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PDE comparison principles for Robin
problems
Jeffrey J. Langford
Abstract. We compare the solutions of two Poisson problems in a spherical shell with Robin bound-
ary conditions, one with given data, and one where the data have been cap symmetrized. When
the Robin parameters are nonnegative, we show that the solution to the symmetrized problem has
larger convex means. Sending one of the Robin parameters to +∞, we obtain mixed Robin/Dirichlet
comparison results in shells. We prove similar results on balls and prove a comparison principle on
generalized cylinders with mixed Robin/Neumann boundary conditions.

1 Introduction

Comparison principles in elliptic PDEs began with the work of Talenti [36]. In his
seminal work, Talenti compared the solutions of two Poisson problems with Dirichlet
boundary conditions:

−Δu = f in Ω, −Δv = f # in Ω# ,
u = 0 on ∂Ω, v = 0 on ∂Ω# .

In the first problem, the given datum f ≥ 0 belongs to L2(Ω) and Ω ⊆ R
n denotes a

bounded Lipschitz domain. In the second, symmetrized problem, Ω# ⊆ R
n denotes

a centered open ball with ∣Ω∣ = ∣Ω#∣ (here ∣ ⋅ ∣ denotes the Lebesgue measure), and
f # ∈ L2(Ω#) denotes the Schwarz rearrangement, a radially decreasing function on
Ω# whose upper level sets have the same measure as those of f, i.e., ∣{x ∈ Ω ∶ f (x) >
t}∣ = ∣{x ∈ Ω# ∶ f #(x) > t}∣ for each t ∈ R. Talenti showed that the solutions u and v
compare through their Schwarz rearrangements:

u# ≤ v in Ω# .(1.1)

This conclusion implies, for instance,

∫
Ω

ϕ(u) dx ≤ ∫
Ω#

ϕ(v) dx ,(1.2)

for each increasing convex function ϕ ∶ R→ R. By the Minimum Principle, u and v
are nonnegative, so choosing ϕ(x) = χ[0,+∞)(x) ⋅ x p gives

∥u∥Lp(Ω) ≤ ∥v∥Lp(Ω#), 1 ≤ p ≤ +∞.(1.3)
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PDE comparison principles for Robin problems 109

The novelty of Talenti’s result is that it allows us to estimate properties of the solution
to a given PDE in terms of the solution of a related problem that is, in general, much
easier to solve. In particular, notice that the solution v to the symmetrized problem is
purely radial.

Papers on comparison principles related to Talenti’s original work fill many journal
pages. We direct the interested reader to the recent survey article, and the references
therein, by Talenti [37]. This literature is rich with PDE comparison principles for
problems with Dirichlet boundary conditions. We recall two results most relevant
to our paper. In [2], Alvino et al. prove a comparison principle for Steiner sym-
metrization. To Steiner symmetrize a domain, we intersect the given domain with
hyperplanes, and replace those intersections with centered balls of equal volume. To
Steiner symmetrize a function, we apply the Schwarz rearrangement to each slice
function. In this Steiner regime, the authors show that the solutions of the given and
symmetrized problems compare via their convex means as in (1.2), with # denoting
Steiner symmetrization.1 In [38], Weitsman establishes a comparison principle for cap
symmetrization. Under cap symmetrization, we intersect a given domain with spheres
and replace those intersections with centered spherical caps of equal surface measure.
Likewise, we cap symmetrize functions by applying the spherical symmetrization (the
analogue of the Schwarz rearrangement for functions defined on spheres) to each
radial slice function. In the cap regime, Weitsman shows that the solutions of the given
and symmetrized problems compare as in (1.1), with # denoting cap symmetrization.

In contrast to the Dirichlet setting, there are few Neumann results that compare
solutions to Poisson problems of the form

−Δu = f in Ω, −Δv = f # in Ω# ,
∂u
∂η = 0 on ∂Ω, ∂v

∂η = 0 on ∂Ω# ,

where ∂u
∂η is the outer normal derivative and # denotes a prescribed symmetrization.

The Neumann problem presents a slight technicality in that the solutions u and v
are not unique, so one must impose an appropriate normalization, say, that u and
v have zero mean. For all known comparison results, the initial domain Ω and the
symmetrized domain Ω# are equal. Thus, in moving from the first problem to the
symmetrized one, it is only the input function f that is rearranged. For example, in
[29], the author compares u and v when Ω is a spherical shell (the region between
two concentric spheres) and # is the cap symmetrization. The author shows that the
solutions compare through their convex means as in (1.2). Baernstein, Laugesen, and
the author prove a generalization of this result (see Theorem 10.20) in [10]. See also
[30] for a number of related comparison results on spheres and two-dimensional con-
sequences in the plane via projection mappings. In [31], the author compares u and v
when Ω = D × (0, �) is a generalized cylinder and # denotes the monotone decreasing
rearrangement in the final variable (a one-dimensional Steiner symmetrization in one
direction). Again, the author shows that the solutions compare via their convex means

1We alert the reader that here and throughout the rest of the paper, we use the notation # to denote
multiple rearrangements. This convention has the advantage of requiring less notation (although it
may lead to confusion on the part of the reader). Throughout our paper, the context makes clear the
rearrangement under consideration.
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110 J.J. Langford

as in (1.2). In [14], Brock considers similar cylinder-like sets and proves a related
comparison principle with an eye toward comparing the extreme values (sup and inf)
of u and v.

Likely driven by the recent surge of interest in Robin problems in spectral theory
(see any of [4, 11, 13, 15–19, 21–2 3, 25]), in [3], Alvino, Nitsch, and Trombetti establish
the first Robin comparison principle in the spirit of Talenti. The authors compare the
solutions to the Poisson problems

−Δu = f in Ω, −Δv = f # in Ω# ,
∂u
∂η + αu = 0 on ∂Ω, ∂v

∂η + αv = 0 on ∂Ω# ,

where 0 ≤ f ∈ L2(Ω), α > 0, Ω# is a centered ball whose volume equals that of Ω, and #
denotes the Schwarz rearrangement. The authors show that u and v compare through
their Lorentz norms:

∥u∥Lp,1(Ω) ≤ ∥v∥Lp,1(Ω#), 0 < p ≤ n
2n − 2

,

∥u∥L2p,2(Ω) ≤ ∥v∥L2p,2(Ω#), 0 < p ≤ n
3n − 4

,

with the Lorentz norm defined via

∥u∥Lp,q(Ω) = p
1
q (∫

∞

0
tq ∣{x ∈ Ω ∶ ∣u(x)∣ > t}∣

q
p

dt
t
)

1
q

, 0 < p, q < +∞.

When the dimension n = 2, it follows that

∥u∥L1(Ω) ≤ ∥v∥L1(Ω#) and ∥u∥L2(Ω) ≤ ∥v∥L2(Ω#).

Moreover, in dimension n = 2, when f = 1, the authors show that u and v compare as
in (1.1). They therefore deduce a two-dimensional isoperimetric inequality for Robin
torsional rigidity. See also the related paper [1]. But beyond these two papers, the
author is not aware of any others that discuss PDE comparison principles for Robin
problems. In this paper, we prove several such results.

To state our results, we require some notation. For 0 < a < b < +∞, let

A = A(a, b) = {x ∈ Rn ∶ a < ∣x∣ < b}

denote a spherical shell with inner radius a and outer radius b. For a function f ∈
L1(A), let f # denote the cap symmetrization (for a precise definition, see Definitions
2.2, 2.4, and 2.5). Denote

A☀ = (a, b) × (0, π)

for the polar rectangle associated with A and define functions J f , f☀ ∶ A☀ → R a.e.
by

J f (r, θ) = ∫
K(θ)

f (rξ) dσ(ξ),

f☀(r, θ) = ∫
K(θ)

f #(rξ) dσ(ξ),
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PDE comparison principles for Robin problems 111

where σ denotes standard surface measure on S
n−1 and

K(θ) = {ξ ∈ Sn−1 ∶ d(e1 , ξ) < θ}
denotes the open polar cap on S

n−1 centered at e1 with radius θ, computed in the
spherical distance. Our first main result is a Robin comparison principle for the cap
symmetrization in shells. Notice that our result allows for the possibility of mixed
Robin/Neumann boundary conditions.

Theorem 1.1 (Robin comparison principle on shells) Say 0 < a < b < +∞ and A =
A(a, b) ⊆ R

n is a spherical shell with inner radius a and outer radius b. Let α, β ≥ 0 and
f ∈ L2(A); when α = β = 0, we also assume ∫A f dx = 0. Say u and v solve the Poisson
problems

−Δu = f in A, −Δv = f # in A,
∂u
∂η + αu = 0 on {∣x∣ = a}, ∂v

∂η + αv = 0 on {∣x∣ = a},
∂u
∂η + βu = 0 on {∣x∣ = b}, ∂v

∂η + βv = 0 on {∣x∣ = b},

where f # denotes the cap symmetrization of f; when α = β = 0, we also assume that u
and v are normalized, so that ∫A u dx = ∫A v dx = 0. Then, for almost every r ∈ (a, b),
the inequality

u☀(r, θ) ≤ Jv(r, θ)
holds for each θ ∈ (0, π). In particular, for almost every r ∈ (a, b) and for each convex
function ϕ ∶ R→ R, we have

∫
{∣x ∣=r}

ϕ(u) dS ≤ ∫
{∣x ∣=r}

ϕ(v) dS .

