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Abstract
We develop a flexible Gaussian process (GP) framework for learning the covariance structure of Age- and Year-
specific mortality surfaces. Utilizing the additive and multiplicative structure of GP kernels, we design a genetic
programming algorithm to search for the most expressive kernel for a given population. Our compositional search
builds off the Age–Period–Cohort (APC) paradigm to construct a covariance prior best matching the spatio-temporal
dynamics of a mortality dataset. We apply the resulting genetic algorithm (GA) on synthetic case studies to validate
the ability of the GA to recover APC structure and on real-life national-level datasets from the Human Mortality
Database. Our machine learning-based analysis provides novel insight into the presence/absence of Cohort effects in
different populations and into the relative smoothness of mortality surfaces along the Age and Year dimensions. Our
modeling work is done with the PyTorch libraries in Python and provides an in-depth investigation of employing
GA to aid in compositional kernel search for GP surrogates.

1. Introduction
Gaussian process (GP) models (Ludkovski et al., 2018; Huynh and Ludkovski, 2021b,a) provide a
nonparametric spatio-temporal paradigm for longevity analysis within Age–Period–Cohort (APC) mod-
eling. This approach runs parallel to the existing APC models and the newer deep learning-driven
approaches (Nigri et al., 2019; Perla et al., 2021; Richman and Wüthrich, 2021). The underlying predic-
tion belongs to the class of spatial smoothers and is similar to smoothing splines (Hastie and Tibshirani,
1990). Among the main strengths of GPs are their flexibility, uncertainty quantification, and capabilities
for multi-population analysis. Moreover, through their covariance kernel, GPs offer a direct view into
the inter-dependence of Age–Year-specific mortality rates, which enables the modeler to focus on cap-
turing the respective covariance structure. The covariance kernel of a GP determines the properties of its
distribution, including its posterior mean function, smoothness, and more. This offers valuable insight
into the underlying dynamics of the process of interest, which is not possible with black-box methods
like neural networks.

Matching the APC decomposition of the two-dimensional Age–Year mortality service into three uni-
variate directions, one may consider kernels that reflect the Age structure of mortality, its evolution in
time, and its cohort effects. In the existing GP mortality literature, this is straightforwardly translated
into a separable GP kernel – a product of a univariate kernel in Age, a univariate kernel in Year, and
if desired, a univariate kernel in Birth Cohort. While offering a satisfactory performance, this choice is
quite restrictive and handicaps the ability of GPs to discover data-driven dependence. With this moti-
vation in mind, we explore GP kernel composition and discovery for mortality models. Our first goal in
this article is thus to unleash an automated process for finding the covariance structures most appropriate
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for mortality analysis. One motivation is that different (sub-)populations have different APC structures,
and hence a one-size-fits-all approach is inadequate.

To accomplish this, we propose a new variant of a genetic programming algorithm that iteratively
explores the kernel space to discover the most suitable kernels. Our approach tailors previous proposals
for kernel discovery using genetic algorithms (GAs) to longevity analysis. We represent APC models
through a tree structure comprising addition and multiplication of Age, Year, and Cohort terms and
utilize specialized mutation operations to explore such compositions. We assign probabilistic weights
to each discovered mortality structure based on the Bayesian information criterion (BIC), indicating its
plausibility for a given population. In turn, relative likelihood of two APC structures can be compared
based on their Bayes’ factors. Through considering several synthetic mortality surfaces, we validate
our GA’s ability to recover known APC structures. In particular, the GA successfully identifies the
presence of additive versus multiplicative effects, the presence of specific terms (such as cohort effect
or a nonstationary effect), and the overall complexity of the mortality dependence structure.

Our second motivation is to link ideas in mortality modeling literature to the structures of different
GP kernel families. We investigate a variety of kernels, vastly expanding upon the limited number of
kernels (such as Squared Exponential and Matérn) that have been considered for mortality so far. By
introducing and testing new GP kernel families, we remove the limitation of directly postulating the
kernel family to be used, which leads to hidden restrictions and assumptions on the data. Furthermore,
additional kernels specifically represent richer structures including random walk, periodicity, and more
general ARIMA processes. We observe that existing APC covariance structures, including the well-
known Lee–Carter (Lee, 2000) and Cairns–Blake–Dowd (CBD) (Cairns et al., 2011) families, can be
exactly matched through additive GP kernels. By testing various kernels, one can find better fits for
a mortality surface and answer-related questions, for example, involving the strength or structure of a
cohort effect.

Our core approach to above is compositional kernel search. Kernel composition utilizes the fact
that kernels are closed under addition and multiplication. On the one hand, compositional kernels offer
a rich and descriptive structure of underlying mortality dynamics. On the other hand, they naturally
fit the “general procedure” (Hunt and Blake, 2014), already used in the mortality literature, that adds
and multiplies APC components. Such compositions and modifications are already performed in the
aforementioned Lee–Carter and CBD models (see Cairns et al., 2011 for thorough discussion).

The workhorse of our analysis is a GA that uses the concept of generations to gradually discover
better-and-better kernels through a mutation–selection mechanism. Given a mortality dataset, the GA
described below generates vast quantities (in the thousands) of potential kernels. These kernels are
sequentially fitted to the dataset and ranked according to a statistical fitness function. The GA then prob-
abilistically promotes exploration of the most fit kernels and discards less fit ones. This procedure allows
to automate the exploration of the best-performing GP models for mortality modeling. Early proposals
for compositional kernels with GPs involved forward search minimizing the BIC to construct tree-based
representations of kernels (Duvenaud et al., 2013; Duvenaud, 2014). Jin (2020) and Roman et al. (2021)
build upon the idea using a GA; the former analyzes performance on several multi-dimensional synthetic
test functions, and the latter on univariate time series. We extend and tailor these strategies for mortality
modeling, contributing to the GP and GA methodological literatures.

Armed with the outputs of the GA, we address the following fundamental questions about mortality
surfaces, which are of intrinsic interest:

• The presence, or lack thereof, of a Cohort effect. Our method offers a rigorous Bayesian non-
parametric evidence on whether including Birth Cohort effect is beneficial. Since cohort effects
are known to be population-specific, this is an important model selection question.

• The relative smoothness between the Age- and Year-covariance structures. Classic APC mod-
els assume a random-walk structure in calendar time, and (implicitly) a smooth (infinitely
differentiable) structure in Age. In contrast, existing GP models have postulated a fixed smooth-
ness (e.g., twice differentiable) in both coordinates. Our method sheds light on whether those
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assumptions impact predictions and how much smoothness is most consistent with mortality
data.

• Additive versus multiplicative structure in mortality covariance. There have been many pro-
posals and comparative analyses of APC models that variously combine Age and Year terms.
We provide an analogous analysis for GP models. In particular, our approach is able to quantify
the complexity of the best-fitting kernels, giving new insights about how many different terms
are necessary.

The rest of the article is organized as follows. In Section 2, we review GP models for mortality
surfaces, emphasizing the primordial task of kernel selection and illustrating its impact on model pre-
dictions. In Section 3, we develop the GA tool for compositional kernel search. Validity of the GA
methodology is asserted in Section 4 through a recovery of known kernels on synthetic mortality sur-
faces. Section 5 analyzes the output of GA for the initial case study of JPN Females. Section 5.4 then
provides a cross-sectional analysis across multiple national-level datasets to address the two questions
of presence/absence of Cohort effects and the relative smoothness in Age and Calendar Year. Section 6
concludes.

2. GP models for mortality
A GP is a collection of random variables {f (x)}x∈Rd , such that for any � ∈N and {x1, . . . , x�} ⊆R

d, the
vector

[
f (x1), f (x2), ...f (x�)

]� has a multivariate normal distribution (Williams and Rasmussen, 2006)
(denoted MVN). For mortality surfaces over APC, d = 3. A GP is uniquely defined by its mean function
m : Rd →R and covariance kernel k : Rd ×R

d →R (Adler, 2010). The kernel k(·, ·) must be a symmetric
positive-definite function. In this case, for xi, xj ∈R

d,

E[f (xi)] = m(xi), (2.1)

cov
(
f (xi), f (xj)

)= k
(
xi, xj

)
, (2.2)

and we write f ∼ GP(m, k). The GP regression model assumes

y := y(x) = f (x) + ε(x), (2.3)

where f is a GP with prior mean m(·) and covariance k(·, ·), ε is a noise term, and y is a noisy observation.
By assuming ε(·) is independent Gaussian white noise with variance σ 2(·), properties of multivariate
normal random variables imply that {y(x)}x∈Rd is a GP with mean and covariance functions

E[y(x)] = m(x), ky

(
xi, x′

j

)= k
(
xi, xj

)+ σ 2(xi)δi=j, (2.4)

where δ is the Dirac delta. It is important to distinguish that σ 2(xi)δi=j is nonzero when the indices i
and j are equal: it is possible to have two observations at the same location x but coming from different
samples, thus not sharing noise.

2.1. GP regression
Given a dataset D = {xi, yi}n

i=1, the GP assumption and observation likelihood (2.3) imply [f, y]� ∼
MVN , where f = [f (x1), . . . , f (xn)]� and y = [y(x1), . . . , y(xn)]�, so that the posterior f|y ∼MVN as
well. More generally, for x, x′ ∈R

d, [f (x), f (x′), y]� ∼MVN , so that the posterior finite dimensional
distribution is fully known:

[f∗(x), f∗(x′)]� := (
[f (x), f (x′)]�|y)∼MVN

(
[m∗(x), m∗(x′)]�,

[
k∗(x, x) k∗(x, x′)

k∗(x′, x) k∗(x′, x′)

])
, (2.5)
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where, for arbitrary x, x′ ∈R
d, the posterior covariance kernel is defined as k∗(x, x′) := cov(f (x), f (x′)|y).

The Kolmogorov extension theorem ensures that {f∗(x)}x∈Rd defines a GP. Furthermore, (setting m(x) ≡ 0
temporarily) the posterior mean and variance are explicitly given by

m∗(x) = K(x, X) [K(X, X) +�(X, X)]−1 y, (2.6)

K∗(x, x′) = K
(
[x, x′]�, X

)
[K(X, X) +�(X, X)]−1 K

(
X, [x, x′]�) , (2.7)

where X denotes the n × d matrix with rows xi, i = 1, . . . , n, and for U, V being �× d and m × d, respec-
tively, K(U, V) = [

k(ui, vj)
]

1≤i≤�,1≤j≤m
denotes the �× m matrix of pairwise covariances. �(U, V) has

entries σ 2(ui)δi=jδui=vj ; in our case�(X, X) is a n × n diagonal matrix with entries σ 2(xi). In the case of
constant noise variance σ 2 := σ 2(xi), �(X, X) = σ 2In, where In is the n × n identity matrix.

2.2. GP kernels
GP regression encodes the idea that similar inputs (according to the kernel) yield similar outputs. This
can be seen through the posterior mean being a weighted average of observed data, since m∗(x) = w�y
holds for w� = K(x, X) [K(X, X) +�(X, X)]−1. Various types of kernels exist to encode similarity
according to domain knowledge. Akin to covariance matrices, the only requirement for a function k(·, ·)
to be a covariance kernel is that it is symmetric and positive-definite, that is for all n = 1, 2, . . . , and
x1, . . . , xn ∈R

d, we must have the Gram matrix K(X, X) be positive semi-definite.
A stationary kernel k

(
xi, xj

)
is one that can be written as a function of xi − xj, that is, k

(
xi, xj

)=
kS(xi − xj) and is thus invariant to translations in the input space. A kernel is further called isotropic
if it is only a function of r = ‖xi − xj‖, where ‖ · ‖ is the �2 Euclidean distance, so that we can write
kI(r) = k

(
xi, xj

)
. Yaglom (1957) uses Bochner’s theorem to derive a similar Fourier transform specific to

isotropic kernels, providing a way to derive kernels from spectral densities. Stationary kernels are usually
assumed to be normalized, since kS(x − x′)/kS(0) = 1 whenever x = x′; this allows for stationary kernels
to be nicely interpreted as correlation functions. Let σ 2

f denote the process variance var(f (x)) = σ 2
f , we

think of the GP f as f (x) = σf g(x) when g is a GP with normalized stationary kernel k.
Lastly, a separable kernel over Rd is one that can be written as a product: k(x, x′) =∏d

j=1 kj

(
x(j), x

′(j)),
where x(j) is the jth coordinate of x. Thus, the global kernel is separated as a product over its dimensions,
each having its own kernel.

The algebraic properties of positive-definite functions make it straightforward to compose new ker-
nels from existing ones (Genton, 2001; Schölkopf et al., 2002; Shawe-Taylor and Cristianini, 2004;
Berlinet and Thomas-Agnan, 2011). The main tool is that kernels are preserved under addition and mul-
tiplication, that is, can be combined by sums and products. Hence, if k1 and k2 are two kernels and c1, c2

are two positive real numbers, then so is k(x, x′) = c1k1(x, x′) + c2k2(x, x′). This is consistent with the
properties of GPs: if f1 ∼ GP(0, k1) and f2 ∼ GP(0, k2) are two independent GPs, then for c1, c2 > 0 we
have c1f1 + c2f2 ∼ GP(0, c1k1 + c2k2). This offers a connection to the framework of generalized addi-
tive models. Using this, a GP whose kernel function is of the form σ 2

f1
k1 + σ 2

f2
k2 where k1 and k2 are

normalized stationary kernels can be interpreted as f (x) = σf1 f1(x) + σf2 f2(x) where f1 and f2 are inde-
pendent GPs with respective kernels k1 and k2. Consequently, var(f (x)) = σ 2

f1
+ σ 2

f2
. These properties

extend inductively to the case of finitely many terms.
Although there is no analogous result for a product of kernels (a product of GPs is no longer a GP,

since the multivariate Gaussian distribution is not preserved), a common interpretation of multiplying
kernels occurs when one kernel is stationary and monotonically decaying as |x − x′| → ∞. Indeed, if k1

is such a kernel, then the product k1(x, x′)k2(x, x′) offers k2’s effect with a decay according to k1(x, x′) as
|x − x′| increases. This synergizes with separability, for example, k(x, x′) = k1

(|x(1) − x
′(1)|) k2

(
x(2), x

′(2)
)

offers some similarity across the second coordinate that could decay as |x(1) − x
′(1)| increases. Additive
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Table 1. List of kernel families used in compositional search. Cp indicates that the GP sample paths
x �→ f (x) have p continuous derivatives; C0 is continuous but not differentiable. Column Kr denotes
whether the kernel family is in the restricted search set. The linear kernel is used for its year component
only.

