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Abstract

Let I(n) denote the number of isomorphism classes of subgroups of (Z/nZ)×, and let G(n) denote the
number of subgroups of (Z/nZ)× counted as sets (not up to isomorphism). We prove that both log G(n)
and log I(n) satisfy Erdős–Kac laws, in that suitable normalizations of them are normally distributed in
the limit. Of note is that log G(n) is not an additive function but is closely related to the sum of squares
of additive functions. We also establish the orders of magnitude of the maximal orders of log G(n) and
log I(n).
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1. Introduction

The distribution of values of additive functions has long been of interest to number
theorists. Perhaps the most famous result in this area is the celebrated Erdős–Kac
theorem: if ω(n) and Ω(n) denote, respectively, the number of distinct prime factors of
n and the number of prime factors of n counted with multiplicity, then the distributions
of the values of both

ω(n) − log log n√
log log n

and
Ω(n) − log log n√

log log n

tend to the standard normal distribution. In other words, both ω(n) and Ω(n) are, in the
limit, ‘normally distributed with mean log log n and variance log log n’. Indeed, Erdős
and Kac [4] established this property for a large class of additive functions, and many
subsequent authors have widened even further the set of functions for which we know
such Erdős–Kac laws. In this paper, we establish Erdős–Kac laws for two functions
that count subgroups of a natural family of finite abelian groups, as we now describe.
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Let Z×n = (Z/nZ)× denote the multiplicative group of units modulo n. Let G(n)
denote the number of subgroups of Z×n , counted as sets (rather than up to isomorphism),
so that G(8) = 5, for example. The function G(n) is not a multiplicative function of n,
but it does have the property that G(n) =

∏
p|φ(n) Gp(n) (as we shall see below), where

Gp(n) denotes the number of p-subgroups of Z×n . One could perhaps say that G(n) is
‘a multiplicative function of φ(n),’ or simply ‘φ-multiplicative,’ making

log G(n) =
∑
p|φ(n)

log Gp(n)

a ‘φ-additive’ function. Our primary aim is to show that log G(n) possesses enough
structure to satisfy a similar Erdős–Kac law.

Theorem 1.1. Define

A0 =
1
4

∑
p

p2 log p
(p − 1)3(p + 1)

and A = A0 +
log 2

2
≈ 0.72109

and

B =
1
4

∑
p

p3(p4 − p3 − p3 − p − 1)(log p)2

(p − 1)6(p + 1)2(p2 + p + 1)
,

and set C = (log 2)2/3 + 2A0 log 2 + 4A2
0 + B ≈ 3.924. (Both sums are taken over all

primes p.) Then for every real number u,

lim
x→∞

1
x

#
{
n ≤ x : log G(n) < A(log log n)2 + u ·

√
C(log log n)3/2

}
=

1
√

2π

∫ u

−∞

e−t2/2 dt.

In other words, the quantity log G(n) is normally distributed, with mean A(log log n)2

and variance C(log log n)3.

We briefly indicate the overall structure of the proof of Theorem 1.1. First, we
understand the typical values of log G(n) by writing them as a linear combination
of squares of well-understood additive functions, together with one anomalous ‘φ-
additive’ function.

Proposition 1.2. Set X = (log log x)1/2(log log log x)2. For any positive integer n, define

Pn(x) = log 2 · ω(φ(n)) +
1
4

∑
q≤X

ωq(n)2Λ(q), (1.1)

where Λ(q) denotes the usual von Mangoldt function, and where the ωq are additive
functions defined in Definition 2.7 below. Then for all but O(x/log log log x) integers
n ≤ x,

log G(n) = Pn(x) + O
( (log log x)3/2

log log log x

)
.
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For any function f (n), define the ‘mean’

µ( f ) = µ( f ; x) =
∑
p≤x

f (p)
p

, (1.2)

and set

D(x) = log 2 · µ(ω ◦ φ) +
1
4

∑
q≤X

µ(ωq)2Λ(q) (1.3)

(so that D(x) is simply Pn(x) with each function of n replaced by its mean). Our
strategy is to show that the values of Pn(x) for n ≤ x are, asymptotically as x tends
to∞, normally distributed with mean D(x) and variance C(log log x)3, with C defined
as in Theorem 1.1. We carry out this strategy via the ‘method of moments.’

Proposition 1.3. For any positive integer h, define the ‘hth moment’

Mh(x) =
∑
n≤x

(Pn(x) − D(x))h. (1.4)

Then

lim
x→∞

Mh(x)
Ch/2x(log log x)3h/2 =


h!

(h/2)!2h/2 if h is even,

0 if h is odd.

The quantity h!/((h/2)!2h/2) for even h is precisely the hth moment of the
standard normal distribution, and it is a famous lemma of Chebyshev that the normal
distribution is determined by its moments (see Section 7 for more details).

Our proof is inspired by the work of Granville and Soundararajan [8], who described
a way to organize method-of-moments proofs in number theory to make the main terms
more readily identifiable. The proof herein is tailored to the specific function Pn(x)
mentioned above, which can be viewed as a quadratic polynomial (in increasingly
many variables) being evaluated at values of specific additive functions. For any fixed
polynomial, one can apply the same techniques to its evaluation at values of additive
functions from a much more general class, thereby obtaining Erdős–Kac laws for these
polynomials of additive functions as well (including, for example, Erdős–Kac laws for
products of additive functions). This generalization is the subject of forthcoming work
by the authors.

Since G(n) counts subgroups of Z×n as sets, the reader might wonder about the
equally natural function I(n) that counts subgroups of Z×n up to isomorphism. It turns
out to be much easier to establish an Erdős–Kac law for log I(n), partially because
I(n) is a φ-multiplicative function of a much simpler type, but mostly because we can
leverage the existing work of Erdős and Pomerance [6] on the number of prime factors
of φ(n) to greatly shorten our proof.
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Theorem 1.4. For every real number u,

lim
x→∞

1
x

#
{
n ≤ x : log I(n) <

log 2
2

(log log n)2 + u ·

√
log 2

3
(log log n)3/2

}
=

1
√

2π

∫ u

−∞

e−t2/2 dt.

In other words, the quantity log I(n) is normally distributed, with mean
( 1

2 log 2)(log log n)2 and variance ( 1
3 log 2)(log log n)3.

The leading constant here, ( 1
2 log 2) ≈ 0.34657, for the typical size of log I(n) is a

bit less than half the leading constant A for the typical size of log G(n) in Theorem 1.1;
in other words, the total number G(n) of subgroups of Z×n is typically a bit more than
the square of the number I(n) of isomorphism classes of subgroups of Z×n .

We begin by establishing Proposition 1.2 in Section 2, which will require a brief
digression into counting subgroups of finite abelian p-groups using partitions and
Gaussian binomial coefficients. Sections 3–7 comprise the proof of Theorem 1.1, with
the verification of Proposition 1.3 taking place in Section 6; a more detailed roadmap
is provided in Section 3, along with notation and conventions that will be used through
the rest of the paper. Finally, Section 8 contains the proof of the aforementioned
theorem about I(n), along with proofs of the following maximal-order results for
log G(n) and log I(n).

Theorem 1.5. The order of magnitude of the maximal order of log G(n) is
(log x)2/log log x. More precisely,

1
16

(log x)2

log log x
+ O

( (log x)2 log log log x
(log log x)2

)
≤ max

n≤x
(log G(n)) ≤

1
4

(log x)2

log log x

+ O
( (log x)2

(log log x)2

)
.

Theorem 1.6. The order of magnitude of the maximal order of log I(n) is
log x/log log x. More precisely,

log 2
5

log x
log log x

+ O
( log x
(log log x)2

)
≤ max

n≤x
(log I(n)) ≤ π

√
2
3

log x
log log x

+ O
( log x
(log log x)2

)
.

Remarks 1.7.

(a) We believe that the upper bound in Theorem 1.5 (with leading constant 1)
gives the true asymptotic size of the maximal order of log G(n); in particular,
if one assumes the Elliott–Halberstam conjecture, then the construction giving
the lower bound can easily be modified to produce a leading constant 1

4 instead
of the current 1

16 .
(b) The constant 1

5 log 2 in the lower bound in Theorem 1.6 can be improved to
any number less than log 2 if one is willing to assume Montgomery’s conjecture
on the error term in the prime number theorem for arithmetic progressions
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(as stated by Friedlander and Granville [7, Conjecture 1(b)]). However, even this
assumption is not enough to close the gap between the constants in the upper and
lower bounds (note that log 2 ≈ 0.69315 while π

√
2/3 ≈ 2.56651).

(c) As a consequence of the lower bound in Theorem 1.5, we obtain the following
corollary, which says that the quantity G(n) exhibits superpolynomial growth
with n.

Corollary 1.8. For any fixed A > 0, there exist infinitely many integers n such that
G(n) > nA.

2. Expressing log G(n) as a polynomial of additive functions

In this section we prove Proposition 1.2. First, we import a classical identity
for the number of subgroups of a finite abelian p-group, which we alter into an
approximate form that is suitable for our application. Then we describe exactly the
p-Sylow subgroup of the multiplicative group Z×n and record its approximate number
of subgroups. Finally, we sum this contribution over all primes p, which mostly
involves dealing with the complication of truncating this sum suitably to avoid being
overwhelmed with error terms; we employ some ‘anatomy of integers’ arguments to
show that this truncation is valid for almost all integers n.

2.1. Subgroups of p-groups. Let us recall, from the classification of finitely
generated abelian groups, that every finite abelian group of size pm can be uniquely
written in the form Zpα1 × Zpα2 × · · · for some nonincreasing sequence (α1, α2, . . .)
of nonnegative integers summing to m. (We avoid naming the length of such
sequences by the convention that all but finitely many of the α j equal 0.) In other
words, isomorphism classes of finite abelian p-groups of size pm are in one-to-one
correspondence with partitions α = (α1, α2, . . .) of m.

A subpartition β of a partition α is a nonincreasing sequence (β1, β2, . . .) of positive
integers such that β j ≤ α j for all j ≥ 1; we write β � α when β is a subpartition of α.
It is easy (though not quite trivial) to see that Zpα1 × Zpα2 × · · · contains an isomorphic
copy of Zpβ1 × Zpβ2 × · · · if and only if β � α. We are interested in more precise
information, however, about the number of subgroups of Zpα1 × Zpα2 × · · · that are
isomorphic to Zpβ1 × Zpβ2 × · · · .

Definition 2.1. Given partitions β � α and a prime p, define Np(α,β) to be the number
of subgroups inside Zpα1 × Zpα2 × · · · that are isomorphic to Zpβ1 × Zpβ2 × · · · . Define
Np(α) to be the number of subgroups inside Zpα1 × Zpα2 × · · · (as sets, not up to
isomorphism), so that Np(α) =

∑
β�α Np(α,β).

As it happens, there is a classical formula for Np(α,β), most conveniently expressed
in terms of conjugate partitions. Every partition α has a conjugate partition a, which
is most easily obtained by transposing the Ferrers diagram corresponding to α. The
number of parts (nonzero elements) of the conjugate partition a is exactly equal to α1,
and in general α j equals the number of parts of a that are at least j in size; by the same
token, the first part a1 of a is equal to the number of parts of α, and so on.
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We quote this classical formula, which can be found in [13, Equation (1)] and the
references cited therein.

Lemma 2.2. Let p be prime, and let β � α be partitions. Let a = (a1, a2, . . . , aα1 , 0, . . .)
and b = (b1, b2, . . . , bβ1 , 0, . . .) be the conjugate partitions to α and β, respectively.
Then

Np(α,β) =

α1∏
j=1

p(a j−b j)b j+1

[
a j − b j+1

b j − b j+1

]
p
.

Here,
[
k
`

]
p

is the Gaussian binomial coefficient, defined to be 0 if ` < 0 or ` > k, and
otherwise defined by [

k
`

]
p

=
∏̀
j=1

pk−`+ j − 1
p j − 1

. (2.1)

The reader might gain some intuition from considering the case where α =

(1, . . . , 1, 0, . . .) and β = (1, . . . , 1, 0, . . .) are the finest possible partitions of k and `,
respectively, so that Np(α, β) is the number of `-dimensional subspaces of Fk

p. In this
case, a = (k, 0, . . .) and b = (`, 0, . . .) and so Np(α, β) is simply

[
k
`

]
p
. It can be seen

that the numerator of the formula (2.1) is, up to a power of p, the number of k × `
matrices over Fp with full rank ` (and the column space of each such matrix defines
an `-dimensional subspace of Fk

p), while the denominator is, up to the same power of
p, the number of invertible ` × ` matrices over Fp (which act by left multiplication on
the set of k × ` matrices while preserving their column spaces).

We will prefer an approximate version of the formula from Lemma 2.2, which the
following pair of lemmas provides.

Lemma 2.3. For any prime p and any integers 0 ≤ ` ≤ k, there exists a real number
0 ≤ θ < 6 such that [

k
`

]
p

= p`(k−`)(1 + θp−1).

Proof. For any integers k ≥ ` ≥ j ≥ 1, we have the inequalities

pk−` ≤
pk−`+ j − 1

p j − 1
≤

pk−`+ j

p j − 1
=

pk−`

1 − p− j . (2.2)

Note that ∏̀
j=2

(1 − p− j) ≥ 1 −
∑̀
j=2

p− j > 1 −
1

p(p − 1)
,

and so ∏̀
j=1

1
1 − p− j <

1
1 − p−1

(
1 −

1
p(p − 1)

)−1
≤ 1 + 6p−1,
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where the last inequality follows by a simple calculation. Therefore, Equation (2.2)
implies that

p`(k−`) ≤
∏̀
j=1

pk−`+ j − 1
p j − 1

≤ p`(k−`)
∏̀
j=1

1
1 − p− j < p`(k−`)(1 + 6p−1),

which establishes the lemma. �

Lemma 2.4. Given partitions β � α, let b and a be the partitions conjugate to β and α,
respectively. For any prime p,

Np(α,β) =

( α1∏
j=1

p(a j−b j)b j

)
(1 + θp−1)α1

for some real number 0 ≤ θ < 6.

Proof. By Lemmas 2.2 and 2.3, there exist real numbers 0 ≤ θ j < 6 such that

Np(α,β) =

α1∏
j=1

p(a j−b j)b j+1

[
a j − b j+1

b j − b j+1

]
p

=

α1∏
j=1

p(a j−b j)b j+1 (p(b j−b j+1)(a j−b j)(1 + θ j p−1))

=

α1∏
j=1

p(a j−b j)b j (1 + θ j p−1).

The lemma now follows from the intermediate value property of the continuous
function f (θ) = (1 + θp−1)α1 on the interval 0 ≤ θ ≤ 6, along with the observation that

f (0)
α1∏
j=1

p(a j−b j)b j ≤

α1∏
j=1

p(a j−b j)b j (1 + θ j p−1) ≤ f (6)
α1∏
j=1

p(a j−b j)b j . �

Finally, we want to sum Np(α,β) over all subpartitions β of α. It turns out that the
dominant contribution to this sum comes from the subpartitions β nearest to 1

2α.

Lemma 2.5. For any integer a ≥ 0 and any prime p, we have
a∑

b=0

p(a−b)b = pa2/4+O(1) and p(a−ba/2c)ba/2c = pa2/4+O(1).

