differential entropy of a complex Gaussian scalar)

Let x ∼ NC(μ, σ
2). Invoking the PDF in (C.14),

h(x) = E

[ |x− μ|2
σ2

log2 e+ log2
(
πσ2

)]
(1.20)

= log2
(
πeσ2

)
. (1.21)

Observe how, in Example 1.5, the mean μ is immaterial to h(x). This reflects the prop-
erty of differential entropy being translation-invariant, meaning that h(x + a) = h(x) for
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10 A primer on information theory and MMSE estimation

any constant a; it follows from this property that we can always translate a random variable
and set its mean to zero without affecting its differential entropy.

In the context of information content, the importance of the complex Gaussian distribu-
tion stems, not only from its prevalence, but further from the fact that it is the distribution
that maximizes the differential entropy for a given variance [14]. Thus, for any random
variable x with variance σ2, h(x) ≤ log2(πeσ

2).
As in the discrete case, the notion of differential entropy readily extends to the multi-

variate realm. If x is a continuous random vector with PDF fx(·), then

h(x) = −E
[
log2 fx(x)

]
. (1.22)

Example 1.6 (Differential entropy of a complex Gaussian vector)

Let x ∼ NC(μ,R). From (C.15) and (1.22),

h(x) = −E
[
log2 fx(x)

]
(1.23)

= log2 det(πR) + E
[
(x− μ)∗R−1(x− μ)

]
log2 e (1.24)

= log2 det(πR) + tr
(
E
[
(x− μ)∗R−1(x− μ)

])
log2 e (1.25)

= log2 det(πR) + tr
(
E
[
R−1(x− μ)(x− μ)∗

])
log2 e (1.26)

= log2 det(πR) + tr
(
R−1

E
[
(x− μ)(x− μ)∗

])
log2 e (1.27)

= log2 det(πR) + tr(I) log2 e (1.28)

= log2 det(πeR), (1.29)

where in (1.25) we used the fact that a scalar equals its trace, while in (1.26) we invoked
the commutative property in (B.26).

As in the scalar case, the complex Gaussian distribution maximizes the differential en-
tropy for a given covariance matrix. For any complex random vector x with covariance R,
therefore, h(x) ≤ log2 det(πeR).

The conditional differential entropy of x given y equals

h(x|y) = −E
[
log2 fx|y(x|y)

]
(1.30)

with expectation over the joint distribution of x and y. The chain rule that relates joint and
conditional entropies is

h(x0, . . . , xN−1) =

N−1∑
n=0

h(xn|x0, . . . , xn−1), (1.31)

which extends verbatim to vectors.

1.3.3 Entropy rate

To close the discussion on information content, let us turn our attention from random vari-
ables to random processes. A discrete random process x0, . . . , xN−1 is a sequence of dis-
crete random variables indexed by time. If x0, . . . , xN−1 are independent identically dis-
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11 1.4 Information dependence

tributed (IID), then the entropy of the process grows linearly with N at a rate H(x0). More
generally, the entropy grows linearly with N at the so-called entropy rate

H = lim
N→∞

1

N
H(x0, . . . , xN−1). (1.32)

If the process is stationary, then the entropy rate can be shown to equal

H = lim
N→∞

H(xN |x0, . . . , xN−1). (1.33)

When the distribution of the process is continuous rather than discrete, the same defini-
tions apply to the differential entropy and a classification that proves useful in the context
of fading channels can be introduced: a process is said to be nonregular if its present value
is perfectly predictable from noiseless observations of the entire past, while the process is
regular if its present value cannot be perfectly predicted from noiseless observations of the
entire past [68]. In terms of the differential entropy rate h, the process is regular if h > −∞
and nonregular otherwise.

1.4 Information dependence

Although it could be—and has been—argued that Shannon imported the concept of entropy
from statistical mechanics, where it was utilized to measure the uncertainty surrounding
the state of a physical system, this was but a step toward something radically original: the
idea of measuring with information (e.g., with bits) the interdependence among different
quantities. In the context of a communication channel, this idea opens the door to relating
transmit and receive signals, a relationship from which the capacity ultimately emerges.

1.4.1 Relative entropy

Consider two PMFs, p(·) and q(·). If the latter is nonzero over the support of the former,
then their relative entropy is defined as

D(p||q) =
∑
x

p(x) log2
p(x)

q(x)
(1.34)

= E

[
log2

p(x)

q(x)

]
(1.35)

where the expectation is over p(·). The relative entropy, also referred to as the Kullback–
Leibler divergence or the information divergence, can be interpreted as a measure of the
similarity of p(·) and q(·). Note, however, that it is not symmetric, i.e., D(p||q) �= D(q||p)
in general. It is a nonnegative quantity, and it is zero if and only if p(x) = q(x) for every x.

Similarly, for two PDFs f(·) and g(·),

D(f ||g) =
∫

f(x) log2
f(x)

g(x)
dx. (1.36)
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1.4.2 Mutual information

A quantity that lies at the heart of information theory is the mutual information between
two or more random variables. Although present already in Shannon’s original formulation
[58], the mutual information did not acquire its current name until years later [67, 69].
Given two random variables s and y, the mutual information between them, denoted by
I(s; y), quantifies the reduction in uncertainty about the value of s that occurs when y is
observed, and vice versa. The mutual information is symmetric and thus I(s; y) = I(y; s).
Put in the simplest terms, the mutual information measures the information that one random
variable contains about another. As one would expect, I(s; y) is nonnegative, equaling zero
if and only if s and y are independent. At the other extreme, I(s; y) cannot exceed the
uncertainty contained in either s or y.

For discrete random variables, the mutual information can be computed on the basis of
entropies as

I(s; y) = H(s)−H(s|y) (1.37)

= H(y)−H(y|s), (1.38)

or also as the information divergence between the joint PMF of s and y, on the one hand,
and the product of their marginals on the other, i.e.,

I(s; y) = D(psy||pspy) (1.39)

=
∑
s

∑
y

psy(s, y) log2
psy(s, y)

ps(s) py(y)
(1.40)

=
∑
s

∑
y

psy(s, y) log2
py|s(y|s)
py(y)

. (1.41)

Recalling that the information divergence measures the similarity between distributions,
the intuition behind (1.39) is as follows: if the joint distribution is “similar” to the product
of the marginals, it must be that s and y are essentially independent and thus one can hardly
inform about the other. Conversely, if the joint and marginal distributions are “dissimilar,”
it must be that s and y are highly dependent and thus one can provide much information
about the other.

For continuous random variables, relationships analogous to (1.37) and (1.39) apply,
precisely

I(s; y) = h(s)− h(s|y) (1.42)

= h(y)− h(y|s) (1.43)

and

I(s; y) = D(fsy||fsfy) (1.44)

=

∫∫
fsy(s, y) log2

fsy(s, y)

fs(s)fy(y)
ds dy (1.45)

=

∫∫
fsy(s, y) log2

fy|s(y|s)
fy(y)

ds dy. (1.46)

https://doi.org/10.1017/9781139049276.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139049276.002


13 1.4 Information dependence

In contrast with the differential entropies, which cannot be obtained as the limit of the
entropy of the discretized variables, I(s; y) can be perfectly computed as the limit of the
mutual information between discretized versions of s and y. Albeit the entropies and condi-
tional entropies of the discretized variables diverge, their differences remain well behaved.

Since, because of their translation invariance, the entropies and differential entropies are
not influenced by the mean of the corresponding random variables, neither is the mutual
information. In the derivations that follow, therefore, we can restrict ourselves to zero-mean
distributions.

As shorthand notation, we introduce the informal term Gaussian mutual information to
refer to the function I(ρ) = I(s;

√
ρs + z) when z is complex Gaussian and ρ is a fixed

parameter. If we interpret s as a transmit symbol and z as noise, then ρ plays the role of the
signal-to-noise ratio (SNR) and the mutual information between s and the received symbol√
ρs + z is given by I(ρ). Because of this interpretation, attention is paid to how I(ρ)

behaves for small and large ρ, in anticipation of low-SNR and high-SNR analyses later on.
We examine these specific behaviors by expanding I(ρ) and making use of the Landau
symbols O(·) and o(·) described in Appendix F.

Example 1.7 (Gaussian mutual information for a complex Gaussian scalar)

Let us express, as a function of ρ, the mutual information between s and y =
√
ρs+z with

s and z independent standard complex Gaussians, i.e., s ∼ NC(0, 1) and z ∼ NC(0, 1).
Noting that y ∼ NC(0, 1 + ρ) and y|s ∼ NC(

√
ρs, 1), and invoking Example 1.5,

I(ρ) = I
(
s;
√
ρs+ z

)
(1.47)

= h
(√

ρs+ z
)− h

(√
ρs+ z |s) (1.48)

= h
(√

ρs+ z
)− h(z) (1.49)

= log2
(
πe(1 + ρ)

)− log2(πe) (1.50)

= log2(1 + ρ). (1.51)

For small ρ,

I(ρ) =
(
ρ− 1

2
ρ2

)
log2 e+ o(ρ2), (1.52)

which turns out to apply in rather wide generality: provided that s is proper complex as per
the definition in Appendix C.1, its second-order expansion of I(·) abides by (1.52) [64].

In turn, for complex Gaussian s and large ρ,

I(ρ) = log2 ρ+O
(
1

ρ

)
. (1.53)

Example 1.8 (Gaussian mutual information for ∞-PSK)

Let us reconsider Example 1.7, only with s drawn from the ∞-PSK distribution defined
in Section 1.2. The corresponding mutual information cannot be expressed in closed form,
but meaningful expansions can be given. For low ρ, (1.52) holds verbatim because of the
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properness of ∞-PSK. In turn, the high-ρ behavior is [70]

I∞-PSK(ρ) =
1

2
log2 ρ+

1

2
log2

(
4π

e

)
+O

(
1

ρ

)
. (1.54)

Example 1.9 (Gaussian mutual information for ∞-QAM)

Let us again reconsider Example 1.7, this time with s drawn from the ∞-QAM distribution.
As with ∞-PSK, the mutual information cannot be expressed in closed form, but mean-
ingful expansions can be found. For low ρ, and since s is proper complex, (1.52) holds
whereas for high ρ [71]

I∞-QAM(ρ) = log2 ρ− log2

(πe
6

)
+O

(
1

ρ

)
. (1.55)

With respect to the high-ρ mutual information in (1.53), ∞-QAM suffers a power penalty
of πe

6 |dB = 1.53 dB, where we have introduced the notation a|dB = 10 log10 a that is to
appear repeatedly in the sequel.

Example 1.10 (Gaussian mutual information for BPSK)

Let us reconsider Example 1.7 once more, now with s drawn from a BPSK distribution,
i.e., s = ±1. The PDF of y equals

fy(y) =
1

2π

(
e−|y+√

ρ|2 + e−|y−√
ρ|2

)
(1.56)

whereas y|s ∼ NC(
√
ρs, 1). Thus,

IBPSK(ρ) = h(y)− h(y|s) (1.57)

= −
∫

fy(y) log2 fy(y) dy − log2(πe) (1.58)

= 2ρ log2 e−
1√
π

∫ ∞

−∞
e−ξ2 log2 cosh (2ρ− 2

√
ρξ) dξ (1.59)

where, by virtue of the real nature of s, the integration over the complex plane in (1.58)
reduces, after some algebra, to the integral on the real line in (1.59). In turn, this integral
can be alternatively expressed as the series [72, example 4.39]

IBPSK(ρ) = 1 +

[
(4ρ− 1)Q

(√
2ρ

)
−

√
4ρ

π
e−ρ

+

∞∑
�=1

(−1)�

�(�+ 1)
e4�(�+1)ρ Q

(
(2�+ 1)

√
2ρ

)]
log2 e (1.60)

where Q(·) is the Gaussian Q-function (see Appendix E.5).
For small ρ, using the identity

loge cosh (2ρ− 2
√
ρξ) = 2ξ2ρ− 4ξρ3/2 +

(
2− 4ξ4

3

)
ρ2 + o(ρ2) (1.61)
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15 1.4 Information dependence

we can reduce (1.59) to

IBPSK(ρ) =
(
ρ− ρ2

)
log2 e+ o(ρ2) (1.62)

whereas, for large ρ [71]

IBPSK(ρ) = 1− e−ρ√
ρ/π

+ ε (1.63)

with log ε = o(ρ).

Example 1.11 (Gaussian mutual information for QPSK)

Since QPSK amounts to two BPSK constellations in quadrature with the power evenly
divided between them,

IQPSK(ρ) = 2 IBPSK

(ρ
2

)
. (1.64)

Another way to see this equivalence is by considering that, given a BPSK symbol, we can
add a second BPSK symbol of the same energy in quadrature without either BPSK symbol
perturbing the other. The mutual information doubles while twice the energy is spent, i.e.,
IQPSK(2ρ) = 2 IBPSK(ρ).

Discrete constellations beyond QPSK, possibly nonequiprobable, are covered by the
following example.

Example 1.12 (Gaussian mutual information for an arbitrary constellation)

Let s be a zero-mean unit-variance discrete random variable taking values in s0, . . . , sM−1

with probabilities p0, . . . , pM−1. This subsumes M -PSK, M -QAM, and any other discrete
constellation. The PDF of y =

√
ρs+ z equals

fy(y) =
1

π

M−1∑
m=0

pm e−|y−√
ρ sm|2 (1.65)

whereas y|s ∼ NC(
√
ρs, 1). Thus,

IM -ary(ρ) = I
(
s;
√
ρs+ z

)
(1.66)

= −
∫

fy(y) log2 fy(y) dy − log2(πe) (1.67)

with integration over the complex plane.
For low ρ, an arduous expansion of fy(·) and the subsequent integration leads, provided

that s is proper complex, again to (1.52). For high ρ, it can be shown [71] that

IM -ary(ρ) = log2 M − ε (1.68)

with

log ε = −d2min

4
ρ+ o(ρ) (1.69)

where, recall,

dmin = min
k �=�

|sk − s�| (1.70)
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16 A primer on information theory and MMSE estimation

is the minimum distance between constellation points. The mutual information is capped
at log2 M , as one would expect, and the speed at which this limit is approached for ρ → ∞
is regulated by dmin.