By sending α (or β) to +∞ in Theorem 1.1, the Robin boundary condition along
{∣x∣ = a} (or {∣x∣ = b}) turns into a Dirichlet boundary condition. After proving
Theorem 1.1, we use this observation to deduce analogous comparison principles on
shells with mixed Robin/Dirichlet boundary conditions. See Theorem 3.4.

We also prove comparison principles on balls that require a bit more notation. For
0 < b < +∞, let

B = B(0, b) = {x ∈ Rn ∶ ∣x∣ < b}.

Denote

B☀ = (0, b) × (0, π)

for the polar rectangle associated with B and define functions J f , f☀ ∶ B☀ → R a.e.
by

J f (r, θ) = ∫
K(θ)

f (rξ) dσ(ξ),

f☀(r, θ) = ∫
K(θ)

f #(rξ) dσ(ξ),

with f # the cap symmetrization of f (see also the discussion preceding the proof of
Theorem 1.2 in Section 3). Our second main result is the following theorem.
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112 J.J. Langford

Theorem 1.2 (Robin comparison principle on balls) Say 0 < b < +∞, and let B ⊆ R
n

denote an open ball centered at 0 with radius b. Let β ≥ 0 and f ∈ L2(B); when β = 0,
we also assume ∫B f dx = 0. Say u and v solve the Poisson problems

−Δu = f in B, −Δv = f # in B,
∂u
∂η + βu = 0 on {∣x∣ = b}, ∂v

∂η + βv = 0 on {∣x∣ = b},

where f # denotes the cap symmetrization of f; when β = 0, we also assume that u and
v are normalized, so that ∫B u dx = ∫B v dx = 0. Then, for almost every r ∈ (a, b), the
inequality

u☀(r, θ) ≤ Jv(r, θ)

holds for each θ ∈ (0, π). In particular, for almost every r ∈ (a, b) and for each convex
function ϕ ∶ R→ R, we have

∫
{∣x ∣=r}

ϕ(u) dS ≤ ∫
{∣x ∣=r}

ϕ(v) dS .

To state our final main result, we also introduce some additional notation. Let D ⊆
R

n−1 denote a bounded C∞ domain and say � > 0. Define a generalized cylinder by

Ω = D × (0, �).

Points of Ω are denoted by pairs (x , y) with x ∈ D and y ∈ (0, �). Given a function
f ∈ L1(Ω), we can hold almost every x ∈ D fixed and take a decreasing rearrangement
in the variable y. Doing so yields the monotone decreasing rearrangement of f in the
y-direction (for the precise definition, see Definitions 2.2 and 2.8). Define functions
J f , f☀ ∶ Ω → R a.e. by

J f (x , y) = ∫
y

0
f (x , t) dt,

f☀(x , y) = ∫
y

0
f #(x , t) dt,

where f # is the monotone decreasing rearrangement of f in the y-direction. We are
now prepared to state our last result, a comparison principle on cylinders with mixed
boundary conditions.

Theorem 1.3 (Mixed Robin/Neumann comparison principle on cylinders) Let Ω =
D × (0, �) denote a cylinder whose base D ⊂ R

n−1 is a bounded C∞ domain, and say
f ∈ L2(Ω). We divide the boundary ∂Ω into two pieces, ∂Ω1 = (D × {0}) ∪ (D × {�})
and ∂Ω2 = ∂D × [0, �]. For α ≥ 0, let u and v be solutions to the Poisson problems

−Δu = f in Ω, −Δv = f # in Ω,
∂u
∂η = 0 on ∂Ω1 , ∂v

∂η = 0 on ∂Ω1 ,
∂u
∂η + αu = 0 on ∂Ω2 , ∂v

∂η + αv = 0 on ∂Ω2 ,

where f # denotes the decreasing rearrangement of f in the y-direction; when α = 0, we
assume f, u, and v have zero mean on Ω. Assume that f and f # are continuous on Ω and
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are sufficiently smooth to ensure that the solutions u, v belong to C2(Ω). Then, for each
x ∈ D,

u☀(x , y) ≤ Jv(x , y),

for every 0 ≤ y ≤ �. In particular,

∫
�

0
ϕ(u(x , y)) d y ≤ ∫

�

0
ϕ(v(x , y)) d y,

for each convex function ϕ ∶ R→ R.

Observe that this result has stronger assumptions on the functions f , f # , u, and v
than our previous main results. This is because the domain Ω is Lipschitz rather than
C∞ smooth. In this Lipschitz setting, the author is not aware of any regularity results
that guarantee smoothness of solutions when the forcing function f has sufficient
regularity. Our goal here is not to establish such a regularity result, but rather to
illustrate that the techniques used to prove Theorems 1.1 and 1.2 adapt to other settings.

We note that in [14], Brock proves a result related to Theorem 1.3 using Green’s
functions. Again, his conclusions are weaker than those obtained here, because it
appears his main goal is to compare the extreme values of u and v rather than their
convex means or Lp-norms. Indeed, all of our comparison principles have corollaries
comparing the Lp-norms of u and v (see Corollaries 3.3, 3.7, and 3.11).

The techniques used in this paper are similar to those used by Baernstein in [8],
the author in [29, 31] to prove Neumann versions of Theorems 1.1–1.3, and Baernstein,
Laugesen, and the author in Chapter 10 of [10]. Indeed, the techniques employed here
are drastically different from those used by Talenti to prove his original comparison
result (and also those used in [3]). Whereas Talenti’s work relies on the classic
isoperimetric inequality, the coarea formula, and a detailed analysis of a function’s (in
particular u’s) level sets, our work relies on☀-functions, so-called “subharmonicity”
results (certain weak differential inequalities), and a weak Maximum Principle. In
a certain sense, the machinery used here is robust, because it can be used to prove
Dirichlet, Neumann, and now Robin comparison principles.

The remainder of the paper is outlined as follows. Section 2 is divided into three
subsections. In the first subsection, we introduce star functions on general measure
spaces; in the second subsection, we lay out all of the background necessary to prove
Theorems 1.1 and 1.2, including relevant rearrangements and subharmonicity results;
in the third subsection, we present background for Theorem 1.3, introducing relevant
rearrangements and subharmonicity results. In Section 3, we prove our main results
and related consequences.

2 Background

2.1 Robin problems

We start by collecting basic facts about solutions to Poisson problems with Robin
boundary conditions. Say Ω ⊆ R

n is a bounded Lipschitz domain, α ∈ L∞(∂Ω) is
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114 J.J. Langford

nonnegative and not identically zero, and f ∈ L2(Ω). We consider the Robin–Poisson
problem

−Δu = f in Ω,(2.1)

∂u
∂η

+ αu = 0 on ∂Ω.(2.2)

A function u ∈ H1(Ω) is said to be a weak solution provided

∫
Ω
∇u ⋅ ∇v dx + ∫

∂Ω
αuv dS = ∫

Ω
f v dx , v ∈ H1(Ω),

where the boundary integral is interpreted in the trace sense.
The bilinear form associated with the Robin problem is

B[v , w] = ∫
Ω
∇v ⋅ ∇w dx + ∫

∂Ω
αvw dS , v , w ∈ H1(Ω).

The boundedness of α on ∂Ω and the Trace Theorem give that B is bounded, i.e., there
exists a positive constant c1, where

∣B[v , w]∣ ≤ c1∥v∥H1(Ω)∥w∥H1(Ω), v , w ∈ H1(Ω).

The theorems of Banach–Alaoglu and Rellich–Kondrachov, and the assumption that
α is positive on a set of positive measure on ∂Ω, give that B is coercive. So, there exists
a positive constant c2 with

B[v , v] ≥ c2∥v∥2
H1(Ω), v ∈ H1(Ω).

The Lax–Milgram theorem now implies that for each f ∈ L2(Ω), there exists a unique
u ∈ H1(Ω) where

B[u, v] = ∫
Ω

f v dx , v ∈ H1(Ω).

In other words, the Robin problem ((2.1) and (2.2)) with data f has a unique solution
u. Moreover, by coercivity, the solution depends continuously on the data:

∥u∥H1(Ω) ≤
1
c2
∥ f ∥L2(Ω).(2.3)

2.2 Star functions on general measure spaces

The goal of our paper is to compare the solutions of two Robin problems as in (2.1)
and (2.2), one with initial data, and one where the data have been rearranged, or
symmetrized. As we shall see, the two solutions compare via their star functions. So, in
this subsection, we collect basic facts about star functions on general measure spaces
to be used throughout the paper. Much of the background presented in this subsection
also appears in Section 2.1 of [29]. For more on applications of the star function, we
direct the reader to the work of Baernstein [5–7, 9].

