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Orthogonal Bundles and
Skew-Hamiltonian Matrices

Roland Abuaf and Ada Boralevi

Abstract. Using properties of skew-Hamiltonian matrices and classic connectedness results, we

prove that themoduli spaceM0
ort(r, n) of stable rank r orthogonal vector bundles onP

2 ,withChern

classes (c1 , c2) = (0, n) and trivial splitting on the general line, is smooth irreducible of dimension

(r − 2)n − (r
2
) for r = n and n ≥ 4, and r = n − 1 and n ≥ 8. We speculate that the result holds in

greater generality.

1 Introduction

A holomorphic vector bundle on a projective variety is called orthogonal if it is iso-
morphic to its dual via a symmetricmap.While there is a vast literature about orthog-
onal bundles on curves (let us quote at least [Hul81], [Ram83], [Bea06], and [Ser08]),
almost nothing is known about the case of surfaces. To the best of our knowledge,
the only existing references are [GS05] and [JMW14]; the former concerns the gen-
eral problem of semistable principal sheaves, while the latter is a study of autodual
instanton bundles via generalized ADHM equations. In this work we are interested
in studying irreducible components of themoduli space of stable orthogonal bundles
on P

2 with ûxed invariants.
In the celebrated paper [Hul80], the author described the moduli space M(r, n)

ofMumford–Takemoto (slope) stable rank r vector bundles on P2 withChern classes
(c1 , c2) = (0, n) and proved its smoothness and irreducibility for 2 ≤ r ≤ n. _e
case r > n is easily dismissed. Indeed if E ∈ M(r, n) is stable, then both E and its
dual have no sections, and this entails that the cohomology group H1(F) has dimen-
sion n − r ≥ 0. In [Ott07], Ottaviani used Hulek’s techniques to show that the same
properties hold for Ms p(r, n), themoduli space of symplectic bundles with the same
invariants.

Symplectic bundles are the skew-symmetric counterparts of the orthogonal ones:
they are isomorphic to their dual via a skew-symmetric map. _e generalization to
Ms p(r, n) is quite straightforward, and the question of whether or not these same

techniques could be applied to the orthogonal case of Mort(r, n) arose naturally, cf.
[Ott07, Problem 7.8]. As it turns out, it is deûnitely not the case.
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_e smoothness of themoduli spaceMort(r, n) is very easy to prove, but the same

cannot be said about its (potential) irreducibility. A ûrst obstacle is caused by the fact
that, when deformed on a line, orthogonal bundles behave very diòerently from their
symplectic equivalent and from the unstructured case, that is, elements of M(r, n)
with no additional structure.

Indeed, while in the latter two cases the only rigid bundle is the trivial bundle,
in the orthogonal case there are two rigid bundles, namely the trivial one Or

P1 and

OP1(1)⊕Or−2
P1 ⊕OP1(−1) and bundles⊕i OP1(a i),whose value of∑i a i mod 2 (known

as theMumford invariant) is diòerent, do not deform into each other. _is behavior
is somehow expected and is connected with the contrasting properties of the group
SO(r) for even and odd values of r.

On the one hand, this result forces us to restrict our attention to themoduli space
of orthogonal bundles having the same invariants as above and trivial splitting on the
general line, that we denote by M0

ort(r, n). On the other hand, a careful analysis of
this case allows us to extend the notion ofMumford invariant to the case of P2.

In the attempt to study irreducibility properties ofM0
ort(r, n),we apply techniques

that are similar to [Hul80] and [Ott07]. Using standard ûbration arguments, we are
able to reduce ourselves to the proof of the irreducibility of the space {(A, B) ∈ Λ2V ×
Λ2V ∣ rk(AJB − BJA) = r}, where V is a complex vector space of even dimension n.

_e technical diõculties that this task presents for values of r smaller than n are
a lot higher than one could expect. By combining a description of the commutator
of two skew-Hamiltonian matrices together with a strong connectedness result, we
further reduce the problem to the estimate of the dimension of the singular locus of
highly non-general hyperplane sections of the determinantal variety S2V≤r of sym-
metric matrices of rank at most r. (_e secant variety to the Veronese variety if one
prefers this terminology.) _is estimate is possible for the cases r = n and r = n − 1,
and gives, respectively, bounds n ≥ 4 and n ≥ 8. Our results can be summarized in
the following.

Main _eorem Let n be an even integer. _e moduli space M0
ort(r, n) of rank r

stable orthogonal vector bundles on P2, with Chern classes (c1 , c2) = (0, n), and trivial
splitting on the general line, is smooth irreducible of dimension (r − 2)n − (r

2
) for r = n

and n ≥ 4, and r = n − 1 and n ≥ 8.

For general values of r and n, the technical diõculties that we mentioned above
seem impossible to overcome. For this reason we are forced to state the following
statement as a conjecture, even though we ûrmly believe in its veracity, being backed
up by good computational evidence.

Conjecture Let n and 3 ≤ r ≤ n be two positive integers, n even. _e moduli
space M0

ort(r, n) of rank r stable orthogonal vector bundles on P
2, with Chern classes

(c1 , c2) = (0, n), and trivial splitting on the general line, is smooth irreducible of dimen-

sion (r − 2)n − (r
2
) for any 6r − 5n ≥ 2.

For small values of n the behavior is even less predictable, but not less interesting,
as it is explained in Section 5.
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_e paper is structured as follows: in Section 2 we introduce the moduli spaces
M(r, n), Msp(r, n) and Mort(r, n) of unstructured, symplectic and orthogonal sta-

ble rank r vector bundles on P
2 with Chern classes (c1 , c2) = (0, n) and 2 ≤ r ≤ n.

We give the monad construction and prove that Mort(r, n) is smooth of dimension

(r − 2)n − (r
2
). In Section 3 we concentrate on the case of those bundles with trivial

splitting on the general line, thatwe denote byM0
ort(r, n): we deduce some interesting

consequences of the trivial splitting assumption, and proceed to give a proof of irre-
ducibility that relies on a key lemma. In Section 4 skew-Hamiltonian matrices and
their properties are introduced, and the key lemma is proved in some speciûc case.
Section 5 contains a detailed description of the image of the map sending a pair of
skew-symmetricmatrices (A, B) to the symmetricmatrix AJB − BJA, where J is the
standard symplectic form. Section 6 is devoted to some explicit examples, remarks,
andmore details on the stronger result that we conjecture.

2 The Moduli Space of Orthogonal Bundles on P2

2.1 Notation

Wework over the ûeldC of complex numbers. Given a 3-dimensional vector spaceU
over C, we denote by U∗ = Hom(U ,C) its dual, and we ûx a determinant form so
that U ≃ U∗. _e projective space P2 = P(U) is the space of lines through 0, thus

H0(OP(U)(1)) = U∗.
Given a vector bundle E on P

2 we denote by E(t) the tensor product E ⊗OP2(t),
for any integer t.

We use lowercase letters to denote the dimension of a cohomology group; for any

vector bundle E on P
2, hi(E) ∶= dimHi(P2 , E).

2.2 The Monad Construction

Let M(r, n) denote the moduli space of (slope) stable vector bundles E on P
2, with

rank r ≥ 2 and Chern classes ( c1(E), c2(E)) = (0, n). In [Hul80, Section 2.1] the

author proved that M(r, n) is non-empty if and only if r ≤ n, hence we will always
restrict our discussion to this case.

Lemma 2.1 ([Hul80, Lemma 1.1.2]) If E is an element ofM(r, n), then χ(E(−i)) =
−h1(E(−i)) = −n for i = 1 and 2. In particular its value is independent from r.

Lemma 2.2 ([Hul80]) Let E be an element of M(r, n), and set P2 = P(U). Denote
by V ∶= H1(E(−1)) , which is a vector space of dimension n. _en E is the cohomology
bundle of the following monad:

(2.1) I ⊗OP2

g
Ð→ V∗ ⊗Ω1

P2(2)
f
Ð→ V ⊗OP2(1),

where f ∈ U ⊗ V ⊗ V is the natural multiplication map and I ∶= H1(E(−3)) has
dimension n − r.
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Proof _e proof is a standard application of Beilinson _eorem; we give a sketch
for the reader’s convenience. A�er Lemma 2.1, we can write down the Beilinson table
of E:

H2(E(t)) 0 0 0

H1(E(t)) I V∗ V

H0(E(t)) 0 0 0

t −3 −2 −1

_us themonad (2.1) is the spectral sequence entailed by Beilinson’s result, whose
cohomology abutts to E.

_emap f is an element of the vector space

Hom(V∗ ⊗Ω1
P2(2),V ⊗OP2(1)) = V ⊗ V ⊗Hom(Ω1

P2(2),OP2(1))
= V ⊗ V ⊗U .