Proof. Suppose first that a = 2c is even. Using (2c − b)b = c2 − (c − b)2 ≤ c2 − (c − b)
for b ≤ c − 1,

a∑
b=0

p(a−b)b = pc2
+ 2

c−1∑
b=0

p(2c−b)b = pc2
+ O

( c−1∑
b=0

pc2−(c−b)
)

= pc2
+ O(pc2−1),
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which is certainly of the form pa2/4+O(1). Even more simply, p(a−ba/2c)ba/2c = p(2c−c)c =

pa2/4 exactly.
Now suppose that a = 2c + 1 is odd. Using (2c + 1 − b)b = (c + 1

2 )2 − (c + 1
2 − b)2 ≤

(c + 1
2 )2 − (c + 1

2 − b) for b ≤ c − 1,

a∑
b=0

p(a−b)b = 2
(
pc(c+1) +

c−1∑
b=0

p(2c+1−b)b
)

= 2
(
pc(c+1) + O

( c−1∑
b=0

p(c+1/2)2−(c+1/2−b)
))

= 2pc(c+1) + O(p(c+1/2)2−1/2).

Since (c + 1
2 )2 − 1

2 < c(c + 1), the right-hand side is � pc(c+1) = p(c+1/2)2−1/4, which is
also of the form pa2/4+O(1). On the other hand, p(a−ba/2c)ba/2c = p(2c+1−c)c = pa2/4+O(1) as
we have just seen. �

Proposition 2.6. For any prime p and any partition α,

log Np(α) =
log p

4

α1∑
j=1

a2
j + O(α1 log p).

Proof. We recall our notation a = (a1, . . . , aα1 , 0, . . .) and b = (b1, . . . , bα1 , 0, . . .) for
the conjugate partitions of α and β, respectively. Since Np(α) =

∑
β�α Np(α, β) by

definition, Lemma 2.4 tells us that there exist constants 0 ≤ θβ < 6 and 0 ≤ θ < 6 such
that

Np(α) =
∑
β�α

( α1∏
j=1

p(a j−b j)b j

)
(1 + θβp−1)α1 = (1 + θp−1)α1

∑
β�α

( α1∏
j=1

p(a j−b j)b j

)
, (2.3)

where the second equality again uses the intermediate value property of f (θ) =

(1 + θp−1)α1 (and the positivity of each summand). On one hand, since every β � α
corresponds to certain choices 0 ≤ b j ≤ a j, we have∑
β�α

( α1∏
j=1

p(a j−b j)b j

)
≤

a1∑
b1=0

· · ·

aα1∑
bα1 =0

α1∏
j=1

p(a j−b j)b j =

α1∏
j=1

a j∑
b j=0

p(a j−b j)b j =

α1∏
j=1

pa2
j/4+O(1)

by Lemma 2.5. On the other hand, let β1 be the subpartition of α whose conjugate
partition is b = (ba1/2c, . . . , baα1/2c,0, . . .); considering only the summand on the right-
hand side of Equation (2.3) corresponding to β = β1 yields∑

β�α

( α1∏
j=1

p(a j−b j)b j

)
≥

α1∏
j=1

p(a j−ba j/2c)ba j/2c =

α1∏
j=1

pa2
j/4+O(1)

by Lemma 2.5 again. Combining these last two inequalities with Equation (2.3), we
conclude that

Np(α) = (1 + θp−1)α1

α1∏
j=1

pa2
j/4+O(1),
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and therefore (since log(1 + x) is bounded for 0 ≤ x < 3)

log Np(α) = O(α1) +

α1∑
j=1

(a2
j

4
+ O(1)

)
log p =

log p
4

α1∑
j=1

a2
j + O(α1 log p)

as claimed. �

2.2. Counting p-subgroups of the multiplicative group. We now begin the proof
of Proposition 1.2 in earnest. As in the introduction, let G(n) denote the number of
subgroups of Z×n and let Gp(n) denote the number of p-subgroups of Z×n . Since every
finite abelian group is the direct product of its p-Sylow subgroups, it is easy to see that

G(n) =
∏
p|φ(n)

Gp(n) and thus log G(n) =
∑
p|φ(n)

log Gp(n).

Therefore, we first turn our attention to log Gp(n). It turns out that log Gp(n) can be
expressed in terms of arithmetic functions ωp j (n), defined in two stages as follows.

Definition 2.7. For any positive integer q, let ωq(n) denote the number of distinct
primes p | n such that p ≡ 1 (mod q). For example, ω1(n) = ω(n), while ω2(n) =

ω(n) − 1 when n is even and ω2(n) = ω(n) when n is odd.

These functions ωq will play a prominent role in the remainder of this paper.
Already we start forming our intuition: since ω(n) is typically about log log n, and
since one in every φ(q) primes on average is congruent to 1 (mod q), the function
ωq(n) is typically about (1/φ(q)) log log n in size; and indeed, an Erdős–Kac law for
ωq(n) itself is straightforward to derive from the results in [4].

We must make a punctilious alteration to these functions ωq in order for them to
exactly describe the structure of Z×n . However, our intuition should also include the
understanding that the difference between ωq and its sibling ωq (defined momentarily)
is negligible in the distributional sense; in particular, all we will really use is that
ωq(n) = ωq(n) + O(1) uniformly in integers n and prime powers q. Recall that the
notation pr ‖ m means that pr | m but pr+1 - m.

Definition 2.8. For any prime power pr, define

ωpr (n) =



ωpr (n) + 1 if p is odd and pr+1 | n,
ωpr (n) if p is odd and pr+1 - n,
ω2(n) + 2 if pr = 21 and 23 | n,
ω2(n) + 1 if pr = 21 and 22 ‖ n,
ω2(n) if pr = 21 and 22 - n,
ω2r (n) + 1 if p = 2 and r > 1 and pr+2 | n,
ω2r (n) if p = 2 and r > 1 and pr+2 - n.

Definition 2.9. For any prime p and any positive integer n, let λp(n) denote the largest
power of p that divides the Carmichael function λ(n). In other words, λp(n) is the
exponent of the p-Sylow subgroup of Z×n .
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Lemma 2.10. Let n be a positive integer, and let p be a prime dividing φ(n). The
p-Sylow subgroup of Z×n is isomorphic to Zpα1 × Zpα2 × · · · , where α = (α1, α2, . . .) is
the conjugate partition to

a = (a1, a2, . . .) = (ωp(n), ωp2 (n), . . . , ωpλp(n) (n), 0, . . .).

Proof. First let p be an odd prime. Write the p-Sylow subgroup of Z×n as Zpα1 × Zpα2 ×

· · · for some partition α, which we want to determine. There are two possible sources
of factors of p in φ(n): primes q | n such that q ≡ 1 (mod p) (including those congruent
to 1 modulo higher powers of p), and p2 itself (or a higher power of p) dividing n.
Furthermore, by the Chinese remainder theorem and the existence of primitive roots
modulo every odd prime power, we can say exactly how each of these sources affects
the p-Sylow subgroup of Z×n .

Each prime q | n such that q ≡ 1 (mod p j) contributes, to the p-Sylow subgroup of
Z×n , a factor of Zpm with m ≥ j (indeed, m is the exponent of p in the prime factorization
of q − 1). Moreover, if p j+1 | n, then this power of p contributes to the p-Sylow
subgroup of Z×n another factor of Zpm with m ≥ j (in this case, m + 1 is the exponent
of p in the prime factorization of n itself). All factors of the form Zpm in the primary
decomposition of Z×n arise in one of these two ways; therefore, the number of factors
of order at least p j in the p-Sylow subgroup of Z×n is exactly equal to ωp j (n). But a j,
the jth entry in the conjugate partition to α, is precisely the number of factors of order
at least p j in Zpα1 × Zpα2 × · · · . We conclude that a j = ωp j (n) as desired.

The case p = 2 follows by a similar analysis, complicated slightly by the fact that
Z×2 � Z1 and Z×4 � Z2 while Z×2r � Z2r−2 × Z2 when r ≥ 3. �

It is worth remarking that in particular, Lemma 2.10 shows that the exponent
of p in the prime factorization of φ(n) is exactly

∑λp(n)
j=1 ωp j (n) for every prime p.

Consequently, ∑
p|φ(n)

λp(n)∑
j=1

ωp j (n) log p = log φ(n). (2.4)

Furthermore, let νp(n) denote the power of p in the prime factorization of n. The proof
of Lemma 2.10 also shows that for odd primes p,

λp(n) = max{νp(n) − 1,max{ j : ωp j (n) ≥ 1}};

when p = 2, we must replace νp(n) − 1 with max{0, ν2(n) − 2}. In either case,

λp(n) ≤ max
{
νp(n),

∑
j≥1

ωp j (n)
}
. (2.5)

With the following proposition, we may leave most of the details of abelian groups
and partitions behind and operate within the realm of analytic number theory to
complete the proof of Proposition 1.2.

https://doi.org/10.1017/S1446788718000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000319


56 G. Martin and L. Troupe [11]

Proposition 2.11. For any positive integer n and any prime p dividing φ(n),

log Gp(n) =
log p

4

λp(n)∑
j=1

ωp j (n)2 + O(λp(n) log p).

Moreover, if p ‖ φ(n), then log Gp(n) = log 2.

Proof. If p ‖ φ(n), then the p-part of Z×n is precisely Zp, which trivially contains exactly
two subgroups; hence Gp(n) = 2 in this case. In general, Proposition 2.6 tells us that

log Np(α) =
log p

4

α1∑
j=1

a2
j + O(α1 log p),

while Lemma 2.10 gives us the exact evaluations α1 = λp(n) and a j = ωp j (n). �

2.3. Counting all subgroups of the multiplicative group. The main goal of this
section is to establish Proposition 1.2, which says that log G(n) is approximately equal
to a particular polynomial expression in additive functions of n, at least for most
integers n.

Several times in the course of these proofs, we will make use of upper bounds (of
the correct order of magnitude) that follow, via partial summation, from the prime
number theorem, or indeed from Mertens’s formulas or even Chebyshev’s bounds
for prime-counting functions. Such sums include sums over primes like

∑
p≤y 1/p

or
∑

p>y 1/p2, or sums over prime powers like
∑

p j≤y log2(p j)/p j or
∑

q≤y Λ(q)/q.
Moreover, since q/φ(q) ≤ 2 for all prime powers q, such sums can also be modified
to have denominators of p − 1 instead of p, or φ(q) instead of q. In all such cases,
we shall simply say ‘by partial summation’ to indicate that the required upper bounds
follows in a standard way from these prime-counting estimates.

In addition, we will make frequent use of the following Mertens-type estimate for
arithmetic progressions, which can be found in [11] or [12].

Lemma 2.12. For 2 ≤ q ≤ x,∑
p≤x

p≡1 (mod q)

1
p

=
log log x
φ(q)

+ O
( log q
φ(q)

)
.

For the rest of this section, we set

W = log log log x

X = (log log x)1/2(log log log x)2

Y = (log log x)2.

(Note that this definition of X is the same as in Proposition 1.2.)
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Lemma 2.13. For all but O(x/W) integers n ≤ x,

max
{ ∑

p≤Y
λp(n)≥1

log p,
∑
p≤Y

λp(n) log p,
∑
p≤Y

νp(n) log p,
∑
p j≤Y

ωp j (n) log p
}

� log log x · (log log log x)2. (2.6)

Proof. The first sum on the left-hand side of Equation (2.6) is clearly bounded above
by the second sum; and this second sum, by Equation (2.5), is bounded above by the
maximum of third and fourth sums on the left-hand side. It therefore suffices to show
that ∑

n≤x

∑
p≤Y

νp(n) log p +
∑
n≤x

∑
p j≤Y

ωp j (n) log p� x log log x · log Y, (2.7)

for then there can be no more than O(x/W) integers n ≤ x for which either of the two
summands exceeds log log x · log Y ·W = 2 log log x · (log log log x)2.

The first sum on the left-hand side of Equation (2.7) can be bounded simply:∑
n≤x

∑
p≤Y

νp(n) log p =
∑
n≤x

∑
p≤Y

log p
∑
j≥1
p j |n

1 =
∑
p≤Y

log p
∑
j≥1

∑
n≤x
p j |n

1

≤
∑
p≤Y

log p
∑
j≥1

x
p j = x

∑
p≤Y

log p
p − 1

� x log Y

by partial summation, which is more than sufficient. As for the second sum on the
left-hand side of Equation (2.7),∑

n≤x

∑
p j≤Y

ωp j (n) log p =
∑
n≤x

∑
p j≤Y

log p
∑
q|n

q≡1 (mod p j)

1 =
∑
p j≤Y

log p
∑
q≤x

q≡1 (mod p j)

∑
n≤x
q|n

1

≤
∑
p j≤Y

log p
∑
q≤x

q≡1 (mod p j)

x
q
.

Since Y < log x when x is large enough, Lemma 2.12 yields∑
n≤x

∑
p j≤Y

ωp j (n) log p ≤ x
∑
p j≤Y

log p
( log log x
φ(p j)

+ O
( log(p j)
φ(p j)

))
� x log log x

∑
p j≤Y

log p
φ(p j)

+ x
∑
p j≤Y

log2(p j)
φ(p j)

� x log log x · log Y + x log2 Y

by partial summation, completing the verification of the bound (2.7). �

The following lemma is very similar to known results (see [6] for example) on the
scarcity of numbers n for which φ(n) is divisible by the square of a large prime.
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Lemma 2.14. All but O(x/W) integers n ≤ x have both λp(n) ≤ 1 for all p > Y and
ωp j (n) ≤ 1 for all p j > Y.

Proof. First, fix a prime p > Y . If λp(n) ≥ 2, then either p3 | n or there exists a prime
q | n with q ≡ 1 (mod p2); the number of integers n ≤ x satisfying one of these two
conditions is at most x

p3 +
∑
q≤x

q≡1 (mod p2)

x
q
.

Therefore, the total number of integers n ≤ x for which λp(n) ≥ 2 for even a single
prime p > Y is, by Lemma 2.12, at most∑

Y<p≤x1/3

x
p3 +

∑
Y<p≤

√
x

∑
q≤x

q≡1 (mod p2)

x
q

<
∑
p>Y

x
p3 + x

∑
p>Y

( log log x
φ(p2)

+ O
( log p2

φ(p2)

))
�

x
Y2 log Y

+ x
( log log x

Y log Y
+

1
Y

)
by partial summation; this is an acceptably small bound for the number of such n ≤ x,
given our choices of Y and W.

Similarly, fix a prime power p j > Y . If ωp j (n) ≥ 2, then there exist two distinct
primes q and r dividing n such that q ≡ r ≡ 1 (mod p j). The number of integers n ≤ x
satisfying this condition is, by Lemma 2.12, at most∑

q<r≤x
q≡r≡1 (mod p j)

x
qr

<
x
2

( ∑
q≤x

q≡1 (mod p j)

1
q

)2

� x
( log log x
φ(p j)

+
log p j

φ(p j)

)2
� x

( (log log x)2

(p j)2 +
(log p j)2

(p j)2

)
.

