ON POLYNOMIALS WITH RELATED LEVEL SETS

BY

M. ROSENFELD

If p is a polynomial in one real variable and p(x)=p(-x) then p has only even powers of x and is thus a polynomial in x^2 . If p is a polynomial in n variables and $p(x_1, \ldots, x_n)=p(y_1, \ldots, y_n)$ when $x_1^2+\cdots+x_n^2=y_1^2+\cdots+y_n^2$ then p is a polynomial in q where $q(x_1, \ldots, x_n)=x_1^2+\cdots+x_n^2$.

The problem considered in this note is this: For which polynomials q is it true that if p(x)=p(y) whenever q(x)=q(y) then p is a polynomial in q? Such polynomials q will be said to satisfy (*). If the problem is posed for polynomials with complex variables, the answer is simple: any polynomial in n complex variables satisfies (*) (Theorem 1). However the problem is not as simple for polynomials with real variables. We give two classes of polynomials in one variable satisfying (*), neither class containing the other: if q is a polynomial of degree n and q has a level set containing n points, then q satisfies (*) (Theorem 2). If q is a polynomial such that the polynomial Q(x, y) = [q(x)-q(y)]/(x-y) is irreducible and q is not 1:1, then q satisfies (*) (Theorem 3). Of course, x^3 , being 1:1, doesn't satisfy (*) and more generally the composition of two polynomials $q_0 \circ q_1$ does not satisfy (*) if q_0 is 1:1 on the range of q_1 (of course q_1 not being a constant). Thus x^3+3x^2+3x (= $(x+1)^3-1$) doesn't satisfy (*) yet x^3+4x^2+3x (=x(x+1)(x+3)) does satisfy (*).

THEOREM 1. Let $q(z_1, \ldots, z_n)$ be a polynomial in *n* complex variables. Let $p(z_1, \ldots, z_n)$ be another such that *p* is constant on the level sets of *q*. Then *p* is a polynomial in *q*.

Proof. We may assume q is not a constant. The function f from the range of q to C (the complex plane) defined by $f(q(z_1, \ldots, z_n)) = p(z_1, \ldots, z_n)$ is well defined by hypothesis. We show that it is a polynomial. It is possible to specialize all but one of the variables of q so that q defines a nonconstant polynomial, say q_0 , in just one variable. Its range is C. By the same specialization p defines a polynomial p_0 . If $q'_0(z) \neq 0$, then f is differentiable at $q_0(z)$ with derivative $p'_0(z)/q'_0(z)$. Since q_0 is open and p_0 continuous, $f = p_0 \circ q_0^{-1}$ is continuous on C and since f is analytic except at a finite number of points, f is an entire function. Since f has a pole at ∞ , $(q_0(z) \rightarrow \infty)$ implies $z \rightarrow \infty$ implies $p_0(z) \rightarrow \infty$), f is a polynomial.

THEOREM 2. Let q be a polynomial in one real variable and of degree n. If q has some level set containing n points, then q satisfies (*).

Proof. The hypothesis guarantees that q has an infinite number of level sets with n points. We show by induction on the degree of p that if p is constant on an infinite number of those level sets of q containing n points, then p is a polynomial in q. It is clearly true if p has degree 0. Thus suppose the assertion is known to be true

M. ROSENFELD

for any polynomial of degree less than the degree of p. Let $S = \{r_1, r_2, \ldots, r_n\}$ be a level set of q on which p is constant. Then $p - p(r_1)$ is divisible by $(x - r_1) (x - r_2) \cdots (x - r_n)$ and therefore by $q - q(r_1)$. Thus $p(x) - p(r_1) = p_1(x) [q(x) - q(r_1)]$, p_1 is of lower degree than p, and p_1 is constant on all those level sets of q, other than S, that p is constant on. By our inductive hypothesis p_1 is a polynomial in q and hence so is p.

THEOREM 3. Let q be a polynomial in one real variable such that Q(x, y) = [q(x)-q(y)]/(x-y) is irreducible. If q is not 1:1 then q satisfies (*).

Proof. The hypotheses guarantee that $S = \{y: q(x) - q(y) = 0$ has a solution other than $x = y\}$ is infinite. Let p be a polynomial which is constant on an infinite number of the level sets of q which meet S. We show by induction on the degree of p that p is a polynomial in q. It is clear if p has degree 0. Suppose p has degree k and that if p_0 has degree less than k and is constant on an infinite number of level sets of q meeting S, then p_0 is a polynomial in q. Let P(x, y) = [p(x) - p(y)]/(x-y). By an application of the Euclidean algorithm one may, as follows, show that Q divides P. (This argument is modeled after one appearing in [1, p. 291].) Define inductively polynomials r_k , s_k , R_k by:

$$r_{1}(y)P(x, y) = q_{1}(x, y)Q(x, y) + R_{2}(x, y)$$

$$r_{2}(y)Q(x, y) = q_{2}(x, y)R_{2}(x, y) + R_{3}(x, y)$$

$$\vdots$$

$$r_{n-1}(y)R_{n-1}(x, y) = q_{n-1}(x, y)R_{n}(x, y) + R_{n+1}(x, y)$$

where d_k , the degree of $R_k(x, y)$ considered as a polynomial in x over the field of rational functions in y, becomes progressively smaller, $d_{n+1}=0$ and $d_n \neq 0$ (let $Q=R_1$). There are infinitely many numbers y such that q(x)=q(y) and p(x)=p(y)have a common solution x(y) not equal to y. Hence P(x(y), y) and Q(x(y), y) both vanish for infinitely many y. This means $R_{n+1}(y)$ has an infinite number of zeros and must be zero. Any irreducible factor of $R_n(x, y)$ which is of positive degree in x must divide both Q(x, y) and P(x, y). Since Q is irreducible, this means Q divides P. Thus p(x)-p(y)=R(x, y) [q(x)-q(y)] and letting $p_1(x)=R(x, 0), p(x)-p(0)$ $=p_1(x)[q(x)-q(0)]$. The degree of p_1 is less than k and p_1 is constant on those level sets of q on which p is constant (other than the level set containing 0) and therefore p_1 is a polynomial in q and consequently p is a polynomial in q.

Let $q(x) = (x^2-1)(x^2-4)$. Then q meets the hypotheses of Theorem 2, but not Theorem 3, since q(x)-q(y) is divisible by x^2-y^2 and so [q(x)-q(y)]/(x-y) is divisible by x+y. Let $q(x) = x^4 - x$. Then q meets the hypotheses of Theorem 3 but not Theorem 2. For a straightforward calculation shows that $x^3 + x^2y + xy^2 + y^3 - 1$ is irreducible.

Reference

- 1. L. V. Ahlfors, Complex analysis, McGraw-Hill, New York (second edition), 1966.
 - UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA

138