As remarked in [Ott07, Proposition 7.3], two simple bundles E( f ) and E( f ′) as in
Lemma 2.2 are isomorphic if and only if f and f ′ are SL(V)-equivalent.

Using themonad (2.1) we compute that

H0( f )∶V∗ ⊗H0(Ω1
P2(2)) → V ⊗H0(OP2(1)) .

Now H0(Ω1
P2(2)) = Λ2U∗ ≃ U , once the determinant form is ûxed, and we have

H0(OP2(1)) = U∗, so themap H0( f ) is in fact

H0( f )∶V∗ ⊗U → V ⊗U∗,

and it can be identiûed with the contraction operator that from an element f ∈ U ⊗
V ⊗ V induces an element

S f ∶V∗ ⊗U → Λ2U ⊗ V ≃ U∗ ⊗ V

through the following steps:

U ⊗ V∗

⊗ f

��

S f

((

U ⊗ V∗ ⊗U ⊗ V ⊗ V

reordering
��

(U ⊗U) ⊗ (V∗ ⊗ V) ⊗ V

projection
��

Λ2U ⊗ (V∗ ⊗ V) ⊗ V

contraction
��

Λ2U ⊗ V .
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In particular, if P,Q and R are the three n × n “slices” of f , then S f = H0( f ) can
be written as

(2.2) H0( f ) =

⎡⎢⎢⎢⎢⎢⎣

0 P Q
−P 0 R
−Q −R 0

⎤⎥⎥⎥⎥⎥⎦
.

Lemma 2.3 With the same notation as above, rkH0( f ) = 2n + r.
Proof _e same proof as in [Ott07] and [Hul80, Lemma 1.3] applies. Again, we
give a sketch for the reader’s convenience. From themonad (2.1) the kernel ofH0( f )
contains the vector space I of dimension n − r, hence,

rkH0( f ) ≤ 3n − (n − r) = 2n + r.
Looking at the display associated to (2.1),

0

��

0

��

0 // I ⊗OP2
// Ker( f )

��

// E

��

// 0

0 // I ⊗OP2

g
// V∗ ⊗Ω1

P2(2)
f

��

// Coker(g)

��

// 0

V ⊗OP2(1)

��

V ⊗OP2(1)

��

0 0,

we get the cohomology sequence for the bundle E. If rkH0( f ) < 2n+ r, thenwe have
dim(H0(Ker f )) > dim(I) = n − r and thus H0(E) /= 0, which is a contradiction
because E is stable.

2.3 Unstructured, Symplectic, and Orthogonal Bundles

Deûnition 2.1 An orthogonal vector bundle is a pair (E , α) consisting of a vector
bundle E and an isomorphism α → E → E∗ such that tα = α. If tα = −α, then the pair
(E , α) is called a symplectic vector bundle. A bundle E with no additional structure is
said to be unstructured.

Remark 2.1 If E is orthogonal, then S2E contains OP2 as a direct summand. If,
moreover, E is stable, then it is simple and this forces H0(S2E) = C, so the isomor-
phism α is unique up to scalar. _e same remark holds for symplectic bundles, once
we substitute the symmetric power S2E with the skew-symmetric Λ2E. In particu-
lar, notice that a stable bundle cannot be both orthogonal and symplectic at the same

time.
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_eorem 2.4 _e bundle E( f ) cohomology of themonad (2.1) is

● orthogonal if and only if themap f ∈ U ⊗ Λ2V;
● symplectic if and only if themap f ∈ U ⊗ S2V .

Proof _e symplectic case is proved in [Ott07, _eorem 7.2]. For the orthogonal
one,we simply generalize the argument. A similar statement can also be found (with-
out proof) in [Hul80, 1.7.3].

Suppose ûrst that the bundle is orthogonal, and thatwe have an isomorphism α →
E → E∗ such that α = tα. _en we deûne the pairing

(2.3) H1(E(−1)) ⊗H1(E(−2)) → C, ϕ ⊗ ψ ↦ (ϕ,ψ)E(−1)
as follows. First we recall Serre duality

H1(E(−1)) ⊗H1(E∗(−2)) → C, ϕ ⊗ ψ∗ ↦ ⟨ϕ,ψ∗⟩E(−1)
which is induced by cup product. Since cup product is skew-commutative in odd di-
mension, we have that ⟨ϕ,ψ∗⟩E(−1) = −⟨ψ∗ , ϕ⟩E(−2). (For details, see [Bar77, Propo-
sition 1].)

Now deûne the pairing (2.3) by setting, with obvious notation

(2.4) (ϕ,ψ)E(−1) ∶= ⟨ϕ, α(−2)ψ⟩E(−1) .
Note that the natural multiplication map f is its own adjoint with respect to the

pairing (2.4), so if α is symmetric, then f is skew-symmetric (which is our orthogonal
case) and conversely in the symplectic case [Ott07].

_e converse uses a similar argument and we omit it.

In [Hul80, Section 2.1] it is shown that, when non-empty, M(r, n) is a smooth
irreducible variety of dimension 2rn − r2 + 1.

Denote by Mort(r, n) (respectively Msp(r, n)) the moduli space of orthogonal
(resp. symplectic) elements of M(r, n).

In [Ott07] the author proved that,when non-empty (in particularwhen r is even),

the space Msp(r, n) is a smooth irreducible variety of dimension (r + 2)n − (r+1
2
).

In thisworkwewish to investigate smoothness and irreducibility properties of the
moduli space Mort(r, n).

2.4 Smoothness Results, Degeneration Arguments

We start with the following smoothness result.

Lemma 2.5 When non-empty, the moduli space Mort(r, n) is smooth of dimension

(r − 2)n − (r
2
).

Proof An orthogonal bundle E of rank rmay be regarded as a principal bundlewith
structural group SO(r). _e tangent space at a point E to the moduli space of such
principal bundles with assigned invariants is isomorphic to the cohomology group
H1(ad ∶E), where ad ∶E is the adjoint bundle deûned by the adjoint representation
SO(r) → ad ∶ SO(r), see [Ram75]. Recall that such adjoint representation is isomor-
phic to the wedge power Λ2

C
r , so ad ∶E = Λ2E.
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So let us compute h1(Λ2E): any E ∈ Mort(r, n) is simple, and we have seen
in Remark 2.1 that S2E contains OP2 as a direct summand, therefore we must have
h0(Λ2E) = 0. By Serre duality we also have h2(Λ2E) = h0(Λ2E(−3)) = 0.

Hence h1(Λ2E) = −χ(Λ2E), and applying the Hirzebruch–Riemann–Roch for-
mula we have

h1(Λ2E) = −χ(Λ2E) = c2(Λ2E) − (r
2
).

By the splitting principle we compute that c2(Λ2E) = (r − 2)n, and the statement
follows.

Deûne themoduli of bundles with trivial splitting on a line by

M0
⋆(r, n) ∶= {E ∈ M⋆(r, n) ∣ E∣ℓ = Or

P1 for some line ℓ},
for ⋆ = ∅, sp, ort, and where M∅(r, n) = M(r, n).

Notice that by semicontinuity, if E∣ℓ is trivial on a line ℓ, then it is trivial on the
general line ℓ.

Remark 2.2 It is important to underline here that orthogonal bundles behave quite
diòerently from their symplectic and unstructured counterparts. In those cases—
with obvious notation—one can use a deformation argument due to Hirschowitz to

prove that M0(r, n) = M(r, n) [Hul80, 2.4.1] and M0
sp(r, n) = Msp(r, n) [Ott07,

Proposition 7.4].
Hence the fact thatM0(r, n) andM0

sp(r, n) are irreducible implies that the same is

true for M(r, n) and Msp(r, n). Proving the former statement turns out to be easier
than proving the latter, see Section 3.1 below, and as such it is the strategy chosen by
both [Hul80] and [Ott07]. Indeed when we restrict a symplectic bundle on P

1, the
only rigid bundle is the trivial one [Ram83, Section 9.7].

In the orthogonal case the situation is more involved. _ere is no restriction on
the parity of the rank, hence we can consider both the orthogonal group SO(2l + 1)
(type B l ) and the group SO(2l) (type D l ). A B l -type orthogonal bundle on P

1 is of

the form O⊕⊕l
i=1 O(a i)⊕O(−a i), while B l -type ones are⊕

l
i=1 O(a i)⊕O(−a i).

In both cases the rigid bundles are the trivial bundle and the bundleO(1)⊕O(−1)⊕
O

2l−1 for B l -type, or the trivial bundle and O(1)⊕O(−1)⊕O2l−2 if we are in the D l -
type case. (We refer the reader to [Ram83, Section 9.5] for details.)