Kernel name Abbv. Formula k(x, x′; θ ) Properties Kr

Matérn-1/2 M12 exp

(
−|x − x′|

�len

)
, �len > 0 C0 �

Matérn-3/2 M32

(
1 +

√
3

�len
|x − x′|

)
exp

(
−

√
3

�len
|x − x′|

)
, �len > 0 C1

Matérn-5/2 M52

(
1 +

√
5

�len
|x − x′| + 5

3�2
len

|x − x′|2

)
exp

(
−

√
5

�len
|x − x′|

)
C2 �

Cauchy Chy
1

1 + |x − x′|2/�2
len

, �len > 0 C∞

Radial Basis RBF exp

(
− (x − x′)2

2�2
len

)
, �len > 0 C∞ �

AR2 AR2 exp (−α|x − x′|)
{

cos (ω|x − x′|) + α

ω
sin (ω|x − x′|)

}
Periodic, C1

Linear Lin σ 2
0 + x · x′, σ0 > 0 Nonstationary ∗

Minimum Min t2
0 + x ∧ x′, t0 > 0 Nonstat, C0 �

Mehler Meh exp

(
−ρ

2(x2 + x′2) − 2ρxx′

2(1 − ρ2)

)
, −1 ≤ ρ ≤ 1 Nonstationary

and multiplicative properties are often used in conjunction with the constant kernel k(x, x′) = c, c> 0,
resulting in a scaling effect (multiplication) or dampening effect (addition).

Remark 1. Several other kernel design strategies exist, for example, if g : Rd →R, then k(x, x′) =
g(x)g(x′) defines a kernel; this property along with multiplication is one way to account for heteroskedas-
tic noise, since k

(
xi, x′

j

)= δi=j defines a kernel. See, for example, Genton (2001) or Noack and Sethian
(2021) for additional properties and explanation.

2.3. Kernel families
Table 1 lists the kernel families we consider. For simplicity, we assume one dimensional base kernels
with x ∈R where the full structure for x ∈R

d is expressed as a separable kernel. Among the nine kernel
families, we have kernels that give smooth (C2 and higher) fits, kernels with rough (non-differentiable)
sample paths, and several nonstationary kernels. Here, smoothness refers to the property of the sample
paths x �→ f (x) being, say, k-times differentiable, that is, f (·) ∈ Ck. The posterior mean x �→ m∗(x) inher-
its similar (but generally less strict) differentiability properties, see Kanagawa et al. (2018) for details.
The Kr column indicates whether a kernel is included in the restricted set of kernels (used in later sec-
tions), in contrast to the full set of kernels Kf . This subset Kr comprises a more compact collection of
the most commonly used kernels in the literature. One reason for Kr is to minimize overlap in terms of
kernel properties; as we report below, some kernel families in Kf apparently yield very similar fits and
act as “substitutes” for each other.

All of the kernels listed have hyperparameters, which help to understand their relationship with
the data. The quantity �len appearing in many stationary kernels is referred to as the characteristic
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lengthscale, which is a distance-scaling factor. With the radial basis function (RBF) kernel for exam-
ple, this loosely describes how far x′ needs to move from x in the input space for the function values
to become uncorrelated (Williams and Rasmussen, 2006). Thus, the lengthscale of a calibrated GP
can be interpreted as the strength of the correlation decay in the training dataset. Out of the stationary
kernels, a popular class is the Matérn class. In continuous input space, the value ν in the Matérn-ν cor-
responds to smoothness: a GP with a Matérn-ν kernel is �ν� − 1 times differentiable in the mean-square
sense (Williams and Rasmussen, 2006). The RBF kernel is the limiting case as ν→ ∞, resulting in an
infinitely differentiable process. The ν = 1/2 case recovers the well-known Ornstein–Uhlenbeck pro-
cess, which is mean reverting and non-differentiable. Also non-differentiable but on the nonstationary
side, the minimum kernel corresponds to a Brownian motion process when x ∈R+, where t2

0 = var(f (0))
is the initial variance. For discrete x, Min kernel yields the random walk process, and M12 yields the
AR(1) process.

Less commonly studied are the (continuous-time) AR2 (see Parzen, 1961), Cauchy, and Mehler ker-
nels. The continuous-time AR2 kernel acts identically to a discrete-time autoregressive (AR) process of
order 2 with complex characteristic polynomial roots when x is restricted to an integer. The heavy-tailed
Cauchy probability density function motivates the Cauchy kernel, with the goal of modeling long-range
dependence and is a special case of the rational quadratic kernel (see Appendix A). Lastly, the Mehler
kernel has a form similar to that of a joint-normal density and acts as a RBF kernel with a nonstationary
modification (this can be seen from a “complete the squares” argument). Although Mehler is nonstation-
ary, it remarkably yields a stationary correlation function corr(f (x), f (x′)) = k(x, x′)/

√
k(x, x)k(x′, x′).

See Appendix A for a more thorough discussion of the aforementioned kernels and their properties.

2.4. Varying prior means
For brevity of exposition, the preceding analysis considered zero prior mean m(x) = 0. When the prior
mean function m(x) is known and deterministic, the posterior covariance function k∗(x, x′) remains
unchanged compared to the zero-mean case, and the posterior mean m∗(x) is adjusted to:

m∗(x) = m(x) + K(x, X) [K(X, X) +�(X, X)]−1 (y − m(X)), (2.8)

where m(X) = [m(x1), . . . , m(xn)]�. More common is the case of a parametric mean function m(x) =∑d
j=1 βjhj(x), where the basis functions hj(x) are fixed and known (e.g., hj(x) is a jth degree polyno-

mial), and the coefficients β are estimated simultaneously with the covariance hyperparameters through
maximizing the marginal likelihood. The generalized least squares estimator for β is

β̂ = (
H�K−1

y H
)−1 H�K−1

y y, with Ky = K(X, X) +�(X, X), (2.9)

where H is the n × d matrix with i, j entry hj(xi). The resulting posterior mean m∗(x) is based on the
plug-in estimated trend Hβ̂ and the posterior variance has an additional term to account for the parameter
uncertainty in β:

m∗(x; β̂) = h(x)�β̂ + K(x, X)K−1
y

(
y − Hβ̂

)
, h(x) = [h1(x), . . . , hd(x)]�;

k∗(x, x; β̂) = k∗(x, x) + (
h(x) − K(x, X)�K−1

y H
)� (H�KyH

)−1 (h(x) − K(x, X)�K−1
y H

)
.

For more details, see Roustant et al. (2012). It is important to recall that x is an input to the function, while
X is fixed (from the observed data). Intuitively, this reflects a transition toward prior reliance: in the case
of a decaying kernel (e.g., Matérn family), when the predictive location x distances itself from the rows
of X, that is, ‖x − xi‖ → 0 for all training locations xi, i = 1, . . . , n, the vector K(x, X) = [k(x, xi)]n

i=1

goes to 0, causing a reversion to the prior mean and covariance.
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2.5. Connections to mortality modeling
For mortality modeling, our core input space is composed of Age and Year coordinates: xag, xyr ∈R

2
+. As

the GP can model non-linear relationships, we include Birth Cohort xc := xag − xyr as a third coordinate
of x, so that x = (xag, xyr, xc). For a given x, denote Dx and Ex as the respective observed deaths and
exposures (i.e., individuals alive at the beginning of the period) over the corresponding (xag, xyr) pair.
Denote y(x) = log(Dx/Ex) as the log mortality rate. The full dataset is denoted D = {xi, yi, Di, Ei}n

i=1.
Each mortality observation yi := yi(xi) is the regression quantity modeled in Equation (2.3), so that
E[y(x)|f (x)] = f (x). The interpretation is that the true mortality rate f (x) is observed in accordance with
mean-zero (i.e., unbiased) uncorrelated noise yielding the measured mortality experience y.

Relating to the log-normal distribution, algebra shows that

E[Dx|f (x)] = Ex exp

(
f (x) + σ 2(x)

2

)
, and E[Dx|f (x), ε(x)] = Ex exp(f (x) + ε(x)) ,

akin to an overdispersed Poisson model in existing mortality modeling literature (see, e.g., Azman and
Pathmanathan, 2022). Note that the seminal work of Brouhns et al. (2002) for modeling log-mortality
rates suggests that homoskedastic noise is unrealistic, since the absolute number of deaths at older ages
is much smaller compared to younger ages. As a result, we work with heteroskedastic noise

var(ε|Dx) = σ 2(x) := σ 2

Dx
, where σ 2 ∈R

+. (2.10)

Thus, we make observation variance inversely proportional to observed death counts, with the constant
σ 2 to be learned as part of the fitting procedure. From a modeling perspective, this works since Dx is
known whenever Ex and y(x) are. Indeed, Equation (2.5) shows no requirement to know Dx for out-of-
sample forecasting. In the case where full distributional forecasts are desired, one could instead model
a noise surface σ 2(·) simultaneously with f (·), see, for example, Cole et al. (2022).

Remark 2. Our framework makes two different Gaussian assumptions. First, we capture the latent mor-
tality surface f (·) as a GP. This assumption is generally very mild and can be understood as applying
standard kernel ridge regression to obtain m∗(x) (with a highly customized and adaptively fitted kernel)
within a probabilistic framework (see Kanagawa et al., 2018); it does not say anything specific about
mortality itself. The second Gaussianity assumption is about the observation noise ε(·). This assump-
tion is stronger and takes a specific stance on mortality rate observations; its purpose is to maintain
Gaussian conjugacy which simplifies the likelihood and facilitates the MLE process. Given the complex
observation structure of mortality, we argue that what really matters is not the distribution of ε’s, but
their heteroskedasticity, that is, removing the “identically distributed” assumption imposed by simpler
models. This is exactly what we do in (2.10). It is possible to go further and adjust the Gaussian noise
likelihood to be heavy tailed (as in Wang et al., 2011; Ahmadi and Gaillardetz, 2014) or to hierarchi-
cally model, for example, Dx ∼ Pois(Ex exp (f (x))) where f is a GP. We do not pursue this due to added
modeling and computational burdens.

A discussion of GP covariances connects naturally to APC models. A stationary covariance means
that the dependence between different age groups or calendar years is only a function of the respective
ages/year distances and is not subject to additional structural shifts. Additive and separable covariance
structures play an important role in the existing mortality modeling literature, specifically in the APC
framework. For example, Lee–Carter and CBD began with Age–Period modeling, which subsequently
evolved to add cohort or additional Period effects. Rather than postulating the precise APC terms, the
latest (Dowd et al., 2020) CBDX framework adds up to 3 period effects as needed. Similarly, Hunt
and Blake (2014) develop a general recipe for constructing mortality models, where core demographic
features are represented with a particular parametric form, and combined into a global structure. This
can be reproduced with GPs where kernels encode expert judgment to such demographic features. This
type of encoding into covariances is already being done in the literature, possibly unknowingly. Take, for
example, the basic CBD model whose stochastic part has the form f (x) = κ (1)

xyr
+ (

xag − xag

)
κ (2)

xyr
, where
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xag is the average age in D. Under the common assumption that
(
κ (1)

xyr
, κ (2)

xyr

)
is a multivariate random walk

with drift, a routine calculation shows that
E[f (x)] = κ

(1)
0 +μ(1)xyr + (

xag − xag

) (
κ

(2)
0 +μ(2)xyr

)
and kCBD(x, x′) = cov(f (x), f (x′)) =

= [
σ 2

1 + ρσ1σ2

(
xag + x′

ag − 2xag

)+ (
xag − xag

) (
x′

ag − xag

)
σ 2

2

] (
xyr ∧ x′

yr

)
. (2.11)

We can re-interpret the above as the kernel decomposition kCBD(x, x′) = k1

(
xag, x′

ag

)
k2

(
xyr, x′

yr

)
, where

k2

(
xag, x′

ag

)
is a kernel depending only on Age (that could be decomposed into additive components),

and k2 is the minimum kernel depending only on Year. Furthermore, if the multivariate random walk is
assumed to be Gaussian, then f (x) actually forms a (discrete-time) GP, and hence the methods detailed
in Section 2.1 apply verbatim.

Period and Cohort effects are commonly modeled using time series models (Villegas et al., 2015).
In particular, Gaussian ARIMA models are popular in existing APC literature, see, for instance, Cairns
et al. (2011) who single out the usefulness of AR(1), ARIMA(1,1,0), and ARIMA(0,2,1) for Cohort
effect, and ARIMA(1,1,0) or ARIMA(2,1,0) for Period effect. This provides another link to (discrete)
GP covariance analogues: a Matérn-1/2 covariance corresponds to an AR(1) process, a (continuous-
time) AR2 covariance to an AR(2) process with complex unit roots, and a Minimum covariance to a
discrete-time random walk.

