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Abstract
We investigate whether the diseases for which there was more biomedical innovation had
larger 1999–2019 reductions in premature mortality. Biomedical innovation related to a
disease is measured by the change in the mean vintage of descriptors of PubMed
articles about the disease. We analyze data on 286 million descriptors of 27 million
articles about over 800 diseases. Premature mortality from a disease is significantly
inversely related to the lagged vintage of descriptors of articles about the disease. In the
absence of biomedical innovation, age-adjusted mortality rates would not have declined.
Some factors other than biomedical innovation (e.g., a decline in smoking and an
increase in educational attainment) contributed to the decline in mortality. But other
factors (e.g., a rise in obesity and the prevalence of chronic conditions) contributed to
an increase in mortality. Biomedical innovation reduced the mortality of white people
sooner than it reduced the mortality of black people.
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1. Introduction

Several previous studies have examined whether longevity has a positive effect on per
capita income. Acemoglu and Johnson (2007) concluded that “there is no evidence
that the large increase in life expectancy raised income per capita” (p. 925).
However, Bloom et al. (2014) found that “in a more general empirical framework in
which we include initial life expectancy, the Acemoglu and Johnson results are
reversed, with both levels and changes in health displaying positive associations
with” per capita income growth. Kuhn et al. (2024) also found there to be a highly
significant positive effect of longevity on per capita income.
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Even if longevity growth has no effect on per capita income growth, it has a
positive effect on economic growth (or “human development”), broadly defined.
Health and longevity are valued for their own sake, not merely because they may
increase per capita income. Nordhaus (2003) argued that “to a first
approximation, the economic value of increases in longevity in the last hundred
years is about as large as the value of measured growth in non-health goods and
services.” Life expectancy at birth is one of the three components of the United
Nations’ Human Development Index (United Nations Development Programme,
2024), a summary measure of average achievement in key dimensions of human
development.1

Many leading economists believe that economic growth is primarily driven by
technological progress, which is generated by R&D investment. Romer (1990, p. S72)
argued that “technological change…lies at the heart of economic growth.” Jones
(1998, pp. 89–90) argued that “technological progress is driven by research and
development (R&D) in the advanced world.” Jones (2002) presented a model in
which long-run growth is driven by the discovery (via research effort) of new ideas
throughout the world. His model built upon a large collection of previous research,
including Grossman and Helpman (1991) and Aghion and Howitt (1992), as well as
earlier contributions by Phelps (1966), Shell (1966), Nordhaus (1969), and Simon
(1986). Cutler et al. (2006) concluded that “knowledge, science, and technology are
the keys to any coherent explanation” of mortality.

In this study, we propose to investigate econometrically the overall impact that
biomedical innovation had on premature mortality in the US during the period
1999–2019. We will use a difference-in-differences research design: we will investigate
whether the diseases for which there was more biomedical innovation had larger
reductions in premature mortality (e.g., the number of years of potential life lost
before age 75). Biomedical innovation related to a disease will be measured by the
change in the mean vintage2 of Medical Subject Headings (MeSH) descriptors in
PubMed articles about the disease.3

Our methodology is similar to the one used in a previous study (Lichtenberg, 2018).
The present study will build on the previous study in several important ways. First, the
previous study only covered cancer. While cancer is certainly an important disease, it
accounted for only 19% of years of potential life lost before age 75 in the US in
2019. The present study will analyze data on all diseases. Second, the previous study
did not examine whether biomedical innovation had different effects on the
mortality of different racial groups. The present study will examine that issue. Third,
the previous study analyzed cancer mortality during the period 1999–2013; the
present study will analyze mortality from all diseases during the period 1999–2019.
We will also reexamine cancer mortality during a longer period (1975–2019) and
using an alternative mortality measure (the age-adjusted mortality rate).

1The other two components are per capita income and educational attainment.
2According to the Merriam-Webster dictionary, one meaning of the term vintage, and the one intended

by us, is “the period of origin or manufacture.”
3Kuhn et al. (2024) used patent counts to measure biomedical innovation. They used data on total

biomedical patents, not patents that pertain to specific diseases. Determining which disease(s) each
biomedical patent pertains to would be extremely challenging. Also, the purpose of a patent is to restrict
access to innovations, so an increase in patents will not necessarily reduce mortality.
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In the next section, we explain how we constructed measures of biomedical
innovation, by disease. In section 3, we present our econometric model of mortality.
Data sources and descriptive statistics are presented in section 4. Empirical results
are presented in section 5. Implications of the estimates are discussed in section 6.
The final section provides a summary.

2. Measurement of biomedical innovation, by disease

Our measures of biomedical innovation, by disease, were constructed from data
contained in PubMed, a literature database available to the public online since 1996,
developed and maintained by the National Center for Biotechnology Information,
part of the US National Library of Medicine (NLM). The PubMed database contains
more than 36 million citations and abstracts of biomedical literature. PubMed data
can be downloaded as described on the Download PubMed Data page. The PubMed
database has three components: MEDLINE, PubMed Central (PMC), and Bookshelf.4

MEDLINE is the largest component of PubMed and consists primarily of citations
from journals selected for MEDLINE. MEDLINE is NLM’s premier bibliographic
database that contains more than 31 million references to journal articles in life
sciences with a concentration on biomedicine. Currently, there are citations from
more than 5,200 worldwide journals in about 40 languages.

The subject scope of MEDLINE is biomedicine and health, broadly defined to
encompass those areas of the life sciences, behavioral sciences, chemical sciences, and
bioengineering needed by health professionals and others engaged in basic research
and clinical care, public health, health policy development, or related educational
activities. MEDLINE also covers life sciences vital to biomedical practitioners,
researchers, and educators, including aspects of biology, environmental science,
marine biology, plant and animal science as well as biophysics and chemistry. The
majority of the publications in MEDLINE are scholarly journals; however, a small
number of newspapers, magazines, and newsletters considered useful to particular
segments of the NLM broad user community have historically been included.

MEDLINE is the online counterpart to the MEDical Literature Analysis and
Retrieval System (MEDLARS) that originated in 1964. MEDLINE includes literature
published from 1966 to present, and an OLDMEDLINE subset that has selected
coverage of literature prior to that period. The OLDMEDLINE subset represents
journal article citations from two print indexes: the 1946–1959 Current List of
Medical Literature (CLML), and the 1960–1965 Cumulated Index Medicus (CIM).
There are approximately 2,011,000 article citations from international biomedical
journals that cover the fields of medicine, preclinical sciences and allied health
sciences from 1946 through 1965.5

4Citations for PubMed Central (PMC) articles make up the second largest component of PubMed. PMC
is a full text archive that includes articles from journals reviewed and selected by NLM for archiving
(current and historical), as well as individual articles collected for archiving in compliance with funder
policies. The third and last component of PubMed is citations for books and some individual chapters
available on Bookshelf. Bookshelf is a full-text archive of books, reports, databases, and other documents
related to biomedical, health, and life sciences.