3 Irreducibility Results

3.1 Consequences of Trivial Splitting

We have claimed above in Remark 2.2 that dealing with themoduli spaces M0
⋆(r, n)

of bundles with trivial splitting type on some line is easier than dealing directly with
M⋆(r, n), again for ⋆ = ∅, sp, ort. _is is mainly due to the fact that under this as-
sumption, the map H0( f ) coming from the monad and represented in (2.2) has a
more explicit description.

To see this, we start from the following straightforward lemma.
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Lemma 3.1 Let P, Q, and R be n × n matrices, and let Q be invertible. _en

⎡⎢⎢⎢⎢⎢⎣

In 0 0
0 In −PQ−1

0 0 In

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 P Q
−P 0 R
−Q −R 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

In 0 0
0 In 0
0 −Q−1P In

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0 0 Q
0 Z R
−Q −R 0

⎤⎥⎥⎥⎥⎥⎦
,

where Z ∶= PQ−1R − RQ−1P, hence

rk

⎡⎢⎢⎢⎢⎢⎣

0 P Q
−P 0 R
−Q −R 0

⎤⎥⎥⎥⎥⎥⎦
= 2n + rk Z .

Lemma 3.2 E is an element ofM0
⋆(r, n) for ⋆ = ∅, sp, ort, if and only if thematrixQ

in the representation (2.2) of themapH0( f ) is invertible.
Proof We need to introduce the discriminant of amorphism from [Hul80, 1.7.1]. In
fact the statement of Lemma 3.2 can be found in both [Hul80] and [Ott07], but we
report it for the sake of completeness.

Consider the map f ∶H1(E(−2)) ⊗ Ω1
P2(2) → H1(E(−1)) ⊗ OP2(1) from the

deûning monad (2.1). Recall that f can be seen as an element of V ⊗ V ⊗ U , hence
f ∶U∗ ⊗ V∗ → V and for every z ∈ U∗ we can deûne amap

f (z)∶V∗ → V , f (z) ∶= f (−⊗ z).
Deûne the discriminant of f (z) as ∆( f ) ∶= det( f (z)) . _en

{z ∈ U∗ ∣ ∆( f ) = 0} ≃ {ℓ ∈ P2∗ ∣ E∣ℓ /= Or
P1}.

To see this, take a line with equation {z = 0} and tensor its hyperplane sequence by
E(−1):

0→ E(−2) z
Ð→ E(−1)→ E(−1)∣ℓ → 0.

Taking cohomology, since h0(E(−2)) = h0(E(−1)) = 0, we get
(3.1) 0→ H0(E(−1)∣ℓ) → H1(E(−2)) f (z)

ÐÐ→ H1(E(−1)) → ⋅ ⋅ ⋅ .
Hence det( f (z)) = 0 if and only if h0(E(−1)∣ℓ) /= 0, and this condition is equivalent
to E∣ℓ /= Or

P1 .
From this observation it follows that if E has trivial splitting type on some line, then

without loss of generality we can assume that any one of the three skew-symmetric
slices P, Q and R of themap f is invertible. Just notice that in (3.1) themap f (z) can
be explicitly written as z0P + z1Q + z2R. Now if the general line has trivial splitting
type, taking coordinate lines the map still has to have nonzero determinant, and we
can assume that the slice Q is invertible.

By combining the results of Lemma 3.1, Lemma 3.2, and Lemma 2.3 we obtain the
following.

Proposition 3.3 Let E = E( f ) be an element of M0
⋆(r, n) for ⋆ = ∅, sp, ort, deûned

as cohomology of themonad (2.1). Let P, Q, and R be the three n × n matrices slices of
f ∈ U ⊗ V ⊗ V . Let Z = PQ−1R − RQ−1P. _en rk Z = r.
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Proposition 3.4 If E ∈ M0
ort(r, n), then n = c2(E) is even.

Proof Consider themap f (z) and itsdiscriminant from theproof ofLemma 3.2. If E
is orthogonal, then f (z) is skew-symmetric, and we can consider its Pfaõan instead

of the determinant. In order for it to be non-zero, one needs c2(E) = h1(E(−2)) =
h1(E(−1)) even, and this concludes the proof.

Remark 3.1 _e discriminant ∆( f ) ∶= Pfaò( f (z)) ∈ H0(OP2∗( n
2
)) is a homoge-

neous polynomial of degree n
2
(up to a scalar it is uniquely determined by the class[ f ] in the SL(V) equivalence). Its zero set is a curve of degree n

2
in the plane and the

proof of Proposition 3.4 shows how this curve is related to the splitting behavior of E.

Remark 3.2 From a result by Mumford [Mum71, p. 184], it follows that if E is an

orthogonal bundle on the projective line, then h0(E(−1)) mod 2 is invariant under

deformations. In [Hul81] the author proved that orthogonal rank 2 bundles on P
1 are

rigid, while for higher rank the Mumford invariant is the only one. More precisely,
two orthogonal bundles on P

1 can be deformed into each other if and only if they
have the sameMumford invariant. Inwhat follows, one could deûne nmod 2 (that is,
h1(E(−1)) mod 2) to be the “Mumford invariant” for the case of P2. (Notice that by

Serre duality, on P
1 one has that h0(E(−1)) = h1(E(−1)) .) Proposition 3.4 tells us

that the parity of n is indeed connectedwith the splitting behavior of E on the general
line.

3.2 Irreducibility of M0
ort(r, n)

We will now prove the irreducibility of themoduli space M0
ort(r, n).

Recall that in our setting n = 2p is even. _ere is no loss in generality ifwe assume

that the general invertible skew-symmetricmatrix Q is the standard symplectic form

J ∶= [ 0 Ip
−Ip 0 ] .

_en the matrix Z from Proposition 3.3 is Z = PJR − RJP, where again both P
and R are skew-symmetric n × n matrices.

_eorem 3.5 Let n and 3 ≤ r ≤ n be two positive integers, n even. Let V be a complex
vector space of dimension n. If the variety

(3.2) Ĉr ,n ∶= {(A, B) ∈ Λ2V × Λ2V ∣ rk(AJB − BJA) = r}
is irreducible, then the same is true for themoduli space M0

ort(r, n) of rank r stable or-
thogonal vector bundles on P2, with Chern classes (c1 , c2) = (0, n), and trivial splitting
on the general line.

Proof Following [Hul80,_eorem1.5.2] and [Ott07,_eorem 7.7],we start by giving
a necessary and suõcient condition for an element f ∈ P(U ⊗Λ2V) to give a bundle
E( f ). Deûne:

Kr ,n ∶= { f ∈ P(U ⊗ Λ2V) ∣ rk(H0( f )) = 2n + r} .
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Kr ,n is quasi-aõne, and any f ∈ Kr ,n deûnes E( f ) as cohomology bundle of the
corresponding monad, once we impose the extra condition that themorphism

V∗ ⊗Ω1(2) f
Ð→ V ⊗O(1)

is surjective.

Such maps f form an open subvariety K̃r ,n ⊆ Kr ,n . _ere is a universal bundle E

over P2 × K̃r ,n such that the ûber EP2×{ f } is exactly the bundle E( f ), see [Hul80,

Proposition 1.6.1]. Moreover we have an open subvariety K̃ s
r ,n ⊆ K̃r ,n consisting of

those f giving rise to a stable E( f ). By the universal property of themoduli space,we
have a surjection

K̃ s
r ,n

// // Mort(r, n),
and in particular a surjection

K̃ s
r ,n

π // // M0
ort(r, n).

To prove the theorem it is enough to show that π−1(M0
ort(r, n)) is irreducible. One

has that π−1(M0
ort(r, n)) = K̃ s

r ,n ∖ Z(∆), and
K̃ s
r ,n ∖ Z(∆) = ⋃

x∈P2

{ f ∈ K̃r ,n ∣ ∆( f )(x) /= 0} = ⋃
x∈P2

K̃r ,n ,x .

Since any two K̃r ,n ,x and K̃r ,n ,y have non-empty intersection, we can take advantage

of the SL(U)-action: it is enough to prove that K̃r ,n ,x is irreducible for x = (0, 1, 0).
Finally, notice that we have a ûbration

(3.3) K̃r ,n ,x → Λ2V

sending f to the invertible slice Q of thematrix representation (2.2), which is SL(V)
invariant with ûbers isomorphic to Ĉr ,n . Irreducibility then follows from the key
Lemma 4.1.

To conclude the proof, we use the ûbration (3.3) to compute that

dimM0
ort(r, n) = dimΛ2V + dim Ĉr ,n − dimGL(V)

= (n
2
) + [2(n

2
) − (n − r + 1

2
)] − n2

= (r − 2)n − (r
2
),

which agrees with the estimate that wemade in Lemma 2.5.

_eorem 3.5 shows that the irreducibility of the variety (3.2) Ĉr ,n deûned above
is the key result needed to prove the irreducibility of the moduli space M0

ort(r, n).
_e next section, which constitutes the heart of this paper, is devoted to the study of

irreducibility of Ĉr ,n .
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4 The Key Lemma

_e aim of this section is to prove the following key result.