3. Genetic programming for GPs
Starting with the building blocks of the kernels in Table 1, infinitely many compositional kernels can be
constructed through addition and multiplication. The idea of a GA is to adaptively explore the space of
kernels via an evolutionary procedure. At each step of the GA, kernels that have a higher “fitness score”
are more likely to evolve and be propagated, while lower-fitness kernels get discarded. The evolution
is achieved through several potential operations that are selected randomly in each instance. In the first
sub-step of the GA, ancestors of next-generation kernels are identified. This is done via “tournaments”
that aim to randomly pick generation-g kernels, while preferring those with higher fitness. A given
kernel can be selected in multiple tournaments, that is, generate more than one child. In the second sub-
step, each ancestor undergoes crossover (mixing kernel components with another ancestor) or mutation
(modifying a component of the sole ancestor) to generate a generation-(g + 1) kernel.

3.1. BIC and Bayes factors for GPs
To evaluate the appropriateness of a kernel within a given set k ∈K, an attractive criterion is the
posterior likelihood of the kernel given the data p(k|y) = p(y|k)p(y)/p(k), where, under a uniform
prior assumption p(k) = 1/|K|, we see that p(k|y) ∝ p(y|k). However, the integral over hyperparam-
eters p(y|k) = ∫

θ
p(y, θ |k)dθ is generally intractable, so we use the BIC as an approximation, where

BIC(k) ≈ log p(y|k) is defined as:

BIC(k) = −lk

(
θ̂ ; y

)
+ |θ̂ | log(n)

2
, (3.1)

where lk(θ |y) = log p(y|k, θ ) is the log marginal likelihood of y evaluated at θ under a given kernel k,
θ̂ is the maximizer (maximum marginal likelihood estimate) of lk(θ |y), and |θ̂ | is the total number of
estimated hyperparameters in θ̂ =

[
β̂0, β̂ag, θ̂k, σ̂ 2

]�
, where θk is a vector of all kernel specific hyperpa-

rameters. Note that p(y|k, θ ) is a multivariate density, with mean and covariances governed by Equation
(2.4). The BIC metric has seen use in similar applications of GP compositional kernel search, see,
for example, Duvenaud et al. (2013), Duvenaud (2014), and is commonly used in mortality modeling
(Cairns et al., 2009). We employ BIC (lower BIC being better) for our GA fitness metric below.
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Figure 1. Representative compositional kernels and GA operations. Bolded red ellipses indicate the
node of κ (or ξ ) that was chosen for mutation or crossover.

One can further assess the relative likelihood of k1, k2 ∈K by again assuming a uniform prior over
K, and computing the Bayes factor (BF)

BF(k1, k2) = p(k1|y)

p(k2|y)
≈ exp

(
BIC(k2) − BIC(k1)

)
. (3.2)

Obtaining an approximation for p(k|y) further allows the possibility of Bayesian model averaging by
conditioning over k ∈K:

p(f|y) =
∑
k∈K

p(f|y, k)p(k|y). (3.3)

Since p(f|y, k) is available in the closed form, this provides the full distribution of future forecasts, if
desired.

Gelman et al. (1995) states that BFs work well in the case of a discrete model selection. The seminal
work of Jeffreys (1961) gives a table of evidence categories to determine a conclusion from BFs, see
Table 15 in Appendix E, which is still frequently used today (Lee and Wagenmakers, 2014; Dittrich
et al., 2019).

Note that in accordance with the penalty term |θ̂ | log(n)/2 in Equation (3.1), the difference in penal-
ties in BIC(k2) − BIC(k1) is simply the number of additional kernel hyperparameters, scaled by log(n)/2,
since β0, βag, σ 2 are always estimated regardless of kernel choice. Thus in the application of GP ker-
nel selection, the BF properly penalizes kernel complexity. In Table 1, most kernels have one θk (the
lengthscale), but some, like AR2, have two hyperparameters and so incur a larger penalty.

3.2. GA kernel representation
In order to operate in the space of kernels, we shall represent kernels via a tree-like structure, cf. Figure 1.
Internal nodes correspond to operators (add or mul) that combine two different kernels together, while
leafs are the univariate kernels used as building blocks. We indicate the coordinate operated on by the
kernel through the respective subscripts a, y, c, such as M52a. In turn, such trees are transcribed into
bracketed expressions, such as κ = add(Exp_c, mul(RBF_a, add(Mat_y, RBF_c))) correspond-
ing to the Age–Period–Cohort kernel (kM52(xyr) + kRBF(xc)) · kRBF(xag) + kExp(xc). The length of κ , denoted
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Table 2. High level Genetic algorithm parameters and description. Note that G · ng = 4000 is
the total number of trained GP models in a single run of the GA.

Parameter Value Notes
Population size ng = 200 Number of individuals per generation
Generations G = 20 Number of generations
Tournament size T = 7 Run a double tournament and select smaller winner with

probability pDT

pDT = 0.6 Smaller is selected with probability 0.60

|κ|, is its number of nodes. The above kernel tree has length |κ| = 7, namely four base kernels combined
with three operators. Observe that the tree structure is not unique, that is, some complex kernels can be
permuted and expressed through different trees. In what follows, we will ignore this non-uniqueness.

A certain expertise is needed to convert from an above representation to the dependence structure it
implies. One way to visualize is to take advantage of the stationarity and plot the heatmap of the matrix
kS(x − x′) as a function of its Age, Year coordinates.

3.3. GA operations and algorithm parameters
The overall GA is summarized by the set of possible mutations and a collection of algorithmic parame-
ters. These are important for many reasons: (i) sufficient exploration so that the algorithm does not get
trapped in a particular kernel configuration; (ii) efficiency in terms of number of generation and gener-
ation size needed to find the best kernels; and (iii) bloat control, that is, ensuring that returned kernels
are not overly complex and retain interpretability. Interpretable kernels would tend to have low length
(below 10) and avoid repetitive patterns. Bloat control, that is, avoiding the appearance of overly com-
plex/long kernels, is a concern with GAs. Luke and Panait (2006) and Poli et al. (2008) suggest several
ways to combat it.

Our specific high-level GA parameters are listed in Table 2. We largely follow guidelines from Sipper
et al. (2018), which offers a thorough investigation of the parameter space of GA algorithms. Ancestors
are chosen via a tournament setup, where T = 7 individuals are independently and uniformly sampled
from the previous generation and a single tournament winner is the fittest (lowest BIC) individual. A
smaller T provides diversity in future generations, whereas a larger T reduces chances of leaving behind
fit individuals. To combat bloat, we follow the double tournament procedure described in Luke and
Panait (2006): all instances of a single tournament are replaced by two tournaments run one after the
other, with the lower length ancestor chosen with probability pDT ∈ [0.5, 1]; larger values prefer parsi-
mony over fitness. We use the less restrictive pDT = 0.6 instead of the suggested pDT = 0.7, partially since
BIC has a built-in penalization for unwieldy models thereby mitigating bloat. As a further proponent
of parsimony, we use hoist mutation as suggested in Poli et al. (2008) with ph = 0.1. Using the above
parameterization, we rarely observe kernels of length over 15 in our experiments.

Table 3 fully details the crossover and mutation operations and associated algorithmic parameters,
with Figure 1 providing a visual illustration. Most of these are standard in the literature. Our domain
knowledge suggests an additional point mutation operator which we call respectful point mutation. This
operator maintains the coordinate of the kernel being mutated, so that a kernel operating on age is
replaced by one in age, and so forth. This respects a discovered APC structure and fine tunes the chosen
coordinate.

The arity (number of arguments) of a function needs to be preserved in crossover and mutation
operations. In our setup, the only non-trivial arity functions are add and mul (both with arity 2), so if
these nodes are chosen for a mutation, the point mutation (and respectful point mutation) automatically
replaces them with the other operation: add with mul and vice-versa.

In some GA applications, authors propose to have several hundred (or even thousand) genera-
tions. Because times to fit a GP model is non-trivial, running so many generations is computationally
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Table 3. Operator specific GA parameters with description. Note that pc + ps + ph + pp + pr + p0 = 1.

Probability GA operation Notes
pc = 0.45 Crossover
ps = 0.2 Subtree mutation
ph = 0.1 Hoist mutation
pp = 0.05 Point mutation Each node is mutated with another node of same arity

with prob. qp

pr = 0.15 Respectful point mutation Each node is mutated with another node of same arity
and same (age, year, cohort) with prob. qr

p0 = 0.05 Copy

qp = 0.25 Point replace
qr = 0.35 Respectful replace
qa = 0.5 Probability that add/mul is included when initializing

trees

Algorithm 1: Genetic Algorithm for compositional kernel selection
input: Kernel search set K; genetic algorithm parameters G1 = {ng, G, T} and G2 in Tables 2 and 3

respectively; Dataset D = {(x1, y1), . . . , (xn, yn)}
output: Kernel expressions and BIC scores {{κg

i , bg
i }ng

i=1}G−1
g=0

1 for i = 1 to ng do
2 κ 0

i ←
←

InitializeKernel();
3 b0

i BIC(κ 0
i )

4 for g = 1 to G − 1 do
5 for i = 1 to  ng  do
6 DetermineAncestor
7 {κ g− 1

(1) , . . . , κ g− 1
(T ) } ← SampleUniform({κ g− 1

1 , . . . , κ g− 1
ng − 1 }, T ) ;

8 j i ← argmin{bg−1
(1) , . . . , b g− 1

(T ) } // b’s are the respective BIC’s of these
individuals;

9 A g− 1
i ← κ g−1

j i
;

10 Operation ← Sample(Crossover,(Mutation, Type)) // according to 
11 if Operation == Crossover then
12 A'g− 1

i ← κ g− 1
j 'i

// 2nd ancestor (according to DetermineAncestor);
13 κ g

i ← Crossover(A g−1
i , A'g− 1

i ) ;
14 else
15 κ g

i ← Mutation(Ag−1
i ; Type);

16 bg
i ← BIC(κ g

i )

G2;

prohibitive. Below we use a fixed number of G = 20 generations. As shown in Figure 5, kernel explo-
ration seems to stabilize after a dozen or so generations, so there appears to be limited gain in increasing
G. In contrast with a typical GA application, we are more interested in interpreting all prototypical well-
performing kernels, rather than in optimizing an objective function to an absolute minimum; that is to
say, our analysis is sufficient as long as a representative ballpark of optimal models has been discovered.

Denote by κg
i the i = 1, . . . , ngth individual in generation g = 1, . . . , G − 1, with a corresponding BIC

of bg
i . Algorithm 1 outlines the full GA. BIC computes the BIC as in Equation (3.1), which implicitly fits
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a GP and optimizes hyperparameters. SampleUniform determines ancestors according to a tournament
of size T . A crossover or mutation is determined according to the probabilities provided in G2 (according
to Table 3), where Type denotes the type of mutation chosen. In the event of a crossover, another ancestor
is determined through the same process as the first. The entire algorithm is ran for G generations, where
g = 0 initializes, and the remaining G − 1 steps involve choosing ancestors and offspring. For g = 0,
InitializeKernel() constructs a randomly initialized kernel, where the length is uniformly chosen
from {3, 5, 7, 9} (respectively 2, 3, 4, 5 base kernels), where the base kernels are uniformly sampled from
K, and add/multiply operations are equally likely. Experiments where we initialized with a more diverse
set (kernel length from 1 to 15) slowed GA convergence with a negligible effect on end results. Our
initialization was chosen with the goal of providing as unbiased of a sampling procedure as possible.
Alternative initializations could be used, for example, imposing a diversification constraint on the APC
terms in a given kernel, or infusing the initial generation with known-to-be-adequate kernels. It is also
worth mentioning that although we fixed ng = 200 for all g = 0, . . . , G − 1, this value could vary over g
so that the total number of results is

∑G−1
g=0 ng.

Remark 3. As mentioned, we utilized a double tournament method to combat bloat. Specifically
in Algorithm 1, whenever DetermineAncestor is run, it is in fact run twice to obtain Ag−1

i,(1) and
Ag−1

i,(2) , and the smaller length winner Ag−1
i = Ag−1

i,(j0) is chosen with probability pDT = 0.6, where j0 =
arg minj=1,2 |Ag−1

i,(j) |. See Luke and Panait (2006) for details. This is left out of Algorithm 1 for brevity.

Since top-performing kernels are preferred as tournament winners, they become ancestors for future
generators and are likely to re-appear as duplicates (either due to a Copy operation or a couple of muta-
tions canceling each other). As a result, we observe many duplicates when aggregating all κg

i ’s across
generations.

Remark 4. Some kernel compositions result in over-parameterization, for example, mul(RBF_a,
RBF_a) which is statistically identical to RBFa. This is handled through the BIC penalty, which prefers
the reduced one-term version.

3.4. GP hyperparameter optimization
As mentioned, the hyperparameters of a given kernel k(·, ·;θ ) are estimated by maximizing lk(θ |y), the
marginal log likelihood of the observed data. The optimization landscape of kernel hyperparameters in
a GP is non-convex with many local minima, so we take care in this optimization. Since y is on the log
scale, we leave these values untransformed. For given x = [xag, xyr, xc]� ∈R

3, we perform dimension-
wise scaling to the unit interval, for example, if xag = [x1,ag, . . . , xn,ag]� then xi,ag �→ xi,ag−min (xag)

max (xag)−min (xag)
and

similarly for xyr and xc. Lengthscales for stationary kernels can be interpreted on the original scale
through the inverse transformation �len = (max (x) − min (x)) �̃len, where �̃len is on the transformed scale,
with similar transformations for the mean function parameters. For interpretability purposes, we utilize
this to report values on the original scale in Sections 4 and 5 whenever possible. Nonstationary kernel
(i.e., Min, Meh, and Lin) hyperparameters are left transformed, as they generally cannot be interpreted
on the original scale.

