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Abstract
A set of vertices in a graph is a Hamiltonian subset if it induces a subgraph containing a Hamiltonian cycle.
Kim, Liu, Sharifzadeh, and Staden proved that for large d, among all graphs with minimum degree d, Kd+1

minimises the number of Hamiltonian subsets. We prove a near optimal lower bound that takes also the
order and the structure of a graph into account. For many natural graph classes, it provides a much better
bound than the extremal one (≈ 2d+1). Among others, our bound implies that an n-vertex C4-free graph
with minimum degree d contains at least n2d2−o(1) Hamiltonian subsets.
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1. Introduction
Finding sufficient conditions that guarantee the existence of certain cycles is a well-studied topic
in combinatorics. A cycle in a graph is Hamiltonian if it spans the whole vertex set of the graph.
Testing whether a graph contains a Hamiltonian cycle is one of Karp’s original NP-complete prob-
lems [12]. Dirac’s theorem [3] from 1952, arguably the most influential result in this area, asserts
that for an n-vertex graph, the minimum degree being at least n

2 is a tight sufficient condition for
containing a Hamiltonian cycle. Since then, various extensions have been studied over the past
70 years, see, e.g., [2, 14, 18, 20, 21] and the survey [19].

In this paper, we study the enumeration problem on Hamiltonian subsets of a graph. A set
of vertices A⊆V(G) is a Hamiltonian subset if G[A] contains a Hamiltonian cycle. Denote by
h(G) the number of Hamiltonian subsets of G. It is natural to ask how h(G) relates to the min-
imum degree. Intuitively, when the minimum degree is given, larger graphs tend to have more
Hamiltonian subsets. In 1981, Komlós conjectured that among all graphs with minimum degree
at least d, the complete graph Kd+1 minimises the number of Hamiltonian subsets. This conjec-
ture was recently confirmed for large d by Kim et al. [13], who also showed that Kd+1 is the unique
minimiser.

While [13] resolves Komlós’s conjecture for large d, it raises multiple related questions. Perhaps
the most natural question, considering the n-vertex graph G� consisting of n−1

d copies of Kd+1
sharing exactly one common vertex, is whether for any n-vertex graph G with δ(G)= d, h(G)=
�(n2d). Also, notice that G� is basically a disjoint union of Kd+1s. If components of a graph are
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much larger than the unique minimiser Kd+1, is it possible to obtain an exponential improvement
on 2d? As we shall see, the relevant parameter is the ‘essential order’ of a graph, captured by the
following notion of crux introduced by Haslegrave, Hu, Kim, Liu, Luan, and Wang [8]. Roughly
speaking, the crux of a graph is large when the edges are relatively uniformly distributed. We write
d(G) for the average degree of G.

Definition (Crux). For a constant α ∈ (0, 1), a subgraph H ⊆G is an α-crux if d(H)≥ α · d(G).
The α-crux function, cα(G), of G is defined as the order of a minimum α-crux in G, that is,

cα(G)=min{|H| : H ⊆G and d(H)≥ α · d(G)}.
Here are some common graph classes for which cα(G)� d(G): (i) Ks,t-free graphs G with t ≥

s≥ 2, satisfy cα(G)= �
(
d(G)s/(s−1)) (as a corollary of ex(n,Ks,t)=O

(
n2−1/s)); (ii) a d

r -blow-up
G of a d-vertex r-regular expander graph for a sufficiently large constant r satisfies cα(G)= �(d2)
and d(G)= d; and (iii) there are well-studied graphs whose crux size is exponentially larger than its
average degree, e.g. using isoperimetry inequalities, one can show that the d-dimension hypercube
Qd satisfies cα(Qd)≥ 2αd. For more details, we refer the readers to [8].

Our main result reads as follows.

Theorem 1.1. There exist constants B and d0 such that the following is true. Let G be an n-vertex
graph with average degree d ≥ d0, t = c 1

5
(G) and β = (6000 log 3)−16, then

h(G)≥ 1
B
n2βt/ log16 t .

Our bound is optimal up to the constant factor B and the polylog factor in the exponent (con-
sider againG�). Also 1

5 in the crux function can be replaced by any constant strictly smaller than 1
2 .

It improves on the extremal bound h(Kd+1)≈ 2d+1 in two aspects as suggested above, i.e. having
a factor linear in the order n and an exponential (in d) improvement for graphs whose crux size is
much larger than their average degree. For example, for a C4-free graph G, using the lower bound
on crux in (i) above, we get h(G)≥ n2d2−o(1) .