Lemma 4.1 Let V be a complex vector space of even dimension n. _e subvariety

Ĉr ,n from (3.2) is irreducible of codimension (n−r+1
2
) in Λ2V ×Λ2V for r = n and n ≥ 4,

and for r = n − 1 and n ≥ 8.

_e reasoning is somewhat similar towhat is done in the unstructured case treated
in [Hul80]. _ere one reduces to prove the irreducibility of pairs of n × n matrices(A, B)whose commutator [A, B] has constant rank r._is result also has a symmetric
analogue proved in [Bas00, BPV90], which is used in [Ott07] to show irreducibility
in the symplectic case.

_e technical diõculty of the skew-symmetric case is however considerably higher
than the other two cases. In particular the proof of Lemma 4.6 requires the use of
non-trivial connectedness results.

Here are the steps leading to the proof of Lemma 4.1.

(1) We work on the variety

Cr ,n ∶= {(A, B) ∈ Λ2V × Λ2V ∣ rk(AJB − BJA) ≤ r},
and prove its irreducibility. _e irreducibility of Ĉr ,n then follows from the fact

that Ĉr ,n is a Zariski open subset of Cr ,n .
(2) We give a deûnition of regular matrix that works in our setting. We ûrst remark

that rk(AJB − BJA) = rk[JA, JB], with [−,−] the usual commutator ofmatrices.
_is leads us to introduce in the picture skew-Hamiltonianmatrices, i.e.,matrices
of the form JB, B skew-symmetric. _is is done inDeûnition 4.2. We then prove
in Proposition 4.4 that for a regular matrix JB the kernel of the homomorphism

ϕB ∶Λ2V → S2V sending a skew-symmetricA to the symmetricmatrixAJB−BJA
has the smallest possible dimension, namely n

2
.

(3) Fixing a skew-symmetricmatrix B, we deûne

S
B
r ,n ∶= {S ∈ S2V ∣ S = AJB − BJA for some A ∈ Λ2V , rk S ≤ r},

and in Lemma 4.6we show that if JB is regular, then SB
r ,n is irreducible of dimen-

sion nr − 3

2
n − (r

2
) for r = n ≥ 4 and for r = n − 1 and n ≥ 8.

(4) Lemma 4.9 is the second to last step. We deûne

C
0
r ,n ∶= {(A, B) ∈ Λ2V × Λ2V ∣ JB is regular, rk(AJB − BJA) ≤ r},

and we use a ûbration argument to deduce the irreducibility of C0
r ,n from the

irreducibility of SB
r ,n .

(5) _e last step consists in showing that Cr ,n is the closure of C0
r ,n . _is concludes

the proof of Lemma 4.1, as well as Section 4.
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4.1 Regular Skew-Hamiltonians

For any pair of (skew-symmetric) matrices (A, B) we make the trivial observation
that

rk(AJB − BJA) = rk[JA, JB],
where [−,−] is the usual commutator ofmatrices. Hence studying symmetricmatri-
ces of the form AJB − BJA and ûxed (or bounded) rank is equivalent to studying the
commutator of matrices of the form JB, where B ∈ Λ2V . Such matrices are called
skew-Hamiltonian (or anti-Hamiltonian) in literature. Let us recall the following.

Deûnition-Proposition 4.1 LetW and H be elements of V ⊗ V .

● W is called skew-Hamiltonian if JW = tW J. W is skew-Hamiltonian if and only
W = JB, with B ∈ Λ2V skew-symmetric. We indicate the space of skew-Hamilton-
ian matrices byW.

● H is called Hamiltonian if JH = −tHJ. H is Hamiltonian if and only H = JS, with
S ∈ S2V skew-symmetric. We indicate the space ofHamiltonian matrices byH.

W andH correspond, respectively, to the Jordan algebra and to the Lie algebra of the
symplectic group Sp(n).

We mentioned above that Lemma 4.1 has an unstructured as well as a symmet-
ric analogue, proven respectively in [Hul80, Proposition 2.3.6] and in [Bas00, _eo-
rem 2.6] and [BPV90, Corollary 3.6]. Both arguments make use of regular matrices: a
regular matrix is a regular element of the Lie algebra, and in particular it is an element
whose commutator has minimal dimension.

_e proof in the symplectic case is particularly easy: given a symmetricmatrix B,
one deûnes the linear morphism ϕB ∶ S2V → Λ2V , mapping any A to the commuta-
tor [A, B]. If B is regular the kernel of themorphism is n-dimensional, which means

that ϕB is surjective. A standard ûbration argument then allows one to conclude irre-
ducibility of the space of symmetricmatrices whose commutator has ûxed rank.

Unfortunately the notion of regular element is meaningless for the Jordan alge-
bra W; therefore we give an “ad hoc” deûnition of regularity for skew-Hamiltonian
matrices and justify our choice by proving that the dimension of the commutator of
regular matrices is indeed minimal. In theory of structured matrices our deûnition
corresponds to that of non-derogatorymatrices, but we prefer to adopt the terminol-
ogy “regular” for consistency with the unstructured and symplectic cases.

Remark 4.1 _e symplectic group Sp(n) acts on skew-HamiltoniansW by conju-
gation. For M ∈ Sp(n) andW ∈W one deûnes

(4.1) M ∗W ∶= M−1WM ,

and this action preserves sums and products.
By deûnition, W ∈ W if and only if tW J = JW . If M ∈ Sp(n) then tMJ = JM−1

and JM = tM−1 J, and thus ifW is skew-Hamiltonian, so is M−1WM, because:

t(M−1WM)J = tM tW(tM−1 J) = tM(tW J)M
= (tMJ)WM = J(M−1WM).
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_e fact that this action preserves sums and products is an immediate check.
_e symplectic group Sp(n) also acts on skew-symmetric matrices Λ2V by con-

gruence. For M ∈ Sp(n) and B ∈ Λ2V :

(4.2) M ⋆ B ∶= tMBM ,

and this action preserves sums and products.

Lemma 4.2 _e two actions (4.1) and (4.2) are consistent with each other.

Proof Write a skew-HamiltonianW as JB, with B skew-symmetric. _en, given M
symplectic, its inverse M−1 is symplectic as well, and we have that

M ∗ (JB) = M−1(JB)M = J(tMBM) = J(M ⋆ B).
Lemma 4.3 ([Wat05, _eorem 3]) Let W ∈ W be a skew-Hamiltonian matrix of

even size n. Up to symplectic conjugation W is of the form [ P 0
0 tP
] for some n

2
× n

2

matrix P ∈Mat( n
2
,C).

Deûnition 4.2 LetW ∈W be a skew-Hamiltonian matrix. We callW regular if the
minimal polynomial of P in Lemma 4.3 has degree n

2
. We denote the set of regular

skew-Hamiltonians byWreg.

If W is regular then P is a regular element of the Lie algebra gl n
2
. In particular,

for each of its distinct eigenvalues there is only one corresponding Jordan block in its
Jordan normal form. _is is equivalent to asking for theminimal polynomial of P to
coincide (up to sign) with the characteristic polynomial.

Proposition 4.4 Let JB ∈Wreg be a regular skew-Hamiltonian. _en

(4.3) {JA ∈W ∣ [JA, JB] = 0} = ⟨(JB)k ∣ k = 0, . . . , ( n
2
− 1)⟩ .

In particular, the centralizer of JB has minimal dimension n
2
.

Proof _e inclusion ⊇ is immediate. Equality follows for dimensional reasons. In-
deed, by Lemma 4.3 there is a symplecticmatrix M ∈ Sp(n) such that M−1(JB)M =[ P 0

0 tP
] for some regular P. Let us look at all matrices C = [ C1 C2

C3 C4
] that commute

with JB. Imposing that

[C , JB] = [ [C1 , P] C2
tP − PC2

C3P − tPC3 [C4 ,
tP] ] = 0

means thatC2 = C3 = 0,while, since P is regular, C1 andC4 are parametrized by n
2
de-

grees of freedom each. Imposing to C the extra condition of being skew-Hamiltonian

means imposing to JC = [ 0 C4

−C1 0 ] to be skew-symmetric, and this halves the de-

grees of freedom to n
2
. Hence the dimension of the le�-hand side in (4.3) equals the

dimension of the right-hand side, and they are both equal to n
2
.

It is worthwhile recalling part of [Bas00, Proposition 2.2], where it is proved that(Λ2V)reg = Λ2V ∩ {regular matrices} is the open subset of all elements having cen-
tralizer ofminimal dimension n

2
.
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4.2 Irreducibility of SB
r ,n and Diamond Matrices

For any skew-symmetricmatrix B ∈ Λ2V , consider the vector space homomorphism

Λ2V
ϕB

// S2V

A
✤ // AJB − BJA,

and deûne

S
B
n ∶= Im ϕB = {S ∈ S2V ∣ S = AJB − BJA for some A ∈ Λ2V}.