We use Python with the GPyTorch library (Gardner et al., 2018) to efficiently handle data and matrix
operations. Since our results rely heavily on accurate likelihood values (through BIC), we turn off
GPyTorch’s default matrix approximation methods. Maximizing lk(θ |y) is done using Adam (Kingma
and Ba, 2014). This is an expensive procedure, as a naive evaluation of lk(θ |y) is O(n3) from inverting
K(X, X). Our GA runs use a convergence tolerance of ε= 10−4 and maximum iterations of ηmax = 300.
We found most simple kernels to converge quickly (η≤ 100) even up to ε= 10−6, see Table B.1 in the
Appendix. We keep ηmax relatively small since we need to fit ng · G � 103 models. Upon completion,
the top few dozen kernels are refit with ε= 10−6 and ηmax = 1000. Note that since Adam is a stochastic
algorithm, the fitted kernel hyperparameters vary (slightly in our empirical work) during this refitting.
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Table 4. Description of synthetic datasets. Data are generated as multivariate normal realizations
according to the Equations in (2.4), with parametric mean function m(x) = β0 + βagxag. SYA and SYB
are homoskedastic. In generating SYC’s heteroskedastic noise, Dx comes from the JPN Female data, see
Section 5 for details regarding this dataset.

Exprmnt Ground truth kernel σ 2(x) β0 βag

SYA 0.04 · RBFa(13.6) · RBFy(8.7) 0.001 –10.0 0.1
SYB 0.08 · RBFa(19.92) · M12y(386.6) + 0.02 · M52c(4.98) 0.0004 –9.94 0.087
SYC 0.4638 · M52a(37.7) · Chyy(56.6) · M12y(1810)· 1.0781/Dx –11.8835 0.1134

·M12c(7378)

This reflects the idea that the GA is a preliminary “bird’s-eye search” to find plausible mortality struc-
tures, thereafter refining hyperparameter estimates. Except in a few cases, changes in final BIC values
are minimal, though the ranking of top kernels can occasionally get adjusted.

4. Synthetic mortality kernel recovery
The premise of the GA is to carry out an extensive search that can correctly identify appropriate APC
covariance structure(s) for a given dataset D. The GA can be thought of as an initial search to yield a
few thousand (ng · G) candidates, after which one can identify the top few best-fitting kernels as the ones
to best represent the covariance structure of D. To assess the quality of this kernel discovery process,
we first try three synthetic datasets where the true data generating process, that is, the APC covariance
structure, is given, and therefore we can directly compare the outputs of the GA to a known truth. This
checks whether the GA can recover the true covariance, and by using BFs, analyzes which kernels
express similar information by substituting others. Furthermore, it allows to assess the effect of noise
on kernel recovery. These experiments also provide a calibration to understand evidence categories for
BFs (see Table 15) in the context of GP kernel comparison. Simpler experiments focus on the restricted
set of kernels Kr as described in Section 2.3, noting that Liny is the only appearance of linear (to model
linear mortality improvement/decline in calendar year). Additional experiments utilize the full set Kf of
kernels, which includes all kernels in Table 1 over all coordinate dimensions.

The full experimental setup is as follows. First, we fix a GP kernel in the APC space and generate a
respective log-mortality surface by sampling exactly from that prior. This creates a synthetic mortality
surface. Below our surface spans Ages 50–84 and Years 1990–2019 and includes a linear parametric
trend m(x) = β0 + βagxag in Age. Thus, our training sets consist of 35 · 30 = 1050 inputs, identical in size
to the HMD datasets used in Section 5.

A three letter code is used to identify each synthetic mortality structure. The first two experiments
(SYA, SYB) use identically distributed, independent observation noise ε ∼N (0, σ 2), and the third
(SYC) takes heteroskedastic noise ε(x) ∼N (0, σ 2/Dx), with Dx coming from the real-world HMD Japan
Female dataset to capture realistic heterogeneity in age. The precise setups along with the hyperparam-
eters are described in Table 4, and the resulting synthetic mortality surfaces are available for public
re-use at github.com/jimmyrisk/gpga-synthetic-surfaces. All of the synthetic kernels and their hyperpa-
rameters are real-world-plausible. Namely, SYA, SYB, and SYC all came from prototypical GA runs on
HMD datasets and hence match their structure.

The first case study (SYA) starts with an exceptionally simple structure (kernel of length 3, i.e., 2 base
kernels) as a check on whether the GA preserves parsimony when exploring the kernel space. In other
words, we use SYA to validate that longer-length kernels would correctly be perceived as over-fitting
during the GA evolution and receive lower fitness scores compared to the true kernel. As a secondary
effect, SYA addresses recovery of kernel smoothness, as RBFa · RBFy is smooth in both Age and Year
components. Since we minimize BIC for the given training set, it is plausible that a different kernel
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Table 5. Top five fittest non-duplicate kernels for the first synthetic case study SYA. Bolded is K0 =
RBFyRBFa, the true kernel used in data generation. SYA-1 and -2 denote the realization trained on.

SYA-1 SYA-2

BIC B̂F(k, K0) Kernel BIC B̂F(k, K0) Kernel
–2034.23 1.0000∗∗∗ RBFaRBFy –2066.93 1.1907∗∗∗ M52aRBFy

–2034.04 0.8264∗∗∗ M52aRBFy –2066.76 1.0000∗∗∗ RBFyRBFa

–2031.82 0.0902∗ M52aM52y –2064.63 0.1216∗∗ M52aM52aRBFy

–2031.29 0.0526∗ M52aRBFaRBFy –2064.24 0.0801∗ M52aRBFaRBFy

–2031.09 0.0433∗ M52aM52aRBFy –2063.88 0.0561∗ M52aM52aRBFy

from the generating one might actually achieve a (slightly) lower BIC for a given realization, so this
experiment is performed twice (generating SYA-1 and SYA-2) to assess sampling variability.

The second synthetic example (SYB) features a more sophisticated kernel of length 7 (with 3 base
kernels) and moreover combines both multiplicative and additive structure. It is motivated by Lee–
Carter models and has a multiplicative age-period component with a less prominent additive cohort
effect (coefficient of 0.02 versus 0.08). Its purpose is to (i) check whether the GA is able to identify such
high-level structure (including addition and multiplication, on the correct terms), (ii) identify low-length
kernels as under-fitting, and (iii) distinguish between all three of Age, Year, and Cohort terms.

The third experiment (SYC) employs a multiplicative four-component kernel, primarily to test the
GA’s handling of complex structures and potential over-parameterization due to dual period effects
(Chyy and M12y). Except for Chyy, all kernels are in Kr. The large lengthscales of M12y and M12c

both represent near nonstationarity. The analysis spans both Kr and Kf , with one focus on how the GA
approximates Chyy using Kr-kernels.

Both SYA and SYB are done purely searching over Kr, with SYA testing a basic APC setup, and SYB
emphasizing recovering additive structure and linear coefficients. Using Kf could muddle the analysis
and is therefore left for SYC. Random number generator seeding for the initial generation is unique to
each GA run; all GA runs have identical algorithmic parameters as described in Tables 2 and 3.

Remark 5. The theoretical BF in Equation (3.2) assumes all hyperparameters have been integrated
out p(y|k) = ∫

θ
p(y|k, θ )dθ , or replaced with MLE’s when using BIC. Thus, the hypothesis being tested

through the BFs is purely about the kernel choice.

4.1. Synthetic results
Answers to questions presented in the previous section are found in Table 5 for SYA, Table 7 for SYB,
and Table 8 for SYC. In all tables, K0 denotes the known kernel that generated the synthetic data. With
the goal in mind to establish kernel recovery (ignoring hyperparameter estimation), θ̂ is estimated for
K0 from the generated data.

SYA
Table 5 shows the results of the top 5 fittest kernels for SYA-1 and SYA-2. The estimated BF (using
BIC) is the column B̂F(k, K0) = exp (BIC(K0) − BIC(k)). For SYA-1, the true kernel K0 = RBFyRBFa

is discovered and appears with lowest BIC. Next best (with a large BF of 0.826) is M52aRBFy, which
has an identical structure aside from using the slightly less smooth Matérn-5/2 kernel for age instead of
RBF. Note that the BF would need to be below 1/3 ≈ 0.3333 to even be worth mentioning a difference
between these kernels according to Table 15 in the Appendix, suggesting an indifference of the two
models. Our interpretation is that sampling variability makes M52a a similar alternative to RBFa. Note,
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Table 6. Logarithmic Bayes Factor log B̂F(k, K0) = BIC(K0) − BIC(k) for K0 = RBFaRBFy and k = kaky,
where ka and ky are in the respective row and column labels and BIC(K0) is evaluated over SYA-1 (left
panel) and SYA-2 (right panel).

SYA-1 SYA-2

M12a M32a M52a RBFa M12a M32a M52a RBFa

M12y –63.98 –38.96 –37.49 –39.41 –96.99 –68.85 –66.12 –65.25
M32y –35.83 –8.13 –5.98 –7.12 –53.24 –21.19 –17.67 –16.06
M52y –32.29 –4.70 –2.41∗ –3.33∗ –42.75 –11.36 –8.09 –6.92
RBFy –30.24 –3.14∗ –0.19∗∗∗ 0.00∗∗∗ –32.67 –2.31∗ 0.17∗∗∗ 0.00∗∗∗

however, that any lower Matérn order does not appear in either table. The remaining three rows have a
similar kernel structure with superfluous Age or Period kernels added. The BFs are below 0.1, suggest-
ing strong evidence against these kernels as being plausible alternatives for the generated dataset. This
experiment confirms the GA’s ability to recover the overall structure, with an understandable difficulty
in distinguishing between M52a and RBFa. SYA-2 in the right panel of Table 5 considers a different real-
ized mortality surface under the same population distribution to assess stability across GA runs. It tells
a similar story, though interestingly the lowest-BIC kernel is now M52aRBFy, with B̂F(k, K0) = 1.1907.
This means that it achieves a lower BIC than the true kernel, showcasing possibility of overfitting to data.
At the same time, since the BF is so close to 1, this is still not statistically worth mentioning and hence
can be fully chalked up to sampling variability. Otherwise, we again observe only two truly plausible
alternatives, and very similar less-plausible (BF between 0.05 and 0.13) alternates.

To further assess smoothness detection, multiplicative Age–Period kernels k = kaky are fit to both
SYA-1 and SYA-2 datasets, where ka and ky range over M12, M32, M52 and RBF (in order of increasing
smoothness), resulting in a total of 16 combinations per training surface. The resulting differences in
BIC are provided in Table 6. Note that the ground truth kernel K0 = RBFaRBFy generates a mortality
surface that is infinitely differentiable in both Age and Period. In both cases, decisive evidence is always
against either surface having a M12 component (with BIC(K0) − BIC(k) ranging from −96.99 to −30.24
– recall that anything below –4.61 is decisive evidence for K0). As found above, M52a is a reasonable
surrogate for RBFa for both SYA-1 and SYA-2. SYA-1 shows only strong evidence against M52y (as
opposed to decisive for SYA-2). In both cases, there is decisive evidence against M32y, with only strong
evidence on the age component M32a when using RBFy (otherwise, it is decisive). This difference is
likely explained by the additional flexibility of M32a to pick up some fluctuations which would normally
be reserved for the parametric mean function in age.

SYB
Next, we discuss SYB where the training surface is generated from K0 = 0.08 · RBFaM12y + 0.02 ·
M52c. Table 7 shows that there a total of four plausible kernels found (with BFs above 0.1). The GA
discovers the ground truth (bolded in Table 7) with slightly different hyperparameters, and three closely
related alternates. In particular, these four fittest kernels all identify the correct number of APC terms
with a multiplicative Age–Period term plus an additive Cohort term. The RBFa term is recovered in all
four, and the corresponding Age lengthscales are very close to the true �a

len = 0.586. The Cohort effect is
captured either via the ground truth M52c (top-2 candidates) or RBFc, a substitution phenomenon sim-
ilar to what we observe for SYA above. The respective lengthscale is correctly estimated to be within
0.3 of the true �c

len = 0.079. The Period effect is captured either by the ground truth M12y or by Miny.
The data-generating K0 has a very large �y

len = 13.33 for the M12y term, which corresponds to an AR(1)
process with φ0 = exp (−1/13.33) = 0.9975 after unstandardizing then transforming. Over the training
range of 30 years, this is almost indistinguishable from a random walk with a Min kernel. As a result, the
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Table 7. Top five fittest non-duplicate kernels for the second synthetic case study SYB. Bolded is the
true kernel used in data generation K0 = 0.08 · RBFa(19.3) · M12y(386.6) + 0.02 · M52c(4.98), with
σ 2 = 4 × 10−4, β0 = −9.942, β1 = 0.0875.