The definition of mutual information extends also to vectors. For continuous random
vectors s and y, specifically,

I(s;y) = h(y)− h(y|s) (1.71)

= h(s)− h(s|y) (1.72)

= D(fsy||fsfy). (1.73)

Example 1.13 (Gaussian mutual information for a complex Gaussian vector)

Let y =
√
ρAs+z where s ∼ NC(0,Rs) and z ∼ NC(0,Rz) while A is a deterministic

matrix. With s and z mutually independent, let us express I(s;y) as a function of ρ. Since
y ∼ NC(0, ρARsA

∗ +Rz) and y|s ∼ NC(
√
ρAs,Rz), leveraging Example 1.6,

I(ρ) = I
(
s;
√
ρAs+ z

)
(1.74)

= h
(√

ρAs+ z
)− h

(√
ρAs+ z |s) (1.75)

= h
(√

ρAs+ z
)− h(z) (1.76)

= log2 det
(
πe (ρARsA

∗ +Rz)
)− log2 det

(
πeRz

)
(1.77)

= log2 det
(
I + ρARsA

∗R−1
z

)
. (1.78)

For low ρ, using

∂

∂ρ
loge det(I + ρB)

∣∣∣∣
ρ=0

= tr(B) (1.79)

∂2

∂ρ2
loge det(I + ρB)

∣∣∣∣
ρ=0

= −tr
(
B2

)
(1.80)

it is found that

I(ρ) =
[
tr
(
ARsA

∗R−1
z

)
ρ− 1

2
tr
((

ARsA
∗R−1

z

)2)
ρ2

]
log2 e+ o

(
ρ2

)
(1.81)

whose applicability extends beyond complex Gaussian vectors to any proper complex vec-
tor s. For high ρ, in turn, provided ARsA

∗R−1
z is nonsingular,

I(ρ) = min(Ns, Ny) log2 ρ+ log2 det
(
ARsA

∗R−1
z

)
+O

(
1

ρ

)
, (1.82)

where Ns and Ny are the dimensions of s and y, respectively.

Example 1.14 (Gaussian mutual information for a discrete vector)

Reconsider Example 1.13, only with s an Ns-dimensional discrete complex random vector
and z ∼ NC(0, I). The vector y = [y0 · · · yNy−1]

T is Ny-dimensional and hence A is
Ny ×Ns. Each entry of s can take one of M possible values and therefore s can take one
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17 1.5 Reliable communication

of MNs values, s0, . . . , sMNs−1, with probabilities p0, . . . , pMNs−1. With a smattering of
algebra, the PDF of y can be found to be

fy(y) =
1

πNy

MNs−1∑
m=0

pm e−‖y−√
ρAsm‖2

(1.83)

whereas y|s ∼ NC(
√
ρAs, I). Then,

IM -ary(ρ) = h(y)− log2 det(πeI) (1.84)

= −
∫

. . .

∫
fy(y) log2 fy(y) dy0 · · · dyNy−1 −Ny log2(πe). (1.85)

The number of terms in the summation in (1.83) grows exponentially with Ns, whereas the
integration in (1.85) becomes unwieldy as Ny grows large. Except in very special cases,
numerical integration techniques are called for [73]. Alternatively, it is possible to resort
to approximations of the integral of a Gaussian function multiplied with an arbitrary real
function [74].

For low ρ, and as long as s is proper complex, IM -ary(ρ) expands as in (1.81) [75]. For
ρ → ∞, in turn, I(ρ) → Ns log2 M .

Like the entropy and differential entropy, the mutual information satisfies a chain rule,
specifically

I(x0, . . . , xN−1; y) =

N−1∑
n=0

I(xn; y|x0, . . . , xn−1), (1.86)

which applies verbatim to vectors.

1.5 Reliable communication

1.5.1 Information-theoretic abstraction

One of the enablers of Shannon’s ground-breaking work was his ability to dissect a prob-
lem into simple pieces, which he could solve and subsequently put together to construct the
full solution to the original problem [76]. This ability was manifest in the extremely sim-
ple abstraction of a communication link from which he derived quantities of fundamental
interest, chiefly the capacity. This simple abstraction, echoed in Fig. 1.2, indeed contained
all the essential ingredients.

An encoder that parses the bits to be communicated into messages containing Nbits,
meaning that there are 2Nbits possible such messages, and then maps each message onto
a codeword consisting of N unit-power complex symbols, s[0], . . . , s[N−1]. The code-
word is subsequently amplified, subject to the applicable constraints, into the transmit
signal x[0], . . . , x[N − 1].
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18 A primer on information theory and MMSE estimation

Encoder Decoder

Transmitter Receiver Channel 

w
x[0], . . . , x[N−1] y[0], . . . , y[N−1]

fy[0],...,y[N−1]|x[0],...,x[N−1]

[Nbits bits]
w

�Fig. 1.2 Basic abstraction of a communication link.

The channel, viewed as the random transformation experienced by the transmit signal
and fully described, from such viewpoint, by the conditional probability of its output
given every possible input, the channel law fy[0],...,y[N−1]|x[0],...,x[N−1](·). Accounting
for the power amplification, and for any other transformation involved in converting the
codeword into the transmit signal, fy[0],...,y[N−1]|s[0],...,s[N−1](·) readily derives from
fy[0],...,y[N−1]|x[0],...,x[N−1](·).
A decoder that, cognizant of the channel law, maps its observation of the channel output
y[0] . . . , y[N − 1] onto a guess of which codeword, and thereby which of the 2Nbits

possible messages, has been transmitted.

The functions used by the encoder and decoder to map messages (Nbits bits) onto code-
words (N symbols) define the channel code. The set of all possible codewords is termed a
codebook and the rate of information being transmitted (in bits/symbol) is Nbits/N .

Two observations are in order with respect to the foregoing abstraction.

(1) The abstraction is discrete in time, yet actual channels are continuous in time. As long
as the channel is bandlimited, though, the sampling theorem ensures that a discrete-
time equivalent can be obtained [77]. This discretization is tackled in Chapter 2 and its
implications for time-varying channels are further examined in Section 3.4.5. To recon-
cile this discrete-time abstraction with the continuous-time nature of actual channels,
the “channel” in Fig. 1.2 can be interpreted as further encompassing the transmit and
receive filters, gtx(·) and grx(·), plus a sampling device; this is reflected in Fig. 1.3.

(2) The abstraction is digital, i.e., the information to be transmitted is already in the form
of bits. The digitization of information, regardless of its nature, underlies all modern
forms of data storage and transmission, and is yet again a legacy of Shannon’s work.
We do not concern ourselves with the origin and meaning of the information, or with
how it was digitized. Furthermore, we regard the bits to be transmitted as IID, side-
stepping the source encoding process that removes data redundancies and dependen-
cies before transmission as well as the converse process that reintroduces them after
reception.

For the sake of notational compactness, we introduce vector notation for time-domain
sequences (and in other chapters also for frequency-domain sequences). And, to distinguish
these vectors from their space-domain counterparts, we complement the bold font types

https://doi.org/10.1017/9781139049276.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139049276.002


19 1.5 Reliable communication

Decoder

Transmitter ReceiverDiscrete-time channel

Radio 
Channel

gtx(·) grx(·)Encoder

�Fig. 1.3 Basic abstraction of a communication link, including the discrete-to-continuous and

continuous-to-discrete interfaces.

with an overbar. The sequence s[0], . . . , s[N−1], for instance, is assembled into the vector

s̄ =

⎡
⎢⎣

s[0]
...

s[N − 1]

⎤
⎥⎦ . (1.87)

The channel law fȳ|s̄(·) is a key element in the computation of the capacity, and the
mutual information between s[0], . . . , s[N − 1] and y[0], . . . , y[N − 1] can be expressed
as a function thereof. Recalling (1.46), we can write

I
(
s̄; ȳ

)
= E

[
log2

fȳ|s̄(ȳ|s̄)
fȳ(ȳ)

]
(1.88)

= E

[
log2

fȳ|s̄(ȳ|s̄)
1

2Nbits

∑2Nbits−1
m=0 fȳ|s̄(ȳ|s̄m)

]
, (1.89)

where the expectations are over s̄ and ȳ. In (1.89), the 2Nbits codewords have been assumed
equiprobable, with s̄m the mth such codeword.

Example 1.15 (Channel law with Gaussian noise)

Let

y[n] =
√
ρ [A]n,n s[n] + z[n] n, n = 0, . . . , N − 1 (1.90)

or, more compactly, ȳ =
√
ρAs̄ + z̄ where A is a fixed matrix whose (n, n)th entry

determines how the nth transmit symbol affects the nth received one, while z̄ ∼ NC(0, I).
For this linear channel impaired by Gaussian noise,

fȳ|s̄(ȳ|s̄) = 1

πN
e−‖ȳ−√

ρAs̄‖2

. (1.91)

If the channel law factors as fȳ|s̄(·) =
∏N−1

n=0 fy[n]|s[n](·), meaning that its output at
symbol n depends only on the input at symbol n, the channel is said to be memoryless.
Then, there is no loss of optimality in having codewords with statistically independent
entries [14] and thus fs̄(·), and subsequently fȳ(·), can also be factored as a product of
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20 A primer on information theory and MMSE estimation

per-symbol marginals to obtain

I
(
s̄; ȳ

)
=

N−1∑
n=0

I
(
s[n]; y[n]

)
(1.92)

with

I(s[n]; y[n]) = E

[
log2

fy[n]|s[n](y[n]|s[n])
fy[n](y[n])

]
. (1.93)

For channels both memoryless and stationary, we can drop the index n and write

I(s; y) = E

[
log2

fy|s(y|s)
fy(y)

]
(1.94)

= E

[
log2

fy|s(y|s)∑M−1
m=0 fy|s(y|sm) pm

]
, (1.95)

where (1.95) applies if the signal conforms to an M -point constellation; with those con-
stellation points further equiprobable, pm = 1/M for m = 0, . . . ,M − 1. This convenient
formulation involving a single symbol is said to be single-letter. Conversely, the codeword-
wise formulation that is needed for channels with memory such as the one in Example 1.15
is termed nonsingle-letter. Although the direct discretization of a wireless channel gener-
ally does not yield a memoryless law, with equalizing countermeasures at the receiver
the effects of the memory can be reduced to a minimum (see Chapter 2). Moreover, with
OFDM, the signals are structured such that their joint discretization in time and frequency
ends up being basically memoryless. Altogether, most—but not all—settings in this book
are memoryless.

Example 1.16 (Memoryless channel law with Gaussian noise)

Let

y[n] =
√
ρ s[n] + z[n] n = 0, . . . , N − 1 (1.96)

where z[0], . . . , z[N−1] are IID with z ∼ NC(0, 1). For this memoryless channel impaired
by Gaussian noise,

fy|s(y|s) = 1

π
e−|y−√

ρs|2 . (1.97)

1.5.2 Capacity

In an arbitrary channel, not necessarily memoryless, the average probability of making an
error when decoding a codeword equals

pe =

2Nbits−1∑
m=0

P[ŵ �= m |w=m]P[w = m] (1.98)
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21 1.5 Reliable communication

where w is the index of the codeword actually transmitted while ŵ is the index guessed by
the decoder. With the codewords equiprobable, the above reduces to

pe =
1

2Nbits

2Nbits−1∑
m=0

P[ŵ �= m |w=m]. (1.99)

We term pe the error probability, noting that it can be alternatively referred to as word
error probability, block error probability, or frame error probability. A rate of information
Nbits/N (in bits/symbol) can be communicated reliably if there exists a code of such rate
for which pe → 0 as N → ∞. Note that we do not require the error probability to be zero
for arbitrary N , but only that it vanishes as N → ∞. In the channels of interest to this text,
error-free communication at positive rates is possible only asymptotically in the codeword
length.

The capacity C (in bits/symbol) is then the highest rate achievable reliably and, once ex-
ceeded, the error probability rises rapidly [60, section 10.4]. Most importantly, if the chan-
nel is information stable then the capacity is the maximum mutual information between
the transmit and receive sequences. The concept of information stability can be explained
by means of the so-called information density

i
(
s̄; ȳ

)
= log2

fs̄,ȳ
(
s̄, ȳ

)
fs̄

(
s̄
)
fȳ

(
ȳ
) , (1.100)

which is the quantity whose expectation, recalling (1.46), equals the mutual information.
The channel is information stable if [78]

lim
N→∞

1

N
i
(
s̄; ȳ

)
= lim

N→∞
1

N
E

[
i
(
s̄; ȳ

)]
(1.101)

= lim
N→∞

1

N
I
(
s̄; ȳ

)
, (1.102)

which means that the information density does not deviate (asymptotically) from the mu-
tual information. Intuitively, this indicates that the information that y[0], . . . , y[N − 1]

conveys about s[0], . . . , s[N − 1] is invariant provided that N is large enough. This seem-
ingly abstract concept is best understood by examining specific manifestations of stable
and unstable channels, such as the ones encountered later in the context of fading. For our
purposes, it is enough to point out that a sufficient condition for information stability is
that the channel be stationary and ergodic, conditions that, as reasoned in Chapter 3, are
satisfied within a certain time horizon by virtually all wireless channels of interest. For
a more general capacity formulation that encompasses channels that are not information
stable, the reader is referred to [79, 80].