If JB is regular, since AJB−BJA = −J[JA, JB], then by Lemma 4.4 the defect of the

map ϕB is n
2
, and S

B
n is a linear subspace of symmetricmatrices S2V of codimension

(n + 1
2
) − [(n

2
) − n

2
] = 3

2
n.

We can give explicit equations for SB
n , for which we need the following deûnition

from [Nof13].

Deûnition 4.3 Let M = (m i j) be a d × d squarematrix, and let k ∈ Z, −d < k < d.
(i) _e k-th trace ofM is the sum∑

d−k
i=1 m i , i+k if k ≥ 0, or∑d+k

j=1 m j−k , j if k ≤ 0. _e

usual trace of amatrix corresponds to the 0-th trace.
If the k-th trace is zero for all k ≥ 0 (respectively k ≤ 0), M is called super-

traceless (resp. subtraceless).
(ii) _e k-th antitrace of M is the sum∑i+ j=d+1−k m i , j .

If the k-th antitrace is zero for all k ≥ 0 (respectively k ≤ 0), M is called
superantitraceless (resp. subantitraceless).

Deûnition 4.4 Given any partition d = (d1 , . . . , dm) of n
2
, the d-block partition of

a n
2
× n

2
matrix X is the set of blocks X i j , for i , j = 1, . . . ,m, such that X i j is a d i × d j

submatrix of X and

X =

⎡⎢⎢⎢⎢⎢⎣
X11 ⋯ X1m

⋮ ⋱ ⋮
Xm1 ⋯ Xmm

⎤⎥⎥⎥⎥⎥⎦
.

Deûnition 4.5 An n × nmatrix Y = [ Y1 Y2

Y4 Y3
] ∈ V ⊗V is called a diamondmatrix if

there exists a partition d of n
2
such that

● the diagonal blocks in the d-block partition of Y1 are superantitraceless,
● those of Y2 are supertraceless,
● those of Y3 are subantitraceless, and
● those of Y4 are subtraceless.

_e n linear conditions imposing the vanishing of traces and antitraces are called the
diamond conditions (◇-conditions), and each of them vanishes on a◇-hyperplane.

To understand the origin of the terminology “diamond”, the reader should look at
Figures 1 and 2, where diamondmatrices corresponding respectively to the partition
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Figure 1: A diamondmatrix corresponding to the partition d = ( n
2
).

Figure 2: A diamondmatrix corresponding to a partition d = (d1 , d2 , d3).

d = ( n
2
) and to d = (d1 , d2 , d3) are shown. _ediagonal lines represent the traces and

antitraces that are zero.
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Proposition 4.5 ([Nof13, Cor. 3.13]) Let B ∈ Λ2V be such that JB ∈Wreg is a regular

skew-Hamiltonian, and let A ∈ Λ2V be any skew-symmetric matrix. _en AJB − BJA
is symplectically congruent to a diamondmatrix.

Proof We start by making the observation that the morphism ϕB is Sp(n)-equi-
variant under the congruence action. (It is easy to check that the group Sp(n) acts by
congruence not only on skew-symmetric, but also on symmetricmatrices.)

Given any skew-symmetricmatrix A one has

M ⋆ ϕB(A) = tM(ϕB(A))M = ϕtMBM(tMAM) = ϕM⋆B(M ⋆ A).
Now put JB in its Jordan normal form via symplectic conjugation. _e Jordan

normal formof JBwill consist inm Jordanblocks, eachof dimension d i with∑
m
i=1 d i =

n
2
. Set d = (d1 , . . . , dm) as before. For any A ∈ Λ2V , consider the d-block partitions

of the four quadrants of S = ϕB(A). A direct computation now shows that S is a
diamondmatrix.

Remark 4.2 Notice that for a symmetric matrix the ◇-conditions reduce to 3

2
n

conditions, simply because if the blocks of S2 are supertraceless, then the ones of tS2
will automatically be subtraceless.

Denote by S2V≤r the determinantal variety

S2V≤r ∶= {S ∈ S2V ∣ rk S ≤ r},
which is irreducible of dimension nr − (r

2
). _ere are several proofs of this fact, we

brie�y recall here the one due to Kempf [Kem76].
Let G(n − r, n) be the Grassmannian of n − r-dimensional subspaces of the n-

dimensional vector space V , and consider the incidence variety

(4.4) X̃ ∶= {(L, S) ∈ G(n − r, n) × S2V ∣ L ⊆ Ker S}
that comes with the two standard projections:

X̃

π1

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

π2

��
✹✹
✹✹
✹✹
✹

G(n − r, n) S2V .

It is an aõne bundle over the Grassmannian, whose ûbers are vector spaces of

dimension equal to dim S2(V/L) = (r+1
2
). _e canonical projection of X̃ on S2V

is surjective and the restriction of it to the inverse image of the open subset of all
symmetricmatrices of rank r is injective; hence S2V≤r is irreducible of dimension:

dim S2V≤r = dim X̃ = dimG(n − r, n) + (r+1
2
) = nr − (r

2
).

Intersecting the linear space SB
n with the determinantal variety S2V≤r we deûne

S
B
r ,n ∶= SB

n ∩ S2V≤r = {S ∈ S2V ∣ S ∈ SB
n , rk S ≤ r}.
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Lemma 4.6 If B ∈ Λ2V is such that JB ∈Wreg is regular, then S
B
r ,n is irreducible of

dimension nr − 3

2
n − (r

2
) for r = n and n ≥ 4, and for r = n − 1 and n ≥ 8.

Proof _e proof constitutes the remainder of this section. _e case r = n is trivial,
hence in what follows we will concentrate on the case r = n − 1.

Similarly to what is done above, deûne the incidence variety

X̃r = {(L, S) ∈ G(n − r, n) × S2V≤r ∣ L ⊆ Ker S}.
Again, we have the two standard projections:

X̃r

p1

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ p2

��
✾✾

✾✾
✾✾

✾

G(n − r, n) S2V≤r oo ?
_

S
B
r ,n .

In order to prove Lemma 4.6, it is enough to show that p−12 (SB
r ,n) is irreducible.

We will do so for r = n − 1.
By deûnition, the variety SB

r ,n is the intersection of S
2V≤r with S

B
n ,which is a vector

space of codimension 3

2
n. Let K ⊂ S2V be a general vector space of codimension 3

2
n.

Since 3

2
n < nr−(r

2
),we can applyBertini’s theorem for apropermorphism, see [Laz04,

_eorem 3.3.1], and we obtain that p−12 (K) is irreducible of dimension nr − (r
2
)− 3

2
n.

_en, using [Gro68, Exposé XIII, Corollary 2.2],we deduce that p−12 (SB
n) = p−12 (SB

r ,n)
is connected in dimension nr − (r

2
) − 3

2
n − 1.

_is connectedness result allow us to reduce the proof of the irreducibility of

p−12 (SB
r ,n) to showing that it has the expected dimension dim S2V≤r − 3

2
n, and that

it is smooth in codimension 1, that is, its singular locus is in codimension at least 2.
To prove that this is indeed true, we study the projection

p1∣p−1
2
(SB

r ,n)
∶ p−12 (SB

r ,n)→ G(n − r, n).
Recall that p−12 (SB

r ,n) is deûned as

p−12 (SB
r ,n) = {(L, S) ∈ X̃r ∣ S ∶ satisûes the◇-conditions}.

Hence given an element L of theGrassmannianG(n− r, n), the ûber of p1∣p−1
2
(SB

r ,n)

over L is

p1
−1∣p−1

2
(SB

n)
(L) = {S ∈ S2V≤r ∣ L ⊆ Ker S , S satisûes the◇-conditions}.

We wish to identify the elements L in the Grassmannian whose ûber

p1
−1∣p−12 (SB

r ,n)
(L)

is not a linear space of the expected dimension (r+1
2
)− 3

2
n. In otherwords,we are look-

ing for all L inG(n − r, n) for which the conditions “L ⊆ Ker S” are not independent
from the◇-conditions.

Let us denote by {e1 , . . . , en} the basis ofV with respect towhich the◇-conditions
are represented. We recall that it is the basis in which the regular skew-Hamiltonian
JB is in its Jordan normal form.
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*
*

*
*

Figure 3: Representation of a diagonal condition generated by vertical and horizontal ones.

From now on, we set r = n − 1. Let L ∈ G(1, n) be generated by L = ⟨ℓ⟩, with
ℓ = ∑n

k=1 λk ek . _en if S = (spq), the condition L ⊆ Ker S translates into the n

conditions∑
n
k=1 λk sk j = 0, one for each j = 1, . . . , n, that we denote by ♯ j .

