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Introduction

Throughout we consider operators on a reflexive Banach space X. We con-
sider certain algebraic properties of F(X), K(X) and B(X) with the general aim
of examining their dependence on the possession by X of the approximation
property. B(X) (resp. K(XJ) denotes the algebra of all bounded (resp. compact)
operators on .Yand F(X) denotes the closure in B(X) of its finite rank operators.
The two questions we consider are:

(1) Is K(X) equal to the set of all operators in B(X) whose right and left
multiplication operators on F(X) (or on B{X)) are weakly compact?

(2) Is F(X) a dual algebra?

The answer to both questions is in the affirmative if X has the approximation
property. In Sections 2 and 3 we discuss the general cases and show for example
that every element of K(X) does act weakly compactly on F(X). However,
completely satisfactory answers are only obtained when X is taken to be a closed
subspace of lp (1 <p< oo). That this is not quite as restrictive as might at first
appear is illustrated by (1) and (4). For such X it is shown in Section 2 that the
answer to (1) is always " yes " and in Section 4 that the answer to (2) is " yes "
if and only if X has the approximation property.

Other algebras of operators on X which we shall consider are N(X) the
nuclear operators on X (with the nuclear norm T) and N'(X) = (N(X))' (with
the operator norm). We denote by y the greatest cross-norm on X®X'.

If two Banach spaces E and F are isomorphic then

d(E, F) = inf {|| T || . || T~l ||: Tan isomorphism of £ onto F).

If S is a subset of a normed linear space then lin S denotes the linear hull of S
and fin S its closure. If k>0 and £ is a normed linear space then (E)k is the
closed ball in E of radius k—that is {x e E: \\ x || ^ k}. The identity operator
on a normed linear space E is denoted by IE or simply by /.

We shall use a characterisation of compact sets in Banach spaces. For
a specific reference to its proof we quote (3), Lemma 2.

Lemma 0. Let K be a compact subset of a Banach space E. Then K is
contained in the closed convex hull of a sequence in E converging to 0.

E.M.S.—19/4—2A
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1. Some general properties of lp spaces

In this section we collect together some basic results on lp spaces that will
be used subsequently. The most important of these is due to Pelczynski (12):

Theorem 1.1. Let X be an infinite dimensional subspace of lp(l ^ p < oo).
Then X contains an infinite dimensional subspace Y which is complemented in lp

and isomorphic to lp.

We shall also require a variant of this result.

Theorem 1.2. Let Xbea subspace oflp{\ :g p < oo) and let {xtt} be a sequence
in X which converges weakly to 0 and satisfies || xn || = 1 (n = 1, 2, ...). Then
there is a subsequence {xnj of{xn} which is a basis for a subspace Y ofX which
is isomorphic to lp and complemented in lp.

Proof. Let {e(} denote the usual basis in lp, and let {e*} denote the bi-
orthogonal functionals. By hypothesis there are increasing sequences {/?„}
and {qn} of positive integers with qy = 1 and

q
< !

E «?(**>«
+ l

Let zn = £ et(xpn)
ei- Then {zn} is a block basic sequence with respect to

i=qn+l "

{e,} and so, by Lemma 1 in (12); lin {zn} is isometrically isomorphic to lp and
there is a projection P of norm 1 of lp onto lin {zn}.

Then for n ^ 1

i= 1

So || zn || ^ | . Further

00 ~

E ii xPn-zB ii ^ E
n = 1

E «?<*,
r = l
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Choose bi-orthogonal functional {z*} corresponding to the basis {zn} in

fin{zn}. Then || zn* || = - ! - ^ i So
li n II

f IUPn-zJ|||z*||gf.i = i< l
n = 1

and

IIP II I | | x P n - z n | | | | z n * | | < l .
n = 1

So by Theorems 3 and 4 pp. 63-64 in (9), {x p j is a basic sequence which is
equivalent to {zn} and which has lin {xPn} complemented in lp. Since lin {zn}
is isometrically isomorphic to lp it follows that Y = lin {xPn} is isomorphic to /p.

Finally we require a result which is certainly well known; for completeness
we include a proof.