Therefore the total number of integers n ≤ x for which ωp j (n) ≥ 2 for even a single
prime power p j > Y is

�
∑
p j>Y

x
( (log log x)2

(p j)2 +
(log p j)2

(p j)2

)
� x

( (log log x)2

Y log Y
+

log Y
Y

)
�

x
W

again by partial summation. �

We now have collected enough results to obtain a not-quite-final version of
Proposition 1.2 where, for the moment, the range of summation (p j ≤ Y rather than
p j ≤ X) is longer than we would like.

Lemma 2.15. For all but O(x/W) integers n ≤ x,

log G(n) = ω(φ(n)) log 2 +
1
4

∑
p j≤Y

ωp j (n)2 log p + O(log log x · (log log log x)2).
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Proof. By Proposition 2.11,

log G(n) =
∑
p|φ(n)

log Gp(n)

=
∑
p|φ(n)

λp(n)ωp(n)=1

log 2 +
∑
p|φ(n)

λp(n)ωp(n)≥2

(
O(λp(n) log p) +

log p
4

λp(n)∑
j=1

ωp j (n)2
)

=
∑
p|φ(n)

λp(n)ωp(n)=1

log 2 + O
( ∑

p|φ(n)
λp(n)ωp(n)≥2

λp(n) log p
)

+
∑
p|φ(n)

λp(n)ωp(n)≥2
j≤λp(n)

1
4
ωp j (n)2Λ(p j)

=
∑
p|φ(n)

log 2 + O
( ∑

p|φ(n)
λp(n)ωp(n)≥2

(log 2 + λp(n) log p)
)

+
∑
p|φ(n)

λp(n)ωp(n)≥2
j≤λp(n)

1
4
ωp j (n)2Λ(p j).

Since λp(n) ≥ 1 for all p | φ(n),

∑
p|φ(n)

λp(n)ωp(n)≥2

(log 2 + λp(n) log p)�
∑
p|φ(n)

λp(n)ωp(n)≥2

λp(n) log p.

Furthermore, by Lemma 2.14, for all but O(x/W) integers n ≤ x we never have
λp(n) ≥ 2 for any p > Y; for these nonexceptional integers, we can therefore
incorporate the condition p ≤ Y into the relevant sums, yielding

log G(n) =
∑
p|φ(n)

log 2 + O
(∑

p≤Y

λp(n) log p
)

+
∑
p≤Y

p|φ(n)
λp(n)ωp(n)≥2

j≤λp(n)

1
4
ωp j (n)2Λ(p j).

In this last sum, for all but O(x/W) integers n ≤ x, Lemma 2.14 also implies that
ωp j (n) ≤ 1 (and thus ωp j (n)� 1) for all p j > Y , which implies

∑
p≤Y

p|φ(n)
λp(n)ωp(n)≥2

j≤λp(n)
p j>Y

ωp j (n)2Λ(p j)�
∑
p≤Y

p|φ(n)
λp(n)ωp(n)≥2

j≤λp(n)
p j>Y

1 · Λ(p j) ≤
∑
p≤Y

j≤λp(n)

1 · Λ(p j) =
∑
p≤Y

λp(n) log p;
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therefore, for these nonexceptional integers, we can strengthen the condition p ≤ Y to
p j ≤ Y in the last sum to obtain

log G(n) =
∑
p|φ(n)

log 2 + O
(∑

p≤Y

λp(n) log p
)

+
∑
p|φ(n)

λp(n)ωp(n)≥2
j≤λp(n)
p j≤Y

1
4
ωp j (n)2Λ(p j)

= ω(φ(n)) log 2 +
∑
p|φ(n)

λp(n)ωp(n)≥2
j≤λp(n)
p j≤Y

1
4
ωp j (n)2Λ(p j) + O((log log x)2 log log log x),

(2.8)

where the second equality is valid for all but O(x/W) integers n ≤ x by Lemma 2.13.
From the definition of ωp j , we know that ωp j (n) = ωp j (n) + O(1), and consequently
ωp j (n)2 = ωp j (n)2 + O(ωp j (n) + 1). In particular,∑

p|φ(n)
λp(n)ωp(n)≥2

j≤λp(n)
p j≤Y

1
4
ωp j (n)2 log p =

∑
p|φ(n)

λp(n)ωp(n)≥2
j≤λp(n)
p j≤Y

(1
4
ωp j (n)2 + O(ωp j (n) + 1)

)
log p

=
∑
p|φ(n)

λp(n)ωp(n)≥2
j≤λp(n)
p j≤Y

1
4
ωp j (n)2 log p

+ O
(∑

p j≤Y

ωp j (n) log p +
∑
p≤Y

λp(n) log p
)
,

and by Lemma 2.13 this error term is also � log log x · (log log log x)2 for all but
O(x/W) integers n ≤ x. Therefore, we may modify Equation (2.8) to

log G(n) = ω(φ(n)) log 2 +
∑
p|φ(n)

λp(n)ωp(n)≥2
j≤λp(n)
p j≤Y

1
4
ωp j (n)2 log p + O(log log x · (log log log x)2).

In this sum, we may remove the condition of summation λp(n)ωp(n) ≥ 2 at a cost of
at most

∑
p≤Y

1
4λp(n) log p, which again is negligible for all but O(x/W) integers n ≤ x

by Lemma 2.13. Since ωp j (n) = 0 whenever p - φ(n) or j > λp(n), we may remove the
conditions p | φ(n) and j ≤ λp(n) as well. This establishes the lemma. �

Finally, we show that we can truncate the range of summation in the above lemma
from p j ≤ Y down to p j ≤ X at the cost of a larger error term, thereby obtaining
Proposition 1.2.
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Proof of Proposition 1.2. In the notation of Proposition 1.2 and of this section,
Lemma 2.15 states that for all but x/W integers n ≤ x,

log G(n) = Pn(x) +
1
4

∑
X<q≤Y

ωq(n)2Λ(q) + O(log log x · (log log log x)2).

Therefore, it suffices to show that for all but x/W integers n ≤ x, the sum in the equation
above is � (log log x)3/2/log log log x. In turn, this statement can be established by
showing that ∑

n≤x

∑
X<q≤Y

ωq(n)2Λ(q)�
x(log log x)3/2

(log log log x)2 . (2.9)

We may write∑
n≤x

∑
X<q≤Y

ωq(n)2Λ(q) =
∑
n≤x

∑
X<q≤Y

Λ(q)
( ∑

p|n
p≡1 (mod q)

1
)2

=
∑
n≤x

∑
X<q≤Y

Λ(q)
∑

p1,p2 |n
p1≡p2≡1 (mod q)

1

=
∑

X<q≤Y

Λ(q)
∑

p1≡p2≡1 (mod q)

∑
n≤x

p1,p2 |n

1

=
∑

X<q≤Y

Λ(q)
∑

p≡1 (mod q)

∑
n≤x
p|n

1 +
∑

X<q≤Y

Λ(q)
∑

p1≡p2≡1 (mod q)
p1,p2

∑
n≤x

p1 p2 |n

1.

For the first sum, Lemma 2.12 gives∑
n≤x

∑
X<q≤Y

Λ(q)
∑
p|n

p≡1 (mod q)

1 =
∑

X<q≤Y

Λ(q)
∑
p≤x

p≡1 (mod q)

∑
n≤x
p|n

1

� x
∑

X<q≤Y

Λ(q)
∑
p≤x

p≡1 (mod q)

1
p

� x log log x
∑

X<q≤Y

Λ(q)
φ(q)

� x log log x · log Y

by partial summation. For the second sum, we argue similarly∑
n≤x

∑
X<q≤Y

Λ(q)
∑

p1,p2≤x
p1 p2 |n

p1≡p2≡1 (mod q)

1�
∑

X<q≤Y

Λ(q)
∑
p1,p2

p1≡p2≡1 (mod q)

x
p1 p2

� x(log log x)2
∑
q>X

Λ(q)
q2

� x(log log x)2/X =
x(log log x)3/2

(log log log x)2 .
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These last two upper bounds establish the estimate (2.9) and therefore the
proposition. �

3. Notation and setup

In this section, we prepare some notation we will need to prove Proposition 1.3. At
the end of the section, we outline the main stages of the proof, which span the next
several sections.

Definition 3.1. Define the function

ω0(n) = ω(φ(n)).

Comparing with Definition 2.7 shows that this notation ω0 is mathematically dubious,
but it will be typographically convenient. For example, we note that ωq(p)� log z for
every q ≥ 0 and every prime p ≤ z: when q ≥ 2 this is obvious from Definition 2.7,
while for q = 0 we have ω0(p) = ω(p − 1) ≤ log(p − 1)/log 2.

In this notation, the definitions (1.1) and (1.3) become

Pn(x) = log 2 · ω0(n) +
1
4

∑
2≤q≤X

ωq(n)2Λ(q)

D(x) = log 2 · µ(ω0) +
1
4

∑
2≤q≤X

µ(ωq)2Λ(q),
(3.1)

where (by Equation (1.2)) we may simply write

µ(ωq) =
∑
p≤x

ωq(p)
p

for every q ≥ 0. We shall continue to write ranges of summation over q as either 2 ≤ q,
when the sum excludes q = 0, or 0 ≤ q, when the sum includes q = 0.

By way of intuition, the typical size of ω0(n) is 1
2 (log log x)2; this is quite a bit

larger than the typical size of any ωq(n) with q ≥ 2 but, on the other hand, these
ωq typically occur squared, while the function ω0 typically occurs to the first power.
Consequently, the contribution of the two types of function to the typical size of Pn(x)
is of the same order of magnitude. The typical size of Pn(x), as n varies over integers
up to x, is asymptotically D(x) (due essentially to ‘linearity of expectation’), and
consequently the distribution of the difference Pn(x) − D(x) will be the main focus
of our investigation.

Definition 3.2. For any prime p, define the function

fp(a) =

1 − 1/p if p | a,
−1/p if p - a.
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We extend this function completely multiplicatively in the subscript (not, as might be
expected, in the argument): for any positive integer r, we set

fr(a) =
∏
pα‖r

fp(a)α.

Finally, we set
Fωq (a) =

∑
p≤x

ωq(p) fp(a).

Notice that, for any n ≤ x, we have the exact identity

ωq(n) = µ(ωq) + Fωq (n). (3.2)

We have thereby decomposed an additive function into its mean value on the integers
up to x (which is asymptotically equal to µ(ωq)) and a term Fωq (n) that oscillates as
n varies. This innovation, due to Granville and Soundararajan [8], allows for a more
direct identification of the main terms that arise in the calculations of the hth moments

Mh(x) =
∑
n≤x

(Pn(x) − D(x))h

of the difference between Pn(x) and its mean value. We approach these moments by
first rewriting Pn(x) using Equation (3.2):

Pn(x) = log 2 · ω0(n) +
1
4

∑
2≤q≤X

ωq(n)2Λ(q)

= log 2 · (µ(ω0) + Fω0 (n)) +
1
4

∑
2≤q≤X

(µ(ωq) + Fωq (n))2Λ(q).

Upon expanding the square inside the sum and then subtracting D(x),

Pn(x) − D(x) = log 2 · Fω0 (n) +
1
2

∑
2≤q≤X

µ(ωq)Fωq (n) +
1
4

∑
2≤q≤X

Fωq (n)2. (3.3)

We then estimate the hth moment by taking the entire right-hand side to the hth power,
expanding into a sum of 3h terms, and estimating each term separately. The terms
with the fewest F-factors will comprise the main term for Mh(x), while the others
contribute only to the error term. The bookkeeping and notation involved with tracking
all of these terms is quite messy, and we have organized the remainder of the paper as
follows to minimize the trauma to the reader.

The aim of Section 4 is to introduce a general algebraic framework for handling the
terms that arise upon expanding the hth power of the right-hand side of Equation (3.3).
Section 5 is devoted to proving asymptotic estimates and formulas for those individual
terms as x tends to infinity. In Section 6, we complete the proof of Proposition 1.3
using the results of previous sections. Finally, in Section 7, we quickly justify our use
of probabilistic language in the statement of Theorem 1.1 by deducing Theorem 1.1
from Proposition 1.3.

https://doi.org/10.1017/S1446788718000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000319


64 G. Martin and L. Troupe [19]

4. Polynomial accounting

The main goal of this section is to establish Proposition 4.8, which is used to identify
and simplify the main term of the moments Mh(x) (for h even) at the end of Section 6.
The proof begins with some combinatorial arguments, concerning polynomials in
many variables, which are elementary but extremely notation-intensive. Along the
way, we also introduce some polynomial-related notation (Definition 4.6) for future
use.

Definition 4.1. For any positive integer k, define Σk to be the set of all permutations of
{1, . . . , k} (that is, the set of all bijections from {1, . . . , k} to itself). A typical element
of Σk will be denoted by σ.

For any positive even integer k, define Tk to be the set of all two-to-one functions
from {1, . . . , k} to {1, . . . , k/2}. A typical element of Tk will be denoted by τ. We let τ0
denote the order-preserving element of Tk defined by τ0( j) = d j/2e for each 1 ≤ j ≤ k.

For τ ∈ Tk and j ∈ {1, . . . , k/2}, define Υ1( j) and Υ2( j) to be the two distinct
preimages of j in {1, . . . , k}; we will never need to distinguish between the two.

Lemma 4.2. Let k be a positive even integer. The function ψ : Σk → Tk defined by
ψ(σ) = τ0 ◦ σ

−1 is surjective and 2k/2-to-1.

Proof. Given any τ ∈ Tk, the equality ψ(σ) = τ holds for a particular σ ∈ Σk if and only
if

{Υ1( j),Υ2( j)} = {σ(2 j − 1), σ(2 j)} for every 1 ≤ j ≤
k
2
. (4.1)

This specifies each of the k/2 unordered pairs {σ(2 j − 1), σ(2 j)}, each of which
provides a choice of two options for which an element equals Υ1( j) and equals Υ2( j);
the total number of preimages σ is thus exactly 2k/2. �

The following definition and lemma provide one of our main tools for dealing with
arbitrary powers of finite sums.

Definition 4.3. Let h and ` be positive integers with h even. Let R be a commutative
ring of characteristic zero with a unit element, and define two commutative polynomial
rings over R with ` + 1 and (` + 1)2 variables: let x0, . . . , x` be indeterminates and
define S = R[x0, . . . , x`], and let {zi j : 0 ≤ i, j ≤ `} be indeterminates and define S̃ =

R[z00, . . . , z``]. Let S h be the R-submodule of S spanned by monomials of total degree
h, and let S̃ h/2 be the R-submodule of S̃ spanned by monomials of total degree h/2.

We define an R-module homomorphism Φh : S h → S̃ h/2 in the following way.
Given a monic monomial M = xm1 · · · xmh in S h (where m1, . . . ,mh ∈ {0, . . . , `} are
not necessarily distinct), set

Φh(M) =
1
h!

∑
σ∈Σh

zmσ1mσ2 · · · zmσ(h−1)mσh .

(Note that the order of the indices m1, . . . ,mh is not uniquely defined by M, but this
is not problematic since the sum defining Φh(M) averages over all permutations σ.)
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Then we extend Φh R-linearly to S h, so that Φh(
∑

j r jM j) =
∑

j r jΦh(M j) for any monic
monomials M j ∈ S h and elements r j ∈ R.

For example, with h = 4 and ` = 2,

Φ4(x2
0x1x2 − 7x3

1x2) = 1
6 z12z00 + 1

6 z21z00 + 1
6 z10z20 + 1

6 z10z02 + 1
6 z20z01 + 1

6 z01z02

− 7
2 z11z12 −

7
2 z11z21.

