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ON POLYNOMIALS WITH RELATED LEVEL SETS 
BY 

M. ROSENFELD 

If p is a polynomial in one real variable and/?(*)=/?(—x) then/? has only even 
powers of x and is thus a polynomial in x2. Ifp is a polynomial in n variables and 
P(xl9..., xn)=p(yl9..., yn) when x2 + • • • + x2=y2 + --+yl then p is a poly
nomial in q where q(xl9..., xn) = xfH \-x2. 

The problem considered in this note is this: For which polynomials q is it true 
that if p(x)=p(y) whenever q(x)=q(y) then p is a polynomial in q7 Such poly
nomials q will be said to satisfy (*). If the problem is posed for polynomials with 
complex variables, the answer is simple: any polynomial in n complex variables 
satisfies (*) (Theorem 1). However the problem is not as simple for polynomials 
with real variables. We give two classes of polynomials in one variable satisfying 
(*), neither class containing the other: if q is a polynomial of degree n and q has a 
level set containing n points, then q satisfies (*) (Theorem 2). If q is a polynomial 
such that the polynomial Q(x, y) — [q(x)—q(y)]/(x—y) is irreducible and q is not 1:1, 
then q satisfies (*) (Theorem 3). Of course, x3, being 1:1, doesn't satisfy (*) and 
more generally the composition of two polynomials q0 o qx does not satisfy (*) if 
q0 is 1:1 on the range of qx (of course qx not being a constant). Thus x3 + 3x2 + 3x (= 
( x + l ) 3 - l ) doesn't satisfy (*) yet x3 + 4x2 + 3x(=x(x+l)(x+3)) does satisfy (*). 

THEOREM 1. Let q(zl9..., zn) be a polynomial in n complex variables. Let 
p(zl9..., zn) be another such that p is constant on the level sets of q. Then p is a 
polynomial in q. 

Proof. We may assume q is not a constant. The function/from the range of q 
to C (the complex plane) defined by f(q(zl9 . . . , zn))=^(z!, . . . , zn) is well defined 
by hypothesis. We show that it is a polynomial. It is possible to specialize all but 
one of the variables of q so that q defines a nonconstant polynomial, say q0, in just 
one variable. Its range is C. By the same specialization p defines a polynomial p0. 
If ^0(^)7^0, then fis differentiable at q0(z) with derivative p'0(z)/q'0(z). Since q0 is 
open and/?0 continuous, f=p0 oqô1^ continuous on C and since/is analytic except 
at a finite number of points,/is an entire function. Since/has a pole at 00, (q0(z)->co 
implies z-> 00 impliesp0(z)-> 00),/is a polynomial. 

THEOREM 2. Let q be a polynomial in one real variable and of degree n.Ifq has 
some level set containing n points, then q satisfies (*). 

Proof. The hypothesis guarantees that q has an infinite number of level sets with 
n points. We show by induction on the degree ofp that if/? is constant on an in
finite number of those level sets of q containing n points, then p is a polynomial in 
q. It is clearly true if/? has degree 0. Thus suppose the assertion is known to be true 
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for any polynomial of degree less than the degree of p. Let S={rl9 r 2 , . . . , rn} be a 
level set of q on which/? is constant. Thenp-p(r<ù is divisible by (x—rx) ( x - r 2 ) - • • 
(x-rn) and therefore by q-q(r^). Thus p{x)-p{r^)=p1{x) [q{x)-q{r^)]9 p± is of 
lower degree than p9 and p± is constant on all those level sets of q9 other than S, 
that/? is constant on. By our inductive hypothesis/?! is a polynomial in q and hence 
so is /?. 

THEOREM 3. Let q be a polynomial in one real variable such that Q(x9y) = 
[q(x)—q(y)]l(x—y) is irreducible. Ifq is not 1:1 then q satisfies (*). 

Proof. The hypotheses guarantee that S={y: q(x)-q(y) = 0 has a solution other 
than x=y) is infinite. Let/? be a polynomial which is constant on an infinite number 
of the level sets of q which meet S. We show by induction on the degree of/? that/? 
is a polynomial in q. It is clear if/? has degree 0. Suppose/? has degree k and that 
if/?0 has degree less than k and is constant on an infinite number of level sets of q 
meeting S9 then/?0 is a polynomial in q. Let P{x9 y) = [p(x)— p(y)]/(x—y). By an 
application of the Euclidean algorithm one may, as follows, show that Q divides P. 
(This argument is modeled after one appearing in [1, p. 291].) Define inductively 
polynomials rk, sk9 Rk by: 

rx( y)P(x, y) = qx(x, y) Q(x, y) + R2(x9 y) 
r2(y)Q(x9 y) = q2(x9 y)R2(x, y) + R3(x9 y) 

rn _ x( y)Rn _ i(x, y) = qn - x(x9 y)Rn{x9 y) + Rn+i(x, y) 

where dk9 the degree of Rk(x9 y) considered as a polynomial in x over the field of 
rational functions in y9 becomes progressively smaller, dn+1 = 0 and dn^0 (let 
g = jR1). There are infinitely many numbers y such that q(x)=q(y) and p(x) =/?(y) 
have a common solution x{y) not equal to y. Hence P(x(y)9 y) and Q(x(y)9 y) both 
vanish for infinitely many y. This means Rn+i(y) has an infinite number of zeros 
and must be zero. Any irreducible factor of Rn(x9 y) which is of positive degree in 
x must divide both Q{x9 y) and P(x9 y). Since Q is irreducible, this means Q divides 
P. Thus p(x)-p(y) = R(x9y)[q(x)-q(y)] and letting Pl(x) = R(x9 0), /?(x)-/?(0) 
=Pi(x)[q(x)—q(0)]. The degree of/?! is less than k and/?! is constant on those level 
sets of q on which/? is constant (other than the level set containing 0) and therefore 
/?! is a polynomial in q and consequently /? is a polynomial in q. 

Let q(x) = (x2— l)(x2—4). Then q meets the hypotheses of Theorem 2, but not 
Theorem 3, since q(x)—q(y) is divisible by x2— y2 and so [q(x)—q(y)]/(x—y) is 
divisible by x+y. Let q(x) = x4: — x. Then q meets the hypotheses of Theorem 3 but 
not Theorem 2. For a straightforward calculation shows that x3 + x2y+xy2+y3 — 1 
is irreducible. 
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