SYB

BIC B̂F(k, K0) Kernel σ̂ 2 β̂0 β̂ag

–2468.0 1.033∗∗∗ 0.014 · RBFa(19.5)Miny(4.42) + 0.018 ·
M52c(5.23)

3.52 × 10−4 −9.049 0.096

–2467.8 1.000∗∗∗ 0.063 · RBFa(19.89)M12y(259.2) +
0.0180 · M52c(5.29)

3.448 × 10−4 −9.045 0.098

–2465.9 0.161∗∗ 0.060 · RBFa(19.5)M12y(239.7) + 0.016 ·
RBFc(3.21)

3.60 × 10−4 −9.049 0.096

–2465.7 0.127∗∗ 0.014 · RBFa(19.5)Miny(4.3) + 0.016 ·
RBFc(3.21)

3.60 × 10−4 −4.249 3.298

–2464.7 0.047∗ 0.022 · RBFa(20.1)Liny(2.8)M12y(303.9) +
0.016 · M52c(5.23)

3.45 × 10−4 −9.162 0.097

Table 8. Fittest non-duplicate kernels for SYC in two separate runs, one over Kr and the other over
Kf . The true kernel is K0 = M52a

(
ChyyM12y

)
M12c. Note that Chyy /∈Kr. All B̂F values are in the ∗∗∗

evidence category.

SYC

Restricted search set Kr Full search set Kf

BIC B̂F(k, K0) Kernel BIC B̂F(k, K0) Kernel
–2723.57 1.9874 M52a(RBFyM12y)M12c –2723.57 1.9874 M52a(RBFyM12y)M12c

–2723.53 1.9055 M52a(RBFyMiny)M12c –2722.89 1.0000 M52a(MehyM12y)M12c

–2723.45 1.7642 M52a(RBFyM12y)Minc –2722.89 1.0000 M52a(ChyyM12y)M12c

–2722.81 0.9258 M52a(M52yM12y)M12c –2722.85 0.9646 M52a(ChyyMiny)M12c

–2722.71 0.8369 M52a(M52yM12y)Minc –2722.81 0.9258 M52a(M52yM12y)M12c

substitution with Miny is unsurprising, as is the wide range of estimated �len. For example, �̂y
len = 259.057

in the second row corresponds to AR(1) persistence parameter of φ = 0.9960, very close to the true φ0.
We furthermore observe stable recovery of all non-kernel hyperparameters

(
σ 2, β0, βag

)
, with estimates

close to their true values.
Finally, the GA is also very successful in learning that the Age–Period component (coefficient

0.08) dominates the Cohort component (coefficient 0.02), conserving the relative amplitude of the
two components. Note that the Min and Lin kernels include an offset, which mathematically result
in similar linear coefficients to the true 0.08 and 0.02. For example, the first term in the first row sim-
plifies to 0.0141 · RBFa · (4.42 + xyr ∧ x′

yr

)= 0.0623 · RBFa + 0.0141 · RBFa · (xyr ∧ x′
yr

)
. This results in

all five kernels in Table 7 discovering the first component to be larger than the second by a factor of
3.5–4.

SYC
Table 8 presents the SYC results. Multiple models exhibit BFs greater than 1, or very close to 1, indicat-
ing that it is impossible to tell which is the “best” compound kernel. At the same time, all kernels in the
top-5 list forKf are small variations of the true kernel (which shows up in the third spot), differing by only
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one kernel component. Moreover, M52a and M12c appear consistently, underscoring their importance
in the true model. We yet again observe BIC-equivalence between Chy and RBF (see Appendix A) as
well as M12 and Min. Same pattern holds for searching in Kr that substitutes RBFy or M52y for the true
Chyy term.

Against the above non-uniqueness of the best expressive kernel, the GA does provide strong evidence
on the overall structure, namely the number of total terms in K0 and the presence of an additive structure.
The best kernel with three components (rather than four) is M52aMinyM12c with B̂F< 1 × 10−6; the
best kernel with five components is M52a(LinyM12yRBFy)M12c (B̂F = 0.0419). Thus, the BIC criterion
leads the GA to correctly reject kernels that are too short or too long for the SYC dataset. Finally, the
best kernel with an additive component is M52a(M12y + RBFy)M12c (B̂F = 0.0595), providing decisive
evidence that the BIC also properly learns the lack of any further additive terms.

5. Results on Human Mortality Database data
After validating our generative kernel exploration with synthetic data, we move to realistic empirical
analysis. Unless otherwise mentioned, we use the same prior mean m(x) = β0 + βagxag as in the previous
section, which is a reasonable prior trend for the age ranges we consider. Our discussion focuses on
retrospective analysis, namely the performance of different kernels assessed in terms of fitting a given
training set. Thus, we do not pursue out-of-sample metrics, such as (probabilistic) scores for predic-
tive accuracy and concentrate on looking at the BIC scores augmented with a qualitative comparison.
Retrospective assessment parallels the core of APC methods that seek to decompose the data matrix
via singular value decomposition, prior to introducing the out-of-sample dynamics in the second step.
A further reason for this choice is that predictive accuracy is fraught with challenges (such as handling
idiosyncratic data like the recent 2020 or 2021 mortality driven by COVID), and there is no canonical
way to assess it. In contrast, BIC offers a single “clean” measure of statistical fit for a GP and moreover
connects to the BF interpretation of relative preponderance of evidence.

Below we consider four representative national populations from HMD covering three countries
and both genders. As our first case study, we consider the Japanese Female population. We utilize the
HMD dataset covering Ages 50–84 and years 1990–2018. The same top-level and crossover/mutation
algorithmic parameters of the GA are used as in the last section (Tables 2 and 3, respectively).

Table 9 provides summary statistics regarding the top kernels in Kf that achieve the lowest BIC
scores. In order to provide a representative cross-sectional summary, we consider statistics for the top-
10, top-50, and then 51–100, 101–150, and 151–200th best kernels. Recall that there are a total of
20 · 200 = 4000 kernels proposed by the GA, so top-200 correspond to the best 5% of compositions.
We find that the best fit is provided by purely multiplicative kernels (single additive component) with
3 or 4 terms. This includes one term for each of APC coordinates, plus a possible 4th term, usually in
Cohort or Year. In the restricted class Kr, all of the top-10 kernels are of this form, as are 9 out of top-10
kernels found in Kf .

The above APC structure moreover includes a rough (non-differentiable or only once-differentiable)
component in Year and in Cohort. This matches the logic of time-series models for evolution of mor-
tality over time. Note that in our setting, it can be interpreted as a strong correlation of observed noise
across Ages, in other words the presence of environmental disturbances (epidemics, heat waves, other
co-morbidity factors) that yield year-over-year idiosyncratic impacts on mortality. On the other hand, in
Age best fits are smooth, most commonly via the M52 kernel. This matches the intuition that the Age-
structure of mortality is a smooth function. Table 9 documents a strong and unequivocal cohort effect:
present 100% in all top kernels. This is consistent with Willets (2004) who states that a strong cohort
effect for the Japanese Female population can be projected into older ages.

The presence of multiple factors (length above 3) generally indicates one or both of the following:
(i) multi-scale dependence structure and (ii) model mis-specification. On the one hand, since we are
considering only a few kernel families, if the true correlation structure is not matched by any of them,
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Table 9. Summary statistics of the top kernels for the re-run and robust checks for JPN Females across
both Kr and Kf . addtv comps refers to the average number of additive components (the frequency of
appearance of the “+” operator plus one); num refers to the total average number of kernel terms in the
respective coordinate; non-stat reports the percentage of returned compositional kernels that include
any of Min, Meh families; rough reports the fraction that include any of the M12, Min, AR2 families.
For each row we average all metrics among the respective kernels: top-10, top-50, and those ranked
51–100.

BIC BIC addtv non- num num num rough rough rough
Range max min len comps stat. age year coh age year coh

JPN Female

1–10 –2723.68 –2725.29 4.00 1.00 0% 1.00 1.80 1.20 0% 100% 100%
1–50 –2720.64 –2725.29 4.34 1.08 10% 1.12 1.90 1.32 0% 100% 100%
51–100 –2718.24 –2720.62 4.60 1.20 18% 1.12 2.20 1.28 0% 100% 100%
101–150 –2717.03 –2718.17 5.02 1.14 4% 1.30 2.18 1.54 6% 98% 100%
151–200 –2715.77 –2717.01 5.10 1.48 12% 1.28 2.36 1.46 6% 100% 100%

JPN Female Re-run

1–10 –2723.05 –2725.29 4.00 1.00 0% 1.00 1.60 1.40 0% 100% 100%
1–50 –2719.82 –2725.29 4.14 1.08 10% 1.08 1.58 1.48 0% 98% 100%
51–100 –2718.30 –2719.82 4.46 1.26 8% 1.14 1.62 1.70 6% 100% 100%

JPN Female Search in Kr

1–10 –2724.11 –2725.27 4.00 1.00 0% 1.00 1.70 1.30 0% 100% 100%
1–50 –2721.19 –2725.27 4.48 1.10 8% 1.14 1.96 1.38 0% 100% 100%
51–100 –2718.06 –2721.19 4.72 1.50 18% 1.16 1.96 1.60 0% 100% 100%

JPN Female trained on Drob,1

1–10 –2724.11 –2725.29 4.00 1.40 40% 1.00 1.50 1.50 0% 100% 100%
1–50 –2716.84 –2725.29 4.42 1.12 18% 1.14 1.64 1.64 0% 100% 100%
51–100 –2714.96 –2716.58 4.70 1.16 12% 1.18 1.68 1.84 0% 100% 100%

JPN Female trained on Drob,2

1–10 –2724.33 –2725.23 4.00 1.00 0% 1.00 1.10 1.90 0% 100% 100%
1–50 –2719.09 –2725.23 4.22 1.00 4% 1.04 1.38 1.80 0% 100% 100%
51–100 –2718.16 –2719.10 4.62 1.18 14% 1.32 1.40 1.90 0% 100% 100%

the algorithm is going to substitute with a combination of the available kernels. Thus, for example, using
both a rough and a smooth kernel in Year indicates that neither of the M12 or RBF fit well on their own.
On the other hand, the presence of additive structure, or in general the need for many terms (especially
over 5) suggests that there are many features in the correlation structure of the data, and hence it does
not admit any simple description.

In JPN Females, the GA’s preference for parsimony is confirmed by the fact that the best-performing
kernels are the shortest. We observe a general pattern that Length is increasing in Rank. In particular,
going down the rankings, we start to see kernels with two additive components. We may conclude that the
second additive component provides a minor improvement in fit, which is outweighed by the complexity
penalty and hence rejects on the grounds of parsimony.
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Table 10. Fittest non-duplicate kernels for Japanese Females in two separate runs, one over Kf and the
other over Kr. Bayes Factors B̂F are relative to the best found kernel k∗

JPN−FEM and all have insubstantial
significance. †Daggered kernels under Kf column are those that also belong to Kr.

Japan Female HMD Dataset for 1990–2018 and Ages 50–84

Kr Kf

BIC B̂F Kernel BIC B̂F Kernel
–2725.288 0.995 M52a(RBFyM12y)M12c –2725.293 1 M52a(ChyyM12y)M12c

–2725.270 0.977 M52a(M52yM12y)M12c –2725.270 0.977† M52a(M52yM12y)M12c

–2725.233 0.941 M52a(RBFyMiny)M12c –2725.221 0.931† M52a(M52yMiny)M12c

–2725.221 0.931 M52a(M52yMiny)M12c –2724.623 0.512† M52a(M52yM12y)Minc

–2724.640 0.520 M52a(M52yM12y)Minc –2724.510 0.457 M52a(M12yM32y)M12c

Figure 2. Frequency of appearance of different kernel families in JPN Female models.

The compositional kernel that achieves the lowest overall BIC is

k∗
JPN−FEM = 0.4638 · M52a(37.7) · Chyy(56.6) · M12y(1810) · M12c(7378).

Note the purely multiplicative structure of k∗
JPN−FEM and its two Period terms, capturing both the local

rough nature and the longer-range dependence. Table 10 lists the next-best alternatives, both within Kf

and within Kr. We see minimal loss from restricting to the smaller Kr, as three of five top kernels found
in Kf actually belong to Kr. Thus, casting a “wider net” does not improve BIC, suggesting that most of
the kernel options added to Kf are either close substitutes to the base ones in Kr or do not specifically
help with HMD data. Indeed, the BF improvement factor is just exp (0.19) from Table 9. Moreover, we
also find that there is strong hyperparameter stability across different top kernels. For example, we find
that the lengthscale in Age (which is always captured via a M52 kernel in Table 10) is consistently in
the range [37, 38.5]. Similarly, the lengthscales for the M12 kernel in Cohort are large (> 6000).

Figure 2 visualizes the frequency of the appearance of different kernels. We consider the top 100
unique kernels returned by the GA and show the number of times each displayed kernel is part of the
composite kernel returned. Note that sometimes the same kernel can show more than once. In the left
panel, we consider GA searching in Kr, hence many of the families are not considered; the right panel
looks at the full Kf .
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Figure 3. Properties of the top 100 kernels found by GA.

The barplots in Figure 2 indicate that there is a substantial variability in selected kernels when con-
sidering the top 100 proposals. Nevertheless, we observe the typical decomposition into “principal”
factors, such as M12c and M12y for JPN Females, plus additional residual kernels. The latter generate
second-order effects and are not easily identifiable, leading to a variety of kernels showing up for 5–15%
of the proposals. For example, nearly every kernel family in Period can be used to construct a good com-
positional kernel. This heterogeneity of kernels picked indicates that it is not appropriate to talk about
“the” GP model for a given dataset, as there are several, quite diverse fits that work well.

Figure 3 shows several summary statistics of proposed kernels against their BIC scores. We display
the top 100 unique kernels, arranged according to their total length (y-axis) and generation found (color).
First, we observe that there is an increasing clustering of kernels as we march down the BIC order (x-
axis). In other words, there is typically a handful (1–5) of best-performing kernels, and then more and
more equally good alternatives as the BIC decreases. This matches the interpretation of BFs: accepting
the best-performing kernel as the “truth”, we find several plausible alternatives, a couple dozen of some-
what plausible ones, and many dozens of weakly plausible ones. The spread of the respective BF factors
varies by population; in some cases there are only ∼ 50 − 60 plausible alternatives, in others there are
well over a hundred.