Lemma 4.4. Let h and ` be positive integers with h even. Let R be a commutative ring
of characteristic zero with a unit element, and let Φh be defined as in Definition 4.3.
For any elements r0, . . . , r` ∈ R,

Φh((r0x0 + · · · + r`x`)h) =

( ∑
0≤i, j≤`

rir jzi j

)h/2
.

Proof. The key to the calculation is to purposefully avoid expanding (r0x0 + · · · +

r`x`)h using multinomial coefficients; allowing repetition such as (x1 + x2)2 = x2
1 +

x1x2 + x2x1 + x2
2 makes the counting argument much easier. By the definition of Φh,

Φh

((∑̀
i=0

rixi

)h)
= Φh

(∑̀
m1=0

· · ·
∑̀
mh=0

rm1 · · · rmh xm1 · · · xmh

)

=
∑̀
m1=0

· · ·
∑̀
mh=0

rm1 · · · rmh

1
h!

∑
σ∈Σh

zmσ1mσ2 · · · zmσ(h−1)mσh

=
1
h!

∑
σ∈Σh

∑̀
m1=0

· · ·
∑̀
mh=0

rm1 · · · rmh zmσ1mσ2 · · · zmσ(h−1)mσh .

Since rm1 · · · rmh = rmσ1 · · · rmσh for any σ ∈ Σh, we can rewrite this identity as

Φh

((∑̀
i=0

rixi

)h)
=

1
h!

∑
σ∈Σh

∑̀
m1=0

· · ·
∑̀
mh=0

rmσ1 · · · rmσh zmσ1mσ2 · · · zmσ(h−1)mσh .

Now the only effect of any fixed σ on the inner h-fold sum is to permute the order of
the indices; therefore, setting j1 = mσ1 , j2 = mσ2 , and so on, we may write

Φh

((∑̀
i=0

rixi

)h)
=

1
h!

∑
σ∈Σh

∑̀
j1=0

· · ·
∑̀
jh=0

r j1 · · · r jh z j1 j2 · · · z jh−1 jh .

The inner h-fold sum no longer depends on σ, and so

Φh

((∑̀
i=0

rixi

)h)
=

∑̀
j1=0

· · ·
∑̀
jh=0

r j1 · · · r jh z j1 j2 · · · z jh−1 jh =

(∑̀
j1=0

∑̀
j2=0

r j1 r j2 z j1 j2

)h/2
,

which is equivalent to the statement of the lemma. �
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Remark 4.5. The map Φh can also be interpreted as a rather natural R-module
homomorphism from Sym2h(M) to Symh(M ⊗R M), where M = R⊕(`+1) � S 1.
However, this interpretation does not seem to shorten the verification of the desired
identity.

We now wish to apply these results to a specific polynomial related to the moments
of log G(n). Given a real number x, let X = (log log x)1/2(log log log x)2 as before, and
let ρ(X) denote the number of prime powers up to X. Define the polynomial

Q(x0, x1, . . . , xρ(X)) = log 2 · x0 +
1
4

ρ(X)∑
i=1

Λ(qi)x2
i .

Note that the function Pn(x) defined in the introduction is equal to this polynomial Q
evaluated at the tuple (x0, x1, . . . , xρ(X)) = (ω0(n),ωq1 (n), . . . ,ωqρ(X) (n)). For consistency,
we will abuse notation and set q0 = 0; this will be convenient when applying the results
of this section to Pn(x) in Section 6.

Let Qi denote the partial derivative of Q with respect to xi. Observe that

Q(x0 + y0, . . . , xρ(X) + yρ(X)) − Q(y0, . . . , yρ(X))

= log 2 · x0 +
1
2

ρ(X)∑
i=1

Λ(qi)xiyi +

ρ(X)∑
i=1

Λ(qi)x2
i

=

ρ(X)∑
i=0

xiQi(y0, . . . , yρ(X)) +

ρ(X)∑
i=1

Λ(qi)x2
i . (4.2)

Definition 4.6. Let h be a positive integer. Define

Rh(x0, . . . , xρ(X), y0, . . . , yρ(X)) = (Q(x0 + y0, . . . , xρ(X) + yρ(X)) − Q(y0, . . . , yρ(X)))h.

To expand this out in gruesome detail, Rh can be written as the sum of some number
Bh of monomials:

Rh(x0, . . . , xρ(X), y0, . . . , yρ(X)) =

Bh∑
β=1

rhβ

khβ∏
i=1

xv(h,β,i)

k̃hβ∏
j=1

yw(h,β, j), (4.3)

where each v(h, β, i) and w(h, β, j) is an integer in {0, 1, . . . , ρ(X)}; the total x-degree of
the βth monomial in the sum is khβ, while its total y-degree is k̃hβ. From Equation (4.2),
we see that each khβ is between h and 2h (inclusive), each k̃hβ is at most h, and each
khβ + k̃hβ is also between h and 2h.

As it turns out, the most significant monomials on the right-hand side of
Equation (4.3) are those of minimal x-degree, that is, those monomials with khβ = h.
(These monomials will contribute to the main term of the calculation of the hth
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moment in Section 6 when h is even, while the other monomials contribute only to
the error term.) Consequently we focus on these special monomials for the remainder
of this section.

Lemma 4.7. The part of Rh of total x-degree h is

∑
β≤Bh
khβ=h

rhβ

h∏
i=1

xv(h,β,i)

k̃hβ∏
j=1

yw(h,β, j) =

(ρ(X)∑
i=0

xiQi(y0, . . . , yρ(X))
)h
. (4.4)

Proof. The left-hand side is exactly the definition of the part of Rh of total x-degree h,
or equivalently (since khβ ≥ h always) the part of Rh of total x-degree at most h. But
Rh is the hth power of the polynomial Q(x0 + y0, . . . , xρ(X) + yρ(X)) − Q(y1, . . . , yρ(X)),
whose part of total x-degree at most 1 equals

∑ρ(X)
i=0 xiQi(y0, . . . , yρ(X)) by

Equation (4.2). �

We are now ready to establish the proposition that will be used in Section 6 when
analyzing the main term of the even moments. For any positive even integer h, define

sh =
h!

2h/2(h/2)!
.

Proposition 4.8. Let h be a positive even integer. In the notation of Definitions 4.1
and 4.6,

1
(h/2)!

∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

yw(h,β, j)

∑
τ∈Th

h/2∏
i=1

zv(h,β,Υ1(i))v(h,β,Υ2(i))

= sh

(ρ(X)∑
i=0

ρ(X)∑
j=0

Qi(y0, . . . , yρ(X))Q j(y0, . . . , yρ(X))zi j

)h/2
. (4.5)

Proof. Consider the operator Φh from Definition 4.3, using the ring R =

R[y0, . . . , yρ(X)]. We establish the lemma by showing that the left- and right-hand sides
of Equation (4.5) are the results of applying Φh to sh times the left- and right-hand
sides, respectively, of Equation (4.4).

Checking the right-hand side is easy: since Φh is an R-module homomorphism,

Φh

(
sh

(ρ(X)∑
j=0

x jQ j(y1, . . . , yρ(X))
)h)

= shΦh

((ρ(X)∑
j=0

Q j(y1, . . . , yρ(X))x j

)h)

= sh

(ρ(X)∑
i=0

ρ(X)∑
j=0

Qi(y0, . . . , xρ(X))Q j(y0, . . . , yρ(X))zi j

)h/2
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by Lemma 4.4 with r j = Q j(y1, . . . , yρ(X)) ∈ R. As for the left-hand side: by R-linearity,

Φh

(
sh

∑
β≤Bh
khβ=h

rhβ

h∏
i=1

xv(h,β,i)

k̃hβ∏
j=1

yw(h,β, j)

)

= sh

∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

yw(h,β, j)Φh

( h∏
i=1

xv(h,β,i)

)

= sh

∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

yw(h,β, j)
1
h!

∑
σ∈Σh

zv(h,β,σ1)v(h,β,σ2) · · · zv(h,β,σ(h−1))v(h,β,σh).

But by Lemma 4.2, the set Σh can be partitioned into subsets of size 2h/2, each subset
corresponding to a particular τ ∈ TK and consisting of thoseσ for which Equation (4.1)
holds. Therefore,

Φh

(
sh

∑
β≤Bh
khβ=h

rhβ

h∏
i=1

xv(h,β,i)

k̃hβ∏
j=1

yw(h,β, j)

)

= sh

∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

yw(h,β, j)
2h/2

h!

∑
τ∈Th

zv(h,β,Υ1(1))v(h,β,Υ2(1)) · · · zv(h,β,Υ1(h/2))v(h,β,Υ2(h/2)).

The lemma now follows upon noting that sh2h/2/h! = 1/(h/2)!. �

5. Covariances of two additive functions

The goal of this section is to evaluate certain expressions, arising from expanding
the hth power of the right-hand side of Equation (3.3), in terms of certain ‘covariances’,
which we now define.

Throughout this section, k is a fixed positive integer, x > 1 is a real number, and
z = x1/2k. For any two additive functions g1 and g2, define their covariance to be

cov(g1, g2) = cov(g1, g2; z) =
∑
p≤z

g1(p)g2(p)
p

(
1 −

1
p

)
.

Whenever g1(p), g2(p)� log p (as will be the case in our application), this definition
can be simplified to

cov(g1, g2) =
∑
p≤z

g1(p)g2(p)
p

+ O
(∑

p≤z

log2 p
p2

)
=

∑
p≤z

g1(p)g2(p)
p

+ O(1). (5.1)

We begin by finding asymptotic formulas for these covariances when each of g1 and
g2 is equal to one of the ωq (q ≥ 0).
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The Bombieri–Vinogradov theorem will be an essential tool here and later in the
paper; see for example [9, Theorem 17.1] for the statement for the function ψ(x; q, a),
from which it is simple to derive the analogous versions for the functions θ(x; q, a) and
π(x; q, a) (an example of such a derivation is the proof of [1, Corollary 1.4]).

Theorem 5.1. For any positive real number A, there exists a positive real number
B = B(A) such that the estimates∑

2≤q≤Q

max
(a,q)=1

∣∣∣∣∣θ(x; q, a) −
x

φ(q)

∣∣∣∣∣�A
x

(log x)A (5.2)

∑
2≤q≤Q

max
(a,q)=1

∣∣∣∣∣π(x; q, a) −
li(x)
φ(q)

∣∣∣∣∣�A
x

(log x)A (5.3)

hold for all x > 1, where Q = x1/2(log x)−B.

The following three lemmas provide the desired evaluations of the relevant
covariances; we must attend separately to the cases where neither, one, or both of
the two additive functions equals ω0.

Lemma 5.2. Let q1 and q2 be powers of primes (possibly of the same prime), and let
[q1, q2] denote the least common multiple of q1 and q2. Then

cov(ωq1 , ωq2 ) =
log log z
φ([q1, q2])

+ O(1)

uniformly for q1, q2 ≤
√

z.

Proof. Since each ωqi is uniformly bounded, and ωq1 (p)ωq2 (p) = 1 precisely when p
is congruent to 1 modulo [q1, q2], Equation (5.1) becomes

cov(ωq1 , ωq2 ) =
∑
p≤z

p≡1 (mod [q1, q2])

1
p

+ O(1) =
log log z
φ([q1, q2])

+ O
( log[q1, q2]
φ([q1, q2])

)
+ O(1)

by Lemma 2.12; and the first error term can be absorbed into the O(1). �

Lemma 5.3. If q ≤ z1/4 is a prime power, then

cov(ωq, ω0) =
(log log z)2

2φ(q)
+ O(log log z).

Proof. We emulate the proof of [6, Lemma 2.1]. In preparation for a partial summation
calculation, we first show that∑

p≤t

ωq(p)ω0(p) =
∑
p≤t

p≡1 (mod q)

ω(p − 1) =
t log log t
φ(q) log t

+ O
( t
log t

)
(5.4)
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for all t > q; the first equality follows from Definition 2.7 of ωq and Definition 3.1
of ω0. When q > log2 t this estimate is simple: the trivial bounds π(t; q, 1) < t/q and
ω(p − 1)� log p result in∑

p≤t
p≡1 (mod q)

ω(p − 1)� π(t; q, 1) log t <
t log t

q
�

t
log t

,

which is consistent with the right-hand side of Equation (5.4) since q > log2 t implies
that (log log t)/φ(q) � (log log t log log log t)/log2t � 1. Consequently, we may
assume that q ≤ log2 t.

Letting ` denote a variable of summation taking only prime values, and noting that
at most two primes greater than p1/3 can divide p − 1,∑

p≤t
p≡1 (mod q)

ω(p − 1) =
∑
p≤t

p≡1 (mod q)

( ∑
`|(p−1)
`≤t1/3

1 +
∑
`|(p−1)
`>t1/3

1
)

=
∑
`≤t1/3

∑
p≤t

p≡1 (mod q)
p≡1 (mod `)

1 + O
( ∑

p≤t
p≡1 (mod q)

2
)

=

( ∑
`≤t1/3

`-q

∑
p≤t

p≡1 (mod q`)

1 + O
( ∑
`≤t1/3

`|q

∑
p≤t

p≡1 (mod q)

1
))

+ O(π(t; q, 1))

=
∑
`≤t1/3

`-q

π(t; q`, 1) + O(ω(q)π(t; q, 1)) =
∑
`≤t1/3

`-q

π(t; q`, 1) + O
( t
log t

)
,

(5.5)

where the last step follows from the Brun–Titchmarsh theorem (see [10, Theorem 3.9])
and the assumption q ≤ log2 t:

ω(q)π(t; q, 1)� ω(q)
t

φ(q) log(t/q)
�

ω(q)
φ(q)

t
log t

�
t

log t
.

By the Bombieri–Vinogradov estimate (5.3) with A = 1 (noting that every modulus q`
in the sum is at most t1/3 log2 t� t1/2(log t)−B),∑

`≤t1/3

`-q

π(t; q`, 1) =
∑
`≤t1/3

`-q

li(t)
φ(q`)

+ O
( ∑
`≤t1/3

`-q

∣∣∣∣∣π(t; q`, 1) −
li(t)
φ(q`)

∣∣∣∣∣)

=
li(t)
φ(q)

∑
`≤t1/3

`-q

1
` − 1

+ O
( t
log t

)

=
li(t)
φ(q)

(log log t1/3 + O(ω(q))) + O
( t
log t

)
=

t log log t
φ(q) log t

+ O
( t
log t

)
(5.6)
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by partial summation. Together with the estimate (5.5), this evaluation establishes the
claim (5.4).

Define S (t) =
∑

p≤t ωq(p)ω0(p) to be the left-hand side of Equation (5.4). Noting
that ωq(p) = 0 for all p ≤ q, we use partial summation to estimate

cov(ωq, ω0) =
∑

q<p≤z

ωq(p)ω0(p)
1
p

=

∫ z

q

1
t

dS (t) =
S (z)

z
+

∫ z

q

S (t)
t2 dt.