Unless specified otherwise, (X , μ) denotes a finite measure space. We start by
precisely defining what it means for two functions to have the same size.
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Definition 2.1 (Rearrangements) Suppose that f ∈ L1(X) and g ∈ L1(Y) are defined
on finite measure spaces (X , μ) and (Y , ν). We say f and g are rearrangements of each
other provided

μ ({x ∈ X ∶ t < f (x)}) = ν ({y ∈ Y ∶ t < g(y)}) , t ∈ R.

For a comprehensive treatment of rearrangements, we direct the interested reader
to the recently published manuscript of Baernstein [10]. See also [26, 32].

Given an integrable function, we can always build a decreasing function on
an interval that rearranges the given function’s values. This function is called the
decreasing rearrangement, and it plays a central role in defining other rearrangements
(symmetrizations) throughout our paper.

Definition 2.2 (Decreasing rearrangement) Let f ∈ L1(X). Define f ∗ ∶ [0, μ(X)] →
[−∞,+∞] via

f ∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ess sup
X

f if t = 0,

inf{s ∶ μ({x ∶ s < f (x)}) ≤ t} if t ∈ (0, μ(X)),
ess inf

X
f if t = μ(X).

We call f ∗ the decreasing rearrangement of f.

We are now prepared to define star functions on general measure spaces.

Definition 2.3 (Star function for a general measure space) Let f ∈ L1(X). We define
the star function of f on the interval [0, μ(X)] by the formula

f☀(t) = sup
μ(E)=t

∫
E

f dμ,

where the sup is taken over all measurable subsets E ⊆ X with μ(E) = t.

Our next proposition collects two important facts about the star function. First,
on nonatomic measure spaces, the sup defining f☀ is always achieved by some
measurable subset E. Second, there is a simple connection between the star function
and the decreasing rearrangement. The result below appears as Proposition 9.2 of [10].

Proposition 2.1 Assume f ∈ L1(X) with (X , μ) a finite nonatomic measure space.
Then, for each t ∈ [0, μ(X)], there exists a measurable subset E ⊆ X with μ(E) = t such
that

f☀(t) = ∫
E

f dμ.

Moreover,

f☀(t) = ∫
t

0
f ∗(s) ds,

where f ∗ is the decreasing rearrangement of f.
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116 J.J. Langford

The next result allows us to interpret star function inequalities in terms of convex
means. See Propositions 10.1 and 10.3 of [10].

Proposition 2.2 (Majorization) Assume (X , μ) is a finite measure space and u, v ∈
L1(X). Then,

u☀ ≤ v☀

on [0, μ(X)] if and only if

∫
X

ϕ(u) dμ ≤ ∫
X

ϕ(v) dμ,

for every increasing convex function ϕ ∶ R→ R. If ∫X u dμ = ∫X v dμ, then the word
“increasing” may be removed from the previous statement.

The final result in this subsection gives further consequences of star function
inequalities when the functions of interest have the same mean. The following result
appears as Proposition 10.3 of [10].

Corollary 2.3 Say u, v ∈ L1(X) where (X , μ) is a finite measure space and assume
u☀ ≤ v☀ on [0, μ(X)]. If ∫X u dμ = ∫X v dμ, then

∥u∥Lp(X) ≤ ∥v∥Lp(X) , 1 ≤ p ≤ +∞.

Moreover,

ess sup
X

u ≤ ess sup
X

v ,

ess inf
X

u ≥ ess inf
X

v ,

osc
X

u ≤ osc
X

v ,

where osc = ess sup− ess inf .

2.3 Spherical shells: symmetrization, star functions, and subharmonicity

In this subsection, we collect several key definitions and results for functions defined
on spherical shells. These results drive the proof of Theorem 1.1. Much of the informa-
tion in this subsection also appears in Section 2.2 of [29].

We first discuss rearrangements of functions defined on spheres. Denote

S
n = {(ξ1 , ξ2 , . . . , ξn+1) ∈ Rn+1 ∶ ξ2

1 + ξ2
2 +⋯+ ξ2

n+1 = 1}

for the standard unit sphere. We write σ for standard surface measure on S
n and d for

the spherical distance, computed using lengths of arcs of great circles. Let

K(θ) = {ξ ∈ Sn ∶ d(ξ, e1) < θ}

denote the open polar cap, or geodesic ball, on S
n centered at e1 = (1, 0, . . . , 0) with

radius θ.
We next define the spherical rearrangement. Notice that this definition is the

analogue of the Schwarz rearrangement in the spherical setting.

https://doi.org/10.4153/S0008414X21000547 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000547
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Definition 2.4 (Spherical rearrangement) Given F ∈ L1(Sn), we define F# ∶ Sn →
[−∞,+∞] by the formula

F#(ξ) = F∗ (σ (K(θ))) ,

where θ is the spherical distance between the point ξ and e1, and F∗ is the decreasing
rearrangement of F. We call F# the spherical rearrangement of F.

For 0 < a < b < +∞, we write

A = A(a, b) = {x ∈ Rn ∶ a < ∣x∣ < b},

for the spherical shell with inner radius a and outer radius b. If f ∈ L1(A), the cap
symmetrization of f is obtained by spherically rearranging f ’s radial slice functions.
More precisely, we have the following definition.

Definition 2.5 (Cap symmetrization) Suppose f ∈ L1(A). We define f # ∶ A→
[−∞,+∞] as follows. By Fubini’s theorem, the slice function f r ∶ Sn → R defined by
f r(ξ) = f (rξ) belongs to L1(Sn−1) for almost every r ∈ (a, b). For such r, the cap
symmetrization of f on {∣x∣ = r} is defined by

f #(rξ) = ( f r)#(ξ),

where ( f r)# denotes the spherical rearrangement of the slice function f r . We leave f #

undefined on those spheres {∣x∣ = r} for which f r /∈ L1(Sn−1).

Given a function defined on a spherical shell A(a, b), its star function is defined in
the polar rectangle

A☀ = {(r, θ) ∈ R2 ∶ a < r < b and 0 < θ < π}.

We have the following definition.

Definition 2.6 (Star functions on spherical shells) If f ∈ L1(A), define f☀ ∶ A☀ →
R a.e. by the formula

f☀(r, θ) = max
σ(E)=σ(K(θ))

∫
E

f (rξ) dσ(ξ) = ∫
K(θ)

f #(rξ) dσ(ξ),

where the max is taken over all measurable subsets E of Sn−1 with the same surface
measure as K(θ), and f # denotes the cap symmetrization of f.

Several remarks are in order. First, notice that the formula for f☀(r, θ) only makes
sense if the radial slice function f r ∈ L1(Sn−1). By Fubini’s theorem, f☀(r, θ) is well
defined for almost every r ∈ (a, b) and for each θ ∈ (0, π). Second, the definition of
f☀ given above is obtained by applying the star function of Definition 2.3 to each
of f ’s radial slice functions, up to a change of variable. Moreover, because (Sn , σ) is
nonatomic, Proposition 2.1 tells us that we are justified in using either sup or max to
define f☀, because the max is obtained by some appropriate subset.

We close this subsection by stating “commutativity” and “subharmonicity” results
for cap symmetrization. With A as above, suppose u ∈ L1(A). Define Ju ∶ A☀ → R a.e.
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by

Ju(r, θ) = ∫
K(θ)

u(rξ) dσ(ξ).(2.4)

If u# is the cap symmetrization of u, we therefore have

u☀(r, θ) = ∫
K(θ)

u#(rξ) dσ(ξ) = Ju#(r, θ).(2.5)

Define operators Δ☀ and Δ☀t acting on F ∈ C2(A☀) via the formulas

Δ☀F = ∂rr F + n − 1
r

∂r F + r−2[∂θθ F − (n − 2)(cot θ)∂θ F],(2.6)

Δ☀t F = ∂rr F − n − 1
r

∂r F + r−2(n − 1)F

+ r−2[∂θθ F + (n − 2)(cot θ)∂θ F − (n − 2)(csc2 θ)F].

Then, for F ∈ C2(A☀) and G ∈ C2
c (A☀), we have

∫
A☀

(Δ☀F)G dr dθ = ∫
A☀

FΔ☀tG dr dθ .

In other words, Δ☀t is formally the adjoint of Δ☀ when A☀ is equipped with the
measure dr dθ.

The following results appear as Theorems 2.18 and 2.20 in [29].

Theorem 2.4 (Commutativity relation for cap symmetrization) If u ∈ C2(A), then

JΔu = Δ☀Ju,

on A☀.

Our last result requires the following definition.

Definition 2.7 For u ∈ C2(A) and f ∈ L1
l oc(A), we say that −Δ☀u☀ ≤ f☀ holds in

the weak sense, if

−∫
A☀

u☀Δ☀tG dr dθ ≤ ∫
A☀

f☀G dr dθ ,

for every nonnegative G ∈ C2
c (A☀).

We finally have the following result, the major tool in proving Theorem 1.1.

Theorem 2.5 (Subharmonicity for cap symmetrization) Suppose u ∈ C2(A) satisfies
−Δu = f . Then,

−Δ☀u☀ ≤ f☀,

in the weak sense.

