ON POLYNOMIALS WITH RELATED LEVEL SETS

BY
M. ROSENFELD

If p is a polynomial in one real variable and $p(x)=p(-x)$ then p has only even powers of x and is thus a polynomial in x^{2}. If p is a polynomial in n variables and $p\left(x_{1}, \ldots, x_{n}\right)=p\left(y_{1}, \ldots, y_{n}\right)$ when $x_{1}^{2}+\cdots+x_{n}^{2}=y_{1}^{2}+\cdots+y_{n}^{2}$ then p is a polynomial in q where $q\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}$.

The problem considered in this note is this: For which polynomials q is it true that if $p(x)=p(y)$ whenever $q(x)=q(y)$ then p is a polynomial in q ? Such polynomials q will be said to satisfy (*). If the problem is posed for polynomials with complex variables, the answer is simple: any polynomial in n complex variables satisfies (*) (Theorem 1). However the problem is not as simple for polynomials with real variables. We give two classes of polynomials in one variable satisfying $\left({ }^{*}\right)$, neither class containing the other: if q is a polynomial of degree n and q has a level set containing n points, then q satisfies $\left(^{*}\right)$ (Theorem 2). If q is a polynomial such that the polynomial $Q(x, y)=[q(x)-q(y)] /(x-y)$ is irreducible and q is not $1: 1$, then q satisfies $\left({ }^{*}\right)$ (Theorem 3). Of course, x^{3}, being $1: 1$, doesn't satisfy $\left({ }^{*}\right)$ and more generally the composition of two polynomials $q_{0} \circ q_{1}$ does not satisfy (*) if q_{0} is $1: 1$ on the range of q_{1} (of course q_{1} not being a constant). Thus $x^{3}+3 x^{2}+3 x(=$ $\left.(x+1)^{3}-1\right)$ doesn't satisfy (${ }^{*}$) yet $x^{3}+4 x^{2}+3 x(=x(x+1)(x+3))$ does satisfy (*).

Theorem 1. Let $q\left(z_{1}, \ldots, z_{n}\right)$ be a polynomial in n complex variables. Let $p\left(z_{1}, \ldots, z_{n}\right)$ be another such that p is constant on the level sets of q. Then p is a polynomial in q.

Proof. We may assume q is not a constant. The function f from the range of q to C (the complex plane) defined by $f\left(q\left(z_{1}, \ldots, z_{n}\right)\right)=p\left(z_{1}, \ldots, z_{n}\right)$ is well defined by hypothesis. We show that it is a polynomial. It is possible to specialize all but one of the variables of q so that q defines a nonconstant polynomial, say q_{0}, in just one variable. Its range is C. By the same specialization p defines a polynomial p_{0}. If $q_{0}^{\prime}(z) \neq 0$, then f is differentiable at $q_{0}(z)$ with derivative $p_{0}^{\prime}(z) / q_{0}^{\prime}(z)$. Since q_{0} is open and p_{0} continuous, $f=p_{0} \circ q_{0}^{-1}$ is continuous on C and since f is analytic except at a finite number of points, f is an entire function. Since f has a pole at $\infty,\left(q_{0}(z) \rightarrow \infty\right.$ implies $z \rightarrow \infty$ implies $\left.p_{0}(z) \rightarrow \infty\right), f$ is a polynomial.

Theorem 2. Let q be a polynomial in one real variable and of degree n. If q has some level set containing n points, then q satisfies (*).

Proof. The hypothesis guarantees that q has an infinite number of level sets with n points. We show by induction on the degree of p that if p is constant on an infinite number of those level sets of q containing n points, then p is a polynomial in q. It is clearly true if p has degree 0 . Thus suppose the assertion is known to be true
for any polynomial of degree less than the degree of p. Let $S=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ be a level set of q on which p is constant. Then $p-p\left(r_{1}\right)$ is divisible by $\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots$ $\left(x-r_{n}\right)$ and therefore by $q-q\left(r_{1}\right)$. Thus $p(x)-p\left(r_{1}\right)=p_{1}(x)\left[q(x)-q\left(r_{1}\right)\right], p_{1}$ is of lower degree than p, and p_{1} is constant on all those level sets of q, other than S, that p is constant on. By our inductive hypothesis p_{1} is a polynomial in q and hence so is p.

Theorem 3. Let q be a polynomial in one real variable such that $Q(x, y)=$ $[q(x)-q(y)] /(x-y)$ is irreducible. If q is not $1: 1$ then q satisfies $\left(^{*}\right)$.

Proof. The hypotheses guarantee that $S=\{y: q(x)-q(y)=0$ has a solution other than $x=y\}$ is infinite. Let p be a polynomial which is constant on an infinite number of the level sets of q which meet S. We show by induction on the degree of p that p is a polynomial in q. It is clear if p has degree 0 . Suppose p has degree k and that if p_{0} has degree less than k and is constant on an infinite number of level sets of q meeting S, then p_{0} is a polynomial in q. Let $P(x, y)=[p(x)-p(y)] /(x-y)$. By an application of the Euclidean algorithm one may, as follows, show that Q divides P. (This argument is modeled after one appearing in [1, p. 291].) Define inductively polynomials r_{k}, s_{k}, R_{k} by:

$$
\begin{aligned}
& r_{1}(y) P(x, y)=q_{1}(x, y) Q(x, y)+R_{2}(x, y) \\
& r_{2}(y) Q(x, y)=q_{2}(x, y) R_{2}(x, y)+R_{3}(x, y) \\
& \vdots \\
& r_{n-1}(y) R_{n-1}(x, y)=q_{n-1}(x, y) R_{n}(x, y)+R_{n+1}(x, y)
\end{aligned}
$$

where d_{k}, the degree of $R_{k}(x, y)$ considered as a polynomial in x over the field of rational functions in y, becomes progressively smaller, $d_{n+1}=0$ and $d_{n} \neq 0$ (let $Q=R_{1}$). There are infinitely many numbers y such that $q(x)=q(y)$ and $p(x)=p(y)$ have a common solution $x(y)$ not equal to y. Hence $P(x(y), y)$ and $Q(x(y), y)$ both vanish for infinitely many y. This means $R_{n+1}(y)$ has an infinite number of zeros and must be zero. Any irreducible factor of $R_{n}(x, y)$ which is of positive degree in x must divide both $Q(x, y)$ and $P(x, y)$. Since Q is irreducible, this means Q divides P. Thus $p(x)-p(y)=R(x, y)[q(x)-q(y)]$ and letting $p_{1}(x)=R(x, 0), p(x)-p(0)$ $=p_{1}(x)[q(x)-q(0)]$. The degree of p_{1} is less than k and p_{1} is constant on those level sets of q on which p is constant (other than the level set containing 0) and therefore p_{1} is a polynomial in q and consequently p is a polynomial in q.

Let $q(x)=\left(x^{2}-1\right)\left(x^{2}-4\right)$. Then q meets the hypotheses of Theorem 2, but not Theorem 3, since $q(x)-q(y)$ is divisible by $x^{2}-y^{2}$ and so $[q(x)-q(y)] /(x-y)$ is divisible by $x+y$. Let $q(x)=x^{4}-x$. Then q meets the hypotheses of Theorem 3 but not Theorem 2. For a straightforward calculation shows that $x^{3}+x^{2} y+x y^{2}+y^{3}-1$ is irreducible.

Reference

[^0]
[^0]: 1. L. V. Ahlfors, Complex analysis, McGraw-Hill, New York (second edition), 1966.

 University of California, Santa Barbara, California