5The OLDMEDLINE subset does not include citations from the Quarterly Cumulative Index Medicus
(QCIM) print indexes. A hand search of the QCIM print indexes is necessary to ensure comprehensive
review of medical periodical literature of the world from 1946 through 1956.
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A distinctive feature of MEDLINE/PubMED is that the records are indexed with
MeSH. MeSH is the NLM’s controlled vocabulary thesaurus; the NLM says that
MeSH “is one of the most highly sophisticated thesauri in existence today.” It
consists of sets of terms (“descriptors”) in a hierarchical structure that permits
searching at various levels of specificity.6 There were 30,454 descriptors in 2023
MeSH. The MeSH Section staff continually revise and update the MeSH vocabulary.7

Staff subject specialists are responsible for areas of the health sciences in which they
have knowledge and expertise. In addition to receiving suggestions from indexers
and others, the staff collect new terms as they appear in the scientific literature or in
emerging areas of research; define these terms within the context of existing
vocabulary; and recommend their addition to MeSH. Professionals in various
disciplines are also consulted regarding broad organizational changes and close
coordination is maintained with various specialized vocabularies. Between 2003 and
2023, the number of MeSH descriptors increased from 21.4 thousand to 30.5
thousand. On average, about 453 descriptors were added per year. The mean number
of descriptors per article is 10.6; the 27 million PubMed articles published by 2019
have 286 million descriptors.

The NLM’s MeSH Descriptor file and website indicates the year in which each
MeSH descriptor was established.8 However, a descriptor can appear in PubMed
articles that were published many years before the descriptor was established.
For example, as shown in Appendix Fig. 1, the descriptor “female” (unique ID
D005260) was established in 1966 but appears in PubMed articles as early as 1942; it
appeared in 12,370 articles in 1964. In this study, we will define the vintage of a
descriptor as the earliest publication year of PubMed articles in which the descriptor
occurs.

Although the number of MeSH descriptors has increased substantially, the
average frequency at which recent descriptors occur in PubMed is much lower than
the average frequency at which earlier-vintage descriptors occur. Consequently, the
mean vintage of descriptors is quite old, and has not increased much. As shown in
Fig. 1, half of the descriptors that ever appeared in PubMed first appeared after 1960,
but only 17% of the (frequency-weighted) descriptor citations occurring in post-2015
publications were for descriptors that first appeared after 1960.

A substantial number of MeSH descriptors (in section C of the MeSH tree) are about
diseases. Hence, we can identify articles that are about different diseases. By using the
NLM’s Unified Medical Language System, we can determine the ICD10 codes
corresponding to MeSH disease descriptors. Table 1 shows the top 25 (out of 1028)
3-digit ICD10 diseases, ranked by number of PubMed articles. (Some articles may
discuss several diseases.) Not surprisingly, highly prevalent diseases including breast
neoplasms, HIV, hypertension, lung neoplasms, acute myocardial infarction, and
diabetes are included in this list.

The measure of disease-specific biomedical innovation we will employ is the
long-run change in the mean vintage of descriptors of articles about each disease.

6Most descriptors indicate the subject of an indexed item, such as a journal article, that is, what the
article is about. https://www.nlm.nih.gov/mesh/intro_record_types.html. The MeSH “tree” can be
explored here: https://meshb.nlm.nih.gov/treeView

7https://www.nlm.nih.gov/pubs/factsheets/mesh.html
8The MEDLINE co-occurrences file summarizes the MeSH Descriptors that occur together in

MEDLINE citations from the MEDLINE/PubMed Baseline (National Library of Medicine, 2024d).
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We hypothesize that, in general, diseases for which there were larger increases in vintage
had smaller increases, or larger declines, in mortality.

The hypothesis that later vintage goods and services tend to be of higher quality than
earlier vintage goods has been advocated by many economists since it was first
formulated in the 1950s.9 Johansen (1959) developed a theoretical model of vintage
capital in which there are technological improvements in capital in later vintages.
Intriligator (1992, p. S77) said that “the newer capital is more productive than the
older capital as a result of technological improvements in the later vintages.”
Bresnahan and Gordon (1997) said that “new goods are at the heart of economic
progress.” As noted by Jovanovic and Yatsenko (2012), in “the Spence–Dixit–Stiglitz
tradition…new goods [are] of higher quality than old goods.” Bohlmann et al. (2002,
p. 1177) said that “technology improves over time…As technology advances, later
entrants can utilize a more recent and efficient vintage of technology than an earlier
entrant who has committed to older technology…vintage effects will benefit later
entrants…We refer to ‘vintage effects’ as any technology shift that results in lower
costs for a later entrant, enabling it to achieve higher product quality.” In 1987, the
Royal Swedish Academy of Sciences awarded the Alfred Nobel Memorial Prize in
Economic Sciences to Robert Solow for his contributions to the theory of economic
growth. The Academy cited Solow’s (1960) article, Investment and Technical Progress,
in which he presented a

newmethod of studying the role played by capital formation in economic growth. His
basic assumptionwas that technical progress is “built into”machines and other capital

Figure 1. Fraction of 2023 MeSH descriptors first appearing in PubMed by year (1940, 1950, …, 2020):
unweighted, and weighted by frequency in post-2015 PubMed articles.

9The earliest paper attempting to quantitatively assess the vintage effect in capital model was by
Benhabib and Rustichini (1993). Boucekkine et al. (2018) highlight the salient characteristics and
implications of the seminal contributions in the field of vintage capital growth theory.
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goods and that thismust be taken into account whenmaking empiricalmeasurements
of the role played by capital. This idea then gave birth to the “vintage approach”
(a similar idea was discussed by Leif Johansen in Norway at about the same time)…
The most important aspect of Solow’s article was not so much the empirical
outcome, but the method of analyzing “vintage capital.” Nowadays, the vintage
capital concept has many other applications and is no longer solely employed in
analyses of the factors underlying economic growth…The vintage approach has

Table 1. Top 25 (out of 1028) 3-digit ICD10 diseases, ranked by number of PubMed articles

Rank 3-digit ICD10 disease
Number of PubMed

articles

1 Z33 Pregnant state, incidental 968,121

2 C80 Malignant neoplasm, without specification of site 573,408

3 D36 Benign neoplasm of other and unspecified sites 486,572

4 D49 Neoplasms of unspecified behavior 486,572

5 C50 Malignant neoplasm of breast 323,322

6 B20 Human immunodeficiency virus [HIV] disease resulting in
infectious and parasitic diseases

282,371

7 R41 Other symptoms and signs involving cognitive functions and
awareness

280,589

8 I10 Essential (primary) hypertension 253,494

9 C34 Malignant neoplasm of bronchus and lung 250,714

10 R54 Senility 247,361

11 E66 Obesity 223,599

12 K76 Other diseases of liver 195,545

13 I21 Acute myocardial infarction 185,429

14 I22 Subsequent myocardial infarction 185,429

15 C22 Malignant neoplasm of liver and intrahepatic bile ducts 184,084

16 F91 Conduct disorders 181,054

17 T14 Injury of unspecified body region 178,993

18 F99 Mental disorder, not otherwise specified 175,350

19 A15 Respiratory tuberculosis, bacteriologically and histologically
confirmed

165,146

20 F03 Unspecified dementia 164,569

21 E11 Type 2 diabetes mellitus 163,852

22 R52 Pain, not elsewhere classified 151,130

23 I67 Other cerebrovascular diseases 151,049

24 F20 Schizophrenia 150,860

25 N28 Other disorders of kidney and ureter, not elsewhere classified 148,999
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proved invaluable, both from the theoretical point of view and in applications such as
the analysis of the development of industrial structures.