2.4 Generalized cylinders: symmetrization, star functions, and subharmonicity

The structure of this subsection mimics the structure of the last one, because our goal
is to gather all of the machinery necessary to prove our third main result, Theorem 1.3.
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Much of the information gathered here also appears in Sections 2 and 3 of [31]. The
major change in this subsection is that, here, we consider cylindrical domains rather
than shell domains. To start, let D ⊆ R

n−1 denote a bounded C∞ domain and say � > 0.
Define

Ω = D × (0, �).(2.7)

Points in Ω will be denoted by pairs (x , y)with x ∈ D and y ∈ (0, �). Given a function
f on Ω, we can perform a decreasing rearrangement in the y variable, holding each
x ∈ D fixed. Doing so gives the decreasing rearrangement of f in the y-direction. More
precisely, we have the following definition.

Definition 2.8 (Decreasing rearrangement in the y-direction) Let f ∈ L1(Ω)with Ω
as in (2.7). Define a function f # ∶ Ω → [−∞,+∞] a.e. by

f #(x , y) = ( f x)∗(y),

where f x denotes the slice function that maps y ∈ (0, �) to f (x , y) and ∗ denotes
the decreasing rearrangement. We call f # the decreasing rearrangement of f in the
y-direction.

Given u ∈ L1(Ω), Fubini’s theorem guarantees that for almost every x ∈ D, the slice
function f x ∈ L1(0, �). We are therefore led to define Ju and u☀ a.e. on Ω via

Ju(x , y) = ∫
y

0
u(x , t) dt,

and

u☀(x , y) = Ju#(x , y) = ∫
y

0
u#(x , t) dt,(2.8)

where u# denotes the monotone decreasing rearrangement of u in the y-direction. By
Proposition 2.1,

u☀(x , y) = max
L1(E)=y

∫
E

u(x , t) dt,

where the max is taken over all measurable subsets E of (0, �) with one-dimensional
Lebesgue measure (length) equal to y.

We are now prepared to state our commutativity result for the cylindrical setting.
See Proposition 2 of [31].

Proposition 2.6 (Commutativity for decreasing rearrangement in the y-direction)
Let Ω be as in (2.7). If u ∈ C2(Ω) satisfies uy(x , 0) = 0 for x ∈ D, then

JΔu = ΔJu,

in Ω.

We finally have the following subharmonicity result in the cylindrical setting. See
Theorem 1 of [31].

Theorem 2.7 (Subharmonicity for decreasing rearrangement in the y-direction) Let
Ω be as in (2.7). Say u ∈ C2(Ω) and uy(x , 0) = uy(x , �) = 0 for x ∈ D. If −Δu = f in
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Ω, then

−Δu☀ ≤ f☀,

in the weak sense in Ω. That is,

−∫
Ω

u☀ΔG dx d y ≤ ∫
Ω

f☀G dx d y,

for nonnegative G ∈ C2
c (Ω).

3 Proofs of main results

We start this section with a proof of our paper’s first main result, Theorem 1.1.

Proof of Theorem 1.1 The proof is long, and so we break it down into several steps.
In Steps 1–3, we prove the result first for test functions f. Then, in Step 4, we deduce
the result for general f.

Step 1: Maximum Principle. First suppose that f ∈ C∞c (A) is a test function. In
particular, f is Lipschitz continuous on R

n . Then, f # is also Lipschitz continuous on
R

n ; see Section 7.5 of [10] or Lemma 6.7 in [35]. By standard regularity results, the
solutions u, v belong to C2(A). See Theorem 6.31 in [24] and the discussion following
its proof on Fredholm alternatives or Theorem 3.2 of [27]. See also [34] for an explicit
discussion of the Neumann problem.

Put

w(r, θ) = u☀(r, θ) − Jv(r, θ) − εQ(r, θ),

for (r, θ) ∈ A☀, where

Q(r, θ) = (r − a)(r − b) + Cθ(π − θ).

A direct computation shows

Δ☀Q(r, θ) = 2 + n − 1
r
(2r − a − b) − C

r2 (2 + (n − 2)(π − 2θ) cot θ) .

Because (π − 2θ) cot θ ≥ 0 on (0, π), we may choose C > 0 sufficiently large to guar-
antee Δ☀Q ≤ 0 on A☀. We then compute in the weak sense

−Δ☀w = −Δ☀u☀ + Δ☀Jv + εΔ☀Q

≤ f☀ + JΔv + εΔ☀Q

= f☀ − f☀ + εΔ☀Q
≤ 0,

where the first inequality follows from Theorems 2.4 and 2.5, the second equality
follows from (2.5), and the second inequality follows from our choice of C. The
Maximum Principle for weakly Δ☀-subharmonic functions (see Theorem 1 of [33],
for example) implies

sup
A☀

w ≤ max
∂A☀

w .(3.1)
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If max
∂A☀

w ≤ 0, then (3.1) implies

sup
A☀

(u☀ − Jv) ≤ ε∥Q∥L∞(A☀) ,

and sending ε → 0+ gives u☀ ≤ Jv in A☀. In Steps 2 and 3 below, we therefore assume
max
∂A☀

w > 0.

Step 2: Boundary analysis on vertical sides of ∂A☀. We first claim that max
∂A☀

w

is not achieved at a point where r = a or r = b, i.e., on a vertical side of ∂A☀. For
θ ∈ [0, π] and h > 0 small, let E(a + h, θ) ⊆ S

n−1 denote a measurable subset with
σ(E(a + h, θ)) = σ(K(θ)) for which the sup defining u☀(a + h, θ) is achieved. We
estimate

e−α(a+h)w(a + h, θ) − e−αaw(a, θ)
h

= e−α(a+h)∫
E(a+h ,θ)

u((a + h)ξ)
h

dσ(ξ) − e−αa ∫
E(a ,θ)

u(aξ)
h

dσ(ξ)

− e−α(a+h)∫
K(θ)

v((a + h)ξ)
h

dσ(ξ) + e−αa ∫
K(θ)

v(aξ)
h

dσ(ξ)

− ε e−α(a+h)Q(a + h, θ) − e−αa Q(a, θ)
h

≥ ∫
E(a ,θ)

e−α(a+h)u((a + h)ξ) − e−αau(aξ)
h

dσ(ξ)

− ∫
K(θ)

e−α(a+h)v((a + h)ξ) − e−αav(aξ)
h

dσ(ξ)

− ε e−α(a+h)Q(a + h, θ) − e−αa Q(a, θ)
h

.

.

From the Dominated Convergence Theorem, we deduce

lim inf
h→0+

e−α(a+h)w(a + h, θ) − e−αaw(a, θ)
h

≥ −e−αa ∫
E(a ,θ)

(−ur(aξ) + αu(aξ)) dσ(ξ)

+ e−αa ∫
K(θ)

(−vr(aξ) + αv(aξ)) dσ(ξ)

+ ε (e−αa(b − a) + αe−αaCθ(π − θ))
= ε (e−αa(b − a) + αe−αaCθ(π − θ)) ,
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where the equality holds courtesy of the Robin boundary conditions. If max
∂A☀

w is

achieved at (a, θ), it follows that for all h > 0 sufficiently small, we have

w(a + h, θ) > eαhw(a, θ) + eαh hε(b − a)
2

> w(a, θ),(3.2)

where the last inequality uses w(a, θ) > 0 and α ≥ 0. When θ ∈ (0, π), (3.2) says that
max
∂A☀

w is not achieved at a point with r = a, because otherwise the Maximum Principle

(3.1) would be violated. Likewise, when θ = 0 or θ = π, max
∂A☀

w is not achieved at a point

with r = a, because according to (3.2), w assumes strictly larger values at other points
(r, θ) ∈ ∂A☀ with r ∈ (a, b).

We next do a similar analysis of the behavior of w at points along the boundary
∂A☀ with r = b. To this end, say θ ∈ [0, π] and h > 0 is small. We estimate

eβ(b−h)w(b − h, θ) − eβbw(b, θ)
h

= eβ(b−h)∫
E(b−h ,θ)

u((b − h)ξ)
h

dσ(ξ) − eβb ∫
E(b ,θ)

u(bξ)
h

dσ(ξ)

− eβ(b−h) ∫
K(θ)

v((b − h)ξ)
h

dσ(ξ) + eβb ∫
K(θ)

v(bξ)
h

dσ(ξ)

− ε eβ(b−h)Q(b − h, θ) − eβb Q(b, θ)
h

≥ ∫
E(b ,θ)

eβ(b−h)u((b − h)ξ) − eβbu(bξ)
h

dσ(ξ)

− ∫
K(θ)

eβ(b−h)v((b − h)ξ) − eβbv(bξ)
h

dσ(ξ)

− ε eβ(b−h)Q(b − h, θ) − eβb Q(b, θ)
h

.

As before, we use the Robin boundary conditions to deduce

lim inf
h→0+

eβ(b−h)w(b − h, θ) − eβbw(b, θ)
h

≥ −eβb ∫
E(b ,θ)

(ur(bξ) + βu(bξ)) dσ(ξ)

+ eβb ∫
K(θ)

(vr(bξ) + βv(bξ)) dσ(ξ)

+ ε (eβb(b − a) + βeβbCθ(π − θ))
= ε (eβb(b − a) + βeβbCθ(π − θ)) .