Notice that each ♯ j involves the n entries of the j-th column of the matrix S. For
this reason, we will think of them as vertical conditions.

_e symmetry of the matrix S yields that for any vertical condition ♯ j there is a
horizontal one, involving the j-th row of S. We denote such horizontal condition by

♯ j , with obvious notation.
In the same mindset, the ◇-conditions, involving traces and anti-traces, are

thought of as diagonal conditions. _e number of entries of S that are involved in
a diagonal condition varies from 1 to n/2.

_e notation has been chosen in order to remind the reader whether a particular
condition is diagonal (◇), or vertical and horizontal (♯).

Consider now a◇-condition d. Notice that it involves entries of thematrix S that
are all in one of the four quadrants. We say that d is generated by ♯-conditions if there
exist some vertical and horizontal conditions v i and h j such that it is possible towrite
d = ∑ α iv i +∑ β jh j + δ, where δ is a linear form that only involves entries of S that
are not in the same quadrant of d.

Lemma 4.7 To generate a diagonal ◇-condition involving z entries, one needs x

vertical conditions of type ♯ i and y horizontal conditions of type ♯ j, with z = x + y.
Proof In light of the remarks above, the proof is almost immediate.

We ûx any integer 1 ≤ z ≤ n
2
. A ◇-condition involving z entries of S is either a

trace or an antitrace in one of the m blocks in which S is block-partitioned. More in
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detail, there is an index 1 ≤ ι ≤ m such that this◇-condition is either a ±(dι − z)-th
trace or a ±(dι − z)-th antitrace. We only look at the case when it is a (dι − z)-th
antitrace, since the proof goes through verbatim in the other cases. In order for this
antitrace condition to be generated by the ♯-conditions, we need to see where its z
entries appear. Recall from Deûnition 4.3(2) that they are entries of type spq , with
p + q = z + 1.

Eachof these z entries spq can showup in atmost one vertical condition, namely ♯ q ,
and at most one horizontal condition, namely ♯ p . And in each of these the entry spq
appears exactly once, that is, for k = z + 1− q and k = z + 1− p respectively. Hence the
statement follows.

We nowmake the following claims.

Claim 1. Let the Jordan normal form of JB consist in m Jordan blocks, each of di-
mension d i with ∑

m
i=1 d i = n/2. For every i = 1, . . . ,m deûne δ i ∶= ∑i−1

j=1 d j . Let

L = ⟨ℓ⟩ be an element in the Grassmannian G(1, n). _en the condition L ⊆ Ker S is
non-transverse with the◇-conditions if and only if

(4.5) L ⊂ m

⋃
i=1
⟨eδ i+1 , eδ i+1+ n

2
⟩.

Proof of Claim 1 _e implication (⇐) is immediate. If L ⊆ ⋃m
i=1⟨eδ i+1 , eδ i+1+ n

2
⟩,

then there is an index 1 ≤ α ≤ m such that the generator ℓ ∈ ⟨eδα+1 , eδα+1+ n
2
⟩. _is

means that the condition ♯ δα+1 reads
λδα+1sδα+1,δα+1 + λδα+1+ n

2
sδα+1+ n

2
,δα+1 = 0.

Divide S = [ S1 S2
t S2 S3

] into four quadrants as usual. Among the ◇-conditions, the
vanishing of the dα−1-th antitrace of the block (S1)αα entails that the entry sδα+1,δα+1 =
0, while the vanishing of the −dα + 1-th trace of the block (tS2)αα entails that the

entry sδα+1+ n
2
,δα+1 = 0. Hence ♯ δα+1 is trivially satisûed, and the◇-conditions are not

independent from the conditions L ⊂ Ker S.
To prove (⇒), we show that if L is not included in ⋃

m
i=1⟨eδ i+1 , eδ i+1+ n

2
⟩, then none

of the conditions generating L ⊆ Ker S can be obtained from a combination of ◇-
conditions. Indeed, assume that L is not included in ⋃

m
i=1⟨eδ i+1 , eδ i+1+ n

2
⟩, then there

exist indices 1 ≤ β < γ ≤ n such that:

(i) either β is diòerent from all δ i + 1 for i = 1, . . . ,m, and the coeõcient λβ /= 0,
(ii) or if β = δα+1 for an index 1 ≤ α ≤ m, then γ /= δα+1+ n

2
, and both coeõcients λβ

and λγ are non-zero.

In both instances, in every ♯ j (and in every ♯ j) the entries sβ j (and respectively s jβ)
will show up with non-zero coeõcients. Recall that these same entries do not show
up in any other ♯-conditions.

Moreover in both instances the β-row of thematrix S will cut one of the blocks in
which S is partitioned, say the ι-th block. _en as soon as j is either smaller than δι ,

or bigger than δι+1, none of the indices sβ j will appear in a ◇-condition, and this
concludes the proof.
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Claim 1 can be re-interpreted as saying that transversality fails whenever there is
a whole line contained in the intersection (4.5). We call these lines bad lines. Notice
that the bad lines form a subvariety of dimension 1.

Claim 2. Let L be an element of the GrassmannianG(1, n). _en the dimension of
the ûber p1

−1∣p−1
2
(SB

n−1,n)
(L) is bounded above by

dim( p1−1∣p−1
2
(SB

n−1,n)
(L)) ≤ (n

2
) − ( 3

2
n − 3) ,

where (n
2
) = dim S2(V/L) is the dimension of the ûber of the aõne bundle X̃ →

G(1, n) deûned in (4.4).

Proof of Claim 2 To prove this inequality, we have to evaluate the number of ◇-
conditions which can be generated by the condition L ⊂ Ker S. A close look at Fig-
ure 4.2 should convince the reader that either two or three among the◇-conditions
are generated by the condition L ⊂ Ker S if and only if

L ⊂ m

⋃
i=1
⟨eδ i+1 , eδ i+1+ n

2
⟩.

Indeed, if L is not included in ⋃
m
i=1⟨eδ i+1 , eδ i+1+ n

2
⟩, then by using Claim 1 we deduce

that the◇-conditions and the L ⊂ Ker S are independent.
Conversely, assume that L is generated by µeδ i+1 + λeδ i+1+ n

2
for some 1 ≤ i ≤ m and

µ, λ ∈ C nonsimultaneously zero.
Suppose that d i = 1. _en the linear space ML⊂Ker S generated by the conditions

µs1,δ i+1 + λs1,δ i+1+ n
2
= 0

⋮
µsn ,δ i+1 + λsn ,δ i+1+ n

2
= 0

intersects the linear space generated by the conditions

sδ i+1,δ i+1 = 0
sδ i+1,δ i+1+ n

2
= 0

sδ i+1+ n
2
,δ i+1+

n
2
= 0

in dimension 2, and no other◇-conditions are included in ML⊂Ker S .
If instead d i > 1, then that same linear space ML⊂Ker S intersects the linear space

generated by
sδ i+1,δ i+1 = 0

sδ i+2,δ i+1 + sδ i+1,δ i+2 = 0
sδ i+1,δ i+1+ n

2
= 0

sδ i+1,δ i+1+ n
2
−1 + sδ i+2,δ i+1+ n

2
= 0

sδ i+1+ n
2
,δ i+1+

n
2
= 0

sδ i+1+ n
2
,δ i+1+

n
2
−1 + sδ i+1+ n

2
−1,δ i+1+

n
2
= 0

in dimension 3, and no other◇-conditions are included in ML⊂Ker S . _is concludes
the proof of Claim 2.
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_e two claims allow us to give an estimate of the dimension of the locusBn−1,n ⊂
p−12 (SB

n−1,n) where the intersection of the◇-conditions with the ♯-conditions is non-
transverse. Such dimension is bounded above by the sum of the dimension of the
variety of bad lines and the dimension of the ûber. So altogether

(4.6) dimBn−1,n ≤ 1 + (n
2
) − ( 3

2
n − 3) .

On the other hand

(4.7) dim p−12 (SB
n−1,n) = dim S2V≤n−1 − 3

2
n = n(n − 1) − (n − 1

2
) − 3

2
n,

and combining (4.6) and (4.7) we get

codimp−1
2
(SB

n−1,n)
(Bn−1,n) ≥ n − 5.

We can thus conclude that the codimension of Bn−1,n in p−12 (SB
n−1,n) is strictly

greater than 2 as soon as n ≥ 8. In this range we obtain the irreducibility of

p−12 (SB
n−1,n), and hence that of SB

n−1,n , which is what we wanted. _is completes the
proof of Lemma 4.6.

4.3 Proof of the Key Lemma

We need the following well-known irreducibility criterion.