We measure the vintage of “ideas” (MeSH descriptors), not the vintage of physical
capital. Ideas may or may not be embodied in physical capital. If technological
change is “disembodied,” it affects output growth independently of capital
accumulation. In contrast, “embodied” technological change requires investment to
affect output. The “embodiment” controversy between Jorgenson and Solow in the
1960s centered on the importance of capital-embodied technological change
(Hercowitz, 1998).

3. Econometric model of mortality

To investigate econometrically the impact that biomedical innovation had on premature
mortality in the US during the period 1999–2019, we will estimate many versions of the
following model:

ln (mortalitydt) = bkvintage measured,t−k + ad + dt + 1dt (1)
where mortalitydt is one of the following variables:

and vintage_measured,t−k is one of the following variables:

vint_meand,t−k was computed as follows:

ypll85dt = the number of years of potential life lost before age 85 due to disease d in year
t (t = 1999, 2000, …, 2019)

ypll75dt = the number of years of potential life lost before age 75 due to disease d in year t

ypll65dt = the number of years of potential life lost before age 65 due to disease d in year t10

vint_meand,t−k = the mean vintage (year of first appearance in PubMed) of descriptors of
articles about disease d published in year t − k (k = 0, 2, …, 20)

post1990%d,t−k = the fraction of descriptors of articles about disease d published in year t− k
that first appeared in PubMed after 1990

vint_meand,t−k
=
∑

a

∑
j
article descriptoraj ∗ article diseasead ∗ article yeara,t−k ∗ vintagej∑

a

∑
j
article descriptoraj ∗ article diseasead ∗ article yeara,t−k

10The U.S. CDC’s WISQARS Years of Potential Life Lost (YPLL) Report website permits one to specify
age thresholds of 65, 70, 75, 80, and 85. The World Health Organization has used YPLL to measure disease
burden in its Global Burden of Disease (GBD) and Global Health Estimates (GHE) reports for many years.
In the 2010 GBD, the WHO used an age threshold of 86.01 years for all persons. In the current GHE, the
WHO uses an age threshold of 91.93 years for all persons.
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where

post1990%d,t−k was computed as follows:

where

In equation (1), αd is a fixed effect for disease d, and δt is a fixed effect for year t. The
year fixed effects (δt’s) in equation (1) control for the effects of changes in aggregate
demographic and macroeconomic variables (e.g., population size and age structure,
GDP, educational attainment), to the extent that those variables have similar effects
on mortality from different diseases. Equation (1) will be estimated by weighted least
squares, weighting by (∑t mortalitydt). Disturbances will be clustered within diseases.

vint_meand,t−k is our principal measure of vintage. But the data on the vintages of
MeSH descriptors are clearly left-censored: only 2% of MeSH descriptors first appeared
in PubMed before 1945, and 40% first appeared during 1945–1947. Therefore, we will
also estimate some versions of equation (1) in which vintage_measured,t−k =
post1990%d,t−k.

Estimates of equation (1) will not capture cross-disease spillover effects: the potential
effects of biomedical innovation for one disease (e.g., hypertension) on mortality from
other diseases (e.g., acute cerebrovascular disease [stroke]). Although some spillover
effects are adverse, others – perhaps most – are positive. For example, Prince et al.
(2007) argued that “mental disorders increase risk for communicable and
non-communicable diseases, and contribute to unintentional and intentional injury.
Conversely, many health conditions increase the risk for mental disorder, and
comorbidity complicates help-seeking, diagnosis, and treatment, and influences
prognosis.” Also, the NIH National Institute on Aging (2024) says that “conditions
such as diabetes, depression, and stroke may increase a person’s risk for Mild
Cognitive Impairment.”

The relationship between biomedical innovation, as measured by the change in
PubMed descriptor vintage, and the change in mortality is unlikely to be
contemporaneous and may be subject to a substantial lag. Innovations may be
discussed in biomedical literature several years before they are most frequently used,

article_descriptoraj = 1 if article a has descriptor j
= 0 if article a does not have descriptor j

article_diseasead = 1 if article a is about disease d
= 0 if article a is not about disease d

article_yeara,t−k = 1 if article a was published in year t− k
= 0 if article a was not published in year t− k

vintagej = vintage (first year of PubMed appearance) of descriptor j

post1990%d,t−k
=
∑

a

∑
j
article descriptoraj ∗ article diseasead ∗ article yeara,t−k ∗post1990j∑

a

∑
j
article descriptoraj ∗ article diseasead ∗ article yeara,t−k

post1990j = 1 if vintagej > 1990
= 0 if vintagej⩽ 1990
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and improvement in outcomes may occur several years after changes in treatment
(Barter and Waters, 2018; van de Glind et al., 2016). For one important type of
descriptors – drug descriptors – we can obtain insight into the timing of the
relationship between the frequency of PubMed descriptors and the frequency of use
of the drug. From the Medical Expenditure Panel Survey Prescribed Medicines files,
we can obtain estimates of the number of US outpatient prescriptions, by (Multum
MediSource Lexicon) generic drug name and year (1996–2021). We can also
compute the annual number of PubMed descriptors of each of these drugs.11 Using
these data, we estimated the following model, using data on about 600 drugs:

n rxst = rkn descriptorss,t−k + as + dt + 1st (2)

where

Estimates of ρk from equation (2) are shown in Table 2 and plotted in Fig. 2. Each
estimate is from a separate regression. For k⩽ 5, the estimates of ρk are not statistically
significant: the number of prescriptions for a drug is not significantly related to the
number of PubMed descriptors of the drug 0–5 years earlier. However, for 6⩽ k⩽ 14,
the estimates of ρk are positive and statistically significant: the number of prescriptions
for a drug is significantly positively related to the number of PubMed descriptors of
the drug 6–14 years earlier. It is most strongly related to the number of PubMed
descriptors of the drug 10 years earlier. The point estimate of ρ10 (0.0036) indicates
that one additional descriptor of a drug is associated with 3,600 additional outpatient
prescriptions for the drug 10 years later.

Considering this evidence, it would not be surprising if mortality from a disease is
most strongly inversely related to the mean vintage of descriptors of articles about the
disease years (e.g., 6–14 years) earlier.