If max
∂A☀

w is achieved at (b, θ), then for all h > 0 sufficiently small, we have

w(b − h, θ) > eβhw(b, θ) + eβh hε(b − a)
2

> w(b, θ),
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again because w(b, θ) > 0 and β ≥ 0. By the same argument as before, the string of
strict inequalities immediately above shows that max

∂A☀
w cannot be achieved at a point

with r = b.
Step 3: Boundary analysis on horizontal sides of ∂A☀. We start by analyzing the

behavior of u☀(r, π) − Jv(r, π) in r. Define

ψ(r) = u☀(r, π) − Jv(r, π) = ∫
Sn−1

(u(rξ) − v(rξ)) dσ(ξ), r ∈ [a, b].

For a ≤ r1 < r2 ≤ b, note that

rn−1
2 ψ′(r2) − rn−1

1 ψ′(r1) = rn−1
2 ∫

Sn−1
(ur(r2 ξ) − vr(r2 ξ)) dσ(ξ)

− rn−1
1 ∫

Sn−1
(ur(r1 ξ) − vr(r1 ξ)) dσ(ξ)

= ∫
∂A(r1 ,r2)

(∂u
∂η

− ∂v
∂η
) dS

= ∫
A(r1 ,r2)

(Δu − Δv) dx

= ∫
A(r1 ,r2)

(− f + f #) dx

= 0,

because f and f # are rearrangements of each other on each sphere {∣x∣ = r}. It follows
that

rn−1 ∫
Sn−1

(ur(rξ) − vr(rξ)) dσ(ξ) = k1(3.3)

is constant on [a, b]. Integrating this equation shows that there exists a constant k2
where

∫
Sn−1

(u(rξ) − v(rξ)) dσ(ξ) = k1 ∫
r

a
t1−n dt + k2 ,(3.4)

on the interval [a, b]. Using the Robin boundary conditions along {∣x∣ = a} and {∣x∣ =
b} leads to the system of equations

0 = ∫
{∣x ∣=a}

((∂u
∂η

+ αu) − ( ∂v
∂η

+ αv)) dS = −k1 + αan−1k2 ,

(3.5)

0 = ∫
{∣x ∣=b}

((∂u
∂η

+ βu) − ( ∂v
∂η

+ βv)) dS = k1 + βbn−1 (k1 ∫
b

a
t1−n dt + k2) .

Combining these equations shows that

0 = k2 (αan−1 + βbn−1 + αan−1βbn−1 ∫
b

a
t1−n dt) .
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If at least one of α, β is nonzero, the equation above implies that k2 = 0 and (3.5)
implies that k1 = 0. Thus, (3.4) becomes

∫
Sn−1

(u(rξ) − v(rξ)) dσ(ξ) = 0, r ∈ [a, b].(3.6)

If α = β = 0, choosing either r = a or r = b in (3.3) shows that k1 = 0. Integrating (3.4)
and using the normalization assumptions on u, v gives

0 = ∫
A
(u − v) dx = k2 ∫

b

a
rn−1 dr,

so k2 = 0 and equation (3.6) holds in this case as well. Because u☀ − Jv = 0 when
θ = 0, we therefore deduce

w(r, 0) = w(r, π) = −ε(r − a)(r − b).

Using (3.1), our work in Step 2 implies

sup
A☀

(u☀ − Jv) ≤ max
r∈[a ,b]

(−ε(r − a)(r − b)) + ε∥Q∥L∞(A☀)

= ε
4
(b − a)2 + ε∥Q∥L∞(A☀) .

Sending ε → 0+ gives u☀ ≤ Jv in A☀.
Step 4: Approximation for the general result. Now, say f ∈ L2(A) is a general

function. Let u, v be as in the statement of Theorem 1.1. Choose a sequence of test
functions fk ∈ C∞c (A)where fk → f in L2(A). If α = β = 0, we assume f , fk have zero
mean. Because cap symmetrization is a contraction in the L2-distance (see Theorem
3 or Corollary 1 of [8], for example), we also have f #

k → f # in L2(A). Let uk and vk be
solutions to

−Δuk = fk in A, −Δvk = f #
k in A,

∂uk
∂η + αuk = 0 on {∣x∣ = a}, ∂vk

∂η + αvk = 0 on {∣x∣ = a},
∂uk
∂η + βuk = 0 on {∣x∣ = b}, ∂vk

∂η + βvk = 0 on {∣x∣ = b}.

If α = β = 0, we also assume uk , vk have zero mean. By our work in Steps 1–3, for each
k,

u☀k (r, θ) ≤ Jvk(r, θ),(3.7)

for (r, θ) ∈ A☀, and

∫
Sn−1

(uk(rξ) − vk(rξ)) dσ(ξ) = 0,(3.8)

for r ∈ (a, b). If either α or β is nonzero, then (2.3) implies uk → u in L2(A). If α =
β = 0, we still have convergence in L2(A); see Corollary 1.29 of [28], for instance. In
particular, we have convergence in L1(A). Spelled out, we have

lim
k→+∞∫

b

a
∫
Sn−1

∣uk(rξ) − u(rξ)∣ dσ(ξ) rn−1 dr = 0.
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Thus, by passing to a subsequence, we may assume

lim
k→+∞∫Sn−1

∣uk(rξ) − u(rξ)∣ dσ(ξ) = 0,(3.9)

for almost every r ∈ (a, b). Because cap symmetrization is a contraction in the L1-
distance (again, see Theorem 3 of [8]), this last equality implies that for almost every
r ∈ (a, b),

lim
k→+∞

u☀k (r, θ) = u☀(r, θ),(3.10)

for each θ ∈ (0, π). By an identical argument, we may pass to another subsequence
and assume that for almost every r ∈ (a, b),

lim
k→+∞∫Sn−1

∣vk(rξ) − v(rξ)∣ dσ(ξ) = 0,(3.11)

and

lim
k→+∞

Jvk(r, θ) = Jv(r, θ),(3.12)

for each θ ∈ (0, π). Sending k → +∞ in (3.8) and using (3.9) and (3.11) shows that

∫
Sn−1

(u(rξ) − v(rξ)) dσ(ξ) = 0,(3.13)

for almost every r ∈ (a, b). Finally, sending k → +∞ in (3.7) and using (3.10) and (3.12)
gives the theorem’s first conclusion. The theorem’s conclusion about convex means
follows from (3.13) and Proposition 2.2. ∎

A close inspection of our proof shows that the conclusions of Theorem 1.1 hold in
the Neumann setting under slightly weaker assumptions on the solutions u and v.

Remark 3.1 When α = β = 0, the conclusions of Theorem 1.1 hold under the weaker
assumption ∫A u dx = ∫A v dx.

As a consequence of Theorem 1.1, we see that the solution to the symmetrized
problem is itself symmetrized.

Corollary 3.2 The solution v in Theorem 1.1 satisfies v = v# a.e.

Proof First suppose that f ∈ C∞c (A) is a test function. Then, as in the proof of
Theorem 1.1, f # is Lipschitz continuous and v ∈ C2(A). Letting f # play the role of
f, Theorem 1.1 gives that v☀(r, θ) ≤ Jv(r, θ) on A☀. The reverse inequality holds by
definition of the star function, and so v☀ = Jv on A☀. When the dimension n = 2,
we use complex notation to write this equality as

∫
θ

−θ
v(re iϕ) dϕ = ∫

θ

−θ
v#(re iϕ) dϕ,

for each r ∈ (a, b) and θ ∈ (0, π). Differentiating this equation with respect to
θ gives

v(re iθ) + v(re−iθ) = 2v#(re iθ).(3.14)
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We claim that v(re iθ) = v(re−iθ) for θ ∈ (0, π). If this were not the case, then say
v(re iθ) > v(re−iθ) for some θ. We can then find ε > 0 sufficiently small, so that

∫
θ

−θ
v(re iϕ) dϕ < ∫

θ+ε

−θ+ε
v(re iϕ) dϕ,

and this contradicts the fact that v☀(r, θ) = ∫
θ
−θ v(re iϕ) dϕ. Having verified the

claim, (3.14) gives v(re iθ) = v#(re iθ).
If n ≥ 3, we write out the equation v☀ = Jv on A☀ using spherical coordinates. We

have

∫
θ

0
∫
Sn−2

v(r cos t, r y sin t) dσ(y) sinn−2 t dt

= ∫
θ

0
∫
Sn−2

v#(r cos t, r y sin t) dσ(y) sinn−2 t dt,

for each r ∈ (a, b) and θ ∈ (0, π). Differentiating with respect to θ and dividing by
sinn−2 θ gives

∫
Sn−2

v(r cos θ , r y sin θ) dσ(y) = ∫
Sn−2

v#(r cos θ , r y sin θ) dσ(y),(3.15)

for each r ∈ (a, b) and θ ∈ (0, π). Note that v#(r cos θ , r y sin θ) is constant in y ∈ Sn−2.
We claim that v(r cos θ , r y sin θ) is also constant for y ∈ Sn−2. Say this is not the
case, and v(r cos θ , r y1 sin θ) > v(r cos θ , r y2 sin θ) for y1 , y2 ∈ Sn−2. Then, we can
find positive numbers ε1 , ε2 > 0 where

inf
z1∈B1

v(rz1) > sup
z2∈B2

v(rz2);(3.16)

here B1 = B((cos θ , y1 sin θ), ε1) and B2 = B((cos θ , y2 sin θ), ε2), where
B((cos θ , y1 sin θ), ε1) denotes the spherical cap (or geodesic ball) on S

n−1 centered
at (cos θ , y1 sin θ) with radius ε1, and similarly for B2. We additionally assume

σ(B1/K(θ)) = σ(B2 ∩ K(θ)).