Second, we observe that most of the best kernels are found after 10+ generations, matching the logic
of the GA exploring and gradually zooming into the most fit kernel families. However, that pattern is
not very strong, and occasionally the best kernel is discovered quite early on.

Third, we observe a pattern in terms of kernel complexity vis-a-vis its fitness, matching the above
logic: the best-performing kernels tend to be of same length (and are very similar to each other, often
just 1 mutation away), but as we consider (weakly) plausible alternatives, we can find both more parsi-
monious and more complex kernels. This captures the parsimony trade-off: shorter kernels have lower
likelihood but smaller complexity penalty; longer kernels have higher log-likelihood but are penalized
more.

In Figure 4, we present in-sample and future forecasts of log-mortality for JPN Female Age 65. The
left panel uses the top-10 kernels, providing their posterior mean and prediction intervals. The in-sample
fit is tightly constrained, while the out-of-sample prediction becomes more heterogeneous as we move
away from the training sample. In particular, there is a bimodal prediction that groups kernels, with
some projecting future mortality improvement and others moderating the downward trend. Examining
the GA output, we find that there are two “clusters” of kernels among the best-performing ones. Some
of them contain a Mehler kernel, either in Year or in Cohort, and others do not. The ones that do form
the “bottom” cluster in Figure 4, that is, they predict relatively large improvements in future Japanese
mortality. The ones that do not utilize Mehler (all top-5 belong to this category) predict more moderate
MI. The overlayed 90% posterior prediction intervals indicate a common region for future mortality
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Figure 4. Predictions from the top 10 kernels in Kf for JPN Females Age 65. Left: predictive mean
and 90% posterior interval from the top-10 kernels. For comparison, we also display (black plusses)
the six observed log-mortality rates during 2014–2019. Right: four sample paths from each of three
representative kernels.

trajectories, with symmetric fanning as calendar year increases and a slight skew toward lower mortality
rates deeper in future years. This forecasting approach can serve as a basis for Bayesian model averaging,
utilizing the BFs as weights. Furthermore, we observe a square-root type fanning of variance, which is
common in random-walk mortality models.

The right panel of the figure investigates the stochasticity of the GP by simulating paths using three
representative kernels. In-sample paths cluster closely around their posterior means, with observed
difficulties in deviating far from the observed data. The observed roughness in the trajectories is a con-
sequence of including a M12 or Min component in Calendar Year or Cohort. When examining the
trajectories out-of-sample, the impact of individual kernels becomes more apparent, particularly in the
green and blue paths. Lack of mean reversion is more evident in these paths, which could be attributed
to the presence of the nonstationary Min kernel in calendar year (green) and Mehler kernel in cohort
(blue).

5.1. Robustness check
To validate the above results of the GA, we perform two checks: (i) re-run the algorithm from scratch,
to validate stability across GA runs; (ii) run the GA on two modified training datasets: Drob,1, Drob,2. For
Drob,1, we augment with two extra calendar years (beginning at 1988 instead of 1990), and four extra Age
groups (48–86 instead of 50–84). For Drob,2, we shift the dataset by 4 years in time, namely to 1986–2015,
considering same Age range 50–84.

In all above cases, we expect results to be very similar to the “main” run discussed above. While the
GA undertakes random permutations and has a random initialization, we expect that with 200 kernels
per generation and 20 generations, the GA explores sufficiently well that the ultimate best-performing
kernels are invariant across GA runs. This is the first justification to accept GA outputs as the “true”
best-fitting kernels. Similarly, while the BIC metric is determined by the precise dataset, it ought to
be sufficiently stable when the dataset undergoes a small modification, so that the top kernels can be
interpreted as being the right ones for the population in question, and not just for the particular data
subset picked.

The above robustness checks are summarized below and in Table 9. These confirm that the GA is
stable both across its own runs (see the “Re-run” listings) and when subjected to slightly modifying the
training dataset or “rolling” it in time. We observe that we recover essentially the same kernels (both in
Kr and Kf ), and moreover the best kernels/hyperparameters are highly stable as we enlarge the dataset
(see the “Robust” listings). This pertains both to the very top kernels, explicitly listed below, but also
to the larger set of top-100 kernels, see the summary statistics in Table 9. Re-assuringly, the kernel
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Figure 5. Summary statistics of best kernels proposed by GA as a function of generation g.

lengthscales listed below change minimally when run on a larger dataset, confirming the stability of the
MLE GP sub-routines. In particular, the same kernel is identified as the best one during the re-run in
Kr, and it shows up yet again as the best for Drob,1, with just slightly modified parameters:

original D: 0.4651 · M52a(37.7) · M52y(52.2) · M12y(1821) · M12c(7412);

enlarged Drob,1: 0.4646 · M52a(37.7) · M52y(52.2) · M12y(1819) · M12c(7403).

Four out of the five best kernels repeat when working with Drob,1. This stability can be contrasted
with Cairns et al. (2011) who comment on sensitivity of SVD-based fitting to date range. The other
alternatives continue to follow familiar substitution patterns. Of note, with the run over Drob,1 there is
the appearance of Chya, but no appearance of Miny, M32y, or Mehc. As can be seen in Figure 2, Chya is
actually quite common.

Furthermore, all runs (original, re-run, enlarged dataset) always select M52 or Cauchy kernel for
the Age effect, Matérn-1/2 (or sometimes Min) in Period, typically augmented with a smoother kernel
like M32y, Mehy, Chyy, and M12c in Cohort. We furthermore record very similar frequency of different
kernels among top-100 proposals, and similar BIC scores for the re-run.

As another validation of GA convergence, Figure 5 shows the evolution of fitness scores over gener-
ations. We display the BIC of the best kernel in generation g, as well as the second best (99% quantile
across 200 kernels), 5th best (97.5%), 10th best (95%), and 20th best (90%) across the main run of the
GA and a “re-run”. The experiments in each panel differ only through a different initial seed for the
first generation. In both settings, only minimal performance increases (according to the minimum BIC)
are found beyond generation 12 or so. Since in each new generation there is inherent randomness in
newly proposed kernels, there is only distributional convergence of the BIC scores as new kernels are
continuously tried out. This churn is indicated by the flat curves of the respective within-generation BIC
quantiles. In sum, the GA converges to its “equilibrium” after about a dozen generations, validating our
use of G = 20 for analysis.

5.1.1. Robustness to prior mean
To examine the stability of top-ranking kernel compositions under different prior mean functions,
we compare our primary choice of the linear prior mean mlin(x) = β0 + βagxag to the following two
alternatives:

(i) A constant mean function mc(x) = β0;
(ii) A calendar year-averaged mean mya(x) = n−1

yr

∑
xyr∈D y(xag, xyr).
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Figure 6. Left: residuals from the best kernel in Kf for JPN Females. Right: implied prior correlation
k(x0, x′) of the best kernel as function of x′ relative to the cell x0 = (70, 2010) shown as the red dot.

The constant mean mc is the simplest possible prior and drops the second coefficient βag = 0, while
still estimating β0 alongside covariance hyperparameters during MLE. It is expected to yield a worse
goodness-of-fit and also lead to longer lengthscales, as the GP must match the linear trend directly. The
year-averaged mean mya is an example of a pre-determined (rather than fitted) mean function that pro-
vides an age-specific data-driven trend; this would generally be a more accurate de-trending compared
to the linear function in mlin(·). Year-averaging de-trending is used in Cairns et al. (2009) (comparing
the Lee–Carter with and without cohort models), and also appears in the Renshaw–Haberman model
(Renshaw and Haberman, 2006). Below our goal is not to compare performance across different mean
functions but to assess robustness of covariance structure to choice of mean function.

Re-running the GA with these alternatives, we find the following top kernels:

mya: 0.1567 · Chya(45.4) · (RBFy(24.7)M12y(579.9)) · M12c(2562);

mc: 2.1117 · M52a(40.9) · M12y(7873) · (M12c(31494)Mehc(0.473)).

In all, these results are remarkably similar to the primary run and demonstrate that the choice of
the mean function mostly affects kernel lengthscales but not the selected kernel types. Throughout the
three choices of m(·), we consistently get a purely multiplicative kernel with four terms, including a
smooth Age effect (captured either with Chy or M52 kernels that appear fully substitutable), a quasi-
nonstationary Year effect with a M12y term, a similar cohort effect with a M12c term, and a fourth
smooth term, mostly in Cohort using one of Meh, Chy, M52 kernels. We note that with a constant mean
there is less of a mean-reversion effect, that is, the GP is more focused on extrapolating the Year pattern,
see the very large lengthscales in Year and Cohort. Also, as expected, we find a reduced GP process
variance σ 2

f ,ya ≈ 0.15 � σ 2
f ,lin ≈ 0.45 for the year-averaged case (where the de-trended residuals modeled

by the GP are smaller in magnitude) and a much larger σ 2
f ,c ≈ 2 for the constant prior mean.

5.2. Analysis of model residuals
In Figure 6, the left panel displays the residuals that compare the realized log-mortality rates of JPN
Females with the GP prediction from the best-performing kernel. The absence of any identifiable struc-
ture, especially along the SW-NE diagonals that correspond to Birth Cohorts, indicates a statistically
sound fit, consistent with the expected uncorrelated and identically distributed residuals. Additionally,
we observe distinct heteroskedasticity, where residuals for smaller Ages exhibit higher variance. This is
due to the smaller number of deaths at those Ages, resulting in a more uncertain inferred mortality rate,
despite the larger number of exposures. Generally, the observation variance is lowest around Age 80.

The right panel of Figure 6 shows the implied prior correlation relative to the cell (70, 2010). The
strong diagonal shape indicates the importance of the cohort effect. Moreover, we observe that the cor-
relation decays about the same in Period (vertical) as in Age (horizontal), with the inferred lengthscales
imposing a dependence of about ±12 years in each direction.
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Table 11. Results from GA runs on JPN Male, US Male, and SWE Female. Throughout we search within
the full set Kf . See Table 10 for the full definition of all the columns.

BIC BIC addtv non- num num num rough rough rough
Range max min len comps stat. age year coh age year coh

JPN Male

1–10 –2978.43 –2980.53 4.10 1.00 0% 1.00 1.60 1.50 0% 100% 100%
1–50 –2975.36 –2980.53 4.26 1.10 0% 1.06 1.70 1.50 18% 100% 100%
51–100 –2974.25 –2975.32 4.60 1.00 0% 1.04 2.14 1.42 64% 100% 100%

US Male

1–10 –3163.54 –3170.29 5.70 2.30 0% 1.50 1.50 2.70 100% 100% 100%
1–50 –3160.32 –3170.29 5.78 2.24 0% 1.40 1.54 2.84 100% 100% 100%
51–100 –3157.93 –3160.24 6.14 2.38 2% 1.46 1.72 2.96 100% 100% 98%

SWE Female

1–10 –1624.34 –1625.57 3.00 1.00 0% 1.00 1.00 1.00 0% 100% 0%
1–50 –1622.74 –1625.57 3.02 1.00 6% 1.00 1.24 0.78 0% 100% 14%
51–100 –1622.04 –1622.74 3.42 1.04 16% 1.10 1.38 0.94 0% 100% 6%

Table 12. Best-performing kernel in Kr and Kf for each of the four populations considered. Npl is
the number of alternate kernels that have a BIC within 6.802 of the top kernel and hence are judged
“plausible” based on the BF criterion.

Pop’n/Search Set Npl Top Kernel
JPN Female Kr 90 0.464 · M52a(37.4) · RBFy(38.6)M12y(1812) · M12c(7438)
JPN Female Kf 95 0.4638 · M52a(37.7) · Chyy(56.6)M12y(1810) · M12c(7378)
JPN Male Kr 89 0.1491 · M52a(32.3) · RBFy(33.4)M12y(761.0) · M12c(1569)
JPN Male Kf 112 0.2130 · M52a(37.1) · M12y(1311.6) · M32c(54.2)M12c(2566)
US Male Kr 57 0.017 · M12a(171.4) · M52y(14.5)M12y(299.6) · M52c(22.7)M12c(315)
US Male Kf 35 0.010 · AR2a(38.1, 63.9) · M12y(701.2) · M32c(45.4) · [4.6211 ·

M12c(849.9) + 0.011 · M32a(0.68) · M52c(6.30)]
SWE Female Kr 200+ 0.2527 · RBFa(17.68) · M12y(2138) · RBFc(39.1)
SWE Female Kf 200+ 0.2094 · Chya(35.7) · M12y(1951) · Mehc(0.857)

5.3. Male versus female populations
We proceed to apply the GA to the JPN Male population. The rationale behind this comparison is the
assumption of similar correlation structures between the genders, which enables us to both highlight the
similarities and pinpoint the observed differences.

As expected, the JPN Male results (see Tables 11 and 12) strongly resemble those of JPN Females.
Once again, we detect a strong indication of a single multiplicative term, characterized by APC structure
with smooth Age and rough Period and Cohort effects. Just like for Females, a (rough) Cohort term is
selected in all (100%) of the top-performing kernels for JPN Males. The best-fitting individual kernels,
as shown in Table 12, are also similar, with M52 in Age, M52 or RBF in Year, and M12 in Cohort being
identified as the optimal choices.

Some differences, such as more Cohort-linked kernels for JPN Males versus Females, are also
observed. The Cohort lengthscale is much larger for females (7600 vs. 2500), and so is the rough M12y
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Figure 7. Frequency of appearance of different kernels from Kf in US, SWE, and JPN Male models.

lengthscale (1800 vs. 1100), while the Age lengthscales are almost identical. One interpretation is that
there is more idiosyncratic noise in Male mortality, leading to faster correlation decay.