Theorem 1.3. Let X be a finite dimensional subspace of /p(l ^ /?<oo) .
Then for any e>0 there is a finite (say r-) dimensional subspace Y of lp with

X^Y andd(Y,l?)<^.
1—e

Proof. Choose a basis {xu ..., xn} of unit vectors in X and bi-orthogonal
functionals {x*, ..., x*} in X*. Let P be a projection of lp onto X. Let c be a

n II " II
constant such that £ | af | ^ c £ otjXj for any scalars a, an.

i = 1 II i = 1 II
r

Let {e,} be the usual basis in lp. Choose r so that if yt = £ e*(x,)e,- then

I I P II- t H * , - > > ; || || x f II < e .
i = 1

Define T: /p->/p by

Tx = x-P.x + £ x?(Px).y, (xe/p).
i = 1

Then as in the proof of Theorem 4, p. 65 in (9), T is an isomorphism of lp onto
itself, 1 - 6 <; || Tx || ^ 1+e (xe/p ) || x || = 1) and Txt = yt 1 <; i ^ n. Let S
be the restriction of T'1 to lin {e,, ..., er}, and let Y be the range of S. Then

X c y a n d d(i<r), y ) ^ || S || || S" 1 || ^ || T || || T " 1 || ^ — .
1-e

2. The bidual of /"(X) and its w.c.c. elements

It is well known (see for example (6), Theorem 5.3) that the dual of F(X) is
N(X) = X®XX' and it is easy to verify that N'(X) is the bounded weak operator
closure of F(X) in B(X). Also well known (see Schatten (13) Theorem 3.2)
is the fact that X®yX' has dual B(X).
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If B e B{X) and LB, RB denote respectively left and right multiplication by
B on F(X) then (LB)** and (RB)** are respectively left and right operator
multiplication on N'(X); in particular N'(X) is an ideal of B{X).

The equivalences between the following are either well known or simple
to verify (see Grothendieck (7)):

(1) Xhas a.p;

(2) r = y;

(3) B(X) = N'(X);

(4)IeN'(X).

Theorem 2.1. (Olubummo (11).) If F e F(X) then LF and RF are w.c.c.

The following theorem is probably known. See (10) for the particular case
when X is a Hilbert space.

Theorem 2.2. If X has a.p. and B e B(X) has either LB or RB w.c.c. then
B e F(X).

Proof. By (5), Theorem VI 4.2, LB is w.c.c. if and only if (LB)**(B(X)) s F(X)
and so, in particular, if LB is w.c.c. then B — B.IeF(X). The proof that
B e F(X) if RB is w.c.c. is similar.

Note. Thus if X has a.p. F{X) (= K(X)) can be characterised as those
operators on X by which left and right multiplication on F{X) is w.c.c. If X
lacks a.p. then a priori either F(X) or K(X) might be characterised in this way.
In one direction we have the following strengthening of Theorem 2.1.

Theorem 2.3. IfKeK(X) then LK and RK are w.c.c.

Proof. It is sufficient to give the proof for RK. R% is left multiplication by
K on N(X), so by (5), Theorem VI 4.8 it is sufficient to prove that this is w.c.c.
Suppose the contrary. Then by Theorem 8.1 in (8), (RK)* is a factor of the
summing operator a: ly-*lx, i.e.

3U: N{X)^lx, S: h~*N{X) such that U{RK)*S = a.

Suppose without loss of generality that || S || = 1. Let {et} be the usual basis
in /t and let tt = Set. Then U(RK)*t, = (0, 0, ..., 0, 1, 1, ...) where there are
precisely / — 1 zeros.