Write

K1 = (K(θ)/B2)) ∪ (B1/K(θ)).

Then, σ(K1) = σ(K(θ)), and using (3.16), we have

∫
K1

v(rξ) dσ(ξ) = ∫
K(θ)/B2

v(rξ) dσ(ξ) + ∫
B1/K(θ)

v(rξ) dσ(ξ)

> ∫
K(θ)/B2

v(rξ) dσ(ξ) + ∫
B2∩K(θ)

v(rξ) dσ(ξ)

= ∫
K(θ)

v(rξ) dσ(ξ),

which contradicts v☀ = Jv. We conclude that v(r cos θ , r y sin θ) is constant for y ∈
S

n−2. Equation (3.15) implies

v(r cos θ , r y sin θ) = v#(r cos θ , r y sin θ),

for each y ∈ Sn−2, r ∈ (a, b), and θ ∈ (0, π). That is, v = v#.
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If f ∈ L2(A) is a general function, pick a sequence of test functions fk ∈ C∞c (A)
where fk → f in L2(A). If α = β = 0, we assume that each fk has zero mean. As cap
symmetrization is a contraction in the L2-distance, f #

k → f # in L2(A). As before, each
f #
k is Lipschitz continuous on A. Let vk solve

−Δvk = f #
k in A,

∂vk
∂η + αvk = 0 on {∣x∣ = a},
∂vk
∂η + βvk = 0 on {∣x∣ = b}.

If α = β = 0, we assume that each vk has zero mean. As in the proof of Theorem 1.1,
vk → v in L2(A). By the work above, vk = v#

k for each k. Again, cap symmetrization is
a contraction in the L2-distance, and so v#

k → v# in L2(A). We deduce that v = v# a.e.,
as desired. ∎

Another more immediate consequence of Theorem 1.1 is that cap symmetrizing the
data increases Lp-norms.

Corollary 3.3 Let u and v be as in Theorem 1.1. Then, for almost every r ∈ (a, b), the
radial slice functions u(r ⋅) and v(r ⋅) satisfy

∥u(r ⋅)∥Lp(Sn−1) ≤ ∥v(r ⋅)∥Lp(Sn−1) , 1 ≤ p ≤ +∞,
ess sup

Sn−1
u(r ⋅) ≤ ess sup

Sn−1
v(r ⋅),

ess inf
Sn−1

u(r ⋅) ≥ ess inf
Sn−1

v(r ⋅),

osc
Sn−1

u(r ⋅) ≤ osc
Sn−1

v(r ⋅),

where osc = ess sup− ess inf . Consequently,

∥u∥Lp(A) ≤ ∥v∥Lp(A) , 1 ≤ p ≤ +∞,
ess sup

A
u ≤ ess sup

A
v ,

ess inf
A

u ≥ ess inf
A

v ,

osc
A

u ≤ osc
A

v .

Proof The conclusions about slice functions follow from Theorem 1.1, equation
(3.13), and Corollary 2.3; the remaining conclusions clearly follow. ∎

As remarked in the Introduction, letting the Robin parameter α or β tend to
+∞, Theorem 1.1 yields comparison principles for Poisson problems with mixed
Robin/Dirichlet boundary conditions. We now make this precise. With A as in
Theorem 1.1, denote

H1
a(A) = {u ∈ H1(A) ∶ u = 0 on {∣x∣ = a}} ,

where the boundary condition is understood in the trace sense. Given f ∈ L2(A) and
β ≥ 0, a function u ∈ H1

a(A) is said to be a weak solution to the mixed Poisson problem

−Δu = f in A,
u = 0 on {∣x∣ = a},
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∂u
∂η

+ βu = 0 on {∣x∣ = b},

provided

∫
A
∇u ⋅ ∇v dx + β∫

{∣x ∣=b}
uv dS = ∫

A
f v dx ,

for all v ∈ H1
a(A). As in Section 2.1, the above mixed problem admits a unique weak

solution for each such f and β. Here now is our mixed comparison principle in shells.

Theorem 3.4 (Mixed Robin/Dirichlet comparison principle on shells) Say 0 < a <
b < +∞ and A = A(a, b) ⊆ R

n is a spherical shell with inner radius a and outer radius
b. Let β ≥ 0 and f ∈ L2(A). Say u and v solve the mixed Poisson problems

−Δu = f in A, −Δv = f # in A,
u = 0 on {∣x∣ = a}, v = 0 on {∣x∣ = a},

∂u
∂η + βu = 0 on {∣x∣ = b}, ∂v

∂η + βv = 0 on {∣x∣ = b},

where f # denotes the cap symmetrization of f. Then, for almost every r ∈ (a, b), the
inequality

u☀(r, θ) ≤ Jv(r, θ)

holds for each θ ∈ (0, π). In particular, for almost every r ∈ (a, b) and for each convex
function ϕ ∶ R→ R, we have

∫
{∣x ∣=r}

ϕ(u) dS ≤ ∫
{∣x ∣=r}

ϕ(v) dS .

Our proof of Theorem 3.4 is essentially based on the observation that solutions to
Poisson’s equation depend continuously on the Robin parameters (in an appropriate
sense), even as those parameters tend toward +∞.

Proof of Theorem 3.4 Let αk denote a strictly increasing positive sequence with
αk → +∞. Let uk and vk denote solutions to the Poisson problems

−Δuk = f in A, −Δvk = f # in A,
∂uk
∂η + αkuk = 0 on {∣x∣ = a}, ∂vk

∂η + αkvk = 0 on {∣x∣ = a},
∂uk
∂η + βuk = 0 on {∣x∣ = b}, ∂vk

∂η + βvk = 0 on {∣x∣ = b}.

By Theorem 1.1 (and its proof), for almost every r ∈ (a, b),

∫
Sn−1

(uk(rξ) − vk(rξ)) dσ(ξ) = 0,(3.17)

for each k, and

u☀k (r, θ) ≤ Jvk(r, θ),(3.18)

for each θ ∈ (0, π). We claim that the functions uk are bounded in H1(A). To back
our claim, first note that
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∫
A
∣∇uk ∣2 dx + αk ∫

{∣x ∣=a}
u2

k dS + β∫
{∣x ∣=b}

u2
k dS

≥ ∫
A
∣∇uk ∣2 dx + α1 ∫

{∣x ∣=a}
u2

k dS + β∫
{∣x ∣=b}

u2
k dS

≥ c2∥uk∥2
H1(A) ,

where c2 denotes coercivity constant (see Section 2.1) of the bilinear form associated
with the Robin problem with Robin parameter α1 on the inner sphere {∣x∣ = a} and
Robin parameter β on the outer sphere {∣x∣ = b}. Because

∫
A
∣∇uk ∣2 dx + αk ∫

{∣x ∣=a}
u2

k dS + β∫
{∣x ∣=b}

u2
k dS = ∫

A
f uk dx ,(3.19)

it follows that

∥uk∥H1(A) ≤
1
c2
∥ f ∥L2(A) ,

for every k. The uk are thus bounded in H1(A). By Banach–Alaoglu and Rellich–
Kondrachov, we may pass to a subsequence and assume the existence of u′ ∈ H1(A)
where uk → u′ weakly in H1(A) and uk → u′ in L2(A). By page 134 of [20],

∫
∂A

w2 dS ≤ C (∫
A
∣∇w∣∣w∣ dx + ∫

A
w2 dx) ,

for w ∈ H1(A) and for some universal constant C. Thus, uk → u′ in L2(∂A). Dividing
(3.19) by αk and sending k → +∞ shows ∫{∣x ∣=a}(u′)2 dS = 0, i.e., u′ ∈ H1

a(A).
If v ∈ H1

a(A), then for each k,

∫
A
∇uk ⋅ ∇v dx + β∫

{∣x ∣=b}
ukv dS = ∫

A
f v dx .

Thus, letting k → +∞ in the above equation and using weak convergence, we conclude

∫
A
∇u′ ⋅ ∇v dx + β∫

{∣x ∣=b}
u′v dS = ∫

A
f v dx .