If the channel is stationary and ergodic, then [81],

C = max
signal constraints

lim
N→∞

1

N
I
(
s̄; ȳ

)
, (1.103)

where the maximization is over the joint distribution of the unit-power codeword symbols
s[0], . . . , s[N − 1], with subsequent amplification subject to whichever constraints apply
to the signal’s power and/or magnitude (see Section 2.3.5).
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Shannon originally dealt with channels not only stationary and ergodic, but also memo-
ryless, in which case [58]

C = max
signal constraints

I(s; y), (1.104)

with the maximum taken over the distribution of the unit-power variable s, and with the
subsequent amplification subject to the applicable constraints. The capacity then entails
optimizing the marginal distribution of the symbols that make up the codewords. Because
of the memorylessness and stationarity of the channel, such symbols may be not only
independent but IID and thus the optimization is over any one of them. In this case, the
capacity admits a single-letter formulation.

As argued earlier, the mean of the symbols s[0], . . . , s[N − 1] does not contribute to the
mutual information. However, a nonzero-mean would increase the power of the transmit
signal. It follows that, irrespective of the specific type of power constraint, the maximiza-
tions of mutual information invariably yield signals that are zero-mean and hence only
zero-mean signals are contemplated throughout the book.

From C (in bits/symbol) and from the symbol period T , the bit rate R (in bits/s) that can
be communicated reliably satisfies R ≤ C/T. And, since the sampling theorem dictates
that 1/T ≤ B with B the (passband) bandwidth, we have that

R

B
≤ C, (1.105)

evidencing the alternative measure of C in bits/s/Hz, often preferred to bits/symbol.1 With
a capacity-achieving codebook and 1/T = B symbols/s, the inequality in (1.105) becomes
(asymptotically) an equality. If the pulse shape induced by the transmit and receive filters
gtx(·) and grx(·) incurs a bandwidth larger than 1/T , the resulting shortfall from capacity
must be separately accounted for. Indeed, as discussed in Chapter 2, pulse shapes with a
modicum of excess bandwidth are common to diminish the sensitivity to synchronization
inaccuracies.

Throughout this text, we resist utilizing the term “capacity” to describe the performance
for specific distributions of s[0], . . . , s[N − 1] that may be of interest but that are not
optimum in the sense of maximizing (1.103) or (1.104). Rather, we then apply the term
“spectral efficiency” and the description R/B, reserving “capacity” and C for the highest
value over all possible signal distributions.

1.5.3 Coding and decoding

Before proceeding, let us establish some further terminology concerning the probabilistic
relationship over the channel.

We have introduced fȳ|s̄(·) as the channel law, a function of both the transmit codeword
and the observation at the receiver. For a fixed codeword, this defines the distribution of

1 Our conversion of bits/symbol to bits/s/Hz, perfectly sufficient for complex baseband symbols representing
real passband signals, can be generalized to real baseband signals and to spread-spectrum signals through the
notion of Shannon bandwidth [82].
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23 1.5 Reliable communication

y[0], . . . , y[N−1] given that such codeword is transmitted while, for a fixed observation,
it defines the likelihood function of s[0], . . . , s[N − 1].

With the conditioning reversed, fs̄|ȳ(·) is the posterior probability of a codeword given
the observation at the receiver.

Optimum decoding rules
To establish the decoding rule that minimizes pe, let us rewrite (1.98) into [83]

pe =

2Nbits−1∑
m=0

P[ȳ /∈ Rm |w=m]P[w = m] (1.106)

=

2Nbits−1∑
m=0

(
1− P[ȳ ∈ Rm |w=m]

)
P[w = m] (1.107)

= 1−
2Nbits−1∑
m=0

∫
Rm

fs̄,ȳ(s̄m, ȳ) dȳ (1.108)

= 1−
2Nbits−1∑
m=0

∫
Rm

fs̄|ȳ(s̄m|ȳ) fȳ(ȳ) dȳ (1.109)

where Rm denotes the decision region associated with codeword m, that is, the set of ob-
servations y[0], . . . , y[N − 1] being mapped by the receiver onto message m. The 2Nbits

decision regions are disjoint. To minimize pe, each term in (1.109) can be separately max-
imized. By inspection, the mth term is maximized by defining Rm as the region that con-
tains all observations ȳ for which the posterior probability fs̄|ȳ(s̄m|ȳ) is maximum. The
optimum decoding strategy is thus to select the most probable codeword given what has
been observed, a rule that is naturally termed maximum a-posteriori (MAP).

Applying Bayes’ theorem (see Appendix C.1.1),

fs̄|ȳ(s̄m|ȳ) =
fȳ|s̄(ȳ|s̄m) fs̄(s̄m)

fȳ(ȳ)
(1.110)

and, when the codewords are equiprobable,

fs̄|ȳ(s̄m|ȳ) =
fȳ|s̄(ȳ|s̄m)
2Nbits fȳ(ȳ)

, (1.111)

where the right-hand side denominator does not depend on m and is thus irrelevant to a
maximization over m. It follows that, with equiprobable codewords, maximizing the pos-
terior probability on the left-hand side is equivalent to maximizing the likelihood function
on the right-hand side numerator. MAP decoding is then equivalent to maximum-likelihood
(ML) decoding, which, faced with an observation ȳ, guesses the message m that maximizes
fȳ|s̄(ȳ|s̄m).
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Example 1.17 (ML decoding rule with Gaussian noise)

Consider the channel with memory and Gaussian noise in Example 1.15. The likelihood
function to maximize is

fȳ|s̄(ȳ|s̄m) = 1

πN
e−‖ȳ−√

ρAs̄m‖2

(1.112)

and, because the logarithm is a monotonic function, the ensuing maximization yields the
same result as the maximization of

loge fȳ|s̄(ȳ|s̄m) = −N loge π − ‖ȳ −√
ρAs̄m‖2 (1.113)

whose first term is constant and so inconsequential to the maximization. The decision made
by an ML decoder is thus the message m whose codeword s̄m minimizes ‖ȳ−√

ρAs̄m‖2,
i.e., the codeword s̄m that induces the channel output

√
ρAs̄m closest in Euclidean distance

to the observation ȳ. This rule is therefore termed minimum-distance (or nearest-neighbor)
decoding.

Example 1.18 (ML decoding rule for a memoryless channel with Gaussian
noise)

For

y[n] =
√
ρ s[n] + z[n] n = 0, . . . , N − 1 (1.114)

with z ∼ NC(0, 1), the ML guess when the receiver observes y[0], . . . , y[N − 1] is the
codeword s[0], . . . , s[N − 1] that minimizes

∑N−1
n=0

∣∣y[n]−√
ρ s[n]

∣∣2.

From hard to soft decoding
In classic receivers of yore, the decoding rules were applied upfront on a symbol-by-
symbol basis. From the observation of y[n], a hard decision was made on the value of
s[n]. This procedure, whereby the MAP or ML rules were applied to individual symbols,
was regarded as the demodulation of the underlying constellation. Subsequently, the N

hard decisions for s[0], . . . , s[N −1] were assembled and fed into a decoder, with two pos-
sible outcomes. If the block of hard decisions was a valid codeword, success was declared.
Alternatively, some of the hard decisions were taken to be erroneous and an attempt was
made, exploiting the algebraic structure of the code, to correct them by modifying the block
into a valid codeword. In these receivers, then, the decoder was essentially a corrector for
the mistakes made by the demodulator. Moreover, in making a hard decision on a given
symbol, the demodulator was throwing away information that could have been valuable to
the decoder when deciding on other symbols [83, 84].

The extreme instance of this approach is uncoded transmission, where the message bits
are directly mapped onto a constellation at the transmitter and recovered via ML-based
hard decision at the receiver. Each bit is then at the mercy of the channel experienced by
the particular symbol in which it is transmitted, without the protection that being part of a
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long codeword can afford. Only a strong SNR or a low spectral efficiency could guarantee
certain reliability in this pre-Shannon framework.

Except when simplicity is the utmost priority or no latency can be tolerated, transmis-
sions are nowadays heavily coded and decoders operate directly on y[0], . . . , y[N − 1],
avoiding any preliminary discarding of information.

Near-capacity coding
As far as the codebooks are concerned, the coding theorems that establish the capacity
as the maximum mutual information rely on random coding arguments—championed by
Shannon—whereby the codewords are constructed by drawing symbols at random from
a to-be-optimized distribution. However, because such codebooks have no structure, their
optimum decoding would require an exhaustive search through the 2Nbits codewords mak-
ing up the codebook in order to find the one codeword that maximizes the MAP or ML
criteria. This is an impossible task even for modest values of Nbits; with Nbits = 30, a
meager value by today’s standards, the number of codewords is already over 1000 million.
Thus, random coding arguments, while instrumental to establishing the capacity, do not
provide viable ways to design practical codes for large Nbits. For decades after 1948, cod-
ing theorists concentrated on the design of codebooks with algebraic structures that could
be decoded optimally with a complexity that was polynomial, rather than exponential, in
the codeword length [85]. Then, in the 1990s, with the serendipitous discovery of turbo
codes [86] and the rediscovery of low-density parity check (LDPC) codes—formulated by
Robert Gallager in the 1960s but computationally unfeasible at that time—the emphasis
shifted to codebook constructions that could be decoded suboptimally in an efficient fash-
ion. Staggering progress has been made since, and today we have powerful codes spanning
hundreds to thousands of symbols and operating very close to capacity. These codes of-
fer the random-like behavior leveraged by coding theorems with a relatively simple inner
structure; in particular, turbo codes are obtained by concatenating lower-complexity codes
through a large pseudo-random interleaver.

A comprehensive coverage of codebook designs and decoding techniques is beyond the
scope of this book, and the interested reader is referred to dedicated texts [83, 87]. Here, we
mostly regard encoders and decoders as closed boxes and discuss how these boxes ought to
be arranged and/or modified to fit the MIMO transceivers (our term to compactly subsume
both transmitters and receivers) under consideration.

Signal-space coding versus binary coding
Thus far we have implicitly considered codes constructed directly over the signal alphabet,
say the points of a discrete constellation. The art of constructing such codes is referred to as
signal-space coding (or coded modulation). Practical embodiments of signal-space coding
exist, chiefly the trellis-coded modulation (TCM) schemes invented by Ungerboeck in the
1970s [88]. Signal-space coding conforms literally to the diagram presented in Fig. 1.3.

As an alternative to signal-space coding, it is possible to first run the message bits
through a binary encoder, which converts messages onto binary codewords; subsequently,
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the coded bits are mapped onto symbols s[0], . . . , s[N − 1] having the desired distribu-
tion, in what can be interpreted as a modulation of the constellation. This alternative is
attractive because it keeps the signal distribution arbitrary while allowing the codebook to
be designed over the simple and convenient binary alphabet. If the rate of the binary code
is r message bits per coded bit and the spectral efficiency is R/B (in message b/s), the
constellation must accommodate 1

rR/B coded bits. When the M constellation points are
equiprobable, the number of bits it can accommodate equals log2 M and thus we can write

R

B
= r log2 M. (1.115)

This expression suggests how the transmit rate can be controlled by adjusting r and M , a
procedure that is explored in detail later in the book.

Fundamentally, there is no loss of optimality in implementing signal-space coding by
mapping the output of a binary encoder onto constellation points as long as the receiver
continues to decode as if those constellation points were the actual coding alphabet. Indeed,
if we take a string of random bits, parse them onto groups, and map each such group to a
constellation point, the resulting codeword is statistically equivalent to a codeword defined
randomly on the constellation alphabet itself. At the transmitter end, therefore, coding and
mapping can be separated with no penalty as long as the receiver performs joint demapping
and decoding. Ironically, then, what defines signal-space coding is actually the signal-space
decoding.

Rather than decoding on the signal alphabet, however, the preferred approach is to first
demap the binary code from the constellation and then separately decode it by means of a
binary decoder. However, to avoid the pitfalls of hard demodulation and prevent an early
loss of information, what is fed to the decoder is not a hard decision on each bit but rather
a soft value.

Soft-input binary decoding
Consider a bit b. We can characterize the probability that b is 0 or 1 directly via P[b= 0]

or P[b = 1] = 1 − P[b = 0] but also, equivalently, through the ratio P[b=1]
P[b=0] [89]. More

conveniently (because products and divisions become simpler additions and subtractions),
we may instead use a logarithmic version of this ratio, the so-called L-value

L(b) = log
P[b = 1]

P[b = 0]
, (1.116)

where, as done with entropies and differential entropies, notation has been slightly abused
by expressing L(·) as a function of b when it is actually a function of its distribution. A
positive L-value indicates that the bit in question is more likely to be a 1 than a 0, and vice
versa for a negative value, with the magnitude indicating the confidence of the decision.
An L-value close to zero indicates that the decision on the bit is unreliable.

Now denote by b�[n] the �th coded bit within s[n]. A soft demapper should feed to the
binary decoder a value quantifying how close b�[n] is to being a 0 or a 1 in light of what the
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receiver has observed, and that information can be conveyed through the posterior L-value

LD

(
b�[n] | ȳ

)
= log

P
[
b�[n] = 1 | ȳ]

P
[
b�[n] = 0 | ȳ] . (1.117)

Applying Bayes’ theorem, we have that

P
[
b�[n] = 0 |ȳ= ȳ

]
=

fȳ|b�[n](ȳ|0)
fȳ(ȳ)

P
[
b�[n] = 0

]
(1.118)

P
[
b�[n] = 1 |ȳ= ȳ

]
=

fȳ|b�[n](ȳ|1)
fȳ(ȳ)

P
[
b�[n] = 1

]
(1.119)

and thus

LD

(
b�[n] |ȳ= ȳ

)
= log

P[b�[n] = 1]

P[b�[n] = 0]︸ ︷︷ ︸
LA(b�[n])

+ log
fȳ|b�[n](ȳ|1)
fȳ|b�[n](ȳ|0)︸ ︷︷ ︸
LE(b�[n] | ȳ)

, (1.120)

whose first term is whatever a-priori information the receiver may already have about b�[n];
in the absence of any such information, LA

(
b�[n]

)
= 0. The second term, in turn, captures

whatever fresh information the demapper supplies about b�[n] in light of what the receiver
observes. More precisely, LE

(
b�[n] | ȳ

)
is the logarithm of the ratio of the likelihood func-

tion for b�[n] evaluated at its two possible values, hence it is a log-likelihood ratio. This
convenient separation into a sum of two terms conveying old (or intrinsic) and new (or
extrinsic) information is what makes L-values preferable to probabilities and sets the stage
for iterative decoding schemes.