As noted above, in addition to estimating equation (1) using data on mortality of
the entire population, we will estimate equation (1) using data on mortality by race
for two groups – whites and blacks – to explore whether biomedical innovation
had different effects on the mortality of the two groups. Such disparities could
occur because some groups may have greater access to innovations than other
groups. Wang et al. (2006) found significant racial disparities in use of drugs
approved within the previous 5 years. Data from the 2016–2021 Medical
Expenditure Panel Survey Prescribed Medicines Files indicate that the mean FDA
approval year of outpatient antineoplastic drugs taken by black Americans was
over 4 years earlier than the mean FDA approval year of outpatient antineoplastic
drugs taken by white Americans (1970.2 vs. 1974.4). Lichtenberg (2024) found
that the approval of one additional drug for a cancer site 6–10 years

n_rxst = the estimated number (in millions) of US outpatient prescriptions for drug
(chemical substance) s in year t (t = 1996, 1997, …, 2021)

n_descriptorss,t−k = the number of times the descriptor of drug s occurred in PubMed in year
t− k (k = 0, 1, 2, …, 20)

11The NLM’s Unified Medical Language System was used to link Multum MediSource Lexicon generic
drug names to MeSH drug descriptors.
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earlier reduced the black female mortality rate 58% as much as it reduced the white
female mortality rate.

The change in mortality from a disease is likely to depend on the change in
incidence of the disease as well as on biomedical innovation for the disease. The
change in incidence might be correlated across diseases with biomedical
innovation (the change in descriptor vintage).12 Unfortunately, data on incidence,
by disease and year, are not available for all diseases. However, annual 1975–2019

Table 2. Estimates of ρk from equation (2), based on data on about 600 drugs: n_rxst = ρk n_descriptorss,t−k
+ αs + δt + ϵst

k (lag) Estimate Std. Err. 95% Lower Conf. Limit 95% Upper Conf. Limit Z Pr > |Z|

0 0.0000 0.0000 0.0000 0.0000 0.75 0.4542

1 0.0000 0.0001 −0.0001 0.0001 0.85 0.3973

2 0.0014 0.0013 −0.0012 0.0040 1.06 0.2908

3 0.0018 0.0015 −0.0012 0.0047 1.16 0.2455

4 0.0023 0.0017 −0.0011 0.0057 1.34 0.1808

5 0.0031 0.0019 −0.0005 0.0068 1.67 0.0958

6 0.0039 0.0019 0.0001 0.0076 2.03 0.0427

7 0.0039 0.0018 0.0004 0.0074 2.16 0.0306

8 0.0037 0.0017 0.0005 0.0069 2.24 0.0248

9 0.0037 0.0016 0.0006 0.0068 2.35 0.0186

10 0.0036 0.0015 0.0007 0.0066 2.39 0.0170

11 0.0036 0.0015 0.0006 0.0066 2.37 0.0176

12 0.0035 0.0015 0.0005 0.0065 2.27 0.0232

13 0.0033 0.0015 0.0003 0.0063 2.14 0.0323

14 0.0031 0.0016 0.0000 0.0063 1.97 0.0491

15 0.0029 0.0016 −0.0003 0.0061 1.79 0.0741

16 0.0027 0.0017 −0.0006 0.0060 1.61 0.1083

17 0.0025 0.0017 −0.0009 0.0058 1.45 0.1457

18 0.0021 0.0017 −0.0012 0.0055 1.27 0.2058

19 0.0019 0.0017 −0.0014 0.0052 1.12 0.2634

20 0.0016 0.0016 −0.0015 0.0047 1.02 0.3096

Each estimate is from a separate regression.
Disturbances were clustered within drugs.
Estimates in bold are statistically significant ( p-value < 0.05).
n_rxst = the estimated number (in millions) of US outpatient prescriptions for drug (chemical substance) s in year t (t = 1996,
1997, …, 2021).
n_descriptorss,t−k = the number of times the descriptor of drug s occurred in PubMed in year t− k (k = 0, 1, 2, …, 20).

12If changes in incidence are positively correlated across diseases with changes in descriptor vintage (e.g.,
because the sudden outbreak of a disease induces more innovation related to the disease), failure to control
for incidence would likely bias estimates of βk towards zero.
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data on age-adjusted incidence rates13 (and on age-adjusted mortality rates), by
disease and year, are available for an important subset of diseases: 43 types of
cancer (e.g., breast, colon, lung). These data enable us to determine if and how
controlling for incidence affects estimates of the effect of biomedical innovation
on mortality.

First, we examined the “simple” relationship between incidence and mortality by
estimating the following equation:

ln (aa mort ratedt) = gj ln (aa inc rated,t−j)+ ad + dt + 1dt (3)

where

Equation (3) was estimated by weighted least squares, weighting by (∑t aa_
mort_ratedt). Disturbances were clustered within cancer sites. The estimates are
shown in Table 3. The growth in mortality is significantly positively correlated with
the growth in incidence 0–8 years earlier; it is most strongly correlated with the
contemporaneous growth in incidence. A 10% increase in the incidence rate in year t
is associated with a 5.8% increase in the mortality rate in year t.

Figure 2. Estimates of ρk from equation (2), based on data on about 600 drugs: n_rxst = ρk n_descriptorss,t−k + αs
+ δt + εst. Each estimate is from a separate regression. Disturbances were clustered within drugs. n_rxst = the
estimated number (in millions) of US outpatient prescriptions for drug (chemical substance) s in year t (t = 1996,
1997, …, 2021). n_descriptorss,t−k = the number of times the descriptor of drug s occurred in PubMed in year
t− k (k = 0, 1, 2, …, 20).

aa_mort_ratedt = the age-adjusted mortality rate from disease (cancer site) d in year t (t = 1975,
1976, …, 2019)

aa_inc_rated,t−j = the age-adjusted incidence rate of disease (cancer site) d in year t− j

13A cancer incidence rate is the number of new cancers of a specific site/type occurring in a specified
population during a year, usually expressed as the number of cancers per 100,000 population at risk. A
cancer mortality rate is the number of deaths, with cancer as the underlying cause of death, occurring
in a specified population during a year. Cancer mortality is usually expressed as the number of deaths
due to cancer per 100,000 population.
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Next, we examined the “simple” relationship between incidence and descriptor
vintage by estimating the following equation:

vint meand,t = gj ln (aa inc rated,t−j)+ ad + dt + 1dt (4)

Equation (4) was estimated by weighted least squares, weighting by n_descriptorsd,t =
the total number of descriptors of articles about disease (cancer site) d in year t.
Disturbances were clustered within cancer sites. The estimates are shown in Appendix
Table 1. The change in mean descriptor vintage is not significantly related to either
contemporaneous or lagged changes in incidence.