5.4. Analysis across countries
To offer a broader cross-section of the global mortality experience, we next also consider US males
and Sweden females. In total, we thus analyze four datasets: US males, Japan females and males, and
Sweden females. We note that Sweden is much smaller (10M population compared to 130M in Japan
and 330M in USA) than the other two countries and therefore has much noisier data.

USA Males: The US male data lead to kernels of much higher length compared to all other datasets.
The GA returns kernels with 5–6 base kernels and frequently includes two or even three additive terms.
Moreover, the APC pattern is somewhat disrupted, possibly due to collinearity between the multiple
Period and Cohort terms.

To demonstrate some of the observed characteristics, let us examine the top kernel in Kf , as presented
in Table 12. This kernel comprises 11 terms, including 2 additive terms. However, we note that the
second term has a significantly smaller coefficient, indicating that it serves as a “correction” term that
is introduced to account for a less prominent and identifiable feature relative to the primary terms.
Additionally, we observe that this kernel incorporates both rough Cohort term M12c and smoother ones,
namely M32c and M52c. This points toward a multi-scale Cohort effect, where a few exceptional years
(such as birth years during the Spanish Flu outbreak in 1918–1919) are combined with generational
patterns (e.g., Baby Boomers vs. the Silent Generation). Unlike other datasets, the US Male data even
include a RBFc term. Finally, the Age effect is described by the AR2 kernel, which is also commonly
observed in the JPN Male population.

Moving down the list, there are also shorter kernels with a single component (no “+”), for exam-
ple, 0.0129 · M12a(117.0) · (RBFy(18.3)M12y(228.8)) · (M32c(27.1)M12c(244.4)) which is fourth-best,
and the length-7 0.0113 · M12a(88.7) · (M32y(20.3)M12y(189.4)) · M12c(183.3) which is seventh-best.
In all, for US males we can find a plausible kernel of length 7, 9, 11, 13 when the best-performing one
has length 11. This wide distribution of plausible kernel lengths (and a wide range of proposed kernel
families) is illustrated in the right panel of Figure 3 and the middle column of Figure 7.

Another sign that the US data have inherent complexity is the wide gap in BF of the best kernel in
Kf compared to that in Kr, by far the biggest among all populations. Thus, restricting to Kr materially
worsens the fit. In fact, we observe that all the top kernels in Kr are purely multiplicative (such as
M12a · M52yM12y · M52cM12c), which is unlikely to be the correct structure for these data and moreover
hints at difficulty in capturing the correlation in each coordinate, leading to multiple Period and Cohort
terms. Within Kf only 35 plausible alternatives are found, 3–5 times fewer than in other datasets.
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SWE Female: The Swedish Females dataset turns out to have two distinguishing features. First, it
yields the simplest and shortest kernels that directly match the APC structure of three multiplicative
terms. The average kernel length reported in Table 11 is the smallest for SWE Females, and additive
terms appear very rarely. When kernels with more than three terms are proposed, these are usually still
all-multiplicative and add either a second Period term (e.g. Meha · M12y · Mehy · Mehc) or a second Age
term, though both are smooth: (ChyaRBFa) · M12y · Mehc).

Second, and unlike all other populations above, the Cohort effect is ambiguous in Sweden. About
15% of the top performing kernels (and 30% in Kr) have no Cohort terms at all, instead proposing two
terms for the Period effect. Those that do include a Cohort effect, use either a RBFc or a Mehc term,
indicating no short-term cohort features, but only generational ones. Nine of the top-10 kernels inKf and
only 7 out of 10 in Kr have Cohort terms. In contrast, in JPN and USA rough cohort terms are present
in every single top-100 kernel. Once again, our results are consistent with the literature, see Murphy
(2010) who discusses the lack of clarity on cohort effect for the Swedish female population.

A third observation is that SWE Female shows a compression of BIC values, that is, a lot of different
kernels are proposed with very similar BICs. The GA returns over two hundred kernels with a BF within
a ratio of 30 to the top one. This indicates little evidence to distinguish many different choices from each
other and could be driven by the lower complexity of the Swedish mortality data.

5.5. Discussion
Best kernel families: The barplots in Figure 7 suggest that there is no clear-cut covariance structure
that fits mortality patterns. Consequently, the models often propose a combination (usually a product,
sometimes a sum) of various kernels. Moreover, there is no one-size-fits-all solution as far as different
populations are concerned. For instance, the Age effect is typically modeled via a M12 kernel for US
Males, a M32 kernel for JPN Males, and a Chy (or RBF or M52) kernel for SWE Females. Additionally,
Chy may be identified as a possible Period term for US and JPN Males but never for SWE Females.
As such, it is recommended to select different kernels for different case studies. This represents one of
the significant differences compared to the classical APC framework, where the SVD decomposition is
invariant across datasets, and researchers must manually test numerous combinations, as illustrated in
Cairns et al. (2011).

Necessity of Cohort Effect: To assess the impact of including a Birth Cohort term, we re-run the GA
while excluding all cohort-specific kernels. This is a straightforward adjustment to the implementation
and can be used to test whether cohort effects could be adequately explained through a well-chosen
Age–Period kernel combination.

We first evaluate our models by comparing the Bayesian information criterion (BIC) of the top kernel
that excludes Cohort terms with that of the full Kf . Additionally, we examine the residuals heatmap to
detect any discernible diagonal patterns. Our findings indicate that the Cohort effect is overwhelmingly
needed for US Males, JPN Females, and JPN Males. The absence of a Cohort term results in a significant
increase in BIC, with a difference of 235 for JPN Male, 198 for US Male, and 111 for JPN Female.
To put things in perspective, a BIC difference is considered significant only when it surpasses 6.802.
The results are confirmed by Figure 8, which illustrates pronounced diagonals in the bottom row (the
no-cohort models), contradicting the assumption of independent residuals.

For Sweden, the difference is only 1.24, which corresponds to a BF of 0.2894, indicating no signif-
icance. Moreover, the corresponding no-cohort residuals still appear satisfactory, and the associated
kernel 0.1125 · Chya(28.9) · Mehy(0.653) · M12y(1094) is ranked ninth-best in the original Kf . Once
again, our results are consistent with the literature, see Murphy (2010) who discusses the lack of clarity
on cohort effect for Sweden.

Cairns et al. (2011) suggested that cohort effects might be partially or completely explained by well-
chosen age and period effects. We find a partial confirmation of this finding in that in many populations
there are more than two kernels used to explain the Period and Cohort dependence, and there is a clear
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substitution between them. However, this is a second-order effect; the primary necessity of including
Cohort is unambiguous except for Sweden. For Sweden females, the need for Birth Cohort dependence
is quite weak.

Kernel Substitution: Through its mutation operations, the GA naturally highlights substitution
effects among different kernel families. Substitution of one kernel with another is intrinsic to the evo-
lution of the GA, and by ranking the kernels in terms of their BIC, we observe the presence of many
compositions that achieve nearly same performance and differ just by one term. The above effect is espe-
cially noticeable in purely multiplicative kernels that are prevalent in all populations except the USA.
In this case, we can frequently observe that one of the terms can be represented by two or three kernel
families, with the rest of the terms staying fixed.

We observed that certain kernels are commonly used as substitutes for each other, such as the RBF
and M52 kernels, as well as the M12 and Min kernels. Although the latter pair differs by stationarity,
the sample paths generated by Min are visually indistinguishable from those generated by M12 when
the lengthscale parameter � is large (usually �Len > 1000). These substitution patterns are in agreement
with our synthetic results, as discussed in Section 4. As an example, when training on the Japan Female
dataset and searching in Kr, the top kernel is of the form M52a · (RBFy · M12y) · M12c, while the second-
best according to BIC is M52a · (M52y · M12y) · M12c. This preserves the same macro-structure while
replacing one of the two Period terms, cf. Table 10. Additionally, the next two ranked kernels are very
similar, but substitute M12 with Min: the third-best is M52a · (RBFy · Miny) · M12c, and the fourth-best
is M52a · (M52y · Miny) · M12c. It is important to note that during substitution, the lengthscales (and
sometimes process variances) change, as these have a different meaning for different kernel families.
For example, the RBF lengthscales tend to be about 50% smaller than those for its substitute, M52.

The Cauchy kernel and M52 are also interchangeable, although Chy and RBF are less so. This
effect of multiple substitutes for smooth kernels is nicely illustrated for SWE Females, where the
four top kernels fix the Period and Cohort effects according to M12y · Mehc and then propose any
of Chya, RBFa, Meha, M52a for the Age effect. Substitutions are more common within Kf , since the
availability of more kernel families contributes to “collinearity” and hence more opportunities for sub-
stitution. At the same time, we occasionally observe the ability to find a more suitable kernel family in
Kf . For example, often we observe both a rough and a smooth kernel in Year, indicating that neither
M12 nor RBF fit well on their own; in that case M32 sometimes appears to be a better single substitute.
Similarly, Mehc is the most common choice for SWE Females and is replaced with RBFc or RBFc · M12c

in Kr. Consequently, proposed kernels from Kf tend to be a bit shorter on average than those from Kr.
A further substitution effect happens between Period and Cohort terms. In JPN Females and SWE

Females, we tend to observe a total of three terms, and there is a substitution between using two Period
and one Cohort or one Period and two Cohort terms. For instance, in JPN female among top-10 kernels
we find both M52a · M12y · (MehcM12c) and M52a · (MehyM12y) · M12c.

Additivity and Nonstationarity: Returning to the topic of additive components, our results generally
suggest that the additive structure is generally weak. Specifically, introducing an additional additive
component often provides only a minor improvement in goodness of fit, which is offset by the complexity
penalty in BIC, resulting in lower BICs for additive kernels. Hence, additive kernels tend to be rejected
by the GA on the grounds of parsimony. As a result, most kernels with four terms (length 7) and the
majority with five terms are purely multiplicative.

Summarizing nonstationarity is a challenging task due to various factors, so any table providing the
percentage of nonstationary data should be viewed with reservation. A more comprehensive analysis
of nonstationarity can be seen through the frequency diagrams shown in Figures 2 and 7. It is impor-
tant to note that M12 lengthscales tend to be large in fitting. When M12 has a large lengthscale, the
resulting processes are visually indistinguishable from those generated by the nonstationary Min kernel.
Therefore, in our data, the presence of M12 indicates potential nonstationarity. From this perspective,
our findings suggest that all populations exhibit a (potentially) nonstationary period effect. The other
nonstationary kernels (Lin, Meh) are rare but do occur, mostly in the SWE female population.
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6. Conclusion
Our work analyzes the use of a GA to discover kernels (i.e., covariance structures) for GP surrogates of
mortality surfaces. The GA performed excellently in our synthetic experiments, indicating its promis-
ing role as a tool for model selection and validation when using the GP framework for realistic data
analysis. In particular, it successfully detected the smoothness of the data generating process, demon-
strated robustness across samples (SYA), distinguished additive versus multiplicative APC structures,
identified relatively small cohort effects (SYB), and found the correct number of base kernels and identi-
fied multiple nonstationarities over Period and Cohort (SYC) coordinates. Additionally, all experiments
illustrate the “substitution” effect, where one kernel approximates the impact of another. For instance,
M12 kernel with large �len can substitute for Min and vice versa.

When applied to the HMD datasets, our results strongly suggest that best fits to mortality data are
provided by GP models that include a rough (non-differentiable or only once-differentiable) component
in Year and Cohort, and smooth terms in Age. This matches the classical assumption that the Age-
structure of mortality is a smooth function, while the temporal dynamics are random-walk-like. The
only exception is the US data, where Age structure is proposed to be non-differentiable, while the Cohort
term is smooth.

Among non-standard kernels, we find that Cauchy kernels are often picked, with Chya showing up in
34% of SWE Female and 28% of JPN Female top-100, and Chyy in 26% of JPN Male. Mehler kernels
also appear, though infrequently except for Mehc in SWE females (35 out of top 100 kernels).

Historical data analysis and the SYC experiment both revealed a lack of clarity on determining one
single covariance structure. This is unsurprising, given the presence of surrogate kernels that mimic one
another (e.g. Chya instead of M52a, or Mehc instead of RBFc) and the complexity of the search problem
when using the larger search set Kf (twice as many kernels). Although this benefits BIC optimization by
better approximating the truth, finding a precise and expressive covariance structure requires a smaller
K that includes key families that express the modeler’s prior beliefs about the underlying data process.
This is a challenging knowledge to have as it requires expertise in the application area (e.g. mortality
modeling) and properties of GP kernels.

In this article, we emphasized qualitative examination of the kernels of the best-fitting models. In par-
allel, the GA output also supports model averaging analysis (see Section 3.1). Model averaging not only
provides insights into model risk but also robustifies predictions, making it particularly advantageous for
actuarial applications such as capital requirements for annuities and pension funds where distributional
analysis like tail value-at-risk is essential.

Additional avenues for future work include transferring our approach to smaller populations (under
10–20 million). In contrast to our data where the signal to noise ratio was high and hence the GA had a
favorable setting to infer the best latent structure, this is likely to require a significant adjustment since
with higher noise the GA will have a harder time differentiating candidate kernels. Similarly, explor-
ing subpopulations, such as insured individuals, can provide insights into the differences in dynamics
compared to the general population. This analysis can help uncover distinct patterns and factors that
influence mortality within these specific groups. Furthermore, breaking down heterogeneous popula-
tions, like the US Males, into subpopulations might be beneficial. With this approach, one aims to
identify more concise and interpretable kernels that capture the unique characteristics and dynamics of
each subpopulation. By considering variations within the population, we can gain a deeper understand-
ing of localized mortality trends. A suitable framework could be to jointly model multiple populations
using multi-output GPs (Huynh and Ludkovski, 2021a,b).