When the channel is memoryless, s[n] does not influence received symbols other than
y[n] and thus LD

(
b�[n] | ȳ

)
= LD

(
b�[n] | y[n]

)
. Dropping the symbol index, the single-

letter L-value can then be written as LD

(
b� | y

)
and further insight can be gained. Assum-

ing that the coded bits mapped to each codeword symbol are independent—a condition
discussed in the next section—such that their probabilities can be multiplied, and that the
signal conforms to the discrete constellation defined by s0, . . . , sM−1,

LD

(
b�|y=y

)
= log

P
[
b� = 1 |y=y

]
P
[
b� = 0 |y=y

] (1.121)

= log

∑
sm∈S�

1
ps|y(sm|y)∑

sm∈S�
0
ps|y(sm|y) (1.122)

= log

∑
sm∈S�

1
fy|s(y|sm) pm∑

sm∈S�
0
fy|s(y|sm) pm

(1.123)

= log

∑
sm∈S�

1
fy|s(y|sm)P[b� = 1]

∏
�′ �=� P[b�′ = �′th bit of sm]∑

sm∈S�
0
fy|s(y|sm)P[b� = 0]

∏
�′ �=� P[b�′ = �′th bit of sm]

(1.124)

= log
P[b� = 1]

∑
sm∈S�

1
fy|s(y|sm)

∏
�′ �=� P[b�′ = �′th bit of sm]

P[b� = 0]
∑

sm∈S�
0
fy|s(y|sm)

∏
�′ �=� P[b�′ = �′th bit of sm]

(1.125)

= LA(b�) + log

∑
sm∈S�

1
fy|s(y|sm)

∏
�′ �=� P[b�′ = �′th bit of sm]∑

sm∈S�
0
fy|s(y|sm)

∏
�′ �=� P[b�′ = �′th bit of sm]

(1.126)
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16-QAM

1000 0000

0001

0010

0011

0100

0101

0110

0111

1001

1010

1011

1100

1101

1110

1111

S2
0 S2

1

S0
0 S0

1 S1
0 S1

1

S3
0 S3

1

�Fig. 1.4 Above, 16-QAM constellation with Gray mapping. Below, subsets S�
0 and S�

1 for

� = 0, 1, 2, 3 with the bits ordered from right to left.

where S�
0 and S�

1 are the subsets of constellation points whose �th bit is 0 or 1, respectively
(see Fig. 1.4). Dividing the second term’s numerator and denominator by

∏
�′ �=� P[b�′ = 0],

we further obtain

LD

(
b�|y=y

)
= LA(b�) + log

∑
sm∈S�

1
fy|s(y|sm)

∏
�′=Bm

1

P[b�′=1]
P[b�′=0]∑

sm∈S�
0
fy|s(y|sm)

∏
�′=Bm

1

P[b�′=1]
P[b�′=0]

(1.127)
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= LA(b�) + log

∑
sm∈S�

1
fy|s(y|sm) exp

(∑
�′ �=�,�′∈Bm

1
log P[b�′=1]

P[b�′=0]

)
∑

sm∈S�
0
fy|s(y|sm) exp

(∑
�′ �=�,�′∈Bm

1
log P[b�′=1]

P[b�′=0]

)

= LA(b�) + log

∑
sm∈S�

1
fy|s(y|sm) exp

(∑
�′ �=�,�′∈Bm

1
LA(b�′)

)
∑

sm∈S�
0
fy|s(y|sm) exp

(∑
�′ �=�,�′∈Bm

1
LA(b�′)

)
︸ ︷︷ ︸

LE(b� | y)

(1.128)

where Bm
1 is the subset of coded bits mapped to constellation point sm that equal 1. The

crucial insight here is that the extrinsic term LE(b�|y) depends on LA(b�′) for �′ �= � but
not on LA(b�). Hence, LE(b�|y) contains the information that the demapper can gather
about the �th bit in light of what the receiver observes and of whatever a-priori information
may be available about the other bits within the same symbol. (Although assumed uncon-
ditionally independent, the coded bits may exhibit dependences when conditioned on y.)
This opens the door to implementing iterative receivers, as detailed in the next section. For
one-shot receivers, where the soft demapping takes place only once, there is no a-priori
information and thus

LD

(
b� |y=y

)
= log

∑
sm∈S�

1
fy|s(y|sm)∑

sm∈S�
0
fy|s(y|sm)

. (1.129)

This log-likelihood ratio is what is fed into the decoder of a one-shot receiver.

Example 1.19 (Log-likelihood ratio for a memoryless channel with Gaussian
noise)

For

y[n] =
√
ρ s[n] + z[n] n = 0, . . . , N − 1 (1.130)

with z ∼ NC(0, 1) and equiprobable constellation points, the log-likelihood ratios fed into
the decoder for each symbol are

LD

(
b� |y=y

)
= log

∑
sm∈S�

1
e−|y−√

ρ sm|2∑
sm∈S�

0
e−|y−√

ρ sm|2 � = 0, . . . , log2 M − 1. (1.131)

From the log-likelihood ratios based on the receiver observations and from its own
knowledge of the code structure, a decoder can then compute posterior L-values for each
of the message bits, namely

LD

(
b[n] |ȳ) = log

P
[
b[n] = 1 |ȳ]

P
[
b[n] = 0 |ȳ] , (1.132)

where b[n] for n = 0, . . . , Nbits−1 are the bits making up the message. A processor produc-
ing these posterior L-values, a decidedly challenging task when the codewords are long, is
referred to as an a-posteriori probability (APP) decoder, or also as a soft-input soft-output
decoder. The APP decoder is one of the key engines of modern receivers, with different
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flavors depending on the class of code, e.g., the Bahl–Cocke–Jelinek–Raviv (BCJR) algo-
rithm for convolutional codes [90]. In the case of turbo codes, where two constituent codes
are concatenated, a breakdown of LD

(
b[n] |ȳ) into a-priori and extrinsic information about

each message bit is the key to iterative decoding procedures whereby two APP decoders
operate on the constituent codes exchanging information. Specifically, the extrinsic infor-
mation generated by a first decoder is fed as a-priori information to the second decoder,
allowing it to produce a better guess on the message bits as well as new extrinsic infor-
mation for the first decoder, and so on. As the constituent codes are concatenated through
an interleaver, the extrinsic information exchanged by the decoders must be interleaved
and deinterleaved on each pass. This reduces the probability that the decoding process gets
stuck in loops, and thus every iteration reduces the error probability with a handful of it-
erations sufficing to reach satisfactory levels. LDPC codes, although made up of a single
block code, are also decoded iteratively.

Whichever the type of code, the sign of the L-values generated by an APP decoder for
the message bits directly gives the MAP decisions,

b̂[n] = sign
(
LD

(
b[n] |ȳ)) n = 0, . . . , Nbits − 1. (1.133)

Although it takes the entire codeword into account, an APP decoder maximizes the poste-
rior probability on a bit-by-bit basis, thereby minimizing the average bit error probability
rather than pe. If the probabilities P

[
b̂[n] = b[n] |ȳ] for n = 0, . . . , Nbits−1 are condition-

ally independent given the observations, then the minimization of the bit error probability
also minimizes pe. Otherwise it need not, yet in practice it hardly matters: although there
is no guarantee that capacity can then be achieved for N → ∞, APP decoders perform
superbly. In simple settings with turbo or LDPC codes, operation at the brink of capacity
with satisfactorily small error probabilities has been demonstrated [91, 92].

1.5.4 Bit-interleaved coded modulation

As mentioned, there is no fundamental loss of optimality in the conjunction of binary
encoding and constellation mapping: a signal-space decoder can recover from such signals
as much information as could have been transmitted with a nonbinary code defined directly
on the constellation alphabet. Is the same true when the receiver features a combination of
soft demapping and binary decoding?

To shed light on this issue at a fundamental level, let us posit a stationary and memory-
less channel as well as an M -point equiprobable constellation. In this setting, codewords
with IID entries are optimum and thus bits mapped to distinct symbols can be taken to be
independent. However, the channel does introduce dependencies among same-symbol bits.
Even with the coded bits produced by the binary encoder being statistically independent,
after demapping at the receiver dependencies do exist among the soft values for bits that
traveled on the same symbol. Unaware, a binary decoder designed for IID bits ignores these
dependencies and regards the channel as being memoryless, not only at a symbol level but
further at a bit level [93]. Let us see how much information can be recovered under this
premise.
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The binary-decoding counterpart to the memoryless mutual information in (1.94) and
(1.95) is

∑log2M−1
�=0 I(b�; y), and this binary-decoding counterpart can be put as a function

of the channel law fy|s(·) via [94]

log2M−1∑
�=0

I(b�; y) =

log2M−1∑
�=0

E

[
log2

fy|b�(y|b�)
fy(y)

]
(1.134)

=

log2M−1∑
�=0

1

2

(
E

[
log2

fy|b�(y|0)
fy(y)

]
+ E

[
log2

fy|b�(y|1)
fy(y)

])
(1.135)

=

log2M−1∑
�=0

1

2

(
E

[
log2

∑
sm∈S�

0
fy|s(y|sm) 1

M/2∑M−1
m=0 fy|s(y|sm) 1

M

]

+E

[
log2

∑
sm∈S�

1
fy|s(y|sm) 1

M/2∑M−1
m=0 fy|s(y|sm) 1

M

])
(1.136)

=

log2M−1∑
�=0

1

2

(
E

[
log2

∑
sm∈S�

0
fy|s(y|sm)

1
2

∑M−1
m=0 fy|s(y|sm)

]

+E

[
log2

∑
sm∈S�

1
fy|s(y|sm)

1
2

∑M−1
m=0 fy|s(y|sm)

])
, (1.137)

where S�
0 and S�

1 are as defined in the previous section. In (1.136), the factors 1/(M/2)

and 1/M correspond, respectively, to the probability of a constellation point sm within
the sets S�

0 and S�
1 (whose cardinality is M/2) and within the entire constellation (whose

cardinality is M ).
Whenever no dependencies among same-symbol coded bits are introduced by the chan-

nel, the binary decoder is not disregarding information and thus
∑

� I(b�; y) = I(s; y).
This is the case with BPSK and QPSK, where a single coded bit is mapped to the in-phase
and quadrature dimensions of the constellation. However, if each coded bit does acquire in-
formation about other ones within the same symbol, as is the case when multiple coded bits
are mapped to the same dimension, then, with binary decoding not taking this information
into account,

∑
� I(b�; y) < I(s; y).

Example 1.20

Consider a binary codeword mapped onto a QPSK constellation. The coded bits are parsed
into pairs and the first and second bit within each pair are mapped, respectively, to the in-
phase and quadrature components of the constellation, e.g., for a particular string 010010

within the binary codeword,

· · · 0︸︷︷︸
I

1︸︷︷︸
Q︸ ︷︷ ︸

s[n−1]

0︸︷︷︸
I

0︸︷︷︸
Q︸ ︷︷ ︸

s[n]

1︸︷︷︸
I

0︸︷︷︸
Q︸ ︷︷ ︸

s[n+1]

· · · (1.138)

The resulting QPSK codeword s[0], . . . , s[N − 1] is transmitted, contaminated by noise,
and demapped back into a binary codeword at the receiver. The noise affects the bits as
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follows:

· · · 0︸︷︷︸

{z[n−1]}

1︸︷︷︸
�{z[n−1]}

0︸︷︷︸

{z[n]}

0︸︷︷︸
�{z[n]}

1︸︷︷︸

{z[n+1]}

0︸︷︷︸
�{z[n+1]}

· · · (1.139)

Provided the noise samples are independent and the real and imaginary parts of each noise
sample are also mutually independent, no dependences are introduced among the bits. Even
with binary coding and decoding, it is as if the code were defined on the QPSK alphabet
itself and the performance limits are dictated by I(s; y).

Example 1.21

Consider a binary codeword mapped onto a 16-QAM constellation. The bits are parsed into
groups of four, from which the in-phase and quadrature components must be determined.
Among the various possible mappings, suppose we choose to map the first two bits of each
group to the in-phase component and the final two bits to the quadrature component, e.g.,
for a particular string 011010110100 within the binary codeword,

· · · 01︸︷︷︸
I

10︸︷︷︸
Q︸ ︷︷ ︸

s[n−1]

10︸︷︷︸
I

11︸︷︷︸
Q︸ ︷︷ ︸

s[n]

01︸︷︷︸
I

00︸︷︷︸
Q︸ ︷︷ ︸

s[n+1]

· · · (1.140)

The resulting 16-QAM codeword s[0], . . . , s[N−1] is transmitted, contaminated by noise,
and soft-demapped back into a binary codeword at the receiver. The noise affects the bits
as

· · · 1︸︷︷︸
�{z[n−1]}

0︸︷︷︸
�{z[n−1]}

1︸︷︷︸

{z[n]}

0︸︷︷︸

{z[n]}

1︸︷︷︸
�{z[n]}

1︸︷︷︸
�{z[n]}

0︸︷︷︸

{z[n+1]}

1︸︷︷︸

{z[n+1]}

· · · (1.141)

and thus pairs of coded bits are subject to the same noise. While a signal-space decoder
would take these additional dependences into account and be limited by I(s; y), a binary
decoder ignores them and is instead limited by I(b0; y) + I(b1; y) + I(b2; y) + I(b3; y)

where b� is the �th bit within each group of four.