This suggests that controlling for incidence will not have a significant effect on
estimates of the effect of biomedical innovation on mortality. This can be verified by
estimating two versions of the following equation, one excluding and the other
including ln(aa_inc_ratedt) as a regressor:14

ln (aa mort ratedt) = bkvintage measured,t−k

+ gj ln (aa inc ratedt)

+ ad + dt + 1dt

(5)

Equation (5) was estimated by weighted least squares, weighting by (∑t aa_mort_ratect).
Disturbances were clustered within cancer sites. Estimates of both versions of equation
(5) are shown in Table 4. When we don’t control for incidence, the estimates of βk are

Table 3. Estimates of γj from equation (3): ln(aa_mort_ratedt) = γj ln(aa_inc_rated,t−j) + αd + δt + εdt

j (lag) Estimate Std. Err. Z Pr > |Z|

0 0.578 0.100 5.78 <0.0001

2 0.564 0.108 5.23 <0.0001

4 0.521 0.124 4.19 <0.0001

6 0.459 0.145 3.15 0.0016

8 0.382 0.167 2.29 0.0219

10 0.306 0.183 1.68 0.0932

12 0.223 0.193 1.16 0.2476

14 0.160 0.196 0.82 0.4125

16 0.101 0.191 0.53 0.5952

18 0.066 0.181 0.36 0.7157

20 0.026 0.168 0.16 0.8766

aa_mort_ratedt = the age-adjusted mortality rate from disease (cancer site) d in year t (t = 1975, 1976, …, 2019).
aa_inc_rated,t−j = the age-adjusted incidence rate of disease (cancer site) d in year t.
Each estimate is from a separate regression.
Equation (3) was estimated by weighted least squares, weighting by (∑t aa_mort_ratedt).
Disturbances were clustered within cancer sites.
Estimates in bold are statistically significant ( p-value < 0.05).

14The equation includes ln(aa_inc_ratedt) because, as shown in Table 3, mortality growth is most
strongly correlated with the contemporaneous growth in incidence.
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Table 4. Estimates of the effect of descriptor vintage on age-adjusted cancer mortality rate, not controlling and controlling for incidence

ln(aa_mort_ratedt) = βk vint_meand,t−k + αd + δt + εdt
ln(aa_mort_ratedt) = βk vint_meand,t−k + γj ln(aa_inc_ratedt)

+ αd + δt + εdt

Not controlling for incidence Controlling for incidence

k (lag) βk Estimate Std. Err. Z Pr > |Z| βk Estimate Std. Err. Z Pr > |Z|

0 −0.065 0.028 −2.33 0.0196 −0.056 0.028 −1.99 0.0462

2 −0.064 0.031 −2.07 0.0383 −0.056 0.028 −2.04 0.0412

4 −0.064 0.033 −1.95 0.0511 −0.059 0.027 −2.19 0.0286

6 −0.061 0.034 −1.80 0.0717 −0.058 0.026 −2.27 0.0234

8 −0.058 0.035 −1.64 0.1002 −0.055 0.026 −2.17 0.0303

10 −0.051 0.036 −1.42 0.1552 −0.051 0.025 −2.02 0.0431

12 −0.041 0.036 −1.12 0.2623 −0.045 0.025 −1.78 0.0749

14 −0.037 0.031 −1.18 0.2395 −0.046 0.022 −2.12 0.0338

16 −0.030 0.027 −1.11 0.2661 −0.043 0.020 −2.18 0.0291

18 −0.030 0.023 −1.27 0.203 −0.044 0.018 −2.51 0.0122

20 −0.023 0.020 −1.16 0.2461 −0.041 0.017 −2.45 0.0142

aa_mort_ratedt = the age-adjusted mortality rate from disease (cancer site) d in year t (t = 1975, 1976, …, 2019).
aa_inc_ratedt = the age-adjusted incidence rate of disease (cancer site) d in year t.
vint_meand,t−k = the mean vintage (year of first appearance in PubMed) of descriptors of articles about disease d published in year t− k (k = 0, 2, …, 20).
Each estimate is from a separate regression.
Equation (5) was estimated by weighted least squares, weighting by (∑t aa_mort_ratedt).
Disturbances were clustered within cancer sites.
Estimates in bold are statistically significant ( p-value < 0.05).
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negative and significant ( p-value < 0.04) when k⩽ 2, and negative and at least
marginally significant ( p-value < 0.08) when k⩽ 6. When we control for incidence,
the estimates of βk are negative and significant ( p-value < 0.05) for all values of k but
one. This suggests that failure to control for incidence will not result in
overestimation of the effect of biomedical innovation on mortality.

4. Data sources and descriptive statistics

Mortality data (yll85dt, yll75dt, yll65dt) for all diseases were computed from 1999 to
2019 Multiple Cause-of-Death Mortality Data files posted on the NBER website
(National Bureau of Economic Research, 2024).

Vintage data (vintage_measured,t−k, post1990%d,t−k) and other attributes of PubMed
articles (n_descriptorss,t) were computed from the PubMed annual baseline files.

Prescription drug data. Estimates of the number of US outpatient prescriptions, by
(Multum MediSource Lexicon) generic drug name and year (1996–2021) (n_rxst)
were computed from Medical Expenditure Panel Survey Prescribed Medicines files
(Agency for Healthcare Research and Quality, 2024).

Cancer incidence and mortality data (aa_mort_ratect, aa_inc_ratec,t−j) for 1975–2019
were obtained from Cancer Query Systems (National Cancer Institute, 2024b).

Mappings from MeSH descriptors to ICD10 codes and to Multum MediSource
Lexicon generic drug names were computed from the Unified Medical Language
System Concept Names and Sources (MRCONSO) File (National Library of
Medicine, 2024e).

Mappings from ICD10 codes to SEER cancer site codes were obtained from the SEER
Cause of Death Recode 1969+ (National Cancer Institute, 2024a).

Descriptive statistics. Aggregate data on years of potential life lost before ages 85, 75,
and 65 in 1999 and 2019 are shown in Table 5. Between 1999 and 2019, YPLL before
age 85 (YPLL85) increased by 15.0%, from 33.5 million to 38.6 million. When deaths
from three external causes (unintentional injury, suicide, and homicide) are excluded,
YPLL85 increased by 8.7%, from 28.0 million to 30.4 million. During that period,
the population below age 85 increased, so the age-adjusted YPLL85 rate declined by
13.5%; excluding deaths from three external causes, the YPLL85 rate declined by
21.7% – about 1% per year. Excluding deaths from the three external causes, the
age-adjusted rates of years of potential life lost before ages 75 and 65 (YPLL75 and
YPLL65, respectively) declined by similar amounts: 20.1% and 19.8%, respectively.

Table 5 also shows the “age-adjusted population below age 85” which we define as
the ratio of YPLL85 to the age-adjusted YPLL85 rate. The age-adjusted population
below age 85 increased by 33.0% (38.9% when deaths from three external causes are
excluded).

Aggregate data on PubMed descriptor vintage during 1979–2019 are shown in
Appendix Table 2. The data shown are weighted means across diseases; diseases are
weighted by total YPLL75 during 1999–2019. From 1979 to 1999, vint_mean increased
by 3.0 years, from 1943.1 to 1946.1. From 1999 to 2019, vint_mean increased by about
half that much, by 1.4 years. From 1979 to 1999, post1990% increased from 0.0% to
0.9%. From 1999 to 2019, post1990% increased from 0.9% to 3.5%.