Since K e K(X), K(Xj) s co (kn) where {&„} is a sequence in A* that converges
00

to 0. Let /, have a representation £ JCJ°®X*(I) where
n = 1

II 4° II £ 1, f II x*(i) || g 2, || x*(0 || g 1.
n = 1
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00

Then Kt{ = £ XxJ°®x*(0. Choose a sequence of positive numbers {en}
n = 1

to J

so that £ en < and then choose for each i e TV, neJVa sequence of

non-negative numbers {Ajj>0}™= j with only a finite number non-zero so that

^ O f c m - Then

= z (Z

(1)
m

where JV; = £ Knji®xn*
(->, T(N,.) ^ £ || un , || || xn*

(i) || g £ en< — i - and
n n n 6 [| U ||

ym(i) = £^m'')**('); t n e change of order of the summation is justified by
n

observing that

— V (\\ v * ( i ) II V II k II I J ( n i l ) \\
— 2 J \« X" II Z J II Km II I ^m I-*

^2sup||fcm| |<oo.
m

Similarly
z ii ̂ ( o ii = z (ii z AS- '>xn*<'> ID ̂  z z ii ̂ - °x:( i ) ii

Ln>°lllxn*
(iMl) = Z l l ' < ( O l l ^ 2 (2)

Since A:m-+0 as w->oo it follows from (2) that there is a constant M (inde-
pendent of i) such that

and hence T 1

where T(G,) ^ -

CO

=z+i

1
II u ||

Z I I '
m = M+ 1

UK") =

. It follows

UN

" 6 ||
Mz

m = 1

that

1 v * ( l ) II
1 Jm II

1
17 ||

\m =

1 **
- 6 || [/1|

Thus from (1)

fcm®>'*(') lhasitsyth
i /

(3)

component

^ ^ in modulus for j<i and ^ J in modulus fory ^ i.
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Now U is norm and hence weakly continuous. (X*)t ©... ©(.y*)j (M terms)
is compact in the Cartesian product of the weak topologies. So

J Z km®y*:y*eX*\
(.« = i J

is weakly compact in N(X). Therefore Ut> is weakly compact in /„. But
f / M Y)oo
<U [ V km<S>y^ )} is a sequence in U^ that has no weakly convergent
I \m = 1 / J i = 1
subsequence. This contradiction proves the theorem.

Note that the above proof could be modified with X<g)yX' replacing N(X).
Thus if KeK(X) then left and right multiplication by K on B{X) is w.c.c.
The theorem of Olubummo (quoted here as Theorem 2.1) gives this same
result for elements of F{X).

Theorem 2.4. Let X be a subspace of lp (1 <p<oo). Then an operator B
on X is compact if and only ifLB and RB are weakly compact.

Proof. The only implication to be proved is that if LB and RB are w.c.c.
then BeK(X). Suppose the contrary—LB is w.c.c. and Be B(X)—K(X).
Then there is a sequence {*„} in X which converges weakly to 0 but has
|| Bxa H++0. Replacing by a subsequence and multiplying by a constant if
necessary we may suppose that || xn || = 1, || Bxn || ^ oOVne N.

By Theorem 1.2 and again replacing {xn} by a subsequence if necessary we
may suppose that {xn} is a basis for a subspace Y of X which is complemented
in /p and hence also in X. Let P: X-+Y be a projection and let Pn be the
projection of Y onto \in{xu ..., xn}. Then Pn-*IF in the strong operator
topology on Y and so PnP-+P in the bounded weak operator topology on X.
SoPe (F(X))" and it follows from (5) Theorem VI 4.2 that BP e F(X). Since
xn-*0 weakly as «->oo and BPxn = Bxn++0 in norm as «->oo this is a contra-
diction. This establishes the theorem.

3. The duality of F(X)

It is well known and follows easily from (2) that F(X) is an annihilator
algebra and is dual if X has the approximation property. On the other hand
Davie (3) has shown that if X lacks the approximation property then there is a
reflexive space Y such that F(X@Y) is not dual.

Conjecture. X has a.p. if and only if F(X) is dual.

We shall show that this conjecture is true for certain particular cases.
In the meantime we discuss the general case. Our starting point is the following
result of Bonsall and Goldie, (2):

Theorem 3.1. Let A be an annihilator algebra. Then A is dual if and only
if as AanaA for each a in A.
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Two corollaries follow immediately:

Corollary 3.2. If F(X) is dual and if for any compact subset K of X there
exists an operator F in F{X) with FjX)[ ^ K then X has a.p.