Instead of employing the BIC criterion, one could consider other criteria, in particular those geared
toward forecasting performance. GPs support exact predictive mean and probability density formulas
for “leave-out-one” (LOO) analysis (Williams and Rasmussen, 2006, Section 5.3). Thus, one could
investigate a GA based on ranking kernels by their LOO cross-validation score. Our entire approach
was geared to in-sample goodness-of-fit analysis. It is left to future research to investigate predictive
performance of the proposed GP compositional kernels. Compared to retrospective assessment, it is
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possible that simpler models outperform more complex ones; in other words the selected BIC-driven
complexity penalty might not carry to discriminating for best predictive accuracy. The related question
of overfitting to the training set to the detriment of out-of-sample performance would require revisiting
the impact of D on the kernels picked by the GA. Proper assessment of out-of-sample projections would
require the use of sliding training windows, as well as consideration of probabilistic metrics to test not
just GP posterior mean but also its posterior (co)variance, for example, proper coverage of its posterior
credible bands.

There are also several extensions to our kernel search. Although add and mul encompass a variety of
possibilities with interpretable results, several alternatives exist. A starting point is the fact that for any
real-valued function g(·), we have that k(x, x′) = g(x)g(x′) defines a kernel. This can be combined with
multiplication to provide nonstationary modifications, that is, g(x)kS(x − x′)g(x′). Another possibility is
warping: k(x, x′) = k0(ψ(x),ψ(x′)) being a valid kernel for any function ψ and kernel k0. See Genton
(2001) for a thorough discussion of potential transformations.

Additionally, further kernels can be considered. One example is that the Cauchy kernel is a special
case of the rational quadratic kernel indexed by α (see Appendix A). Given the popularity of Chy in our
results, it may be worthwhile to explore α values beyond α= 1, or consider a direct search over α. It is
also possible to incorporate a Cohort effect into non-separable kernels over Age and Year dimensions,
where xyr − xag can naturally appear in expressions such as exp (−[xag, xyr]�A[xag, xyr]) to define a kernel
when A is positive definite.

Changepoint detection can be naturally implemented with GPs, utilizing as kernel
σ (x)k1(x, x′)σ (x′) + σ (x)k2(x, x′)σ (x′), where σ (x) = 1 − σ (x) and σ (·) is an activation function,
like the sigmoid σ (x) = 1/(1 + exp (−x)). This is useful when there is a nonstationary shift from one
mortality structure to another, that is, the transitioning from younger to older ages, or in the presence
of a temporal mortality shift. Rather than prescribing a hard cutoff, one could design kernels that
automatically explore that possibility.

Lastly, more work is warranted to understand the limitations of the GA as currently built. Additional
analysis of synthetic experiments can help clarify the impact of the signal-to-noise ratio and the size of
the dataset on the ability of the GA to appropriately explore and find the best-fitting kernels. Similarly,
we leave to a future study the analysis of whether it is always better to “throw in the kitchen sink”, as
far as including as many diverse kernels as feasible, or whether a pre-selection could be beneficial.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2023.39
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Appendix A. Notes on Kernels
Unless otherwise stated, the following assumes x, x′ ∈R. In this section, we use the fact that for a GP
f , its derivative f ′ exists (in the mean-square sense) if and only if ∂2k

∂x∂x′ (x, x′) exists (Adler 2010).

Stationary

Matérn-1/2: is the covariance of an Ornstein–Uhlenbeck (OU) process (Berlinet and Thomas-Agnan,
2011). The OU process follows a linear mean-reverting stochastic differential equation; it
has continuous, nowhere differentiable paths. The mean-reversion localizes dependence
and has been advocated (Jähnichen et al., 2018) for capturing small-scale effects. The
lengthscale �len controls the rate of mean-reversion (lower values revert more quickly).
The re-parametrization

k(x, x′) = exp

(
−−|x − x′|

�len

)
= φ|x−x′ |, φ = exp (−1/�len), (A.1)

shows that when x is discrete, M12 is equivalent to an AR(1) process with persistence
parameter φ. In particular, �len large (i.e. φ � 1) mimics the nonstationary random walk
process and its Min kernel, allowing sample paths to deviate far from their mean and
weakening stationarity.

AR2: The covariance kernel associated with a (continuous x) second-order autoregressive
(AR(2)) process is Parzen (1961)

k(x, x′; α, γ ) = exp (−α|x − x′|)
4αγ 2

{
cos (ω|x − x′|) + α

ω
sin (ω|x − x′|)

}
,

where ω2 = γ 2 − α2 > 0. Notably, this kernel has two parameters and, thus, a higher BIC
penalty during the GA optimization. One can show that ∂2k

∂x∂x′ (x, x′) exists for all x, x′ ∈R,
but ∂4k

∂2x∂2x′ (x, x′) does not. Thus, a GP with AR2 kernel is (mean-square) once but not twice
differentiable, that is, f ∈ C1.
For consistency with the Matérn family of kernels, we reparameterize according to α=
1/�len,ω= π/p and normalize for k(x, x; �len, p) = 1, so that

k
(
x, x′; �len, p

)= exp

(
−|x − x′|

�len

) {
cos

(
π

p
|x − x′|

)
+ p

π�len
sin

(
π

p
|x − x′|

)}
, (A.2)

where, under the re-parametrization, γ 2 =ω2 + α2 = 1
�2

len
+ π2

p2 . Through trigonometric
identities, one can see that this is the same covariance function as a stationary discrete-time
AR(2) process (written as f (x) = φ1f (x − 1) + φ2f (x − 2) + ε(x)) in the case of complex
characteristic roots, that is, φ2

1 + 4φ2 < 0, with parameters related by

φ2 = − exp (−2/�len), φ1 = 2 cos (π/p)
√−φ2. (A.3)

Cauchy: This kernel is fat-tailed and has long-range memory, which means that correlations decay
not exponentially but polynomially, leading to a long-range influence between inputs
(Jähnichen et al., 2018). The Chy kernel function is given by

k(x, x′; �len) = 1

1 + (x−x′)2

�2
len

(A.4)
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which is a special case, α = 1, of the rational quadratic kernel k(x, x′; α, �len) :n=(
1 + (x−x′)2

α�2
len

)−α
.

Since k(x, x′) in (A.4) is infinitely differentiable in both arguments, the associated GP is
also in C∞ like RBF. One way to interpret Chy is as a marginalized version of the RBF
kernel with an exponential prior on 1/�2

RBF (with rate �2
Chy/2):∫ ∞

0

exp

(
−u · (x − x′)2

2

)
· �2

Chy exp (−�2
Chy · u)du = 1

1 + (x−x′)2

�2
Chy

Nonstationary

Linear: the linear kernel connects Gaussian processes to Bayesian linear regression. In particular,
if f (x) = β0 + β1x where x ∈R and there are priors β0 ∼ N

(
0, σ 2

0

)
, β1 ∼ N(0, 1), then f ∼

GP(0, kLin), that is, k(x, x′) = σ 2
0 + x · x′. Note that kLin can be scaled to yield a prior variance

on β1.
Mehler: The nonstationary (Mehler, 1866) kernel is

k(x, x′; ρ) = exp

(
−ρ

2(x2 + x′2) − 2ρxx′

2(1 − ρ2)

)
, −1 ≤ ρ ≤ 1

= kRBF(x, x′; �len) · exp

(
ρ

ρ + 1
xx′
)

(A.5)

where �2
len = 1−ρ2

ρ2 . Reported hyperparameters in the text are ρ (not �len). By the above decom-
position, we can interpret the Mehler kernel as another C∞ kernel that provides a nonstationary
scaling to RBF. Initial experiments always found ρ > 0, which causes an increase in covariance
for larger values of x and x′. One way to see the effect of the nonstationary component is through
variance and correlation. If f ∼ GP(m, kMeh), then var(f (x)) = kMeh(x, x) = exp

(
ρ

ρ+1
· x2
)

which
illustrates an increase in process variance as x increases. Remarkably, this results in a station-
ary correlation function corr(f (x), f (x′)) = exp

(
− ρ

2(1−ρ2)
(x − y)2

)
. Thus, Mehler is appropriate

when one desires RBF dynamics combined with increasing process variance.

Remark 6. The Mehler kernel is a valid kernel function for ρ > 0 in the sense that it is positive definite,
as it admits the basis expansion k(x, x′) = 1√

1−ρ2

∑∞
k=0

ρk

k! Hek (x)Hek (x
′) and hence for all n ∈N, a ∈R

n and
x1, . . . , xn ∈R,

n∑
i=1

n∑
j=1

aiajk(x, x′) = 1√
1 − ρ2

∞∑
k=0

ρk

(
n∑

i=1

aihk(xi)

)2

≥ 0,

where Hek = (−1)kex2/2 dk

dxk ex2/2 is the kth probabilist’s Hermite polynomial.

Appendix B. More on GP Hyperparameter Convergence
The mutation operations of our genetic algorithm depend crucially on the relative comparison of the
log-likelihoods of the given dataset across different kernels k’s given its direct role in computing BIC.
Hence, an accurate value of the maximal likelihood for a given kernel is a pre-requisite to identify which
kernels are fitter than others and hence explore accordingly. Computing the likelihood is equivalent to
inferring the MLE for the kernel hyperparameters and is known to be a challenging optimization task.
In our implementation, this optimization is done via stochastic gradient descent (SGD) through Adam
(Kingma and Ba, 2014), up to a given number ηmax of iterations or until a pre-set tolerance threshold is
reached.
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Table B.1 Number of training steps ηε needed for the likelihood l(η)
K0

(
θ̂ |y) to be within ε of lmin when using

respective K0, across the synthetic case studies. BIC
(

K̂(ηε )
0

)
corresponds to l(η)

K0

(
θ̂ |y).

ε 10−3 10−4 10−5 10−6 10−7

SYA-1 ηε 6 62 89 90 90
BIC

(
K̂(ηε )

0

)
–2066.14 –2066.67 –2066.76 –2066.77 –2066.77

SYA-2 ηε 39 57 143 179 3241
BIC

(
K̂(ηε )

0

)
–2033.23 –2034.17 –2034.22 –2034.23 –2034.23

SYB ηε 165 239 603 835 997
BIC

(
K̂(ηε )

0

)
–2467.19 –2467.96 –2468.06 –2468.07 –2468.07

SYC ηε 128 206 283 353 415
BIC

(
K̂(ηε )

0

)
–2721.86 –2722.78 –2722.88 –2722.89 –2722.89

In this section, we present additional evidence on how fast this convergence occurs in our synthetic
experiments. Namely, we evaluate GP hyperparameter convergence during training by fitting each of
the true kernels K0 from initialization for SYA, SYB, and SYC, indexing the intermediate log marginal
likelihoods after η steps as l(η)

k

(
θ̂ |y). Given a gold-standard lmax = max1≤η l(η)

k

(
θ̂ |y), we record the number

of training steps needed to achieve a log marginal likelihood within ε ∈ {10−3, 10−4, . . . , 10−7} of lmin:

ηε = min
{
η : |l(η)

k

(
θ̂ |y)− lmax| ≤ ε

}
. (A.6)

We present the results in Table B.1. SYA-1 and -2 show inconsistency for ε= 10−7 probably because
the SGD optimization hyperparameters were calibrated to the ε= 10−6 case. SYB takes four times as
many training steps as SYA for ε= 10−4, and ten times as many for ε= 10−6. SYC converges quickly,
matching SYB up to ε= 10−4 and maintaining rapid convergence rates for ε= 10−5, 10−6, and 10−7.
Despite incorporating four base kernels, including two Period components and heteroskedastic noise,
SYC converges at a comparable rate to SYA and more swiftly than SYB for lower ε values, underscor-
ing its efficiency in reaching lmax. Consequently, for computational tractability, our experiments have
restricted ηmax = 300 (running time is linear in ηmax), with the result that we achieve a tolerance of better
than 10−4.

Appendix C. Runtime and Computational Complexity Analysis
Computational efficiency of our methods is driven separately by the Gaussian process (GP) and the
genetic algorithm (GA) components. The GP’s most computationally intensive operation is the inversion
of the covariance matrix K during likelihood evaluation, which isO(N3). Each GP fitting process iterates
MLE optimization steps η times, up to the maximum ηmax = 300 specified by the user (see Section B).

For the GA, the runtimes are linear in ng and G, resulting in an overall runtime of ng × G ×O(N3).
However, the GA is inherently parallelizable, allowing for a theoretical time complexity reduction to
G ×O(N3) with ng paralleled environments. Empirically, a single GA run with the default parameters
takes approximately 8 h for a full kernel set search (Kf ) on a home PC with AMD Ryzen 1950X 16-Core
3.40GhZ, 32GB RAM, and NVIDIA GeForce GTX 1080 Ti GPU, somewhat affected by the complexity
of the dataset: mortality surfaces with more terms, like the US Males, take longer to fit.

Speed-up options for GP fitting, such as variational and sparse GPs, could reduce the GP runtime
complexity to O(N log N) or O(N). These methods however cannot use BIC for model evaluation and
inherently carry a loss of accuracy due to information compression (although, empirically this is often
minor). In theory, these could be employed during the GA selection phase, followed by exact methods
for final model evaluation in the last generation, achieving speed-up factors of 1–2 orders of magnitude.
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