By uniqueness, u′ = u, and so uk → u in L2(A). The argument in Step 4 in the proof
of Theorem 1.1 shows that for almost every r ∈ (a, b),

∫
Sn−1

uk(rξ) dσ(ξ) → ∫
Sn−1

u(rξ) dσ(ξ)(3.20)

and

u☀k (r, θ) → u☀(r, θ),(3.21)

for each θ ∈ (0, π). An analogous argument shows that we may assume vk → v in
L2(A), and again, the proof of Theorem 1.1 shows that for almost every r ∈ (a, b),

∫
Sn−1

vk(rξ) dσ(ξ) → ∫
Sn−1

v(rξ) dσ(ξ)(3.22)

and

Jvk(r, θ) → Jv(r, θ),(3.23)
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for each θ ∈ (0, π). Combining (3.18), (3.21), and (3.23) gives the theorem’s first
conclusion. Moreover, pairing (3.17) with (3.20) and (3.22) shows that for almost every
r ∈ (a, b),

∫
Sn−1

(u(rξ) − v(rξ)) dσ(ξ) = 0.

The equation above and Proposition 2.2 give the theorem’s conclusion about convex
means. ∎

Of course, letting β → +∞ in Theorem 1.1 (rather than α → +∞ as we have just
done), one deduces an analogue of Theorem 3.4 with Robin boundary conditions on
the inner sphere {∣x∣ = a} and Dirichlet boundary conditions on the outer sphere
{∣x∣ = b}. Similarly, letting both α, β → +∞ in Theorem 1.1, one deduces a comparison
principle with Dirichlet boundary conditions on both spheres {∣x∣ = a} and {∣x∣ = b}.
The conclusions of Corollary 3.3 also hold for the solutions u and v of Theorem 3.4
(and also for the two additional results just mentioned).

We next prove our paper’s second main result. But before we do so, we briefly recall
how cap symmetrization is defined for functions on balls, because the definition has
one technicality that does not arise in the shell setting. In our result, recall that we
take B = {x ∈ Rn ∶ ∣x∣ < b} with 0 < b < +∞. The cap symmetrization of a function
f ∈ L1(B) is defined as follows. When 0 < r < b and the slice function f r ∶ Sn−1 → R

belongs to L1(Sn−1), we define

f #(rξ) = ( f r)#(ξ),

where ( f r)# denotes the spherical rearrangement of the slice function f r . If f r ∉
L1(Sn−1), we leave f # undefined on the sphere {∣x∣ = r}. If f (0) is defined, we also
define f #(0) = f (0). When f (0) is not defined, f #(0) is likewise left undefined. Note
that the definitions of J f and f☀ in this setting (as defined in the Introduction) agree
with Definition 2.6 and equation (2.4) with a = 0. Here now is the proof of our second
main result, Theorem 1.2.

Proof of Theorem 1.2 First, say f ∈ C∞c (B) is a test function. As before, u, v ∈ C2(B).
Say δ, ε > 0 and let Aδ = A(δ, b) denote a spherical shell with inner radius δ and outer
radius b. Let w be defined as in the proof of Theorem 1.1:

w(r, θ) = u☀(r, θ) − Jv(r, θ) − εQ(r, θ),

where

Q(r, θ) = r(r − b) + Cθ(π − θ),

and again C is chosen, so that

Δ☀Q(r, θ) = 2 + n − 1
r
(2r − b) − C

r2 (2 + (n − 2)(π − 2θ) cot θ) ≤ 0,

on B☀. As before, we have

−Δ☀w ≤ 0,
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weakly in A☀δ . By the Maximum Principle,

sup
A☀δ

w ≤ max
∂A☀δ

w ,(3.24)

and letting δ → 0+, we see

sup
B☀

w ≤ max
∂B☀

w .(3.25)

As before, we may assume max
∂B☀

w > 0.

Defining

ψ(r) = ∫
Sn−1

(u(rξ) − v(rξ)) dσ(ξ), r ∈ [0, b],

the proof of Theorem 1.1 shows that rn−1ψ′(r) = k1 is constant on (0, b]. Letting r → 0+
and using u, v ∈ C2(B), we conclude k1 = 0. Thus,

∫
Sn−1

(u(rξ) − v(rξ)) dσ(ξ) = k2(3.26)

is constant on [0, b]. We therefore have

bn−1 ∫
Sn−1

(ur(bξ) − vr(bξ)) dσ(ξ) = 0,

bn−1β∫
Sn−1

(u(bξ) − v(bξ)) dσ(ξ) = bn−1βk2 .

Adding these equations and using the Robin boundary conditions shows

0 = ∫
{∣x ∣=b}

((∂u
∂η

+ βu) − ( ∂v
∂η

+ βv)) dS = bn−1βk2 .

If β ≠ 0, we conclude k2 = 0, and so

∫
Sn−1

(u(rξ) − v(rξ)) dσ(ξ) = 0, r ∈ [0, b].(3.27)

If β = 0, we integrate (3.26) and use our normalization assumptions on u, v:

0 = ∫
B
(u − v) dx = k2 ∫

b

0
rn−1 dr,

so k2 = 0 and again (3.27) holds.
Step 2 in the proof of Theorem 1.1 shows that max

∂B☀
w cannot be achieved at a point

with r = b. Now, u☀ − Jv = 0 by definition when θ = 0 and (3.27) implies that u☀ −
Jv = 0 when θ = π. Moreover, (3.27) implies u(0) = v(0), and so u☀ − Jv = 0 when
r = 0. Thus, (3.25) implies

sup
B☀

(u☀ − Jv) ≤ max
∂B☀

(−εQ) + ε∥Q∥L∞(B☀).

Sending ε → 0+ shows u☀ − Jv ≤ 0 in B☀. The approximation argument from the
proof of Theorem 1.1 applies almost verbatim to our new setting, and shows that
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for a given function f ∈ L2(B), for almost every r ∈ (0, b), the inequality u☀(r, θ) ≤
Jv(r, θ) holds for each θ ∈ (0, π). Equation (3.27) and the approximation argument
in the proof of Theorem 1.1 also show that for general f ∈ L2(B),

∫
Sn−1

(u(rξ) − v(rξ)) dσ(ξ) = 0,(3.28)

for almost every r ∈ (0, b). Thus, the theorem’s conclusion about convex means follows
from Proposition 2.2. ∎

Analogous to Remark 3.1, we have the following remark.

Remark 3.5 When β = 0, the conclusions of Theorem 1.2 hold under the weaker
assumption ∫B u dx = ∫B v dx.

The proof of Corollary 3.2 similarly carries over verbatim to give the following
result.

Corollary 3.6 The solution v in Theorem 1.2 satisfies v = v# a.e.

Equation (3.28), Theorem 1.2, and Corollary 2.3 similarly give the following ana-
logue of Corollary 3.3 for the ball setting.

Corollary 3.7 Let u and v be as in Theorem 1.2. Then, for almost every r ∈ (0, b), we
have

∥u(r ⋅)∥Lp(Sn−1) ≤ ∥v(r ⋅)∥Lp(Sn−1) , 1 ≤ p ≤ +∞,

and

ess sup
Sn−1

u(r ⋅) ≤ ess sup
Sn−1

v(r ⋅),

ess inf
Sn−1

u(r ⋅) ≥ ess inf
Sn−1

v(r ⋅),

osc
Sn−1

u(r ⋅) ≤ osc
Sn−1

v(r ⋅).

Consequently,

∥u∥Lp(B) ≤ ∥v∥Lp(B), 1 ≤ p ≤ +∞,

and

ess sup
B

u ≤ ess sup
B

v ,

ess inf
B

u ≥ ess inf
B

v ,

osc
B

u ≤ osc
B

v .

We next prove our paper’s third main result, Theorem 1.3.

Proof of Theorem 1.3 Again, the proof is rather long, so we break it down into
manageable steps.
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Step 1: Maximum Principle. If α > 0, let Q1 denote the solution to the Robin
problem

ΔQ1 = 0 in D,
∂Q1
∂η + αQ1 = 1 on ∂D.

If α = 0, let Q1 be the solution to the Neumann problem

ΔQ1 = Hn−2(∂D)
Ln−1(D) in D,

∂Q1
∂η = 1 on ∂D,

where Q1 is additively normalized to have zero mean. Here, we have written Hn−2 for
(n − 2)-dimensional Hausdorff measure and Ln−1 for (n − 1)-dimensional Lebesgue
measure. By Theorem 6.31 in [24], Theorem 3.2 in [27], and [34] (see also [12]), Q1
belongs to C2(D). We are led to define a function Q by

Q(x , y) = Q1(x) + Cy(� − y),

for (x , y) ∈ Ω, where C > 0 is chosen large enough to guarantee

ΔQ = Δx Q1 − 2C ≤ 0,

on Ω. Define for ε > 0,

w(x , y) = u☀(x , y) − Jv(x , y) − εQ(x , y),

for (x , y) ∈ Ω.
In the weak sense, we have

−Δw = −Δu☀ + ΔJv + εΔQ

≤ f☀ + JΔv + εΔQ

= f☀ − f☀ + εΔQ
≤ 0,

where the first inequality follows from Proposition 2.6 and Theorem 2.7, the
second equality follows from (2.8), and the second inequality follows from our
choice of C. Thus, w is weakly subharmonic in Ω, so by the Maximum Principle
(Theorem 1 in [33]),

sup
Ω

w ≤ max
∂Ω

w .(3.29)

As before, we assume max
∂Ω

w > 0, because otherwise we are done.
Step 2: Boundary analysis on ∂Ω2. We first show that max

∂Ω
w is not achieved at

a point of ∂Ω2. Fix (x , y) ∈ ∂Ω2, so that x ∈ ∂D and y ∈ [0, �]. Let n = n(x) denote
the inner normal vector at x to ∂D. Let E(x) denote a measurable subset of (0, �) of
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length y for which the sup defining u☀(x , y) is achieved. By translating, we assume
0 ∈ D. Write r = ∣x∣. We then have for h > 0,

e−α(r+h)w(x + hn, y) − e−αrw(x , y)
h

= e−α(r+h)∫
E(x+hn)

u(x + hn, t)
h

dt − e−αr ∫
E(x)

u(x , t)
h

dt

− e−α(r+h)∫
y

0

v(x + hn, t)
h

dt + e−αr ∫
y

0

v(x , t)
h

dt

− ε e−α(r+h)Q(x + hn, y) − e−αr Q(x , y)
h

≥ ∫
E(x)

e−α(r+h)u(x + hn, t) − e−αru(x , t)
h

dt

− ∫
y

0

e−α(r+h)v(x + hn, t) − e−αrv(x , t)
h

dt

− ε e−α(r+h)Q(x + hn, y) − e−αr Q(x , y)
h

.