Corollary 3.3. F(X) is dual if and only if the following cannot occur: there
is a y-Cauchy sequence {tn} in X<g)X' and an operator F in F(X) such that either
tr {tnFG)-*0 and tr (tnF)++0 VG e F(X) or tr (tnGF)-+O andtr (/nF)-i->0 VG e F(X).

Compare this with a characterisation of the approximation property (from
(2)o(l) at beginning of Section 2). X has a.p. if and only if the following cannot
occur:

there is a y-Cauchy sequence {/„} in X®X' such that tr(fnG)->0 and
tr (O++0 VG € F(X).

From Theorem 3.1 we see that if F(X) is dual and F e F(X) then F e F.F(X)
and FeF(X).F. It is not apparent that this implies that Fe(F(X))k.F or
FsF.(F(X))k for any A:>0. If either of these holds with k independent of F,
then X has a.p.

Theorem 3.4. Suppose that there is a positive real number k such that for
each F in F(X) Fe (F(X))k.F then Xhas a.p.

Proof. First let F be a fixed element of F(X). Choose a sequence {Gn} in
(F(X))k that satisfies GnF-+F as n->oo. Let IF be a H>*-cluster point of {Gn} in
N'(X). Then IF restricted to the range of F is the identity. Now let A be the
net of all finite sequences in (X)t. For each a. = {xu ..., xn} e A, choose
Fa e F(X) with Ftt(X)l 2 lin {xu ..., *„}. Let / be a w*-cluster point of {/fJ
in N'(X). Then / is the identity operator on X'. So / e N'(X) and X has a.p.

4. The situation for subspaces of lp

Let/? be a fixed number \<p<co and let/>' satisfy l/p+l/p' = 1. Let X
be a subspace of lp. Then by Theorem 1.1 A" has a subspace which is isomorphic
to /p) and complemented in lp and hence also complemented in X. So X*
has a complemented subspace Y which is isomorphic to lp.. Let P be the pro-
jection X*-+Y and let 6 be the isomorphism F->/p.. Since AT is a subspace of
/p, X* is a quotient of /p.; let Q denote the quotient mapping lp--+X*.

Lemma 4.1. Let q be a real number, 1 ^ q<<x>. Let K be any compact
subset oflq. Then there is an element T ofF(lq) that satisfies

Proof. We may suppose by Lemma 0 that K— {0}u{*„}"= t where xn-»0
as n->oo. Choose an increasing sequence {mn}™= x of positive integers such that
|| xr || g 1/2" for all r ^ mn (n = 1, 2, ...). Let m0 = 1. Then for
n = 0, 1, 2, ..., lin{xr : mn ^ r<mn+l} is a finite dimensional subspace of
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lq and so by Theorem 1.3 is contained in a finite (say /•„-) dimensional subspace
En of lq with d(lq

r"\ En)<2—i.e. there is an isomorphism Tn : En-*lq
rn) such that

II rn || = i , || 7 7 1 II < 2 .
Let {ejr= i be the usual basis in lq. Then we can identify

F 0 = lin{e1, .... ero} with/<">>

Ftt = lin {ero+...+rn_1 + 1> ...ero+...+l.n} with l ^

Define J o n /, by T \Fn = 2""- T'1. Then it is clear that TeF(lq) and * n er ( / 9 ) i
for each ne N.

Theorem 4.2. IfX is a subspace oflp (1 <p < oo) f/;e« F{X) is dual if and only
if X has a.p.

Proof. We use the notation of the first paragraph of Section 4. The only
implication to be proved is that if F(X) is dual then X has a.p. Since X is
reflexive X has a.p. if and only if X* has a.p. and F(X) is dual if and only if
F(X*) is dual. So it is sufficient to prove that if F(X*) is dual then X* has a.p.

Let K be any compact set in X*. Choose a compact set R in lp, such that
Q{R) 2 K. By Lemma 4.1 there is an element T of F{lp) such that
r(/p.)! 2 R. Then F = gr0P is in F(X*) and for some real number
r ^ 1 (r = || 0"1 ||) F(X*\ 2 tf. The theorem follows from Corollary 3.2.
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