Lemma 4.8 Let f ∶X → Y be a surjective morphism of algebraic varieties. Suppose
that Y is irreducible, and that all the ûbers of f are irreducible of the same dimension d.
If X is pure-dimensional, then it is irreducible of dimension dimY + d.
Lemma 4.9 Let V be a complex vector space of even dimension n. _e subvariety

C
0
r ,n ∶= {(A, B) ∈ Λ2V × Λ2V ∣ rk(AJB − BJA) ≤ r and JB is regular}

is irreducible of dimension nr − n+(n
2
)−(r

2
), for r = n ≥ 4 and for r = n− 1, and n ≥ 8.

Proof LetWreg be the open subset of all regular skew-Hamiltonians.We have amap

C
0
r ,n

p
// Wreg ,

(A, B) ✤ // JB

By the aõne Bezout theorem, SB
r ,n is non-empty, and p is surjective. Consider now

a ûber FB = p−1(B) = {A ∈ Λ2V ∣ rk[JA, JB] ≤ r}. _ere is an epimorphism

FB
q

// S
B
r ,n ,

A
✤ // −J[JA, JB]

Since JB is regular, by Lemma 4.4 FB is an aõneCn/2-bundle over SB
r ,n , and hence

it is irreducible of dimension

dim FB = dimS
B
r ,n + n

2
= nr − n − (r

2
).
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_us for every irreducible component C of C0
r ,n ,

dimC ≤ (n
2
) + dim FB = (n

2
) + nr − n − (r

2
).

Counting equations one sees that the dimension of such components must be at
least

2(n
2
) − [(n + 1

2
) − (nr − (r

2
))] = (n

2
) + nr − n − (r

2
).

All in all C0
r ,n ûbers over the irreducible varietyWreg, all the ûbers are irreducible

of the same dimension, and C0
r ,n is pure-dimensional. Hence Lemma 4.8 applies, and

the statement follows.

Proof of Lemma 4.1 We are le� to prove that Cr ,n = C0
r ,n . Take a pair (A, B)

with rk[JA, JB] = r where JB is not regular. It is possible to ûnd a regular skew-
Hamiltonian JB′ such that [JA, JB′] = 0. _en JB + t B′ will be regular for all but
ûnitelymany t and [JA, JB + t JB′] = [JA, JB]. _is concludes the proof.

5 Dominant Maps and Low-dimensional Cases

_e study of the varieties Cr ,n has led us to prove a somewhat curious result, that
we have not been able to ûnd anywhere in literature, and that we therefore report
here. Similar results were recently obtained by [Nof13] using completely diòerent
techniques.

Proposition 5.1 Let V be a complex vector space of even dimension n. Deûne ϕ as

P(Λ2V × Λ2V) ϕ
//❴❴❴❴ P(S2V),

([A], [B]) ✤ // [AJB − BJA].
(i) For n = 2, ϕ is not deûned.
(ii) For n = 4, Im ϕ is the GrassmannianG(2, 5) in P

9 = P(S2C4).
(iii) For n = 6, Im ϕ is a hypersurface of degree 4 in P

20 = P(S2C6).
(iv) For n ≥ 8, ϕ is locally ofmaximal rank. In particular, ϕ is dominant.

Proof (i) By direct computation, AJB − BJA = 0 for all A, B ∈ Λ2V .
(ii)We look at the bilinear map ϕ as a tensor map:

P(Λ2
C

4) × P(Λ2
C

4)↪ P(Λ2
C

4 ⊗ Λ2
C

4)⇢ P(S2C4).
Being skew-symmetric, this map factorizes through

P(Λ2(Λ2
C

4)) ⇢Φ
P(S2C4).

_e image of ϕ is now the image through Φ of the Grassmannian of 2-planes in

C
6 ≃ Λ2

C
4: G(2, 6)↪ P(Λ2(Λ2

C
4)) = P(Λ2

C
6).

_e same argument that we used in the proof of Proposition 4.5 shows that map
is Sp(4)-equivariant. We can thus look at the decomposition of Λ2(Λ2

C
4) and
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S2C4 as Sp(4)-modules. We see that S2C4 is irreducible, while Λ2
C

4 decomposes
as Λ2

0C
4 ⊕C ≃ C5 ⊕C, so that

(5.1) Λ2(Λ2
C

4) = Λ2(Λ2
0C

4 ⊕C) = Λ2(Λ2
0C

4)⊕ Λ2
0C

4 ≃ C10 ⊕C
5 .

Schur’s lemma now tells us that Φmaps P(Λ2(Λ2
0C

4)) isomorphically on PS2C4.

Moreover notice that the two summands in (5.1) above correspond to a P9 and a P4

disjoint in P
14 = P(Λ2(Λ2

C
4)) .

We have a Grassmannian G(2, 5) ↪ P(Λ2(Λ2
0C

4)) = P(Λ2
C

5). Moreover re-

mark that the P4 = P(Λ2
0C

4) is entirely contained in G(2, 6), simply because all ele-

ments of Λ2
0C

4 will be rank 2 tensors in P(Λ2(Λ2
C

4)) .
_is means that we can identify ϕ with the projection G(2, 6) ⇢ P

9 = P(Λ2
0C

4)
from P

4 = P(Λ2
0C

4). But since P4 ⊂ G(2, 6), the projection is induced by the projec-
tion P5 ⇢ P

4 and necessarilymapsG(2, 6) in theGrassmannianG(2, 5), concluding
our proof.

In [Nof13, Proposition 4.1] it is shown that for n = 4 the Im ϕ coincides with the
set ofHamiltonian square roots of the identity times a scalar.

As an addendum, we point out that the image of ϕ the union of the orbits C, G
and H listed in Table I of [OSM94].

(iii) Let S ∈ P(S2C6) be a symmetric matrix. _e determinant of S − tJ has the
form

det(S − tJ) = t6 + γ4(S)t4 + γ2(S)t2 + det(S),
with only even terms. _e image of ϕ is a hypersurface of degree 4 with equation
γ24 + 4γ2 = 0.

_is can be proved either by direct computation, computing all possible normal
form of the matrices in Im ϕ, as is done in [Nof13, Proposition 4.2], or else checked
with the computer algebra system Macaulay2 [GS]. To understand where does the
equation come from, notice that Lemma 4.3 together with the equivariancy of the
map ϕ guarantees that, up to the symplectic action, we can take the matrix B to be

of the form B = [ 0 β

−tβ 0
] . Let us suppose now that A is also in the block form A =

[ 0 α
−αT 0

] .
_en AJB − BJA = [ 0 [β ,α]

[β ,α]T 0
] and we can compute

det((AJB − BJA) − tJ) = det([β, α] − tI)det([β, α]T + tI)
= (−t3 + at + b)(t3 − at + b)
= −t6 + 2at4 − a2x2 + b2 ,

for some coeõcients a and b.
(iv) We perform a local computation and then induction on p = n/2. A diòerent

proof of the fact that ϕ isdominant can be found in [Nof13,Proposition 4.4],where the
author proves that for n ≥ 8 the set of symmetricmatriceswith all distinct eigenvalues
is inside Im ϕ.

So let us start our induction. For the low values of p that are the starting point of
our induction, namely p = 4 and 5, the statement can be checked directly with the aid
of the computer algebra systemMacaulay2 [GS].
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Figure 4: Shape of thematrices M1 (le�) and M2 (right).
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Figure 5: Shape of thematrices M1
2 .

Assume now p ≥ 6. Let M ∈ Λ2V and consider the submatrices M1 and M2

obtained by removing respectively the p-th and the 2p-th rows and columns and the
ûrst and (p + 1)-th rows and columns, as illustrated in Figure 5.

Notice that M1 and M2 are (n − 1)−dimensional skew-symmetric matrices and
that the symplectic form J is “preserved” under this cropping. Moreover the sub-
matrix obtained by removing from M all eight rows and columns combined is an(n − 2)−dimensional skew-symmetric matrix as well and the symplectic form J is
“preserved” in this case, too. Call this submatrix M1

2. It has the form illustrated in
Figure 5.
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If we consider the sum M1+M2, it gives back all the original matrix M with the
exception of four elements, namely m1,p , m1,n , mp,p+1 and mp+1,n (and their four
symmetric). We call the submatrix consisting of these four elements M′. _e four
elements ofM′, togetherwith their four symmetric ones, are identiûedwith a diòerent
symbol and color in Figure 5.

Let us now consider the derivative of the map ϕ, which is a linear map. Take A
and B to be two general elements in Λ2V×Λ2V ._e Jacobianmaps from TA,B → S2V

and is a 2 ⋅ (n
2
) × (n+1

2
)matrix. One has that

(5.2) ImTA,B = ImTA1 ,B1 + ImTA2 ,B2
+ ImTA′ ,B′ .