By Equation (5.4), the first term satisfies
S (z)

z
=

log log z
φ(q) log z

+ O
( 1
log z

)
� 1

while ∫ z

q

S (t)
t2 dt =

∫ z

q

( log log t
φ(q)t log t

+ O
( 1
t log t

))
dt

=
(log log t)2

2φ(q)

∣∣∣∣∣z
q

+ O(log log t|zq) =
(log log z)2

2φ(q)
+ O(log log z),

as required. �

Lemma 5.4. For z > 2,

cov(ω0, ω0) =
(log log z)3

3
+ O((log log z)2).

Proof. Now we emulate the proof of [6, Lemma 2.2]. In preparation for a partial
summation calculation, we first show that∑

p≤t

ω0(p)2 =
∑
p≤t

ω(p − 1)2 =
t(log log t)2

log t
+ O

( t|log log t|
log t

)
(5.7)

for all t > 2; again the first equality follows from Definition 3.1 of ω0. Letting ` denote
a variable of summation taking only prime values, and noting that at most four primes
greater than p1/5 can divide p − 1,∑

p≤t

ω(p − 1)2 =
∑
p≤t

( ∑
`|(p−1)
`≤t1/5

1 + O(4)
)2

=
∑
p≤t

∑
`1 |(p−1)
`≤t1/5

∑
`2 |(p−1)
`≤t1/5

1 + O
(∑

p≤t

∑
`|(p−1)
`≤t1/5

1 +
∑
p≤t

1
)

=
∑
`1≤t1/5

∑
`2≤t1/5

∑
p≤t

p≡1 (mod `1)
p≡1 (mod `2)

1 + O
(∑

p≤t

ω(p − 1) + π(t)
)

=
∑
`1≤t1/5

∑
`2≤t1/5

`2,`1

π(t; `1`2, 1) +
∑
`≤t1/5

π(t; `, 1) + O
( t|log log t|

log t

)
,
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where the error term in the last step was controlled using the q = 2 case of
Equation (5.4). Using the Bombieri–Vinogradov estimate (5.3) in a manner similar
to the argument in Equation (5.6) now yields∑

p≤t

ω(p − 1)2 =
∑
`1≤t1/5

∑
`2≤t1/5

`2,`1

li(t)
(`1 − 1)(`2 − 1)

+
∑
`≤t1/5

li(t)
` − 1

+ O
( t|log log t|

log t

)

= li(t)
(( ∑
`≤t1/5

1
` − 1

)2
+ O

( ∑
`≤t1/5

1
`

))
+ O

( t|log log t|
log t

)
= li(t)((log log t1/5)2 + O(log log t)) + O

( t|log log t|
log t

)
,

which is enough to establish the claim (5.7).
Define S (t) =

∑
p≤t ω0(p)2 to be the left-hand side of Equation (5.7), and again use

partial summation to estimate

cov(ω0, ω0) =
∑

q<p≤z

ω0(p)2 1
p

=

∫ z

2

1
t

dS (t) =
S (z)

z
+

∫ z

2

S (t)
t2 dt.

By Equation (5.7), the first term satisfies

S (z)
z

=
(log log z)2

log z
+ O

(
|log log z|

log z

)
� 1

while∫ z

2

S (t)
t2 dt =

∫ z

2

( (log log t)2

t log t
+ O

(
|log log t|

t log t

))
dt

=
(log log t)3

3

∣∣∣∣∣z
2

+ O((log log t)2|z2) =
(log log z)3

3
+ O((log log z)2),

as required. �

When we expand the hth power in the calculation of the moments Mh(x) (as in
Equation (6.2)), we will need to estimate products of the additive functions ωq (q ≥ 0)
from Definitions 2.7 and 3.1, summed over many prime variables. Because of the
presence of the multiplicative function H, defined momentarily, in these sums, it will
be important how many distinct prime values are taken by these prime variables. The
next three lemmas provide the details.

Definition 5.5. Define a multiplicative function H(n) by setting, for each prime
power pγ,

H(pγ) =
1
p

(
1 −

1
p

)γ
+

(
−

1
p

)γ(
1 −

1
p

)
.

For any prime p, we note that H(p2) = 1/p(1 − 1/p) and H(p) = 0; in particular,
H(n) = 0 unless n is squarefull. It is easy to check that 0 ≤ H(pγ) ≤ H(p2) for every
prime p and every positive integer γ.
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Lemma 5.6. Let k be a positive even integer, and let 0 ≤ ` ≤ k be an integer. Suppose
that g1 = · · · = g` = ω0, while the remaining functions g j (` < j ≤ k) equal ωq j for some
prime powers q j. Then∑

p1,...,pk≤z
p1···pksquarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

=
1

(k/2)!

∑
τ∈Tk

k/2∏
j=1

cov(gΥ1( j), gΥ2( j)) + Ok((log log x)(2`+k)/2−1).

Proof. All implicit constants in this proof may depend upon k. To each k-tuple
(p1, . . . , pk) counted by the sum on the left-hand side, we can uniquely associate a
(k/2)-tuple (q1, . . . , qk/2) of primes satisfying q1 < · · · < qk/2 such that each q j equals
exactly two of the pi. This correspondence defines a unique τ ∈ Tk, for which τ(i)
equals the integer j such that pi = q j. Therefore, by Definition 5.5,∑

p1,...,pk≤z
p1···pk squarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

=
∑
τ∈Tk

∑
q1<···<qk/2≤z

H(q2
1 · · · q

2
k/2)g1(qτ(1)) · · · gk(qτ(k))

=
1

(k/2)!

∑
τ∈Tk

∑
q1,...,qk/2≤z

q1,...,qk/2 distinct

H(q2
1 · · · q

2
k/2)g1(qτ(1)) · · · gk(qτ(k))

=
1

(k/2)!

∑
τ∈Tk

∑
q1,...,qk/2≤z

q1,...,qk/2 distinct

g1(qτ(1)) · · · gk(qτ(k))
k/2∏
j=1

1
q j

(
1 −

1
q j

)

=
1

(k/2)!

∑
τ∈Tk

∑
q1,...,qk/2≤z

q1,...,qk/2 distinct

k/2∏
j=1

gΥ1( j)(q j)gΥ2( j)(q j)
1
q j

(
1 −

1
q j

)
.

If we fix τ and q1, . . . , qk/2−1, the innermost sum over qk/2 is∑
qk/2≤z

qk/2<{q1,...,qk/2−1}

gΥ1(k/2)(qk/2)gΥ2(k/2)(qk/2)
1

qk/2

(
1 −

1
qk/2

)

= cov(gΥ1(k/2), gΥ2(k/2)) −
k/2−1∑

j=1

gΥ1(k/2)(q j)gΥ2(k/2)(q j)
1
q j

(
1 −

1
q j

)
= cov(gΥ1(k/2), gΥ2(k/2)) + O(1),
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since each gi(q)� log z for q ≤ z. Summing in turn over qk/2−1, . . . ,q1 in the same way,∑
p1,...,pk≤z

p1···pk squarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

=
1

(k/2)!

∑
τ∈Tk

k/2∏
j=1

(cov(gΥ1( j), gΥ2( j)) + O(1)).

Upon multiplying out the product corresponding to some τ ∈ Tk, we obtain the
leading term

k/2∏
j=1

cov(gΥ1( j), gΥ2( j))

together with terms that involve at most k/2 − 1 covariances. An examination of
Lemmas 5.2–5.4 reveals that the order of magnitude of the leading term (as a function
of z) is (log log z)(2`+k)/2, regardless of how the g j are paired with one another by τ,
and that every nonleading term is � (log log z)(2`+k)/2−1 uniformly in the possibilities
for the g j, we conclude that∑

p1,...,pk≤z
p1···pk squarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

=
1

(k/2)!

∑
τ∈Tk

k/2∏
j=1

cov(gΥ1( j), gΥ2( j)) + Ok((log log x)(2`+k)/2−1),

as desired (where we have used z = x1/2k in the error term). �

Lemma 5.7. Let k be a positive integer, and let g1, . . . , gk be functions satisfying
g1(p), . . . , gk(p)� log p. Then for any 1 ≤ i ≤ k,

∑
p1,...,pk≤z

ω0(pi)>4k log log z

H(p1 · · · pk)g1(p1) · · · gk(pk)�k
1

(log z)1/2 .

Proof. All implicit constants in this proof may depend upon k. Suppose that q1, . . . , qs

are the distinct primes such that {p1, . . . , pk} = {q1, . . . ,qs}, and let m denote any integer
such that qm = pi. From Definition 5.5, we know that 0 ≤ H(p1 · · · pk) ≤ H(q2

1 · · · q
2
s) ≤
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1/q1 · · · qs. Therefore, from the hypothesis on the sizes of the g j(p),∑
p1,...,pk≤z

ω0(pi)>4k log log z

H(p1 · · · pk)g1(p1) · · · gk(pk)

�k (log z)k
k∑

s=1

s∑
m=1

∑
q1,...,qs≤z

ω0(qm)>4k log log z

1
q1 · · · qs

�k (log z)k
k∑

s=1

s∑
m=1

( ∑
qm≤z

ω0(qm)>4k log log z

1
qm

) ∏
1≤i≤k
i,m

∑
qi≤z

1
qi

�k (log z)k
k∑

s=1

(log log z)s
s∑

m=1

∑
qm≤z

ω0(qm)>4k log log z

1
qm

(5.8)

by Mertens’s theorem. Note that∑
qm≤z

ω0(qm)>4k log log z

1
qm

=
∑
qm≤z

ω(qm−1)>4k log log z

1
qm
≤

∑
n≤z

ω(n)>4k log log z

1
n
.

A result of Erdős and Nicolas [5] implies that the number of n ≤ x satisfying ω(n) >
4k log log x is � x/(log x)1+4k log 4k−4k; partial summation then implies that the right-
hand sum is� 1/(log x)4k log 4k−4k. Equation (5.8) therefore implies∑

p1,...,pk≤z
ω0(pi)>4k log log z

H(p1 · · · pk)g1(p1) · · · gk(pk)�k (log z)k(log log z)k 1
(log z)4k log 4k−4k ,

and the lemma follows from the fact that 4k log 4k − 5k > 1
2 for k ≥ 1. �

Lemma 5.8. Let k be a positive integer, and let 0 ≤ ` ≤ k be an integer. Suppose that
g1 = · · · = g` = ω0, while the remaining functions g j (` < j ≤ k) equal ωq j for some
prime powers q j. When k is even,∑

p1,...,pk≤z
p1···pk squarefull
#{p1,...,pk}<k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)�k (log log x)(2`+k)/2−1,

while when k is odd,∑
p1,...,pk≤z

p1···pk squarefull
#{p1,...,pk}<k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)�k (log log x)(2`+k−1)/2.

We remark that when k is odd, the condition of summation #{p1, . . . , pk} < k/2 is
always satisfied; we have nevertheless included the condition, for later convenience.
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Proof. All implicit constants in this proof may depend upon k. We begin by noting
that by Lemma 5.7, it suffices to consider the sum on the left-hand side with the extra
summation condition maxω0(pi) ≤ 4k log log z inserted.

To each k-tuple (p1, . . . , pk) counted by the sum on the left-hand side, we associate
the positive integer s = #{p1, . . . , pk}, the primes q1 < · · · < qs such that {q1, . . . , qs} =

{p1, . . . , pk}, and the integers γ1, . . . , γs ≥ 2 such that q j equals exactly γ j of the pi; note
that γ = (γ1, . . . , γs) is a composition, not a partition, of k, since we are not assuming
any monotonicity of the γ j. Let Tγ denote the set of functions from {1, . . . , k} to
{1, . . . , s} such that for each 1 ≤ j ≤ s, exactly γ j elements of {1, . . . , k} are mapped
to j. Given any τ ∈ Tγ, define Υ1( j) and Υ2( j) to be two distinct preimages of j in
{1, . . . , k}; we will never need to know exactly which two preimages or to distinguish
between the two. Finally, for any such τ, define `′ to be the number of functions among
gΥ1(1), gΥ2(1), . . . , gΥ1(s), gΥ2(s) that equal ω0, and set Mτ = (4k log log z)`−`

′

.

First, observe that

∑
p1,...,pk≤z

p1···pk squarefull
#{p1,...,pk}<k/2

maxω0(pi)≤4k log log z

H(p1 · · · pk)g1(p1) · · · gk(pk)

=
∑

1≤s<k/2

∑
q1<···<qs≤z

maxω0(qi)≤4k log log z

∑
γ1,...,γs≥2
γ1+···+γs=k

H(qγ1
1 · · · q

γs
s )

∑
τ∈Tγ

g1(qτ(1)) · · · gk(qτ(k)).

By Definition 5.5, we may bound H(qγ1
1 · · · q

γs
s ) by H(q2

1 · · · q
2
s). Moreover, in the

innermost summand, we retain all of the factors of the form gΥ1( j)(q j) and gΥ2( j)(q j)
while bounding all of the other gi(qτ(i)) by their pointwise upper bounds, which results
in a factor of Mτ:

∑
p1,...,pk≤z

p1···pk squarefull
#{p1,...,pk}<k/2

maxω0(pi)≤4k log log z

H(p1 · · · pk)g1(p1) · · · gk(pk)

≤
∑

1≤s<k/2

∑
q1<···<qs≤z

∑
γ1,...,γs≥2
γ1+···+γs=k

H(q2
1 · · · q

2
s)

∑
τ∈Tγ

Mτ

s∏
j=1

gΥ1( j)(q j)gΥ2( j)(q j)

=
∑

1≤s<k/2

1
s!

∑
q1,...,qs≤z

∑
γ1,...,γs≥2
γ1+···+γs=k

∑
τ∈Tγ

Mτ

s∏
j=1

gΥ1( j)(q j)gΥ2( j)(q j)
1
q j

(
1 −

1
q j

)
.
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Moving the sum over the q j to the inside and summing,∑
p1,...,pk≤z

p1···pk squarefull
#{p1,...,pk}<k/2

maxω0(pi)≤4k log log z

H(p1 · · · pk)g1(p1) · · · gk(pk)

≤
∑

1≤s<k/2

1
s!

∑
γ1,...,γs≥2
γ1+···+γs=k

∑
τ∈Tγ

Mτ

s∏
j=1

cov(gΥ1( j), gΥ2( j)).

An examination of Lemmas 5.2–5.4 reveals that each product on the right-hand
side is � (log log z)s+`′ regardless of how the g j are paired with one another by τ;
consequently,

Mτ

s∏
j=1

cov(gΥ1( j), gΥ2( j))�k (log log z)`−`
′

(log log z)s+`′

= (log log z)s+` ≤

(log log x)k/2−1+` if k is even,
(log log x)(k−1)/2+` if k is odd.

The lemma follows upon summing over τ, the γi and s, which results in a constant that
depends only on k. �

We are now ready to establish the main result of this section, which will be
used repeatedly in Section 6. Recall that the functions fp and Fg were defined in
Definition 3.2.

Proposition 5.9. Let k be a positive even integer, and let 0 ≤ ` ≤ k be an integer.
Suppose that g1 = · · · = g` = ω0, while the remaining functions g j (` < j ≤ k) equal
ωq j for some prime powers q j. When k is even,∑

n≤x

k∏
j=1

Fg j (n) =
x

(k/2)!

∑
τ∈Tk

k/2∏
j=1

cov(gΥ1( j), gΥ2( j)) + Ok(x(log log x)(2`+k)/2−1),

while when k is odd, ∑
n≤x

k∏
j=1

Fg j (n)�k x(log log x)(2`+k−1)/2.