Remarkably, the difference between
∑

� I(b�; y) and I(s; y) is tiny provided the map-
ping of coded bits to constellation points is chosen wisely. Gray mapping, where nearest-
neighbor constellation points differ by only one bit, has been identified as a robust and
attractive choice [94, 95].

Once all the ingredients that lead to (1.137) are in place, only one final functionality is
needed to have a complete information-theoretic abstraction of a modern wireless trans-
mission chain: interleaving. Although symbol-level interleaving would suffice to break off
bursts of poor channel conditions, bit-level interleaving has the added advantage of shuf-
fling also the bits contained in a given symbol; if the interleaving were deep enough to
push any bit dependencies beyond the confines of each codeword, then the gap between∑

� I(b�; y) and I(s; y) would be closed. Although ineffective for N → ∞, and thus not
captured by mutual information calculations, bit-level interleaving does improve the per-
formance of actual codes with finite N .

The coalition of binary coding and decoding, bit-level interleaving, and constellation
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�Fig. 1.5 BICM architecture with a one-shot receiver.

mappers and soft demappers constitutes the so-called bit-interleaved coded modulation
(BICM) architecture, depicted in Fig. 1.5 and standard in wireless transceivers nowadays
[96]. As mentioned, BICM is information-theoretically equivalent to signal-space coding
for the cases of BPSK (single bit per symbol) and Gray-mapped QPSK (two quadrature
bits per symbol). For higher-order constellations, even if the dependencies among same-
symbol bits are not fully eradicated by interleaving and the receiver ignores them, it is only
slightly inferior.

Example 1.22 (BICM mutual information in Gaussian noise)

Let y =
√
ρs + z with z ∼ NC(0, 1). Recalling from Example (1.16) the corresponding

channel law, (1.137) specializes to

log2M−1∑
�=0

I(b�; y) =

log2M−1∑
�=0

1

2

(
E

[
log2

∑
sm∈S�

0
e−|y−√

ρ sm|2

1
2

∑M−1
m=0 e−|y−√

ρ sm|2

]

+E

[
log2

∑
sm∈S�

1
e−|y−√

ρ sm|2

1
2

∑M−1
m=0 e−|y−√

ρ sm|2

])
. (1.142)

Example 1.23

For 16-QAM and 64-QAM constellations, compare the mutual information I(s; y) in (1.95)
against (1.142) with Gray mapping of bits to constellation points.
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�Fig. 1.6 Left-hand side, comparison between the mutual information in (1.95), shown in solid,

and its BICM counterpart in (1.142), shown in dashed, for 16-QAM in Gaussian noise.

Right-hand side, same comparison for 64-QAM.

Solution

The comparisons are shown in Fig. 1.6.

By incorporating iterative procedures at the receiver, most of the tiny loss incurred by
a one-shot BICM receiver could be recovered at the price of decoding latency [97, 98].
In essence, an iterative BICM receiver can progressively learn the dependencies among
bits given the observation of y[0], . . . , y[N − 1], thereby closing the gap with signal-space
coding. Although arguably not worthwhile given the tininess of this gap, the idea of iter-
ative reception becomes more appealing in MIMO, where the gap broadens, and thus it is
worthwhile that we introduce its basic structure here.

Figure 1.7 depicts an iterative BICM receiver, where the soft demapping is aided by
a-priori information Lmap

A (·) about the coded bits. This improves the L-values Lmap
D (·) pro-

duced by the demapper, and the ensuing extrinsic information Lmap
E (·) = Lmap

D (·)−Lmap
A (·)

is deinterleaved and fed to the APP decoder as Lcod
A (·). The APP decoder then generates

extrinsic information on the coded bits, Lcod
E (·) = Lcod

D (·) − Lcod
A (·), which, properly in-

terleaved, becomes the new a-priori information for the soft demapper, thereby completing
an iteration. The APP decoder also generates L-values for the message bits and, once suf-
ficient iterations have been run, the sign of these directly gives the final MAP decisions.
Notice that only extrinsic L-values, representing newly distilled information, are passed
around in the iterations. That prevents the demapper from receiving as a-priori informa-
tion knowledge generated by itself in the previous iteration, and likewise for the decoder.
Interestingly, with iterative reception, departing from Gray mapping is preferable so as to
enhance the bit dependencies chased by the iterative process. Pushing things further in that
direction, once could even consider multidimensional mappers operating, rather than on
individual symbols, on groups of symbols [99, 100].

Altogether, the main take-away point from this section is the following: because of the
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�Fig. 1.7 BICM architecture with an iterative receiver.

coincidence of (1.137) and the actual mutual information for BPSK and QPSK, and their
minute—and recoverable—difference for other constellations of interest, no distinction is
customarily made between these quantities. This is also the principle followed in this text,
where the performance limits of systems featuring BICM are investigated by means of the
mutual information directly.

1.5.5 Finite-length codewords

For the most part we concern ourselves with the performance for N → ∞, a stratagem that
relies on this limit being representative of the performance of finite—but long—codewords.
To substantiate this representativity, it is useful to briefly touch on an information-theoretic
result that sheds light on the spectral efficiencies that can be fundamentally achieved when
the length of the codewords is finite [101, 102]. Since error-free communication is gener-
ally not possible nonasymptotically, an acceptable error probability must be specified. If
the acceptable codeword error probability is pe, then, in many channels admitting a single-
letter characterization it is possible to transmit at

R

B
= C −

√
V

N
Q−1(pe) +O

(
logN

N

)
, (1.143)

where Q(·) is the Gaussian Q-function while V is the variance of the information density,
i.e.,

V = var
[
i(s; y)

]
, (1.144)

with s conforming to the capacity-achieving distribution. This pleasing result says that the
backoff from capacity is approximately

√
V/N Q−1(pe), which for codeword lengths and

error probabilities of interest is generally small; quantitative examples for specific channels
are given in Chapter 4. Hence, the capacity indeed retains its significance for finite—but
long—codewords.
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Example 1.24

The turbo codes featured by 3G systems and by LTE, and the LDPC codes featured by
the NR standard, have codeword lengths corresponding to values of Nbits that typically
range from the few hundreds to the few thousands [103, chapter 12][104]. In certain simple
channels, such codes can operate within a fraction of dB—in terms of SNR—of capacity.

Example 1.25

Over a bandwidth of B = 20 MHz, every 1000 codeword symbols incur a latency of
1000
20·106 = 0.05 ms. If such bandwidth, typical of LTE, is shared by U users, then the latency
is multiplied correspondingly. Given that LTE end-to-end latencies stand at about 10 ms,
the contribution of coding to those latencies is minor.

For NR, the latency target is on the order of 1 ms [105, 106], but this reduction is to be
accompanied by major increases in bandwidth and thus codeword lengths need not suffer
major contractions.

The robustness of the capacity to finite codeword lengths, in conjunction with its com-
putability for many relevant channels, renders it a quantity of capital importance. At the
same time, for finite N and pe > 0, in addition to the transmit bit rate R and the ensuing
spectral efficiency R/B, a companion quantity of interest is the throughput that measures
the rate (in b/s) within the successfully decoded codewords; this throughput is given by
(1− pe)R.

For small N , the expansion in (1.143) ceases to be precise and, in the limit of N = 1,
the communication would become uncoded and every individual symbol would then be left
at the mercy of the particular noise realization it experienced, without the protection that
coding affords. The error probability would be comparatively very high and the throughput
would suffer. Uncoded communication, the rule in times past, seems unnatural in the post-
Shannon world and it is nowadays found only in systems priming simplicity.

1.5.6 Hybrid-ARQ

In relation to the codeword length, hybrid-ARQ has become established as an indispensable
ingredient from 3G onwards. Blending channel coding with the traditional automatic repeat
request (ARQ) procedure whereby erroneously received data are retransmitted, hybrid-
ARQ turns the length and rate of the codewords into flexible—rather than fixed—quantities
[107–109].

In a nutshell, hybrid-ARQ works as follows: when a received codeword is decoded in-
correctly, rather than discarding it and receiving its retransmission anew as is the case
in standard ARQ, the received codeword is stored and subsequently combined with the
retransmission once it arrives at the receiver. This combination has a higher chance of suc-
cessful decoding than either of the (re)transmissions individually. Moreover, the procedure
may be repeated multiple times, until either decoding is indeed successful or the number
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of retransmissions reaches a certain value and an error is declared. Two variants of hybrid-
ARQ stand out:

Chase combining, where every (re)transmission contains an identical copy of the code-
word. The receiver simply adds its observations thereof, increasing the SNR with each
new retransmission.
Incremental redundancy, where every retransmission contains additional coded sym-
bols that extend the codeword and lower its rate. Indeed, the result of appending each
retransmission to the previous one(s) is a longer codeword that represents the original
Nbits message bits with a larger number of symbols N .

Incremental redundancy is the most powerful incarnation of hybrid-ARQ and the one
we implicitly refer to unless otherwise stated.

Example 1.26

How could incremental redundancy be implemented if every (re)transmission had length
N and the maximum number of retransmissions were four?

Solution

The transmitter could generate a codeword of length 4N and then transmit N of those sym-
bols, say every fourth one. The receiver, privy to the codebook and hybrid-ARQ scheme,
would attempt decoding. If that failed, another set of N symbols could be sent and the re-
ceiver could again attempt decoding, this time the ensuing codeword of 2N symbols, and
so on. If the final decoding with all 4N symbols failed, an error would be declared.

1.5.7 Extension to MIMO

How does the formulation of the channel capacity change with MIMO? In essence, the
abstraction gets vectorized. Referring back to Fig. 1.2:

The encoder parses the source bits into messages of Nbits and maps those onto code-
words made up of N vector symbols, s[0], . . . , s[N − 1]. Each codeword is possibly
transformed (e.g., via OFDM or MIMO precoding) and amplified into x[0], . . . ,x[N−1]

as per the applicable constraints.
The channel, which connects every input (transmit antenna) with every output (receive
antenna), is described by the conditional distribution fy[0],...,y[N−1]|x[0],...,x[N−1](·).
With transformations and amplification accounted for, fy[0],...,y[N−1]|s[0],...,s[N−1](·)
follows from fy[0],...,y[N−1]|x[0],...,x[N−1](·).
The decoder maps every possible channel output, y[0], . . . ,y[N − 1], onto a guess of
the original block of Nbits bits.

The encoder can be implemented as a true vector encoder, as a bank of parallel scalar
encoders, or as a combination thereof, and the tradeoffs involved as well as the structure
of the corresponding receivers are examined later in the text. At this point, we do not peek
inside the encoder, but only posit that it produces codewords s[0], . . . , s[N − 1].
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Under information stability, the capacity is then

C = max
power constraints

lim
N→∞

1

N
I
(
s[0], . . . , s[N − 1];y[0], . . . ,y[N − 1]

)
(1.145)

with maximization over the distribution of s[0], . . . , s[N − 1], with the subsequent trans-
formation and amplification having to respect the applicable constraints. If the channel is
stationary and memoryless, then the transmit vector symbols are IID and the optimization
in (1.145) becomes single-letter over a single vector symbol.

MIMO BICM
Recall that the norm in modern communication systems is to rely on powerful binary codes
mapped to discrete constellations at the transmitter and with soft demapping and binary
decoding at the receiver. With the complement of bit-level interleaving, this comprises the
BICM architecture. The dependencies that may exist among same-symbol bits are disre-
garded in one-shot BICM receivers and progressively learned in their iterative counterparts.

BICM extends to the MIMO realm. With parallel scalar encoders, one per transmit an-
tenna, the remarks made for single-input single-output (SISO) BICM apply verbatim. With
a vector encoder, a one-shot BICM receiver regards as mutually independent all the bits
transmitted from the various antennas at each symbol. The role of fy|b� is then played by
fy|b�,j (·), defined as the PDF of y conditioned on the �th bit from the jth transmit antenna
equaling 0 or 1. With M -ary equiprobable constellations,

fy|b�,j (y|0) =
1

1
2M

Ns

∑
sm∈S�,j

0

fy|s(y|sm) (1.146)

fy|b�,j (y|1) =
1

1
2M

Ns

∑
sm∈S�,j

1

fy|s(y|sm), (1.147)

where Ns is the dimensionality of s while S�,j
0 and S�,j

1 are the subsets of transmit vectors
whose �th coded bit at the jth transmit antenna is 0 and 1, respectively. From the uncon-
ditioned equiprobability of the coded bits, the cardinality of each subset is 1

2M
Ns , hence

the scaling factors in (1.146) and (1.147). Extending the SISO expression in (1.137), the
information-theoretic performance of a one-shot MIMO BICM receiver is characterized
by [110, 111]

Ns−1∑
j=0

log2M−1∑
�=0

I(b�,j ;y) =

Ns−1∑
j=0

log2M−1∑
�=0

1

2

(
E

[
log2

∑
sm∈S�,j

0
fy|s(y|sm)

1
2

∑MNs−1
m=0 fy|s(y|sm)

]

+E

[
log2

∑
sm∈S�,j

1
fy|s(y|sm)

1
2

∑MNs−1
m=0 fy|s(y|sm)

])
. (1.148)

In contrast with SISO, where BICM one-shot reception experiences no loss relative to
signal-space coding for BPSK and QPSK, in MIMO there may be a nonzero loss even
in those cases because of possible dependences introduced by the channel among the bits
emitted from different transmit antennas. The loss is more significant than in SISO, yet still
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relatively modest (about 1 dB at most) if the bit mappings are wisely chosen [96]. And, as
in SISO, this loss can be largely recovered through the use of iterative decoding [112, 113].