Using the Dominated Convergence Theorem, we therefore have

lim inf
h→0+

e−α(r+h)w(x + hn, y) − e−αrw(x , y)
h

≥ −e−αr ∫
E(x)

(∂u
∂η
(x , t) + αu(x , t)) dt

+ e−αr ∫
y

0
( ∂v

∂η
(x , t) + αv(x , t)) dt

+ εe−αr (1 + αCy(� − y))
= εe−αr (1 + αCy(� − y)) ,

where the last equality holds courtesy of the Robin boundary conditions on ∂Ω2. If
max

∂Ω
w is achieved at (x , y), then for all h > 0 sufficiently small, we have

w(x + hn, y) > eαhw(x , y) + eαh hε
2

> w(x , y),(3.30)

because w(x , y) > 0 and α ≥ 0. When y ∈ (0, �), inequality (3.30) says that max
∂Ω

w is
not achieved at a point (x , y) ∈ ∂Ω2, because otherwise the Maximum Principle (3.29)
would be violated. Similarly, when y = 0 or y = �, max

∂Ω
w is not achieved at a point

(x , y) ∈ ∂Ω2, because by (3.30), w assumes strictly larger values at points of ∂Ω1.
Step 3: Boundary analysis on ∂Ω1. We start by defining

ψ(x) = ∫
�

0
(u(x , t) − v(x , t)) dt, x ∈ D.
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Using the Dominated Convergence Theorem and our assumption that u, v ∈ C2(Ω),
we see that ψ is harmonic in D:

Δψ(x) = ∫
�

0
(Δx u(x , t) − Δxv(x , t)) dt

= ∫
�

0
(−uy y(x , t) − f (x , t) + vy y(x , t) + f #(x , t)) dt

= ∫
�

0
(− f (x , t) + f #(x , t)) dt − uy(x , �) + uy(x , 0) + vy(x , �) − vy(x , 0)

= 0.

This last equality holds by the Neumann boundary conditions of u, v along ∂Ω1 and
because f and f # are rearrangements of each other.

Taking x ∈ ∂D, we next investigate the Robin boundary condition of ψ:

∂ψ
∂η
(x) + αψ(x) = ∫

�

0
((∂u

∂η
(x , t) + αu(x , t)) − ( ∂v

∂η
(x , t) + αv(x , t))) dt = 0,

because u and v themselves satisfy Robin boundary conditions on ∂Ω2. If α = 0, note
that ψ has zero mean by our normalization assumption on u, v:

∫
D

ψ(x) dx = ∫
Ω
(u − v) dx d y = 0.

The function ψ therefore solves the problem

Δψ = 0 in D,
∂ψ
∂η + αψ = 0 on ∂D,

and when α = 0, ∫D ψ dx = 0. Integrating by parts, ψ satisfies the equation

∫
D
∣∇ψ∣2 dx = −α∫

∂D
ψ2 dS ,

so we deduce ψ ≡ 0 in D. Because u☀ − Jv = 0 when y = 0, we conclude that

w(x , 0) = w(x , �) = −εQ1(x),

for x ∈ D.
Our work from Steps 2 and 3 and the Maximum Principle (3.29) together give

sup
Ω
(u☀ − Jv) ≤ ε∥Q∥L∞(Ω) + sup

D
(−εQ1).

Sending ε → 0+ gives u☀ − Jv ≤ 0 in Ω. Note that because ψ(x) ≡ 0 on D, for each
x ∈ D, the slice functions u(x , ⋅) and v(x , ⋅) have the same mean on (0, �). Thus,
Proposition 2.2 gives the theorem’s claims on the convex means of u and v. ∎

Remark 3.8 It is clear that some elements of the proof of Theorem 1.3 carry over to
a more general setting Ω = M × (0, �), where M is a Riemannian manifold (with or
without boundary). The proof above, however, hinges on Proposition 2.6 and Theorem
2.7, results from the author’s earlier work [31], and it is not immediately clear how
to extend Theorem 2.7 to this more general setting. It would be very interesting to
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know the most general setting in which these results hold, but this is not something
we pursue here.

As before, we have the following remark.

Remark 3.9 When α = 0, the conclusions of Theorem 1.3 hold under the weaker
assumption ∫Ω u dx d y = ∫Ω v dx d y.

We again easily deduce that the solution of the symmetrized problem is itself
symmetrized.

Corollary 3.10 Let v be as in Theorem 1.3. Then, v = v# on Ω.

Proof Letting f = f #, Theorem 1.3 gives that v☀ ≤ Jv on Ω. Because the reverse
inequality holds by definition, we have v☀ = Jv on Ω. Spelled out, this means that
for each x ∈ D,

∫
y

0
v#(x , t) dt = ∫

y

0
v(x , t) dt,

for each y ∈ (0, �). Differentiating the above equation with respect to y shows that
v(x , y) = v#(x , y) on Ω, as desired. ∎

Finally, we have an analogue of Corollaries 3.3 and 3.7 for the cylindrical setting.

Corollary 3.11 Let u and v be as in Theorem 1.3. Then, for each x ∈ D, the slice functions
u(x , ⋅) and v(x , ⋅) satisfy

∥u(x , ⋅)∥Lp(0,�) ≤ ∥v(x , ⋅)∥Lp(0,�) , 1 ≤ p ≤ +∞.

Moreover, for each x ∈ D,

sup
(0,�)

u(x , ⋅) ≤ sup
(0,�)

v(x , ⋅),

inf
(0,�)

u(x , ⋅) ≥ inf
(0,�)

v(x , ⋅),

osc
(0,�)

u(x , ⋅) ≤ osc
(0,�)

v(x , ⋅).

Consequently,

∥u∥Lp(Ω) ≤ ∥v∥Lp(Ω), 1 ≤ p ≤ +∞,

and

sup
Ω

u ≤ sup
Ω

v ,

inf
Ω

u ≥ inf
Ω

v ,

osc
Ω

u ≤ osc
Ω

v .

Proof The proof of Theorem 1.3 shows that for each x ∈ D,

∫
�

0
u(x , t) dt = ∫

�

0
v(x , t) dt.
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This equality together with Theorem 1.3 and Corollary 2.3 gives the claimed inequal-
ities on the slice functions of u and v, and as before, the subsequent inequalities
follow. ∎

4 Concluding remarks

In surveying the results of the present paper, and also those of [1, 3], the reader may
be left with a lingering question: Are there comparison results with negative Robin
parameters? The answer to this question is unclear. The techniques employed here
clearly hinge on the Robin parameters being nonnegative.

In the transition from the positive to the negative regime, interesting things can
happen. One particularly interesting example comes from spectral theory. Consider,
for example, the eigenvalue problem for the Robin Laplacian. Precisely, given a
bounded Lipschitz domain Ω ⊆ R

n , the eigenvalues of the Robin Laplacian

−Δuk = λk(Ω; α)uk in Ω,
∂u
∂η

+ αu = 0 on ∂Ω,

are known to satisfy

λ1(Ω; α) < λ2(Ω; α) ≤ λ3(Ω; α) ≤ ⋯ → +∞.

For α > 0, the work of Bossel [13] and Daners [19] gives an isoperimetric inequality
for the lowest Robin eigenvalue:

λ1(Ω; α) ≥ λ1(Ω#; α),(4.1)

where Ω# is the centered open ball in R
n with ∣Ω#∣ = ∣Ω∣. Naturally, Bareket [11]

conjectured that the inequality in (4.1) goes the other way for α < 0. But Freitas
and Krejčiřík [21] showed that Bareket’s conjecture is false in general for negative
α, although they do show that in dimension n = 2, Bareket’s conjecture holds when
the parameter α is sufficiently close to zero. Taken in sum, this work suggests
that establishing PDE comparison results with negative Robin parameters might be
difficult and subtle. The author plans to investigate this question, but in a separate
future project.
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