Appendix Table 3 shows the 20 most frequently occurring MeSH descriptors that
first appeared in PubMed after 1990.

Appendix Table 4 shows data on mortality and descriptor attributes for the top 25
diseases, ranked by total ypll75 during 1999–2019.
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Table 5. Years of potential life lost before ages 85, 75, and 65 in 1999 and 2019

1999 2019 % Change ln change

Before age 85

YPLL

All causes 33,530,448 38,561,965 15.0 0.140

Non-external causes* 27,986,901 30,429,676 8.7 0.084

Age-adjusted rate

All causes 12,321 10,655 −13.5 −0.145

Non-external causes* 10,316 8,074 −21.7 −0.245

Age-adjusted population (100,000s)†

All causes 2,721 3,619 33.0 0.285

Non-external causes* 2,713 3,769 38.9 0.329

Before age 75

YPLL

All causes 19,309,613 21,939,705 13.6 0.128

Non-external causes* 15,009,430 15,841,878 5.5 0.054

Age-adjusted rate

All causes 7,418 6,691 −9.8 −0.103

Non-external causes* 5,791 4,628 −20.1 −0.224

Age-adjusted population (100,000s)†

All causes 2,603 3,279 26.0 0.231

Non-external causes* 2,592 3,423 32.1 0.278

Before age 65

YPLL

All causes 11,145,856 11,638,857 4.4 0.043

Non-external causes* 7,955,848 7,360,735 −7.5 −0.078

Age-adjusted rate

All causes 4,593 4,237 −7.8 −0.081

Non-external causes* 3,298 2,644 −19.8 −0.221

Age-adjusted population (100,000s)†

All causes 2,427 2,747 13.2 0.124

Non-external causes* 2,413 2,784 15.4 0.143

*Deaths from unintentional injury, suicide, and homicide are excluded.
†Age-adjusted population = YPLL/age-adjusted rate.
Source: CDC, WISQARS Years of Potential Life Lost (YPLL) Report, 1981–2020, https://wisqars.cdc.gov/ypll
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5. Empirical results

Estimates of many versions of equation (1) are reported in Table 6 and plotted in Fig. 3.
Each estimate is from a separate equation. On the left side of the table and figure are
estimates when the vintage measure is vint_mean; on the right side are estimates
when the vintage measure is post1990%. In the table, estimates in bold are
statistically significant ( p-value < 0.05). In the figure, solid squares denote statistically
significant estimates, the large solid squares denote the most significant estimates,
and hollow squares denote statistically insignificant estimates.

Rows 1–11 of the table and panels A and B of the figure show estimates when the
dependent variable is ln(YPLL85dt). When the vintage measure is vint_mean, the
estimates are negative and statistically significant when 2⩽ k⩽ 16: YPLL85 is
significantly inversely related to the mean vintage of descriptors 2–16 years earlier. It
is most strongly inversely related to the vintage of descriptors 6 years earlier. The
point estimate of β6 when the vintage measure is vint_mean (−0.086) implies that a
one-year increase in vintage is associated with an 8.3% reduction in YPLL85 6 years
later. Further implications of the magnitudes of the estimates will be discussed in the
next section. When the vintage measure is post1990%, the estimates are negative and
statistically significant when 0⩽ k⩽ 8: YPLL85 is significantly inversely related to the
fraction of post-1990 descriptors 0–8 years earlier. It is most strongly inversely
related to the vintage of descriptors 2–4 years earlier.

Rows 12–22 of the table and panels C and D of the figure show estimates when the
dependent variable is ln(YPLL75dt). When the vintage measure is vint_mean, the
estimates are negative and statistically significant when 2⩽ k⩽ 16: YPLL75 is significantly
inversely related to the mean vintage of descriptors 2–16 years earlier. It is most strongly
inversely related to the vintage of descriptors 12 years earlier. When the vintage measure
is post1990%, the estimates are negative and statistically significant when 0⩽ k⩽ 20:
YPLL75 is significantly inversely related to the fraction of post-1990 descriptors 0–20
years earlier. It is most strongly inversely related to the vintage of descriptors 4 years earlier.

Rows 23–33 of the table and panels E and F of the figure show estimates when the
dependent variable is ln(YPLL65dt). When the vintage measure is vint_mean, the
estimates are negative and statistically significant when 6⩽ k⩽ 16: YPLL65 is significantly
inversely related to the mean vintage of descriptors 6–16 years earlier. It is most strongly
inversely related to the vintage of descriptors 12 years earlier. When the vintage measure
is post1990%, the estimates are negative and statistically significant when 0⩽ k⩽ 20:
YPLL65 is significantly inversely related to the fraction of post-1990 descriptors 0–20
years earlier. It is most strongly inversely related to the vintage of descriptors 14 years earlier.

As discussed above, to explore whether biomedical innovation had different effects on
the mortality of whites and blacks, equation (1) can be estimated using race-specific
mortality data. (The same descriptor vintage data are used to estimate the white and
black mortality equations.) Estimates of equation (1) when mortalitydt = YPLL75dt, by
race, are shown in Table 7 and plotted in Fig. 4. In rows 1–11 of the table, the vintage
measure is vint_mean. The estimates of βk from the white mortality equation are
negative and statistically significant when 2⩽ k⩽ 16: YPLL75 of whites is significantly
inversely related to the mean vintage of descriptors 2–16 years earlier. It is most
strongly inversely related to the vintage of descriptors 12 years earlier. The estimates
of βk from the black mortality equation are negative and statistically significant when
6⩽ k⩽ 14: YPLL75 of blacks is significantly inversely related to the mean vintage of
descriptors 6–14 years earlier. It is most strongly inversely related to the vintage of
descriptors 12 years earlier.
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Table 6. Estimates of βk from equation (1): ln(mortalitydt) = βk vintage_measured,t−k + αd + δt + εdt

vintage_measure = vint_mean vintage_measure = post1990%

Row k (lag) Estimate Std. Err. Z Pr > |Z| Estimate Std. Err. Z Pr > |Z|

mortalitydt = YPLL85dt

1 0 −0.075 0.043 −1.75 0.0793 −8.806 3.697 −2.38 0.0172

2 2 −0.091 0.038 −2.40 0.0165 −9.809 3.522 −2.79 0.0053

3 4 −0.091 0.034 −2.68 0.0074 −9.374 3.359 −2.79 0.0053

4 6 −0.086 0.029 −3.02 0.0025 −7.905 3.098 −2.55 0.0107

5 8 −0.074 0.026 −2.81 0.0049 −5.775 2.917 −1.98 0.0477

6 10 −0.067 0.024 −2.87 0.0041 −5.099 3.082 −1.65 0.0980

7 12 −0.051 0.018 −2.81 0.0050 −5.040 3.403 −1.48 0.1385

8 14 −0.046 0.019 −2.42 0.0153 −5.257 3.723 −1.41 0.1579

9 16 −0.041 0.019 −2.14 0.0322 −5.625 4.125 −1.36 0.1727

10 18 −0.017 0.020 −0.85 0.3967 −6.365 4.581 −1.39 0.1647

11 20 −0.014 0.019 −0.74 0.4588 −8.554 5.717 −1.50 0.1346

mortalitydt = YPLL75dt

12 0 −0.061 0.042 −1.48 0.1401 −8.493 3.258 −2.61 0.0091

13 2 −0.077 0.037 −2.06 0.0399 −9.002 3.103 −2.90 0.0037

14 4 −0.078 0.032 −2.44 0.0149 −8.721 2.939 −2.97 0.0030

15 6 −0.078 0.027 −2.87 0.0041 −7.991 2.760 −2.90 0.0038

16 8 −0.072 0.025 −2.85 0.0044 −6.563 2.637 −2.49 0.0128

(Continued )
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Table 6. (Continued.)