Altogether, the mutual information I(s;y) continues to be satisfyingly representative of
the fundamental performance achievable with binary encoding and decoding.

1.6 MMSE estimation

Estimation theory deals with the questions of how and with what accuracy one can infer the
value taken by a certain quantity on the basis of related observations. Normally built upon
an underlying statistical model that connects those observations with the unknown quantity,
estimation theory involves devising estimators according to different fidelity criteria and
analyzing their performances [62, 114, 115].

To begin with, let us again consider the basic transformation that lies at the heart of any
noisy linear channel, namely

y =
√
ρs+ z, (1.149)

where ρ is fixed and the noise z can be taken to be zero-mean and of unit variance, but oth-
erwise arbitrarily distributed for now. The problem at hand is to produce the “best possible”
estimate ŝ(y) for the variable s based on the following.

The observation of y.
A fidelity criterion specifying the sense in which “best possible” is to be understood.
Some knowledge of the probabilistic relationship between s and y, and in particular
knowledge of the posterior probability fs|y(·) and the likelihood function fy|s(·). The
marginal distribution fs(·), termed the prior probability, is further available to the esti-
mator whenever s is part of the system design (say, if s is a signal) but may or may not
be available otherwise (say, if s is a channel coefficient produced by nature).

Among the fidelity criteria that could be considered, a few are, for good reasons, preva-
lent in information theory and communications.

The MAP criterion gives ŝ(y) = argmaxs fs|y(s|y) with maximization over all values
taken by s. Just like a MAP decoder identifies the most probable codeword, a MAP
estimator returns the most probable value of s given what has been observed.
The maximum-likelihood (ML) criterion gives ŝ(y) = argmaxs fy|s(y|s), again with
maximization over all values taken by s. Just like an ML decoder selects the most likely
codeword, an ML estimator returns the value of s whose likelihood is highest. As argued
via Bayes’ theorem in the context of optimum decoding, if the prior is uniform, i.e., if s
takes equiprobable values, then the ML and the MAP criteria coincide.
The MMSE criterion, which is the one herein entertained.

The mean-square error measures the power of the estimation error, that is, the power
of |s− ŝ(y)|. A rather natural choice in Gaussian-noise contexts, given how the defining
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feature of such noise is its power, the mean-square error was introduced early in the nine-
teenth century (by Gauss himself, as well as by Legendre [116, 117]) and it is by now a
ubiquitous metric. The mean-square error for a given estimate ŝ(y) thus equals

E

[
|s− ŝ(y)|2

]
, (1.150)

with expectation over both s and y or, equivalently, over s and z. The minimization of this
quantity gives the MMSE and the corresponding ŝ(·) is the MMSE estimator.

1.6.1 The conditional-mean estimator

As it turns out, and regardless of the noise distribution (refer to Problem 1.34), the MMSE
estimator is

ŝ(y) = E
[
s|y], (1.151)

whose rather intuitive form indicates that, in the MMSE sense, the best guess for s is its
expected value given whatever observations are available; if no observations are available,
then the MMSE estimate is directly the mean. This conditional-mean estimator is unbiased
in the sense that

E
[
ŝ(y)

]
= E

[
E[s|y]] (1.152)

= E[s], (1.153)

but it is biased in the sense that, for a realization s, it may be that E
[
ŝ(
√
ρ s + z)

] �= s.
Put differently, the estimation error over all possible values of s is always zero-mean, but
achieving the MMSE may require that the estimation error for given values of s be nonzero-
mean. This dichotomy may cause confusion as the estimator can be declared to be both
biased and unbiased, and it is important to make the distinction precise.

Crucially, the conditional-mean estimator ŝ(y) = E[s|y] complies with the orthogonal-
ity principle whereby E

[
g(y∗)

(
s− ŝ(y)

)]
= 0 for every function g(·). In particular,

E
[
y∗(s− ŝ)

]
= 0 (1.154)

E
[
ŝ∗(s− ŝ)

]
= 0. (1.155)

Plugged into (1.150), the conditional-mean estimator yields

MMSE(ρ) = E

[
s− ∣∣E[s|y]∣∣2] (1.156)

with outer expectation over both s and y or, equivalently, over s and z. Alternatively, we
can write MMSE(ρ) = E

[
var[s|y]] with expectation over y and with

var[s|y] = E

[∣∣s− E[s|y]∣∣2 |y] (1.157)

the conditional variance of s given y. For given fs(·) and fz(·), i.e., for a certain signal
format and some noise distribution, MMSE(ρ) is a decreasing function of ρ. Also, the
mean of the signal being estimated does not influence the MMSE, and hence we can restrict
ourselves to zero-mean signal distributions.
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1.6.2 MMSE estimation in Gaussian noise

Homing in on Gaussian-noise settings, with z ∼ NC(0, 1), we have that y|s ∼ NC(
√
ρ s, 1)

and thus

fy|s(y|s) = 1

π
e−|y−√

ρs|2 . (1.158)

Then, the posterior probability equals, via Bayes’ theorem,

fs|y(s|y) =
fy|s(y|s) fs(s)

fy(y)
(1.159)

=
fy|s(y|s) fs(s)∫
fy|s(y|s) fs(s) ds

(1.160)

from which the conditional-mean estimator can be expressed as

ŝ(y) = E
[
s |y=y

]
(1.161)

=

∫
s fs|y(s|y) ds (1.162)

=

∫
s fy|s(y|s) fs(s)∫
fy|s(y|s) fs(s) ds

ds (1.163)

=

∫
s fy|s(y|s) fs(s) ds∫
fy|s(y|s) fs(s) ds

(1.164)

=

∫
s e−|y−√

ρs|2 fs(s) ds∫
e−|y−√

ρs|2 fs(s) ds
(1.165)

with integrations over the complex plane.

Example 1.27 (MMSE estimation of a complex Gaussian scalar)

Consider y =
√
ρs+ z with s ∼ NC(0, 1). Then,

fs(s) =
1

π
e−|s|2 (1.166)

and, applying (1.165),

ŝ(y) =

∫
s e−|y−√

ρs|2e−|s|2 ds∫
e−|y−√

ρs|2e−|s|2 ds
(1.167)

=

∫
s e−

|y|2
1+ρ e−|

√
1+ρ s−√ ρ

1+ρ y|2 ds∫
e−

|y|2
1+ρ e−|

√
1+ρ s−√ ρ

1+ρ y|2 ds
(1.168)

=

∫
s e

−
∣∣∣s−

√
ρ

1+ρ y
∣∣∣2/ 1

1+ρ ds∫
e
−
∣∣∣s−

√
ρ

1+ρ y
∣∣∣2/ 1

1+ρ ds

(1.169)
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=

∫
s

1

π
(

1
1+ρ

) e
−
∣∣∣s−

√
ρ

1+ρ y
∣∣∣2/ 1

1+ρ ds∫
1

π
(

1
1+ρ

) e
−
∣∣∣s−

√
ρ

1+ρ y
∣∣∣2/ 1

1+ρ ds

. (1.170)

Recognizing that

1

π
(

1
1+ρ

) exp

⎛
⎜⎝−

∣∣∣s− √
ρ

1+ρ y
∣∣∣2

1
1+ρ

⎞
⎟⎠ (1.171)

is the PDF of a complex Gaussian variable with mean
√
ρ

1+ρ y, the expectation in the numer-
ator of (1.170) equals that mean, whereas the denominator equals unity and thus

ŝ(y) =

√
ρ

1 + ρ
y, (1.172)

which is a linear function of the observed value of y, hence the result that the MMSE
estimator of a Gaussian quantity is linear. This estimator then yields

MMSE(ρ) = E

[∣∣∣∣s−
√
ρ

1 + ρ
y

∣∣∣∣2
]

(1.173)

= E
[|s|2]− 2

√
ρ

1 + ρ

(

E[ys∗]
)
+

ρ

(1 + ρ)2
E
[|y|2] (1.174)

and, using E
[|s|2] = 1 as well as E

[
ys∗

]
=

√
ρ and E

[|y|2] = 1 + ρ, finally

MMSE(ρ) =
1

1 + ρ
. (1.175)

Interestingly, the MMSE estimate of a Gaussian variable coincides with its MAP esti-
mate (but not with the ML one). And, unsurprisingly given that the Gaussian distribution
maximizes the differential entropy for a given variance, Gaussian variables are the hardest
to estimate, meaning that any non-Gaussian variable of the same variance is bound to incur
a lower estimation MMSE [118].

Example 1.28

Verify that the MMSE estimator in the previous example may be biased for a specific value
of s but is unbiased over the distribution thereof.

Solution

For a given s,

E
[
ŝ
(√

ρs+ z
) |s=s

]
= E

[ √
ρ

1 + ρ
(
√
ρs+ z) |s=s

]
(1.176)

= E

[
ρ

1 + ρ
s +

√
ρ

1 + ρ
z

]
(1.177)

=
ρ

1 + ρ
s (1.178)
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= s− 1

1 + ρ
s (1.179)

�= s (1.180)

with a bias − 1
1+ρ s. The expectation of this bias over the distribution of s is zero.

Example 1.29 (MMSE estimation of a BPSK scalar)

Consider y =
√
ρs + z with s drawn from a BPSK constellation. The conditional-mean

estimate (refer to Problem 1.36) is

ŝ(y) = tanh
(
2
√
ρ
{y}), (1.181)

while the corresponding MMSE reduces to the real integral

MMSEBPSK(ρ) = 1− 1√
π

∫ ∞

−∞
tanh

(
2ρ− 2

√
ρ ξ

)
e−ξ2dξ. (1.182)

Example 1.30 (MMSE estimation of a QPSK scalar)

Since QPSK amounts to two BPSK constellations in quadrature, each with half the power,
the conditional-mean estimators for the in-phase and quadrature components are given by
(1.181) applied to the real and imaginary parts of the observation, respectively, with ρ/2 in
place of ρ. Then, the MMSE function equals

MMSEQPSK(ρ) = MMSEBPSK

(ρ
2

)
. (1.183)

The low-ρ expansion of (1.175) reveals that, for a complex Gaussian variable,

MMSE(ρ) = 1− ρ+ o(ρ), (1.184)

which extends to the estimation of any variable that is proper complex, i.e., that occupies
both noise dimensions in a balanced manner [119]. The prime example is QPSK.

In contrast,

MMSEBPSK(ρ) = 1− 2ρ+ o(ρ) (1.185)

and this expansion applies, beyond BPSK, whenever a one-dimensional variable is being
estimated in complex Gaussian noise.

In the high-ρ regime, in turn, the MMSE decays as 1/ρ when the variable being esti-
mated is Gaussian and possibly faster otherwise [120]. In particular, for discrete constella-
tions the decay is exponential and details on the exponents for certain types of constella-
tions are given in [121, 122].

Generalization to vectors

The generalization of the preceding derivations to vector transformations is straightfor-
ward. Given

y =
√
ρAs+ z, (1.186)
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where A is fixed while s and z are independent with z ∼ NC(0,Rz), the conditional-
mean estimator

ŝ(y) = E
[
s|y] (1.187)

attains the MMSE simultaneously for every entry of s and

E = E

[(
s− ŝ(y)

)(
s− ŝ(y)

)∗]
(1.188)

is the MMSE matrix, which equals the covariance of the estimation error vector and fully
describes the accuracy of the conditional-mean vector estimator. The jth diagonal entry of
E indicates the MMSE incurred in the estimation of the jth entry of s. From E, scalar
quantities with various significances may be derived as needed, say weighted arithmetic or
geometric averages of the diagonal entries, or directly the largest diagonal entry [123].

Example 1.31 (MMSE estimation of a complex Gaussian vector)

Consider y =
√
ρAs+z with s ∼ NC(0,Rs) and z ∼ NC(0, I). Extending to the vector

realm the derivations of Example 1.27, the MMSE estimator is found to be

ŝ(y) =
√
ρRsA

∗(I + ρARsA
∗)−1y, (1.189)

which, as in the case of a Gaussian scalar, is linear in the observation. Then, from the above
and (1.188),

E = E[ss∗]− E[sŝ∗]− E[ŝs∗] + E[ŝŝ∗] (1.190)

= Rs − 2ρRsA
∗(I + ρARsA

∗)−1ARs

+ ρRsA
∗(I + ρARsA

∗)−1(I + ρARsA
∗)(I + ρARsA

∗)−1ARs (1.191)

= Rs − ρRsA
∗(I + ρARsA

∗)−1ARs. (1.192)

Applying the matrix inversion lemma (see Appendix B.7) in a reverse fashion to (1.192),
we can also rewrite E into the alternative form

E =
(
R−1

s + ρA∗A
)−1

. (1.193)

Expanding (1.192), the generalization of the low-ρ expansion in (1.184) to proper com-
plex vectors comes out as

E = Rs − ρRsA
∗ARs +O(ρ2), (1.194)

which holds whenever s is a proper complex vector, irrespective of its distribution.

1.6.3 The I-MMSE relationship in Gaussian noise

The random transformation invoked extensively throughout this chapter, namely

y =
√
ρs+ z, (1.195)

where s and z are independent and z ∼ NC(0, 1), is the cornerstone of any linear scalar
channel impaired by Gaussian noise and, as we have seen in the formulation of the capacity,
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45 1.6 MMSE estimation

the mutual information functions I(ρ) = I
(
s;
√
ρs + z

)
for relevant distributions of s

are exceedingly significant. The derivative of I(ρ) turns out to have significance as well.
Regardless of the distribution of s, it holds that [124]

1

log2 e
· d

dρ
I(ρ) = MMSE(ρ), (1.196)

where the right-hand side equals the MMSE when estimating s from its noisy observation,
y. The identity in (1.196) is termed the I-MMSE relationship, and its integration yields an
alternative form for the mutual information function, precisely

1

log2 e
I(ρ) =

∫ ρ

0

MMSE(ξ) dξ. (1.197)

Example 1.32 (I-MMSE relationship for a complex Gaussian scalar)

Consider y =
√
ρs+ z with s ∼ NC(0, 1). As derived in Examples 1.7 and 1.27,

I(ρ) = log2(1 + ρ) (1.198)

and

MMSE(ρ) =
1

1 + ρ
, (1.199)

which satisfy the I-MMSE relationship in (1.196).