Proof. All implicit constants in this proof may depend upon k. Expanding out the
left-hand side using Definition 3.2 results in∑

n≤x

k∏
j=1

Fg j (n) =
∑
n≤x

k∏
j=1

∑
p≤z

g j(p) fp(n)

=
∑

p1,...,pk≤z

g1(p1) · · · gk(pk)
∑
n≤x

fp1···pk (n)

=
∑

p1,...,pk≤z

g1(p1) · · · gk(pk)(H(p1 · · · pk)x + O(2ω(p1···pk))),
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where the last equality follows from [8, equation before Equation (9)] with a slight
change of notation. Each ωq is bounded by 1, while ω0(p) = ω(p − 1) is trivially
bounded by log p/log 2; in particular, 2g j(p j)� log z for all p j ≤ z. Therefore,∑

p1,...,pk≤z

g1(p1) · · · gk(pk)2ω(p1···pk) �
∑

p1,...,pk≤z

k∏
j=1

log z = (π(z) log z)k � zk =
√

x,

and so ∑
n≤x

k∏
j=1

Fg j (n) = x
∑

p1,...,pk≤z

H(p1 · · · pk)g1(p1) · · · gk(pk) + O(
√

x).

Since H(p1 · · · pk) vanishes unless p1 · · · pk is squarefull by Definition 5.5, there are at
most k/2 distinct primes among p1, . . . , pk, and so we can write∑
p1,...,pk≤z

H(p1 · · · pk)g1(p1) · · · gk(pk) =
∑

p1,...,pk≤z
p1···pk squarefull
#{p1,...,pk}=k/2

H(p1 · · · pk)g1(p1) · · · gk(pk)

+
∑

p1,...,pk≤z
p1···pk squarefull
#{p1,...,pk}<k/2

H(p1 · · · pk)g1(p1) · · · gk(pk).

The proposition now follows upon appealing to Lemmas 5.6 and 5.8. �

6. Calculating the moments

We are now ready to carry out, for h ≥ 1, the computation of the moments Mh(x).
In particular, the proof of Proposition 1.3 requires some preparatory work, which we
organize into Lemmas 6.1–6.3. We also find an asymptotic formula for the function
D(x) in Proposition 6.5; together with Lemmas 6.4 and 6.6, this calculation reveals
the origins of the perhaps mysterious constants A, B, and C appearing in Theorem 1.1.
Finally, we proof Proposition 1.3 at the end of this section.

Recall that X = (log log x)1/2(log log log x)2, a notation that will persist throughout
this section; we shall always assume that X ≥ 2. As our starting point, we define

S 1 =
∑

2≤q≤X

Λ(q)Fωq (n)2 and S 2 =
∑

2≤q≤X

2Λ(q)µ(ωq)Fωq (n) (6.1)

and use Equations (1.4) and (3.3) to write

Mh(x) =
∑
n≤x

(Pn(x) − D(x))h =
∑
n≤x

(log 2 · Fω0 (n) + S 1 + S 2)h

=
∑

h0,h1,h2≥0
h0+h1+h2=h

(
h

h0, h1, h2

)∑
n≤x

(log 2 · Fω0 (n))h0 S h1
1 S h2

2 ,

(6.2)
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where the
(

h
h0,h1,h2

)
are multinomial coefficients. Since µ(ωq) is large and positive while

Fωq is an oscillatory function, and Fω0 is significantly larger on average than any Fωq

with q ≥ 2, our intuition should be that the largest summands on the right-hand side
correspond to h1 = 0. Indeed, the following lemma gives an alternative expression for
the sum of these large summands, in a notation that will allow us to apply our work
from Section 4. Recall that, for convenience, we set q0 = 0 (so that ωq0 = ω0).

Lemma 6.1. Let h be a positive integer. In the notation of Definition 4.6 and
Equation (6.1),∑

h0,h1,h2≥0
h0+h1+h2=h

h1=0

(
h

h0, h1, h2

)
(log 2 · Fω0 (n))h0 S h2

2 =

h∑
h0=0

(
h
h0

)∑
n≤x

(log 2 · Fω0 (n))h0 S h−h0
2

=
∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

µ(ωqw(h,β, j) )
∑
n≤x

h∏
i=1

Fωqv(h,β,i)
(n).

Proof. The first equality is a simple change of variables, so we focus on the second
equality. Since ωq(n) = µ(ωq) + Fωq (n) by Equation (3.2), the formulas (3.1) can be
combined as

Pn(x) − D(x) = log 2 · (ω0(n) − µ(ωq)) +
1
4

∑
2≤q≤X

(ωq(n)2 − µ(ωq)2)Λ(q)

= log 2 · Fω0 (n) +
1
4

∑
2≤q≤X

(2µ(ωq)Fωq (n) + Fωq (n)2)Λ(q)

= log 2 · Fωq0
(n) +

1
2

ρ(X)∑
i=1

Λ(qi)Fωqi
(n)µ(ωqi ) +

ρ(X)∑
i=1

Λ(qi)Fωqi
(n)2

= Q(Fωq0
(n) + µ(ωq0 ), . . . , Fωqρ(X)

(n) + µ(ωqρ(X) ))
−Q(µ(ωq0 ), . . . , µ(ωqρ(X) ))

by comparison to Equation (4.2). Therefore, by Equation (1.4) and Definition 4.6,

Mh(x) =
∑
n≤x

(Pn(x) − D(x))h =
∑
n≤x

Rh(Fω0 (n), . . . , Fωq`
(n), µ(ω0), . . . , µ(ωq` ))

=
∑
n≤x

Bh∑
β=1

rhβ

khβ∏
i=1

Fωqv(h,β,i)
(n)

k̃hβ∏
j=1

µ(ωqw(h,β, j) )

=

Bh∑
β=1

rhβ

k̃hβ∏
j=1

µ(ωqw(h,β, j) )
∑
n≤x

khβ∏
i=1

Fωqv(h,β,i)
(n).

Note that each monomial on the right-hand side has khβ factors of the form Fωq for
various 0 ≤ q ≤ X.
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On the other hand, if we insert Definitions (6.1) into the right-hand side of
Equation (6.2) and expand out the powers S h1

1 S h2
2 , each resulting monomial will have

h0 + 2h1 + h2 factors of the form Fωq . Therefore, for any integer h ≤ m ≤ 2h,∑
h0,h1,h2≥0

h0+h1+h2=h
h0+2h1+h2=m

(
h

h0, h1, h2

)∑
n≤x

(log 2 · Fω0 (n))h0 S h1
1 S h2

2

=
∑
β≤Bh
khβ=m

rhβ

k̃hβ∏
j=1

µ(ωqw(h,β, j) )
∑
n≤x

khβ∏
i=1

Fωqv(h,β,i)
(n).

In particular, h0 + 2h1 + h2 = m in these sums precisely when h1 = 0, so the m = h case
of the above equation is equivalent to the statement of the lemma. �

The following preliminary lemma estimates a sum that appears more than once in
the proof of Lemma 6.3 below. For the remainder of this section, all implicit constants
may depend upon h, h0, h1, and h2.

Lemma 6.2. For any nonnegative integers h1 and h2,

∑
2≤q1,...,qh1+h2≤X

h1+h2∏
i=1

Λ(qi)
h1+h2∏
i=h1+1

µ(ωqi )� (log log x)(h1+2h2)/2(log log log x)2h1+h2 .

Proof. We sum on each qi separately. For each 1 ≤ i ≤ h1, the prime number theorem
yields ∑

2≤qi≤X

Λ(qi)� X = (log log x)1/2(log log log x)2

giving a total contribution of (log log x)h1/2(log log log x)2h1 . On the other hand, when
h1 + 1 ≤ i ≤ h1 + h2, Equation (6.10) gives

µ(ωqi )�
log log x
φ(qi)

since q ≤ X < log x. Therefore, for each h1 + 1 ≤ i ≤ h1 + h2,∑
2≤qi≤X

Λ(qi)µ(ωqi )� log log x
∑

2≤qi≤X

Λ(qi)
φ(qi)

� log log x · log log log x

by partial summation, giving a total contribution of (log log x · log log log x)h2 .
Collecting exponents yields the lemma. �

We now handle all the terms on the right-hand side of Equation (6.2) when h is odd,
and the lower-order terms in the case when h is even, with the following lemma. We
do so by brute-force expansion of the hth power and using the results of Section 5.
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Lemma 6.3. Let h0, h1, and h2 be nonnegative integers, and set h = h0 + h1 + h2.
Suppose that either h is odd, or h is even and h1 , 0. Then with S 1 and S 2 defined as
in Equation (6.1),∑

n≤x

(log 2 · Fω0 (n))h0 S h1
1 S h2

2 � x(log log x)3h/2−1/4(log log log x)2h

for x ≥ ee3
.

Proof. Since

S h1
1 =

( ∑
2≤q≤X

Λ(q)Fωq (n)2
)h1

=
∑

2≤q1,...,qh1≤X

h1∏
i=1

Λ(qi)Fωqi
(n)2

and

S h2
2 =

( ∑
2≤q≤X

2Λ(q)µ(ωq)Fωq (n)
)h2

�
∑

2≤q1,...,qh2≤X

h2∏
i=1

Λ(qi)µ(ωqi )Fωqi
(n),

the sum under consideration satisfies∑
n≤x

(log 2 · Fω0 (n))h0 S h1
1 S h2

2

�
∑
n≤x

∑
2≤q1,...,qh1+h2≤X

Fω0 (n)h0

h1+h2∏
i=1

Λ(qi)
h1+h2∏
i=h1+1

µ(ωqi )
h1∏
i=1

Fωqi
(n)2

h1+h2∏
i=h1+1

Fωqi
(n)

=
∑

2≤q1,...,qh1+h2≤X

h1+h2∏
i=1

Λ(qi)
h1+h2∏
i=h1+1

µ(ωqi )
(∑

n≤x

Fω0 (n)h0

h1∏
i=1

Fωqi
(n)2

h1+h2∏
i=h1+1

Fωqi
(n)

)
.

(6.3)

We will consider two cases, depending on the parity of h0 + h2; when h0 + h2 is
even, we additionally assume that h1 , 0. A moment’s thought verifies that these two
cases do exhaust the possibilities for h0, h1, and h2.

Case 1: h0 + h2 is odd. In the inner sum on the right-hand side of Equation (6.3), each
summand is the product of h0 + 2h1 + h2 values of F-functions. By Proposition 5.9
with ` = h0 and k = h0 + 2h1 + h2 (which is odd),

∑
n≤x

Fω0 (n)h0

h1∏
i=1

Fωqi
(n)2

h1+h2∏
i=h1+1

Fωqi
(n)� x(log log x)(3h0+2h1+h2−1)/2.

https://doi.org/10.1017/S1446788718000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000319


82 G. Martin and L. Troupe [37]

Inserting this upper bound into the right-hand side of Equation (6.3) yields∑
n≤x

(log 2 · Fω0 (n))h0 S h1
1 S h2

2

� x(log log x)(3h0+2h1+h2−1)/2
∑

2≤q1,...,qh1+h2≤X

h1+h2∏
i=1

Λ(qi)
h1+h2∏
i=h1+1

µ(ωqi )

� x(log log x)(3h0+2h1+h2−1)/2 · (log log x)(h1+2h2)/2(log log log x)2h1+h2

≤ x(log log x)(3h−1)/2(log log log x)2h

by Lemma 6.2 (since h = h0 + h1 + h2), which establishes the lemma in this case.

Case 2: h0 + h2 is even and h1 , 0. In the inner sum on the right-hand side of
Equation (6.3), each summand is again the product of h0 + 2h1 + h2 values of F-
functions. By Proposition 5.9 with ` = h0 and k = h0 + 2h1 + h2 (which is now even),∑

n≤x

Fω0 (n)h0

h1∏
i=1

Fωqi
(n)2

h1+h2∏
i=h1+1

Fωqi
(n)

� x
∑
τ∈Tk

k/2∏
j=1

cov(ωqΥ1( j) , ωqΥ2( j) ) + x(log log x)(3h0+2h1+h2)/2−1.

Inserting this upper bound into the right-hand side of Equation (6.3) yields∑
n≤x

(log 2 · Fω0 (n))h0 S h1
1 S h2

2

� x
∑

2≤q1,...,qh1+h2≤X

h1+h2∏
i=1

Λ(qi)
h1+h2∏
i=h1+1

µ(ωqi )
∑
τ∈Tk

k/2∏
j=1

cov(ωqΥ1( j) , ωqΥ2( j) )

+ x(log log x)(3h0+2h1+h2)/2−1
∑

2≤q1,...,qh1+h2≤X

h1+h2∏
i=1

Λ(qi)
h1+h2∏
i=h1+1

µ(ωqi )

� x
∑
τ∈Tk

∑
2≤q1,...,qh1+h2≤X

h1+h2∏
i=1

Λ(qi)
h1+h2∏
i=h1+1

µ(ωqi )
k/2∏
j=1

cov(ωqΥ1( j) , ωqΥ2( j) )

+ x(log log x)3h/2−1(log log log x)2h (6.4)

by Lemma 6.2 and an examination of exponents similar to the end of the proof of
Case 1.

Now, by Lemmas 5.2–5.4, for any 0 ≤ q, q′ ≤ X,

cov(ωq, ωq′)�


(log log x)/φ(q) if q, q′ ≥ 2,
(log log x)2/φ(q) if q ≥ 2 and q′ = 0,
(log log x)2/φ(q′) if q′ ≥ 2 and q = 0,
(log log x)3 if q = q′ = 0.

(6.5)
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Notice that the first upper bound is, intentionally, crude in general: by Lemma 5.2, we
could divide not just by φ(q) but by φ([q, q′]). However, φ([q, q′]) can be as small as
φ(q) in the worst case (when q′ divides q). Fortunately, our argument will succeed even
with this worst-case assumption. (We have also bounded log log z above by log log x,
which is fairly insignificant.)

For a given τ ∈ Tk (which is a two-to-one function), define ∆(τ) to be a subset
of {1, . . . , h1} of size at least h1/2 such that τ is one-to-one when restricted to ∆(τ).
When we use the upper bounds (6.5) in the innermost product on the right-hand
side of Equation (6.4), the resulting estimate will include a factor of

∏
i∈∆(τ) 1/φ(qi).