vintage_measure = vint_mean vintage_measure = post1990%

Row k (lag) Estimate Std. Err. Z Pr > |Z| Estimate Std. Err. Z Pr > |Z|

17 10 −0.071 0.023 −3.04 0.0024 −6.509 2.782 −2.34 0.0193

18 12 −0.055 0.016 −3.39 0.0007 −7.344 2.958 −2.48 0.0130

19 14 −0.051 0.018 −2.89 0.0038 −8.267 3.203 −2.58 0.0098

20 16 −0.048 0.018 −2.62 0.0088 −9.164 3.561 −2.57 0.0101

21 18 −0.028 0.021 −1.29 0.1960 −10.504 4.101 −2.56 0.0104

22 20 −0.024 0.020 −1.18 0.2387 −13.510 5.417 −2.49 0.0126

mortalitydt = YPLL65dt

23 0 −0.043 0.042 −1.03 0.3032 −7.358 3.095 −2.38 0.0174

24 2 −0.056 0.038 −1.46 0.1443 −7.465 3.033 −2.46 0.0138

25 4 −0.058 0.031 −1.89 0.0593 −7.247 2.881 −2.52 0.0119

26 6 −0.063 0.026 −2.48 0.0133 −7.117 2.748 −2.59 0.0096

27 8 −0.062 0.025 −2.52 0.0118 −6.148 2.670 −2.30 0.0213

28 10 −0.065 0.024 −2.72 0.0066 −6.607 2.834 −2.33 0.0197

29 12 −0.049 0.018 −2.75 0.0060 −7.901 2.972 −2.66 0.0079

30 14 −0.046 0.019 −2.48 0.0132 −9.291 3.264 −2.85 0.0044

31 16 −0.045 0.019 −2.36 0.0185 −10.383 3.656 −2.84 0.0045

32 18 −0.032 0.021 −1.47 0.1402 −12.119 4.303 −2.82 0.0049

33 20 −0.029 0.020 −1.48 0.1398 −15.285 5.806 −2.63 0.0085

Each estimate is from a separate equation. Estimates in bold are statistically significant ( p-value < 0.05).
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In rows 12–22 of the table, the vintage measure is post1990%. All 11 estimates of βk
from the white mortality equation are negative and statistically significant. None of the
11 estimates of βk from the black mortality equation are statistically significant. These
estimates indicate that biomedical innovation reduced the mortality of white people
sooner than it reduced the mortality of black people, and that the mortality of black
people was not reduced by the most recent innovations.

6. Discussion

Estimates of two versions of equation (1) – including and excluding vintage_measured,t
−k as a regressor – enable us to estimate how much biomedical innovation reduced

Figure 3. Estimates of βk from equation (1): ln(mortalitydt) = βk vintage_measured,t−k + αd + δt + ϵdt. (a) vint_mean
==> YPLL85. (b) post1990% ==> YPLL85. (c) vint_mean ==> YPLL75. (d) post1990% ==> YPLL75. (e) vint_mean ==>
YPLL65. (f) post1990% ==> YPLL65. Each estimate is from a separate regression. Disturbances were clustered
within diseases. Solid squares denote statistically significant estimates; the large solid squares denote the
most significant estimates, and hollow squares denote statistically insignificant estimates.
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Table 7. Estimates of βk from equation (1): ln(mortalitydt) = βk vintage_measured,t−k + αd + δt + εdt, by race

mortalitydt = YPLL75dt

Row Lag Estimate Std. Err. Z Pr > |Z| Estimate Std. Err. Z Pr > |Z|

vintage_measure = vint_mean

White Black

1 0 −0.073 0.041 −1.79 0.0737 −0.025 0.062 −0.40 0.6866

2 2 −0.089 0.036 −2.44 0.0147 −0.034 0.056 −0.61 0.5450

3 4 −0.088 0.032 −2.73 0.0063 −0.042 0.043 −0.99 0.3220

4 6 −0.086 0.029 −2.99 0.0028 −0.054 0.027 −2.00 0.0454

5 8 −0.077 0.027 −2.89 0.0039 −0.059 0.025 −2.36 0.0184

6 10 −0.074 0.024 −3.06 0.0022 −0.064 0.026 −2.46 0.0140

7 12 −0.055 0.016 −3.57 0.0004 −0.054 0.025 −2.15 0.0314

8 14 −0.052 0.018 −2.93 0.0034 −0.046 0.024 −1.97 0.0490

9 16 −0.049 0.019 −2.62 0.0088 −0.039 0.022 −1.74 0.0813

10 18 −0.029 0.022 −1.30 0.1921 −0.021 0.021 −1.00 0.3194

11 20 −0.025 0.021 −1.18 0.2368 −0.015 0.019 −0.79 0.4271

vintage_measure = post1990%

White Black

12 0 −9.729 3.317 −2.93 0.0034 −4.684 4.080 −1.15 0.2508

13 2 −10.385 3.094 −3.36 0.0008 −4.430 4.144 −1.07 0.2851

14 4 −10.198 2.927 −3.48 0.0005 −3.469 3.837 −0.90 0.3659

15 6 −9.592 2.783 −3.45 0.0006 −2.277 3.362 −0.68 0.4982
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16 8 −8.084 2.745 −2.95 0.0032 −1.087 2.805 −0.39 0.6982