Example 1.33 (I-MMSE relationship for a BPSK scalar)

Let y =
√
ρs+ z with s drawn from a BPSK constellation. From Examples 1.10 and 1.29,

I(ρ) = 2ρ log2 e−
1√
π

∫ ∞

−∞
e−ξ2 log2 cosh

(
2ρ− 2

√
ρξ

)
dξ (1.200)

and

MMSE(ρ) = 1− 1√
π

∫ ∞

−∞
tanh

(
2ρ− 2

√
ρ ξ

)
e−ξ2dξ, (1.201)

which satisfy the I-MMSE relationship.

Example 1.34 (I-MMSE relationship for a QPSK scalar)

As shown in Examples 1.11 and 1.30,

IQPSK(ρ) = 2 IBPSK

(ρ
2

)
. (1.202)

and

MMSEQPSK(ρ) = MMSEBPSK

(ρ
2

)
, (1.203)

which are consistent with the I-MMSE relationship.

In the low-ρ regime, the I-MMSE relationship bridges the distinctness of proper complex
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signals in terms of mutual information and MMSE. Indeed, recalling (1.52) and (1.185),
for such signals

I(ρ) =
(
ρ− 1

2
ρ2

)
log2 e+ o(ρ2) (1.204)

and

MMSE(ρ) = 1− 2ρ+ o(ρ). (1.205)

Generalization to vectors

The I-MMSE relationship also extends to the vector realm. Consider again the random
transformation

y =
√
ρAs+ z, (1.206)

where A is fixed while s and z are independent with z ∼ NC(0, I). Then, regardless of
the distribution of s [125]

1

log2 e
∇A I(s;

√
ρAs+ z) = ρAE, (1.207)

where ∇A denotes the gradient with respect to A (see Appendix D) while E is the MMSE
matrix defined in (1.188) for the estimation of s, i.e., the generalization to multiple dimen-
sions of the scalar MMSE.

Example 1.35 (I-MMSE relationship for a complex Gaussian vector)

As established in Example 1.13, when the noise is z ∼ NC(0, I) while s ∼ NC(0,Rs),

?I(s;
√
ρAs+ z) = log2 det

(
I + ρARsA

∗) (1.208)

= log2 det
(
I + ρA∗ARs

)
(1.209)

and, applying the expression for the gradient of a log-determinant function given in Ap-
pendix D, we obtain

1

log2 e
∇A I(s;

√
ρAs+ z) = ρARs

(
I + ρA∗ARs

)−1
(1.210)

= ρA
(
R−1

s + ρA∗A
)−1

, (1.211)

which indeed equals ρAE with E =
(
R−1

s + ρA∗A
)−1

as determined in Example 1.31
for a complex Gaussian vector.

Example 1.36

Use the I-MMSE relationship to express ∂
∂ρI(s;

√
ρAs + z) as a function of A and the

MMSE matrix E, for an arbitrarily distributed s.

Solution

Let us first narrow the problem to s ∼ NC(0,Rs). Denoting by λj(·) the jth eigenvalue
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of a matrix, we can rewrite (1.209) as

I(s;
√
ρAs+ z) = log2 det(I + ρA∗ARs) (1.212)

= log2
∏
j

λj(I + ρA∗ARs) (1.213)

=
∑
j

log2 λj(I + ρA∗ARs) (1.214)

=
∑
j

log2
(
1 + ρ λj(A

∗ARs)
)
. (1.215)

Then, differentiating with respect to ρ, we obtain

∂

∂ρ
I(s;

√
ρAs+ z) =

∑
j

λj(A
∗ARs)

1 + ρ λj(A∗ARs)
log2 e (1.216)

=
∑
j

λj

(
A∗ARs(I + ρA∗ARs)

−1
)
log2 e (1.217)

= tr
(
A∗ARs(I + ρA∗ARs)

−1
)
log2 e (1.218)

= tr
(
A∗A(R−1

s + ρA∗A)−1
)
log2 e (1.219)

= tr
(
A (R−1

s + ρA∗A)−1A∗) log2 e (1.220)

and thus we can write
1

log2 e

∂

∂ρ
I(s;

√
ρAs+ z) = tr

(
AEA∗). (1.221)

Although derived for a complex Gaussian vector s, as a corollary of the I-MMSE relation-
ship this identity can be claimed regardless of the distribution of s. Indeed, the evaluation
of ∂

∂ρI(s;
√
ρAs+ z) for an arbitrary s can be effected through the gradient with respect

to
√
ρA, and the application of (1.207) then leads to (1.221) all the same.

Evaluated at ρ = 0, the identity in (1.221) gives the formula

1

log2 e

∂

∂ρ
I(s;

√
ρAs+ z)

∣∣∣∣
ρ=0

= tr (ARsA
∗) , (1.222)

which is a generalization of (1.79).

1.7 LMMSE estimation

While the precise distribution of certain quantities (say, the signals being transmitted) is
entirely within the control of the system designer, there are other quantities of interest (say,
the channel gain) that are outside that control. When quantities of the latter type are to be
estimated, it is often the case that we are either unable or unwilling to first obtain their dis-
tributions beyond the more accessible mean and variance. With the MMSE retained as the
estimation criterion, a sensible approach is to regard the distribution as that whose MMSE
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48 A primer on information theory and MMSE estimation

estimation is the hardest, namely the Gaussian distribution. This leads to the application
of the linear MMSE (LMMSE) estimators derived in Examples 1.27 and 1.31 to quantities
that need not be Gaussian.

Alternatively, LMMSE estimators may be featured as a design choice, even if the rele-
vant distribution is known, simply because of the appeal and simplicity of a linear filter.

And then, of course, LMMSE estimators may be in place simply because the quantities
to be estimated are known to be Gaussian (say, capacity-achieving signals).

For all the foregoing reasons, LMMSE estimators are prevalent in wireless communi-
cations and throughout this text. Except when estimating a truly Gaussian quantity, an
LMMSE estimator is bound to be inferior to a conditional-mean estimator, but also more
versatile and robust.

1.7.1 Random variables

Under the constraint of a linear structure, the LMMSE estimator for a vector s based on
the observation of a related vector y is to be

ŝ = W MMSE∗y + bMMSE. (1.223)

The mean μs can be regarded as known and the role of the constant term bMMSE is to ensure
that E[ŝ(y)] = μs (refer to Problem 1.45). With the unbiasedness in that sense taken care
of, the LMMSE estimator is embodied by the matrix W MMSE, which can be inferred from
(1.189) to equal

W MMSE = R−1
y Rys (1.224)

and that is indeed its form in broad generality. To see that, we can write the mean-square
error on the estimation of the jth entry of s via a generic linear filter W as

E

[
|[s− ŝ]j |2

]
= E

[
|[s−W ∗y]j |2

]
(1.225)

= E

[∣∣sj −w∗
jy

∣∣2] (1.226)

= E

[
|sj |2

]
− E

[
w∗

jy s∗j
]
− E

[
sj y

∗wj

]
+ E

[
w∗

jyy
∗wj

]
, (1.227)

where wj = [W ]:,j is shorthand for the part of W—its jth column—that is responsible
for estimating that particular entry, sj = [s]j . The gradient of (1.227) with respect to wj ,
obtained by applying (D.5)–(D.7), equals

∇wjE

[
|[s− ŝ]j |2

]
= −E

[
y s∗j

]
+ E

[
yy∗wj

]
(1.228)

= −E

[
y
(
sj −w∗

jy
)∗]

(1.229)

= −E

[
y [s− ŝ]∗j

]
, (1.230)

which, equated to zero, is nothing but a manifestation of the orthogonality principle ex-
posed earlier in this chapter. Assembling the expressions corresponding to (1.229) for ev-
ery column of W and equating the result to zero, we find that the LMMSE filter must
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49 1.7 LMMSE estimation

satisfy

−E

[
y
(
s−W MMSE∗y

)∗]
= E

[
yy∗]W MMSE − E

[
ys∗

]
(1.231)

= 0 (1.232)

and, since the mean-square error is a quadratic—and thus convex—function of the linear
filter, this condition is not only necessary but sufficient (see Appendix G). Rewritten as

RyW
MMSE −Rys = 0, (1.233)

its solution does give W MMSE = R−1
y Rys as anticipated in (1.224).

Moving on, the covariance of the estimate ŝ emerges as

Rŝ = E[ŝŝ∗] (1.234)

= W MMSE∗
E[yy∗]W MMSE (1.235)

= R∗
ysR

−1
y RyR

−1
y Rys (1.236)

= R∗
ysR

−1
y Rys, (1.237)

while

Rŝs = E
[
W MMSE∗ys∗

]
(1.238)

= R∗
ysR

−1
y Rys (1.239)

= Rŝ. (1.240)

It follows that the MMSE matrix is given by

E = E

[(
s− ŝ(y)

)(
s− ŝ(y)

)∗]
(1.241)

= Rs −Rŝs −R∗
ŝs +Rŝ (1.242)

= Rs −R∗
ysR

−1
y Rys. (1.243)

Specialized to the linear random transformation y =
√
ρAs+ z, the foregoing expres-

sions for W MMSE and E become

W MMSE =
√
ρ (Rz + ρARsA

∗)−1ARs (1.244)

and

E = Rs − ρRsA
∗(Rz + ρARsA

∗)−1ARs, (1.245)

consistent with (1.189) and (1.192) if Rz = I . Derived in the context of conditional-
mean MMSE estimation for white Gaussian noise and Gaussian signals, within the broader
confines of the LMMSE these expressions apply regardless of the distributions thereof.
Only the second-order statistics of noise and signals enter the relationships, as a result of
which the formulation is characterized by the presence of quadratic forms.

Applying the matrix inversion lemma (see Appendix B.7) to (1.244), we can rewrite
W MMSE into the alternative form

W MMSE =
√
ρ
[
R−1

z − ρR−1
z A

(
R−1

s + ρA∗R−1
z A

)−1
A∗R−1

z

]
ARs (1.246)
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=
√
ρR−1

z

[
I − ρA

(
R−1

s + ρA∗R−1
z A

)−1
A∗R−1

z

]
ARs (1.247)

=
√
ρR−1

z

[
A− ρA

(
R−1

s + ρA∗R−1
z A

)−1
A∗R−1

z A
]
Rs (1.248)

=
√
ρR−1

z A
[
I − ρ

(
R−1

s + ρA∗R−1
z A

)−1
A∗R−1

z A
]
Rs (1.249)

=
√
ρR−1

z A
(
R−1

s + ρA∗R−1
z A

)−1
[(
R−1

s + ρA∗R−1
z A

)− ρA∗R−1
z A

]
Rs

=
√
ρR−1

z A
(
R−1

s + ρA∗R−1
z A

)−1
, (1.250)

while applying the matrix inversion lemma in a reverse fashion to (1.245), E can be rewrit-
ten as

E =
(
R−1

s + ρA∗R−1
z A

)−1
. (1.251)

If both noise and signal are scalars, rather than vectors, then the two expressions for
W MMSE coincide, yielding

W MMSE =

√
ρ

1 + ρ
, (1.252)

while the two expressions for E reduce to

MMSE =
1

1 + ρ
, (1.253)

as derived earlier, in the context of conditional-mean MMSE estimation, for Gaussian noise
and Gaussian signals. In LMMSE, these equations acquire broader generality.

1.7.2 Random processes

The LMMSE estimation problem becomes richer when formulated for random processes,
as it then splits into several variants:

Noncausal. The value of some signal at time n is estimated on the basis of the entire
observation of another signal, a procedure also termed smoothing. If the observed signal
is decimated relative to its estimated brethren, then the smoothing can also be regarded
as interpolation in the MMSE sense.
Causal. The value of some signal at time n is estimated on the basis of observations of
another signal at times n − 1, . . . , n − N . This variant, for which the term filtering is
sometimes formally reserved in the estimation literature, and which can also be regarded
as prediction in the MMSE sense, can be further subdivided depending on whether N is
finite or unbounded.

For stationary processes, the problem was first tackled by Norbert Wiener in the 1940s
[126], hence the common designation of the corresponding estimator as a Wiener filter.
(For nonstationary processes, the more general Kalman filter was developed years later.)

Without delving extensively into the matter, on which excellent textbooks exist already
[62, 114, 127], we introduce herein a couple of results that are invoked throughout the text.
These results pertain to the discrete-time scalar channel y[n] =

√
ρ s[n] + z[n] where s[n]
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is a zero-mean unit-variance stationary signal with power spectrum S(·) while z[n] is an
IID noise sequence. For such a setting, the noncausal LMMSE filter yields [68]

MMSE = 1−
∫ 1/2

−1/2

ρS2(ν)

1 + ρS(ν)
dν, (1.254)

while its causal counterpart gives

MMSE =
1

ρ

[
exp

(∫ 1/2

−1/2

loge
(
1 + ρS(ν)

)
dν

)
− 1

]
. (1.255)

Letting ρ → ∞ in (1.255) returns the causal MMSE when predicting s[n] based on past
noiseless observations of the same process,

MMSE = exp

(∫ 1/2

−1/2

loge
[
S(ν)

]
dν

)
, (1.256)

which is zero if s[n] is nonregular while strictly positive if it is regular. By inspecting
(1.256) it can be deduced that, in the context of stationary processes, nonregularity is tan-
tamount to a bandlimited power spectrum—whereby the integrand diverges over part of
the spectrum—while regularity amounts to a power spectrum that is not bandlimited and
strictly positive.