Furthermore, the resulting exponent of log log x is k/2 + h0 = (3h0 + 2h1 + h2)/2,
regardless of how the g j are paired with one another by τ. In other words,
Equation (6.4) becomes∑

n≤x

(log 2 · Fω0 (n))h0 S h1
1 S h2

2

� x(log log x)(3h0+2h1+h2)/2
∑
τ∈Tk

∑
2≤q1,...,qh1+h2≤X

∏
i∈∆(τ)

Λ(qi)
φ(qi)

×
∏

1≤i≤h1+h2
i<∆(τ)

Λ(qi)
h1+h2∏
i=h1+1

µ(ωqi )

+ x(log log x)3h/2−1(log log log x)2h. (6.6)

We now sum on each qi separately (still fixing τ for the moment), in a similar manner
to the proof of Lemma 6.2. For each 1 ≤ i ≤ h1 such that i < ∆(τ), the prime number
theorem gives ∑

2≤qi≤X

Λ(qi)� X = (log log x)1/2(log log log x)2

resulting in a total contribution of (log log x)(h1−#∆(τ))/2(log log log x)2(h1−#∆(τ)). On the
other hand, for each 1 ≤ i ≤ h1 such that i ∈ ∆(τ), partial summation gives∑

2≤qi≤X

Λ(qi)
φ(qi)

� log X � log log log x,

resulting in a total contribution of (log log log x)#∆(τ). Lastly, when h1 + 1 ≤ i ≤ h1 + h2,
Equation (6.10) gives∑

2≤qi≤X

Λ(qi)µ(ωqi )� log log x
∑

2≤qi≤X

Λ(qi)
φ(qi)

� log log x · log log log x

as above, resulting in a total contribution of (log log x · log log log x)h2 . The product of
all these contributions is

(log log x)(h1−#∆(τ))/2+h2 (log log log x)2h1+h2−#∆(τ) ≤ (log log x)h1/4+h2 (log log log x)2h

≤ (log log x)h1/2+h2−1/4(log log log x)2h,

where we have used the assumption h1 > 0 in the last inequality.
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Finally, we insert this estimate back into Equation (6.6), which gives∑
n≤x

(log 2 · Fω0 (n))h0 S h1
1 S h2

2

� x(log log x)(3h0+2h1+h2)/2
∑
τ∈Tk

(log log x)h1/2+h2−1/4(log log log x)2h

+ x(log log x)3h/2−1(log log log x)2h

� x(log log x)3h/2−1/4(log log log x)2h

(the sum over τ can now be ignored, since the implicit constant may depend upon h),
which completes the proof of the lemma. �

Two particular sums of arithmetic functions will arise in the evaluation of the main
term for Mh(x); we asymptotically evaluate those sums in the following lemma, after
which we give an asymptotic formula for the ‘mean’ D(x) that appears in the definition
of Mh(x).

Lemma 6.4. Recall from Theorem 1.1 that

A0 =
1
4

∑
p

p2 log p
(p − 1)3(p + 1)

and B =
1
4

∑
p

p3(p4 − p3 − p3 − p − 1)(log p)2

(p − 1)6(p + 1)2(p2 + p + 1)
.

When X > 2,

(a)
1
4

∑
2≤q≤X

Λ(q)
φ(q)2 = A0 + O

( 1
X

)
;

(b)
1
4

∑
2≤q1≤X

∑
2≤q2≤X

Λ(q1)Λ(q2)
φ(q1)φ(q2)φ([q1, q2])

= 4A2
0 + B + O

( log X
X

)
.

Proof. (a) We need only observe that

∑
q≥2

Λ(q)
φ(q)2 =

∑
p

∞∑
j=1

Λ(p j)
φ(p j)2 =

∑
p

log p
(p − 1)2

∞∑
j=1

1
(p j−1)2 =

∑
p

log p
(p − 1)2

p2

p2 − 1
= 4A0,

(6.7)
while partial summation bounds the tail of this convergent series by

1
4

∑
q>X

Λ(q)
φ(q)2 �

1
X
.

(b) If q1 = pr
1 and q2 = ps

2 with p1 , p2, then [q1, q2] = pr
1 ps

2; on the other hand, if
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q1 = pr and q2 = ps are powers of the same prime, then [q1, q2] = pmax(r,s). Therefore,∑
q1≥2

∑
q2≥2

Λ(q1)Λ(q2)
φ(q1)φ(q2)φ([q1, q2])

=
∑

pr
1

∑
ps

2
p2,p1

(log p1)(log p2)
pr−1

1 (p1 − 1)ps−1
2 (p2 − 1)pr−1

1 (p1 − 1)ps−1
2 (p2 − 1)

+
∑

p

∞∑
r=1

∞∑
s=1

(log p)2

pr−1(p − 1)ps−1(p − 1)pmax(r,s)−1(p − 1)

=

(∑
pr

1

∑
ps

2

(log p1)(log p2)
pr−1

1 (p1 − 1)ps−1
2 (p2 − 1)pr−1

1 (p1 − 1)ps−1
2 (p2 − 1)

−
∑

p

∞∑
r=1

∞∑
s=1

(log p)(log p)
pr−1(p − 1)ps−1(p − 1)pr−1(p − 1)ps−1(p − 1)

)
+

∑
p

∞∑
r=1

∞∑
s=1

(log p)2

pr−1(p − 1)ps−1(p − 1)pmax(r,s)−1(p − 1)
. (6.8)

By Equation (6.7), the double sum on the right-hand side is simply(∑
p j

log p
(p j−1)2(p − 1)2

)2
= (4A0)2.

On the other hand, using the power series identities
∞∑

r=1

∞∑
s=1

xr xsxr xs =

( x2

1 − x2

)2

and
∞∑

r=1

∞∑
s=1

xr xsxmax{r,s} = 2
∞∑

r=1

∞∑
s=r

xr xsxs −

∞∑
r=1

xr xr xr

= 2
∞∑

r=1

x3r

1 − x2 −

∞∑
r=1

x3r =
1 + x2

1 − x2

x3

1 − x3 ,

we may evaluate the pair of triple sums on the right-hand side of Equation (6.8) as∑
p

(
−

p4(log p)2

(p − 1)4

( p−2

1 − p−2

)2
+

p3(log p)2

(p − 1)3

1 + p−2

1 − p−2

p−3

1 − p−3

)
= 4B.

Thus, Equation (6.8) simplifies to

1
4

∑
q1≥2

∑
q2≥2

Λ(q1)Λ(q2)
φ(q1)φ(q2)φ([q1, q2])

= 4A2
0 + B,
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and it therefore suffices to show that the tail∑
q1≥2

∑
q2≥2

Λ(q1)Λ(q2)
φ(q1)φ(q2)φ([q1, q2])

−
∑

2≤q1≤X

∑
2≤q2≤X

Λ(q1)Λ(q2)
φ(q1)φ(q2)φ([q1, q2])

=
∑
q1>X

∑
q2>X

Λ(q1)Λ(q2)
φ(q1)φ(q2)φ([q1, q2])

+ 2
∑

2≤q1≤X

∑
q2>X

Λ(q1)Λ(q2)
φ(q1)φ(q2)φ([q1, q2])

(6.9)

is�(log X)/X.
Since φ([q1, q2]) ≥ φ(q2), the second sum on the right-hand side can be bounded

crudely:

2
∑

2≤q1≤X

∑
q2>X

Λ(q1)Λ(q2)
φ(q1)φ(q2)2 = 2

( ∑
2≤q1≤X

Λ(q1)
φ(q1)

)(∑
q2>X

Λ(q2)
φ(q2)2

)
� log X ·

1
X

by partial summation. Finally, we handle the first sum on the right-hand side of
Equation (6.9) by splitting it as∑

q1>X

∑
q2>X

Λ(q1)Λ(q2)
φ(q1)φ(q2)φ([q1, q2])

=
∑
pr

1>X

∑
ps

2>X
p2,p1

(log p1)(log p2)
φ(pr

1)φ(ps
2)φ(pr

1 ps
2)

+
∑

p

∑
r

pr>X

∑
s

ps>X

(log p)2

φ(pr)φ(ps)φ(pmax(r,s))

≤
∑
pr

1>X

∑
ps

2>X
p2,p1

(log p1)(log p2)
φ(pr

1)2φ(ps
2)2 + 2

∑
p

∑
r

pr>X

∞∑
s=r

(log p)2

φ(pr)φ(ps)φ(ps)

�

(∑
pr>X

log p
p2r

)2
+

∑
pr>X

(log p)2

pr

∞∑
s=r

1
p2s

�

( 1
X

)2
+

∑
pr>X

(log p)2

p3r �
log X

X2

by partial summation. �

Proposition 6.5. Recall that D(x) was defined in Equation (3.1). When x > ee,

D(x) = A(log log x)2 + O
( (log log x)3/2

(log log log x)2

)
,

where A = 1
2 log 2 + A0 as in Theorem 1.1.

Proof. We begin by establishing asymptotics for µ(ω0) and µ(ωq) for q ≤ X. First,

µ(ω0) =
∑
p≤x

ω0(p)
p

=
∑
p≤x

ω2(p)ω0(p)
p

= cov(ω2, ω0) + O(1)

=
1
2

(log log x)2 + O(log log x)
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by Lemma 5.3 (with x in place of z). On the other hand,

µ(ωq) =
∑
p≤x

ωq(p)
p

=
∑
p≤x

p≡1 (mod q)

1
p

=
log log x
φ(q)

+ O
( log q
φ(q)

)
(6.10)

by Lemma 2.12. Squaring, and using the fact that log q = o(log log x) for q in the range
of summation, yields

µ(ωq)2 =
(log log x)2

φ(q)2 + O
( log q
φ(q)2 log log x

)
.

Inserting these estimates for µ(ω0) and µ(ωq) into Equation (3.1),

D(x) =
log 2

2
(log log x)2 + O(log log x)

+
1
4

∑
2≤q≤X

Λ(q)
( (log log x)2

φ(q)2 + O
( log q
φ(q)2 log log x

))
=

log 2
2

(log log x)2 +
1
4

(log log x)2
∑

2≤q≤X

Λ(q)
φ(q)2 + O

(
log log x

∑
2≤q≤X

Λ(q) log q
φ(q)2

)
=

( log 2
2

+
1
4

∑
2≤q≤X

Λ(q)
φ(q)2

)
(log log x)2 + O(log log x)

by partial summation. By Lemma 6.4, we may replace the coefficient of (log log x)2

by A + O(1/X), obtaining

D(x) = A(log log x)2 + O
( (log log x)3/2

(log log log x)2

)
,

as claimed. �

The following lemma gives the asymptotic size of a double sum that will appear
shortly in the proof of Proposition 1.3.

Lemma 6.6. Recall from Theorem 1.1 that C = (log 2)2/3 + 2A0 log 2 + 4A2
0 + B. Then,

ρ(X)∑
i=0

ρ(X)∑
j=0

Qi(µ(ωq0 ), . . . , µ(ωqρ(X) ))Q j(µ(ωq0 ), . . . , µ(ωqρ(X) )) cov(ωqi , ωq j )

= C(log log x)3 + O
( (log log x)5/2

log log log x

)
. (6.11)

Proof. We begin by computing the partial derivatives appearing in the double sum.
Then,

Q0(µ(ωq0 ), . . . , µ(ωqρ(X) )) = log 2

and, for i , 0, we use Equation (6.10) to write

Qi(µ(ωq0 ), . . . , µ(ωqρ(X) )) =
1
2

Λ(qi)µ(ωqi ) =
1
2

Λ(qi)
φ(qi)

log log x + O
(
Λ(qi) log qi

φ(qi)

)
.
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So, by Lemma 5.4, the summand on the left-hand side of Equation (6.11)
corresponding to i = j = 0 is of the form

Q0(µ(ωq0 ), . . . , µ(ωqρ(X) ))Q0(µ(ωq0 ), . . . , µ(ωqρ(X) )) cov(ωq0 , ωq0 )

=
(log 2)2

3
(log log x)3 + O((log log x)2);

similarly, by Lemma 5.3 the summands corresponding to i = 0 and j , 0 are of the
form

Q0(µ(ωq0 ), . . . , µ(ωqρ(X) ))Q j(µ(ωq0 ), . . . , µ(ωqρ(X) )) cov(ωq0 , ωq j )

=
log 2

4
Λ(q j)
φ(q j)2 (log log x)3 + O

(
Λ(qi)(log log x)2

φ(q j)2

)
and the summands corresponding to i , 0 and j = 0 are the same up to labeling. Finally,
by Lemma 5.2 we have that the summands on the left-hand side of Equation (6.11)
corresponding to i , 0 and j , 0 are of the form

Qi(µ(ωq0 ), . . . , µ(ωqρ(X) ))Q j(µ(ωq0 ), . . . , µ(ωqρ(X) )) cov(ωqi , ωq j )

=
1
4

Λ(qi)Λ(q j)
φ(qi)φ(q j)φ([qi, q j])

(log log x)3 + O
(Λ(qi)Λ(q j)
φ(qi)φ(q j)

(log log x)2
)
.

Combining these last three evaluations results in

ρ(X)∑
i=0

ρ(X)∑
j=0

Qi(µ(ωq0 ), . . . , µ(ωqρ(X) ))Q j(µ(ωq0 ), . . . , µ(ωqρ(X) )) cov(ωqi , ωq j )

=
(log 2)2

3
(log log x)3 + O((log log x)2)

+ 2
ρ(X)∑
j=1

( log 2
4

Λ(q j)
φ(q j)2 (log log x)3 + O

(
Λ(qi)(log log x)2

φ(q j)2

))

+

ρ(X)∑
i=1

ρ(X)∑
j=1

(1
4

Λ(qi)Λ(q j)
φ(qi)φ(q j)φ([qi, q j])

(log log x)3 + O
(Λ(qi)Λ(q j)
φ(qi)φ(q j)

(log log x)2
))

=

( (log 2)2

3
+

log 2
2

ρ(X)∑
i=1

Λ(qi)
φ(q j)2 +

1
4

ρ(X)∑
i=1

ρ(X)∑
j=1

Λ(qi)Λ(q j)
φ(qi)φ(q j)φ([qi, q j])

)
(log log x)3

+ O((log log x)2(log log log x)2) (6.12)

by partial summation. By Lemma 6.4, the coefficient of (log log x)3 above is equal to

(log 2)2

3
+ 2 log 2A0 + 4A2

0 + B + O
( 1
(log log x)1/2 log log log x

)
.

Inserting this expression into Equation (6.12) finishes the proof. �
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We now have all of the auxiliary results needed to carry out the asymptotic
evaluation of the moments Mh(x).

Proof of Proposition 1.3. We start from Equation (6.2):

Mh(x) =
∑

h0,h1,h2≥0
h0+h1+h2=h

(
h

h0, h1, h2

)∑
n≤x

(log 2 · Fω0 (n))h0 S h1
1 S h2

2 .

If h ≥ 1 is odd, then Lemma 6.3 applies to every inner sum, yielding

Mh(x)�
∑

h0,h1,h2≥0
h0+h1+h2=h

(
h

h0, h1, h2

)
x(log log x)3h/2−1/4(log log log x)2h

� x(log log x)3h/2−1/4(log log log x)2h,

since the implicit constant may depend upon h. In particular, Mh(x) = o(x(log
log x)3h/2) for each odd h, as required.

On the other hand, if h ≥ 2 is even, then Lemma 6.3 applies to all summands except
those for which h1 = 0, so that

Mh(x) =
∑

h0,h1,h2≥0
h0+h1+h2=h

h1=0

(
h

h0, h1, h2

)
(log 2 · Fω0 (n))h0 S h2

2

+ O(x(log log x)3h/2−1/4(log log log x)2h)

=
∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

µ(ωqw(h,β, j) )
∑
n≤x

h∏
i=1

Fωqv(h,β,i)
(n)

+ O(x(log log x)3h/2−1/4(log log log x)2h) (6.13)

by Lemma 6.1. Notice, in this translation of notation, that factors of the form µ(ωq) on
the right-hand side all arise from the term S h2

2 ; in particular, k̃hβ = h2, and each qw(h,β, j)

is a prime power not exceeding X (rather than 0), so that µ(ωqw(h,β, j) )� log log x by
Equation (6.10). Similarly, of the factors of the form Fωq , we see that h0 of them are
Fω0 , while the other h2 are of the form Fωq for prime powers q. Therefore, in the main
term in Equation (6.13), we may apply Proposition 5.9 with ` = h0 and k = h = h0 + h2
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to obtain

∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

µ(ωqw(h,β, j) )
∑
n≤x

h∏
i=1

Fωqv(h,β,i)
(n)

=
∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

µ(ωqw(h,β, j) )
( x
(h/2)!