17 10 −7.783 2.945 −2.64 0.0082 −2.019 2.695 −0.75 0.4538

18 12 −8.412 3.138 −2.68 0.0073 −3.653 2.918 −1.25 0.2105

19 14 −9.139 3.373 −2.71 0.0067 −5.433 3.437 −1.58 0.1139

20 16 −9.857 3.681 −2.68 0.0074 −7.356 4.451 −1.65 0.0984

21 18 −10.979 4.148 −2.65 0.0081 −9.895 5.860 −1.69 0.0913

22 20 −13.752 5.271 −2.61 0.0091 −14.777 9.134 −1.62 0.1057

YPLL75dt = the number of years of potential life lost before age 75 due to disease d in year t (t = 1999, 2000, …, 2019).
vint_meand,t−k = the mean vintage (year of first appearance in PubMed) of descriptors of articles about disease d published in year t− k (k = 0, 2, …, 20).
Each estimate is from a separate regression.
Equation (1) was estimated by weighted least squares, weighting by (∑t YPLL75dt).
Disturbances were clustered within diseases.
Estimates in bold are statistically significant ( p-value < 0.05).
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age-adjusted mortality rates during the period 1999–2019. When vintage_measured,t−k
is included in equation (1), δ2019 is an estimate of the 1999–2019 change in mortality,
holding constant vintage_measured,t−k, i.e., in the absence of biomedical innovation.
(δ1999 is normalized to zero.) When vintage_measured,t−k is excluded from equation
(1), δ2019 is an estimate of the 1999–2019 change in mortality in the presence of
biomedical innovation. Changes in age-adjusted mortality rates can be computed by
subtracting the corresponding log-change in age-adjusted population shown in
Table 5 (e.g., 0.329 for the population below age 85) from the δ2019 estimates.

These calculations are shown for each of the three mortality measures and both of
the vintage measures in Fig. 5. In each case, we use the lag for which the relationship
is most significant. Panel A shows estimates of the growth in the age-adjusted
YPLL85 rate in the presence and absence of the change in vint_mean 6 years
earlier. The growth (log-change) in the presence of biomedical innovation is −0.20

Figure 4. Estimates of βk from equation (1): ln(mortalitydt) = βk vintage_measured,t−k + αd + δt + εdt, by race.
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and is significantly different from zero. The growth in the absence of biomedical
innovation is 0.02 and is not significantly different from zero. We cannot reject
the null hypothesis that in the absence of biomedical innovation, as measured by
the lagged change in vint_mean, the age-adjusted YPLL85 rate would not have
declined during the period 1999–2019. The estimates for the other mortality and
vintage measures are quite similar. The growth (ln change) in the presence of
biomedical innovation is −0.19 to −0.16 and is significantly different from zero;
the growth in the absence of biomedical innovation is not significantly different
from zero.

Figure 5. Estimated 1999–2019 changes in age-adjusted mortality rates from all diseases in the presence and
absence of biomedical innovation. (a) vint_meand,t−6 ==> ypll85dt. (b) post1990%d,t−6 ==> ypll85dt. (c)
vint_meand,t−12 ==> ypll75. (d) post1990%d,t−4 ==> ypll75dt. (e) vint_meand,t−12 ==> ypll65dt. (f) post1990%d,

t−14 ==> ypll65dt.
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Similarly, by estimating three versions of equation (5), we can estimate how much
biomedical innovation and changes in cancer incidence reduced the age-adjusted cancer
mortality rate during the period 1975–2019. Those calculations are shown in Fig. 6. In
the presence of changes in cancer incidence and biomedical innovation, the log-change
in the age-adjusted cancer mortality rate was −0.37. Only a small part of that decline was
due to the decline in cancer incidence: controlling only for cancer incidence, the
estimated log-change in the age-adjusted cancer mortality rate was −0.33, and is
significantly different from zero. But when we control for vint_meand,t−6 as well as for
ln(aa_inc_ratedt), the estimated log-change in the age-adjusted cancer mortality rate was
0.04, and is not significantly different from zero.

From 1999 to 2019, age-adjusted mortality rates (excluding deaths from
unintentional injury, suicide, and homicide) declined by approximately 20% – about
1% per year. Our estimates imply that, in the absence of biomedical innovation,
age-adjusted mortality rates would not have declined. Some factors other than
biomedical innovation probably contributed to the decline in mortality. The adult
cigarette smoking rate declined from 23.5% in 1999 to 13.7% in 2018 (American
Lung Association, 2024). The fraction of adults who had at least a bachelor’s
degree increased from 23.9% in 1997 to 34.2% in 2017 (American Council on
Eduction, 2024). However, other factors probably contributed to an increase in
mortality. From 1999–2000 through 2017–March 2020, US obesity prevalence
increased from 30.5% to 41.9%, and the prevalence of severe obesity increased from
4.7% to 9.2%. Obesity-related conditions include heart disease, stroke, type 2
diabetes, and certain types of cancer. These are among the leading causes of
preventable, premature death (Centers for Disease Control, 2024a, 2024b). And
between 2007 and 2018, the prevalence of 14 out of 21 chronic conditions among
male Medicare beneficiaries increased, and the prevalence of 16 out of 21 chronic
conditions among female beneficiaries increased (Center for Medicare and Medicaid
Services, 2024).

Figure 6. Estimated 1975–2019 change in age-adjusted cancer mortality rate in the presence and absence of
changes in cancer incidence and biomedical innovation.
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7. Summary

We investigated econometrically the overall impact that biomedical innovation had on
premature mortality in the US during the period 1999–2019. We used a
difference-in-differences research design: we investigated whether the diseases for
which there was more biomedical innovation had larger reductions in premature
mortality. Biomedical innovation related to a disease was measured by the change in
the mean vintage of descriptors of PubMed articles about the disease. We analyzed
data on 286 million descriptors of 27 million articles about over 800 diseases.

Our estimates indicated that premature mortality from a disease is significantly
inversely related to the lagged vintage of descriptors of articles about the disease. For
example, the number of years of potential life lost before age 75 due to a disease is
significantly inversely related to the mean vintage of descriptors 2–16 years earlier; it
is most strongly inversely related to the vintage of descriptors 12 years earlier. This
lag is not surprising: we showed that the number of prescriptions for a drug is
significantly positively related to the number of PubMed descriptors of the drug
6–14 years earlier. It is most strongly related to the number of PubMed descriptors
of the drug 10 years earlier.

To explore whether biomedical innovation had different effects on the mortality of
whites and blacks, we also estimated models using race-specific mortality data. Our
estimates indicated that biomedical innovation reduced the mortality of white people
sooner than it reduced the mortality of black people, and that the mortality of black
people was not reduced by the most recent innovations.

From 1999 to 2019, the age-adjusted mortality rate (excluding deaths from unintentional
injury, suicide, and homicide) from all diseases declined by approximately 20% – about 1%
per year. Our estimates implied that, in the absence of biomedical innovation, age-adjusted
mortality rates would not have declined. Also, from 1975 to 2019, the age-adjusted cancer
mortality rate declined by approximately 27%. Our estimates also implied that, in the
absence of biomedical innovation, the age-adjusted cancer mortality rate would not
have declined. Some factors other than biomedical innovation (e.g., a decline in the
smoking rate and an increase in educational attainment) probably contributed to the
decline in mortality. But other factors (e.g., a rise in obesity and the prevalence of
chronic conditions) undoubtedly contributed to an increase in mortality.

Our estimates do not capture cross-disease spillover effects: the potential effects of
biomedical innovation for one disease on mortality from other diseases. Although
some spillover effects are adverse, others are positive.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/dem.2024.27.
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