1.8 Summary

From the coverage in this chapter, we can distill the points listed in the accompanying
summary box.

Problems

1.1 Show that, for s to be proper complex, its in-phase and quadrature components must
be uncorrelated and have the same variance.

1.2 Let s conform to a 3-PSK constellation defined by s0 = 1√
2
(1−j), s1 = 1√

2
(−1−j),

and s2 = j. Is this signal proper complex? Is it circularly symmetric?

1.3 Let s conform to a ternary constellation defined by s0 = −1, s1 = 0, and s2 = 1. Is
this signal proper complex? Is it circularly symmetric?

1.4 Give an expression for the minimum distance between neighboring points in a one-
dimensional constellation featuring M points equidistant along the real axis.

1.5 Let x be a discrete random variable and let y = g(x) with g(·) an arbitrary function.
Is H(y) larger or smaller than H(x)?
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Take-away points

1. The mutual information between two random variables measures the information
that one of them can supply about the other.

2. The channel capacity is the highest spectral efficiency at which reliable communi-
cation is possible in the sense that the probability of erroneous codeword decoding
vanishes as the codeword length N grows.

3. If the channel is information stable, meaning that the information that the received
sequence y[0], . . . , y[N−1] conveys about the transmit sequence x[0], . . . , x[N−1]

is invariable for large N , then the capacity equals the maximum mutual information
between x[0], . . . , x[N − 1] and y[0], . . . , y[N − 1] for N → ∞. This maximiza-
tion entails finding the optimum distribution for x[0], . . . , x[N − 1] subject to the
applicable constraints on the transmit signal (e.g., the power).

4. The capacity is robust in that the spectral efficiencies with finite-length (but long)
codewords and reasonably small error probabilities hardly depart from it. More-
over, such long codewords can be featured without incurring excessive latencies.
And, through hybrid-ARQ, the codeword length can be made adaptive.

5. The use of binary codes with binary decoding incurs only a minute information-
theoretic penalty with respect to coding on the constellation’s alphabet. The penalty
is actually nil for BPSK and QPSK, and can be largely recovered for other constel-
lations through iterative reception. It is thus routine, in terms of performance limits,
to treat binary codes mapped to arbitrary constellations as if the coding took place
on that constellation’s alphabet.

6. BICM is the default architecture for coding and modulation. At the transmitter,
this entails binary coding, bit-level interleaving, and constellation mapping. At the
receiver, it entails soft demapping, deinterleaving, and APP binary decoding.

7. In the MMSE sense, the best estimate of a quantity is the one delivered by the
conditional-mean estimator. When both the quantity being estimated and the noise
contaminating the observations are Gaussian, such conditional-mean estimator is a
linear function of the observations, the LMMSE estimator.

8. The I-MMSE relationship establishes that the derivative of the Gaussian-noise mu-
tual information between two quantities equals the MMSE when observing one
from the other.

9. While inferior to the conditional-mean for non-Gaussian quantities, the LMMSE
estimator remains attractive because of the simplicity of linear filtering and the
robustness, as only second-order statistics are required.

1.6 Express the entropy of a discrete random variable x as a function of the information
divergence between x and a uniformly distributed counterpart.

1.7 Express the differential entropy of a real Gaussian variable x ∼ N (μ, σ2).
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1.8 Compute the differential entropy of a random variable that takes the value 0 with
probability 1/3 and is otherwise uniformly distributed in the interval [−1, 1].

1.9 Calculate the differential entropy of a random variable x that abides by the exponen-
tial distribution

fx(x) =
1

μ
e−x/μ. (1.257)

1.10 Consider a random variable s such that 
{s} ∼ N (0, 1/2) and �{s} = q
(s)
where q = ±1 equiprobably. Compute the differential entropy of s, which is com-
plex and Gaussian but not proper, and compare it with that of a standard complex
Gaussian.

1.11 Prove that h(x+ a) = h(x) for any constant a.
1.12 Prove that h(ax) = h(x) + log2 |a| for any constant a.
1.13 Express the differential entropy of the real Gaussian vector x ∼ N (μ,R).
1.14 Consider the first-order Gauss–Markov process

h[n] =
√
1− ε h[n− 1] +

√
εw[n] (1.258)

where {w[n]} is a sequence of IID random variables with w ∼ NC(0, 1).
(a) Express the entropy rate as a function of ε.
(b) Quantify the entropy rate for ε = 10−3.
Note: The Gauss–Markov process underlies a fading model presented in Chapter 3.

1.15 Verify (1.79) and (1.80).
Hint: Express det(·) as the product of the eigenvalues of its argument.

1.16 Show that I(x0;x1; y) ≥ I(x0; y) for any random variables x0, x1, and y.
1.17 Let y =

√
ρ (s0 + s1) + z where s0, s1, and z are independent standard complex

Gaussian variables.
(a) Show that I(s0, s1; y) = I(s;

√
ρAs+ z) for s = [s0 s1]

T and a suitable A.
(b) Characterize I(s0, s1; y) − I(s0; y) and approximate its limiting behaviors for

ρ � 1 and ρ � 1.
(c) Repeat part (b) for the case that s0 and s1 are partially correlated. What do you

observe?
(d) Repeat part (b) for the modified relationship y =

√
ρ/2 (s0 + s1) + z.

Can you draw any conclusion related to MIMO from this problem?
1.18 Let s be of unit variance and uniformly distributed on a disk while z ∼ NC(0, 1).

(a) What is the first-order expansion of I(ρ) = I(s;
√
ρs+ z) for small ρ?

(b) What is the leading term in the expansion of I(ρ) for large ρ?
Note: The signal distribution in this problem can be interpreted as a dense set of
concentric ∞-PSK rings, conveying information in both phase and magnitude.

1.19 Repeat Problem 1.18 with s conforming to a one-dimensional discrete constellation
featuring M points equidistant along a line forming an angle φ with the real axis.

1.20 Let s and z conform to BPSK distributions. Express I(ρ) = I(s;
√
ρs + z) and

obtain expansions thereof for small and large ρ. How much is I(ρ) for ρ = 5?
1.21 Compute I(s;

√
ρs+ z) with s ∼ NC(0, 1) and with z having a BPSK distribution.
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54 A primer on information theory and MMSE estimation

1.22 Compute I(s;
√
ρs+ z) with both s and z having BPSK distributions.

1.23 Verify that, as argued in Example 1.11,

IQPSK(ρ) = 2 IBPSK

(ρ
2

)
. (1.259)

1.24 Express the Gaussian mutual information of a square QAM signal as a function of
the Gaussian mutual information of another signal whose points are equiprobable
and uniformly spaced over the real line.
Note: This relationship substantially simplifies the computation of the Gaussian mu-
tual information of square QAM signals, and it is exploited to perform such compu-
tations in this book.

1.25 Let y =
√
ρs + z. If z were not independent of s, would that increase or decrease

I(s; y) relative to the usual situation where they are independent? Can you draw any
communication-theoretic lesson from this?

1.26 Let s ∼ NC(0, I) and z ∼ NC(0, I) while

A =

[
0.7 1 + 0.5 j 1.2 j

0.2 + j −2.1 0

]
. (1.260)

(a) Plot the exact I(s;
√
ρAs+ z) against its low-ρ expansion for ρ ∈ [0, 1]. Up to

which value of ρ is the difference below 10%?
(b) Plot the exact I(s;

√
ρAs + z) against its high-ρ expansion for ρ ∈ [10, 100].

Beyond which value of ρ is the difference below 10%?

1.27 Let s have two independent unit-variance entries and let z ∼ NC(0, I) while A =

[0.7 1 + 0.5 j]. On a common chart, plot I(ρ) = I(s;
√
ρAs + z) for ρ ∈ [0, 10]

under the following distributions for the entries of s:
(a) Real Gaussian.
(b) Complex Gaussian.
(c) BPSK.
(d) QPSK.

1.28 Compute and plot, as function of ρ ∈ [−5, 25] dB, the Gaussian mutual information
function for the following constellations:
(a) 8-PSK.
(b) 16-QAM.

1.29 Establish the law of the channel

ȳ =
√
ρAs̄+ z̄, (1.261)

where A is a fixed matrix whose (n, n)th entry determines how the nth transmit
symbol affects the nth received one, while z̄ ∼ NC(0,Rz̄) with the (n, n)th entry
of Rz̄ determining the correlation between the noise afflicting symbols n and n.

1.30 Consider the channel

y[n] =
√
ρ h[n]s[n] + z[n] n = 0, . . . , N − 1 (1.262)

where z[0], . . . , z[N − 1] are IID with z ∼ NC(0, 1).
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(a) If h[0], . . . , h[N − 1] are also IID with h ∼ NC(0, 1), what is the channel law?
Is the channel memoryless?

(b) Now suppose that h[n + 1] = h[n] for n = 0, 2, 4, . . . , N − 2 while h[n + 1]

and h[n] are independent for n = 1, 3, 5, . . . , N − 1, meaning that every pair
of symbols shares the same coefficient but then the coefficients change across
symbol pairs in an IID fashion. For h ∼ NC(0, 1), what is the channel law? Is
the channel memoryless?

1.31 Express, to first order, the number of codeword symbols N required to achieve a
certain share of the capacity C as a function of V and pe. Then, for V/C2 = 4, use
the found expression to gauge the following.
(a) The value of N required to achieve 90% of capacity at pe = 10−2.
(b) The value of N required to achieve 95% of capacity at pe = 10−3.

1.32 Consider a system with B = 100 MHz, equally divided among U = 10, and with a
coding latency target of 1 ms. If the operating point is pe = 10−2 and V/C2 = 2,
what fraction of the capacity can each user attain?

1.33 Reproduce the BICM curve on the left-hand side of Fig. 1.6.

1.34 Consider the transformation y =
√
ρs+ z.

(a) Prove that, for any arbitrary function g(·), E[g(y)(s− E[s|y])] = 0. This is the
so-called orthogonality principle.

(b) Taking advantage of the orthogonality principle, prove that the MMSE estimate
is given by ŝ(y) = E[s|y].

1.35 Consider the transformation y =
√
ρs+ z with z a standard complex Gaussian and

with s ∼ NC(μs, σ
2
s).

(a) Obtain the conditional-mean estimator.
(b) Express the corresponding MMSE(ρ).
(c) Verify that, when μs = 0 and σ2

s = 1, such estimator reduces to (1.172) while
MMSE(ρ) reduces to (1.175).

(d) Verify that MMSE(·) does not depend on μs.

1.36 Prove that, for the transformation y =
√
ρs+ z with z a standard complex Gaussian

and with s being BPSK-distributed, the following are true.
(a) The conditional-mean estimate equals (1.181).
(b) The MMSE as a function of ρ equals (1.182).

1.37 Given the transformation y =
√
ρs+ z with z a standard complex Gaussian, derive

the function MMSE(ρ) for s conforming to a 16-QAM distribution.

1.38 Consider the vector transformation y = As+ z where A is fixed while s and z are
independent with s ∼ NC(0,Rs) and z ∼ NC(0,Rz).
(a) Obtain the conditional-mean estimator.
(b) Express the corresponding MMSE matrix.
(c) Verify that, for Rz = I , the MMSE matrix equals (1.192).

1.39 Let s be BPSK-distributed while z ∼ NC(0, 1). Compute the dB-difference between
the MMSEs achieved by conditional-mean and LMMSE estimates of s based on
observations of

√
ρs+ z for two cases:
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(a) ρ = 1.
(b) ρ = 10.

1.40 Verify that the application of (1.196) to (1.200) yields (1.201).
1.41 Let s be of unit variance while z ∼ NC(0, 1). Provide first-order low-ρ expansions of

MMSE(ρ) as achieved by the conditional-mean estimate of s based on observations
of

√
ρs+ z under the following distributions for s:

(a) Real Gaussian.
(b) Complex Gaussian.
(c) BPSK.
(d) QPSK.
(e) ∞-PSK.
(f) ∞-QAM.
What can be observed?

1.42 On a common chart, plot MMSE(ρ) for the estimation of s based on observing√
ρs+ z with z ∼ NC(0, 1) and under the following distributions for s:

(a) Real Gaussian.
(b) Complex Gaussian.
(c) BPSK.
(d) QPSK.
Further plot, on the same chart, the corresponding low-ρ expansions of MMSE(ρ).

1.43 Let y =
√
ρs + z with s zero-mean unit-variance and with z a standard complex

Gaussian. For ρ ∈ [0, 10], plot the dB-difference between the mean-square error
achieved by a regular LMMSE estimator and by a modified version thereof in which
the estimation bias for each realization of s has been removed.

1.44 Consider the vector transformation y = As + z where s ∼ NC(0,Rs) and z ∼
NC(0,Rz).
(a) Express the MMSE matrix E when estimating s based on the observation of y.
(b) Based on the expression obtained for E, generalize to colored Gaussian noise

the I-MMSE relationship for white Gaussian noise given in (1.207).
Note: Although derived for a Gaussian signal in this problem, the generalized ver-
sion of the I-MMSE relationship does hold for arbitrarily distributed s.

1.45 For the LMMSE estimator ŝ(y) = W MMSE∗y + bMMSE, determine the value of bMMSE

as a function of the known means μs and μy .
1.46 Let s be a vector containing two unit-variance entries exhibiting 50% correlation

and let z ∼ NC(0, 1) while A = [0.7 1 + 0.5 j]. Plot the MMSE as a function of
ρ ∈ [0, 10] when LMMSE-estimating s from

√
ρAs+ z.
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