On the other hand,

dim(ImTA1 ,B1 + ImTA2 ,B2
) = dim(ImTA1 ,B1) + dim(ImTA2 ,B2

) − dim(ImTA1
2
,B1

2
).

Now the fact that our cropping preserves the form J implies that themap ϕ doesn’t
change the form of the matrices, meaning that for example A1 JB1 − B1 JA1 is a sym-
metric matrix of the same form of A1 and B1 and the same holds for the other two
types. Hence applying our inductive hypothesis,

dim(ImTA1 ,B1 + ImTA2 ,B2
) = (n − 1

2
) + (n − 1

2
) − (n − 3

2
),

which once simpliûed becomes

(5.3) dim(ImTA1 ,B1 + ImTA2 ,B2
) = (n + 1

2
) − 4.

Combining (5.2) and (5.3), if we can prove that the four rows of the Jacobian ma-
trix of ϕ corresponding to the four elements of A′ and B′ are independent from the
rest, then the result will follow. But this is again a consequence of the fact that our
cropping preserves the form J. Once cleverly ordered the rows of the Jacobian matrix
corresponding to TA1 ,B1 and TA2 ,B2

will have all zeros in the entries of the columns
corresponding to TA1

2
,B1

2
.

Remark 5.1 In light of the results ofProposition 5.1, it is quitenatural to askwhether
for big values of n themap ϕ is in fact surjective and not only dominant. Even more
interesting would be ûnding out whether the map ϕ composed with the projection
P(S2V) ↠ P(S2V≤r) is surjective for some value of the rank r. In other words, is
there an r for which all symmetric matrices of rank r are of the form AJB − BJA
for a pair of skew-symmetric matrices (A, B)? Noferini [Nof13] has shown that the
statement is false for r = 2, any n. _e question remains open for higher values of r.

It is worth remarking that for any even rank 4 ≤ r ≤ n it is possible to exhibit
regular skew-Hamiltonian matrices JA and JB whose commutator has rank r.
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6 Concluding remarks

6.1 Linear monads

Any element E of M(r, n) can be expressed as the cohomology bundle of a linear
monad, of type

(6.1) V∗ ⊗OP2(−1) α
Ð→ K ⊗OP2

β
Ð→ V ⊗OP2(1),

where V = H1(E(−1)) as usual and K ∶= H1(E⊗Ω1
P2) is a vector space of dimension

2n + r, as proved in [Hul80, Lemma 1.4.2]. To see this one only needs to repeat the
proof of Lemma 2.2 applying the “dual Beilinson” theorem, that is decomposing the

bundle in Db(P2)with respect to the exceptional collection ⟨OP2(−2),OP2(−1),OP2⟩
instead of the collection ⟨OP2(−1),Ω1

P2(1),OP2⟩.
_e unstructured case is treated byHulek using monads of type (6.1).
_is also means that, once we ûx a framing, all elements of M0(r, n) are general-

ized instanton bundles in the sense of [HJM12].
Remark that by combining (6.1) and (n copies of) the Euler sequence in a diagram,

as it is done in (6.3), we get themonad

(6.2) V∗ ⊗OP2(−1)→ V ⊗Ω1
P2(1)→ I∗ ⊗OP2

which is nothing but the dual (2.1).

(6.3) 0

��

0

��

V∗ ⊗OP2(−1)
α

��

// V ⊗Ω1
P2(1)

��

// I∗ ⊗OP2

0 // K ⊗OP2

β

��

// V ⊗U ⊗OP2

��

// I∗ ⊗OP2

��

// 0

0 // V ⊗OP2(1) V ⊗OP2(1)

��

// 0

0.

_e second row comes from the cohomology of the Euler sequence tensored by
E(−1),

0→ E ⊗Ω1
P2 → U ⊗ E(−1)→ E → 0,

that at theH1 level reads

0→ K → U ⊗ V → I∗ → 0.

On the converse, to go from (2.1) to (6.1) it is enough for the bundle E to be stable.
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6.2 Explicit examples

According to our construction, in order to obtain explicit examples of elements of
M0

ort(r, n) we simply need to exhibit the morphism f ∈ U ⊗ ∧2V , given by its three
skew-symmetric n×n slices. In otherwordswe need two skew-symmetricmatrices A
and B such that rk(AJB − BJA) = r. It seems interesting and useful to give such an
explicit construction for the linear monad. For other explicit examples, see [JMW14].

_e case when the rank r equals the second Chern class n is the easiest, because
themonad (2.1) simpliûes, and its dual (6.2) gives us a resolution of the bundle E:

0→ OP2(−1) ⊗ V∗
t f
Ð→ Ω1

P2(1) ⊗ V → E → 0.

Keeping the same notations as above, let f ∈ U ⊗ ∧2V be given by its three skew-
symmetric n × n slices A, J and B. We want to construct explicitly the linear monad
having E as its cohomology. We can again combine everything in a diagram:

0

��

0

��

0 // OP2(−1)n t f
// Ω1

P2(1)n

��

// E //

��

0

0 // OP2(−1)n α // O
3n
P2

β

��

// Ker β

��

// 0

OP2(1)n

��

OP2(1)n

��

0 0.

To construct explicitly α and β we start from themorphism f . LetC[x0 , x1 , x2] be
the coordinate ring. Denote by x i ∶= x i In the n × n scalar matrix, and set

X ∶=
⎡⎢⎢⎢⎢⎢⎣
x0
x1
x2

⎤⎥⎥⎥⎥⎥⎦
.

Recall that thematrix

H0( f ) =
⎡⎢⎢⎢⎢⎢⎣
0 J A
−J 0 B
−A −B 0

⎤⎥⎥⎥⎥⎥⎦
is symmetric, and in this case it is also of maximal rank rkH0( f ) = 2n + r = 3n.
Considering the associated complex quadratic form, it factorizes as H0( f ) = tQQ for
somematrix Q. Now set α ∶= QX and β ∶= tα, so that

βα = (tX tQ)(QX) = tX(tQQ)X = tXH0( f )X = 0.
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6.3 Conjectural Bound

_e work presented in this paper leaves many open questions. First of all, we ûrmly
believe that the following statement is true.

Conjecture 6.4 (Strong Lemma 4.1) Let n and 3 ≤ r ≤ n be two positive integers,

n even. LetVbe a complex vector space of dimension n._e subvariety Ĉr ,n is irreducible

of codimension (n−r+1
2
) in Λ2V × Λ2V for any 6r − 5n ≥ 2.

Remark that the linear bound 6r − 5n ≥ 2 can be re-written as n ≥ 6(n − r) + 2;
once this is done it becomes apparent thatConjecture 6.4 reduces to Lemma 4.1when
r = n and r = n − 1.

In virtue of _eorem 3.5, the above conjecture would of course imply the irre-
ducibility of themoduli space M0

ort(r, n) in the same range 6r − 5n ≥ 2.
We have good computational evidence for Conjecture 6.4, nevertheless in its pos-

sible proof a generalization of the two claims, 1 and 2, to any co-rank appears to be

a technical impasse. With the same notation used in Section 4, we believe that the
following two results hold.

Claim 1: conjectural strong version. Let the Jordan normal form of JB consist inm
Jordan blocks, each of dimension d i with ∑

m
i=1 d i = n

2
. For every i = 1, . . . ,m deûne

δ i ∶= ∑i−1
j=1 d j , and ρ i ∶= min{d i , n − r}. Let L be an element in the Grassmannian

G(n − r, n). If the condition L ⊆ ker S is non-transverse with the◇-conditions, then
L ∩ m

⋃
i=1
⟨eδ i+1 , . . . , eδ i+ρ i

, eδ i+ n
2
+1 , . . . , eδ i+ n

2
+ρ i
⟩ /= 0.

Claim 2: conjectural strong version. Let L be an element of theGrassmann variety
G(n − r, n). _en the dimension of the ûber p1

−1∣p−1
2
(SB

r ,n)
(L) is bounded above by

dim( p1−1∣p−1
2
(SB

r ,n)
(L)) ≤ (r + 1

2
) − ( 3

2
n − 3(n − r)) ,

where (r+1
2
) = dim S2(V/L), the dimension of the ûber of the aõne bundle X̃ →

G(n − r, n) deûned in (4.4).

6.4 The Case of Odd c2

_e case c2 odd is very interesting, especially because it appears that (almost) none of
the techniques used in thiswork apply.We know that orthogonal bundleswith odd c2
cannot have trivial splitting on the general line, and that they do not deform to ones
that do. How can we study their moduli space? Remark that the second symmetric
power of (a twist of) the tangent bundle, namely (S2 TP

2)(−3), is an example of a
stable rank 3 orthogonal bundle on P

2 with Chern classes (c1 , c2) = (0, 3), and that
its splitting type on the general line ℓ is Oℓ(−1)⊕Oℓ ⊕Oℓ(1).
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