∑
τ∈Th

h/2∏
i=1

cov(ωqv(h,β,Υ1(i)) , ωqv(h,β,Υ2(i)) )

+ O(x(log log x)(2h0+h)/2−1)
)

=
x

(h/2)!

∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

µ(ωqw(h,β, j) )
∑
τ∈Th

h/2∏
i=1

cov(ωqv(h,β,Υ1(i)) , ωqv(h,β,Υ2(i)) )

+ O((log log x)h2 · x(log log x)(3h0+h2)/2−1); (6.14)

note that this last error term is exactly x(log log x)3h/2−1. By Proposition 4.8 with
y j = µ(ωq j ) and zi j = cov(ωqi , ωq j ),

x
(h/2)!

∑
β≤Bh
khβ=h

rhβ

k̃hβ∏
j=1

µ(ωqw(h,β, j) )
∑
τ∈Th

h/2∏
i=1

cov(ωqv(h,β,Υ1(i)) , ωqv(h,β,Υ2(i)) )

= shx
(ρ(X)∑

i=0

ρ(X)∑
j=0

Qi(µ(ωq0 ), . . . , µ(ωqρ(X) ))Q j(µ(ωq0 ), . . . , µ(ωqρ(X) )) cov(ωqi , ωq j )
)h/2

= shx
(
C(log log x)3 + O

( (log log x)5/2

log log log x

))h/2

= Ch/2shx(log log x)3h/2 + O(x(log log x)3(h−1)/2)

by Lemma 6.6. Combining this evaluation with Equations (6.13) and (6.14) yields

lim
x→∞

Mh(x)
Ch/2x(log log x)3h/2 = sh =

h!
(h/2)!2h/2 ,

which completes the proof when h is even. �

7. The method of moments

We now describe the argument that deduces the Erdős–Kac law for log G(n)
(Theorem 1.1) from the asymptotic formula for the moments given in Proposition 1.3.
While this deduction is fairly standard, for the sake of completeness we include the
rest of the proof.
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For any real number u and positive real number x, let kx(u) denote the number of
integers n ≤ x such that Pn(x) < D(x) + u ·

√
C(log log x)3/2. Then σx(u) = kx(u)/x is

the cumulative distribution function of the random variable Yx obtained by choosing
n ≤ x uniformly at random and then calculating (Pn(x) − D(x))/

√
C(log log x)3/2; the

hth moment of this random variable equals∫ ∞

−∞

uh dσx(u) =
1
x

∑
n≤x

( Pn(x) − D(x)
√

C(log log x)3/2

)h
=

Mh(x)
xCh/2(log log x)3h/2 .

For every fixed h, by Proposition 1.3, this hth moment converges (as x→ ∞) to
sh = h!/2h/2(h/2)! when h is even and to 0 when h is odd. By the ‘method of moments’
from probability (see [3, Theorem 30.2]), the sequence {Yx} of random variables
converges in distribution to the unique random variable with these moments, which
is the standard normal random variable. (This result is due to Chebyshev for the
normal distribution and was later generalized to any random variable that is uniquely
determined by its moments.) In other words, for any real number u,

lim
x→∞

1
x

#
{
n ≤ x :

Pn(x) − D(x)
√

C(log log x)3/2
< u

}
=

1
√

2π

∫ u

−∞

e−t2/2 dt. (7.1)

On the other hand, Propositions 1.2 and 6.5 imply that

Pn(x) − D(x)
√

C(log log x)3/2
=

log G(n) − A(log log x)2

√
C(log log x)3/2

+ O
( 1
log log log x

)
(7.2)

for all but O(x/log log log x) integers n ≤ x. Furthermore, when n > x/log log log x
we have log log x = (log log n)(1 + O(1/log log x)), and therefore we may modify
Equation (7.2) to

Pn(x) − D(x)
√

C(log log x)3/2
=

log G(n) − A(log log n)2

√
C(log log n)3/2

+ O
( 1
log log log x

)
for all but O(x/log log log x) integers n ≤ x. It follows from this estimate that we also
have

lim
x→∞

1
x

#
{
n ≤ x :

log G(n) − A(log log n)2

√
C(log log n)3/2

< u
}

=
1
√

2π

∫ u

−∞

e−t2/2 dt (7.3)

(by bounding, for a given real number u, the left-hand side of Equation (7.3) above and
below by the left-hand side of Equation (7.1) with u replaced, respectively, by u + ε
and u − ε), which is equivalent to the conclusion of Theorem 1.1.

8. Counting subgroups up to isomorphism, and maximal orders

Recall that I(n) denotes the number of isomorphism classes of subgroups of Z×n .
We are able to quickly establish an Erdős–Kac law for I(n) (Theorem 1.4) by relating
log I(n) to two other φ-additive functions that have already been analyzed by Erdős
and Pomerance.
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Lemma 8.1. For any positive integer n, we have ω(φ(n)) log 2 ≤ log I(n) ≤
Ω(φ(n)) log 2.

Proof. Let Ip(n) denote the number of isomorphism classes of p-subgroups of Z×n ; as
we saw with G(n), we again have

log I(n) =
∑
p|φ(n)

log Ip(n).

This is already enough to imply the lower bound ω(φ(n)) log 2 ≤ log I(n): for every
prime p | φ(n), the quantity Ip(n) counts at least two subgroups of Z×n , namely the
Sylow p-subgroup and the trivial subgroup.

For any such prime p, write the Sylow p-subgroup of Z×n as Zpα1 × Zpα2 × · · ·

for some partition α of the integer νp(φ(n)). Then Ip(n) is exactly the number
of subpartitions of α. Certain subsets of the Ferrers diagram corresponding to α
correspond to subpartitions, while many subsets do not; but the total number of
subsets, 2νp(φ(n)), is certainly an upper bound for the number of subpartitions. We
conclude that∑

p|φ(n)

log Ip(n) ≤
∑
p|φ(n)

log(2νp(φ(n))) =
∑
p|φ(n)

νp(φ(n)) log 2 = Ω(φ(n)) log 2, (8.1)

which is the desired upper bound. �

Proof of Theorem 1.4. Erdős and Pomerance [6] have shown that both ω(φ(n)) and
Ω(φ(n)) satisfy Erdős–Kac laws, in both cases with mean 1

2 (log log n)2 and variance is
1
3 (log log n)3. Thus, as a consequence of Lemma 8.1, log I(n) satisfies an Erdős–Kac
law with mean ( 1

2 log 2)(log log n)2 and variance ( 1
2 log 2)(log log n)3 as well. �

It might be surprising that the simple bounds from Lemma 8.1 suffice to establish
this Erdős–Kac law, despite how seemingly wasteful the inequality (8.1) is. We view
this as a reflection of the anatomical fact that typically, most primes dividing φ(n) are
large and most large primes dividing φ(n) do so only to the first power.

We turn now to the question of determining how large the values of G(n) and I(n)
can become. We start with a pair of arguments (an upper bound and a construction)
that together show that the maximal order of log G(n) has order of magnitude
(log x)2/log log x. In both arguments, it will be helpful to observe that

λp(n) =

λp(n)∑
j=1

1 ≤
λp(n)∑
j=1

ωp j (n)

for any prime p | φ(n), and therefore

∑
p|φ(n)

λp(n) log p ≤
∑
p|φ(n)

λp(n)∑
j=1

ωp j (n) log p = log φ(n) < log x (8.2)

by Equation (2.4).
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Proof of the upper bound in Theorem 1.5. Proposition 2.11 gives

log G(n) =
∑
p|φ(n)

log Gp(n) =
∑
p|φ(n)

( log p
4

λp(n)∑
j=1

ωp j (n)2 + O(λp(n) log p)
)

=
1
4

∑
p|φ(n)

λp(n)∑
j=1

ωp j (n)2 log p + O
( ∑

p|φ(n)

λp(n) log p
)

=
1
4

∑
p|φ(n)

λp(n)∑
j=1

ωp j (n)2 log p + O(log x) (8.3)

by Equation (8.2). On the other hand,

ωp j (n) ≤ ωp j (n) + 2 ≤ ω(n) + 2 <
log x

log log x

(
1 +

1
log log x

)
by the classical upper bound for ω(n) [10, Theorem 2.10]. We use this bound on one
of the two factors of ωp j (n) in each summand on the right-hand side of Equation (8.3),
obtaining

log G(n) <
1
4

∑
p|φ(n)

λp(n)∑
j=1

ωp j (n) log p ·
log x

log log x

(
1 +

1
log log x

)
+ O(log x)

=
log x

4 log log x

(
1 +

1
log log x

)
log φ(n) + O(log x) <

(log x)2

4 log log x

(
1 +

1
log log x

)
by Equation (8.2) again. �

Proof of the lower bound in Theorem 1.5. Choose B = B(3) so that Theorem 5.1 is
valid, and set

V =
(log x)2

(log log x)2B+1

(
1 −

1
log log x

)
Q =

log x
(log log x)2B+1 ;

note that Q < V1/2/(log V)B when x is large enough. Thus, by Equation (5.2),∑
Q<p<2Q

∣∣∣∣∣θ(V; p, 1) −
V

p − 1

∣∣∣∣∣� V
(log V)3 .

Since the number of primes between Q and 2Q is� Q/log Q, we may choose a prime
p in that interval such that

θ(V, p, 1) =
V

p − 1
+ O

( V
(log V)3

log Q
Q

)
≤

V
Q

+ O
( V
(log V)3

log Q
Q

)
= log x −

log x
log log x

+ O
( log x
(log log x)2

)
. (8.4)
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Now, fixing this prime p that was chosen above, consider the integer

n =
∏
q≤V

q≡1 (mod p)

q = eθ(V,p,1),

where p is the prime chosen above; by Equation (8.4), we see that n < x when x
is sufficiently large. Notice also that log p = log log x + O(log log log x) and log V =

2 log log x + O(log log log x), and therefore

ωp(n) = π(V; p, 1) ≥
θ(V; p, 1)

log V
≥

log x
2 log log x

(
1 + O

( log log log x
log log x

))
by Equation (8.4). Consequently,

log G(n) ≥ log Gp(n)

=
log p

4

λp(n)∑
j=1

ωp j (n)2 + O(λp(n) log p)

≥
log p

4
ωp(n)2 + O(λp(n) log p)

≥
log log x + O(log log log x)

4

( log x
2 log log x

)2(
1 + O

( log log log x
log log x

))
+ O(λp(n) log p)

=
log2 x

16 log log x

(
1 + O

( log log log x
log log x

))
+ O(λp(n) log log x).

Since Equation (8.2) implies that λp(n) < log x, the above estimate establishes the
desired lower bound. �

Theorem 1.5 shows that the maximal order of log G(n) is substantially larger than
the typical size of logG(n). The same phenomenon holds, to a somewhat lesser degree,
for log I(n), which we now show via another pair of arguments (an upper bound and a
construction) after the following preliminary lemma.

Lemma 8.2. For any x ≥ 3 and any integer m ≤ x,∑
p|m

1
log p

<
log x

(log log x)2 + O
( log x
(log log x)3

)
.

Proof. First suppose that m0 =
∏

p≤y p for some real number y. Then log x > log m0 =∑
p≤y log p = θ(y) = y + O(y/log y) by the prime number theorem, which implies that

y < log x + O(log x/log log x). Then, by partial summation,∑
p|m0

1
log p

=
∑
p≤y

1
log p

=
y

log2 y
<

log x
(log log x)2 + O

( log x
(log log x)3

)
.

For general m, choose a real number y such that π(y) = ω(m), and define m0 =∏
p≤y p. Then m0 ≤ m ≤ x, while

∑
p|m0

1/log p ≥
∑

p|m 1/log p since both sums have
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the same number of summands and each individual summand in the first sum is at least
as large as the corresponding summand in the second sum. Consequently, the desired
upper bound for

∑
p|m 1/log p follows from the already established upper bound for∑

p|m0
1/log p. �

Proof of the upper bound in Theorem 1.6. Given n ≤ x, we write

φ(n) =
∏

pkp ‖φ(n)

pkp ;

since φ(n) ≤ n ≤ x, ∑
pkp ‖φ(n)

kp log p = log φ(n) ≤ log x. (8.5)

For any prime p dividing φ(n), the p-Sylow subgroup of Z×n is of the form Zpα1 × Zpα2 ×

· · · for some partition α of the integer kp. As discussed at the beginning of Section 2.1,
Ip(n) is the number of subpartitions of α. We bound this number crudely by noting that
every subpartition of α is a partition of some integer j ∈ {0, 1, . . . , kp}; therefore, with
P(m) denoting the usual partition function,

Ip(n) ≤
kp∑
j=0

P( j) ≤ (kp + 1)P(kp). (8.6)

A consequence of Lehmer’s formula for the partition function, as described in [2, proof
of Theorem 2.1], is that for every positive integer m,

(m + 1)P(m) < (m + 1) ·

√
3

12m

(
1 +

1
√

m

)
exp

(
π

6

√
24m − 1

)
< exp

(
π

√
2
3

m
)
,

where the last inequality can be verified by an easy calculation. In particular, the upper
bound (8.6) implies that log Ip(n) < π

√
2kp/3, and thus

log I(n) =
∑
p|φ(n)

log Ip(n) < π

√
2
3

∑
p|φ(n)

√
kp. (8.7)

But by Cauchy–Schwarz,( ∑
p|φ(n)

√
kp

)2
≤

( ∑
p|φ(n)

kp log p
)( ∑

p|φ(n)

1
log p

)
≤ log x ·

log x
(log log x)2

(
1 + O

( 1
log log x

))
by Equation (8.5) and Lemma 8.2; combining this bound with Equation (8.7)
completes the proof of the upper bound. �

Proof of the lower bound in Theorem 1.6. We employ a strategy suggested by
Pomerance (private communication). Set U = 1

5 log x − log x/log log x, define m =∏
p≤U p, and let q be the smallest prime that is congruent to 1 (mod m). By Linnik’s
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theorem, with the best current value of Linnik’s constant due to Xylouris [14], we
know that q� m5. On the other hand, by the prime number theorem,

log m = θ(U) = U + O
( U

log2 U

)
=

1
5

log x − log x/log log x + O
( log x
(log log x)2

)
,

which shows that m = o(x1/5) and therefore q < x when x is large enough.
Since m divides q − 1, the prime number theorem also gives

ω(φ(q)) = ω(q − 1) ≥ ω(m) = π(U) =
U

log U
+ O

( U

log2 U

)
=

log x
5 log log x

+ O
( log x
(log log x)2

)
.

The lower bound now follows from the inequality log I(q) ≥ log 2 · ω(φ(q)), as noted
in the proof of Lemma 8.1. �
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