It is worth mentioning that Theorem 1.1 is another manifestation of the replacing average
degree by crux paradigm proposed in Haslegrave et al. [8]. It suggests that one might be able to
replace the appearance of d(G) in results on sparse graph embeddings with the crux size cα(G)
instead. The essential reason that we can replace the average degree by crux in the exponent
for h(G) is that large crux implies existence of certain large expander subgraph which supplies
many Hamiltonian subsets. We refer the readers to [8, 11] for more results illustrating this
paradigm.

As in [13], our proof also utilises the notion of sublinear expanders. The theory of sublinear
expanders, first introduced by Komlós and Szemerédi [15, 16] in the 1990s, has played a pivotal
role in many recent resolutions of old conjectures, see, e.g., [4, 5, 7–10, 13, 22–24]. However, after
passing to a sublinear expander subgraph, we take a completely different approach than [13] to
construct Hamiltonian subsets. Indeed, in [13], they used a set of �(d) vertices that are pairwise
far apart to produce exponential in d many Hamiltonian subsets. For us, to have the additional
factor linear in the order n, we instead find a positive fraction of vertices, each contained in many
distinct Hamiltonian subsets. To this end, we repeatedly apply the following result, which could
be of independent interest; it guarantees one such ‘heavy’ vertex, in dense subgraphs of the host
graph.

Theorem 1.2. Let 0< α < 1
2 , G be a graph with sufficiently large average degree d and t = cα(G).

Then there exists a vertex lying in at least 2βt/ log16 t distinct Hamiltonian subsets, where β =
(6000 log 3)−16.
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We find such ‘heavy’ vertices via embedding a large wheel-like structure (see Definition 2.6),
inspired by the adjuster structure in Liu-Montgomery [23], in sublinear expander subgraphs of G.
To construct such a large wheel, we perform an exploration algorithm similar to depth-first search
(DFS) on a collection of suitable cycles. In particular, the cycles we use all have polylogarithmic
length (( log n)�(1)), which result in the polylog factor loss in the exponents of both Theorems 1.1
and 1.2.

It would be interesting to know whether the polylog factor in the exponent in Theorem 1.1
is necessary or just the artefact of our method. Note that expanders with constant expansion
(i.e. positive Cheeger constant) could have girth polylogarithmic in n, so our approach cannot
be applied to delete the polylog factor even if we have better expansion property. On the other
hand, we observe that the polylog factor is not necessary for (n, d, λ)-graphs. The (n, d, λ)-graphs
are d-regular graphs on n vertices with second largest eigenvalue in absolute value λ. It is not hard
to see that the crux size of an (n, d, λ)-graph is linear in n when λ is bounded away from d, see
Proposition 2.10.

Proposition 1.3. Let 0< β < 1 and G be an (n, d, λ)-graph. If d
|λ| ≥ 1

β2 , then h(G)≥( n
1
2n

)
/
(( 12+3β)n

3βn
)
. Specifically, if β < 1/6, then h(G)≥ 2(

1
2−3β)n.

.Organisation.The rest of the paper is organised as follows. In Section 2, we list some preliminaries
needed for the proof. In Section 3, we prove Theorem 1.2. In Section 4, we prove the main result,
Theorem 1.1. Proposition 1.3 is proved in Section 5 and concluding remarks in Section 6.

2. Notations and preliminary properties
A ball of radius r (around a vertex v), denoted by BrG(v)= {u ∈V : 0≤ d(u, v)≤ r}, in a graph
G is the set of all vertices which are at distance no more than r from v. Here we write Br(v) if
the underlying graph we consider is clear. For a vertex set X, the ball around X of radius r is
similarly defined as the set of all vertices at distances at most r from (some vertex in) X, that
is, Br(X)= ⋃

v∈X Br(v). We write G− X =G[V(G) \ X] for the subgraph induced on V(G) \ X.
Throughout the paper, log denotes the natural logarithm.

2.1 Sublinear expanders
For ε1 > 0 and k> 0, let ε(x, ε1, k) be the function

ε(x, ε1, k)=
⎧⎨
⎩
0 if x< k/5,

ε1/ log2 (15x/k) if x≥ k/5,
(1)

where, when it is clear from context, we will write ε(x, ε1, k) as ε(x).

Definition 2.1 (Sublinear expander). A graph G is an (ε1, k)-expander if for any subset X ⊆V(G)
of size k/2≤ |X| ≤ |V(G)|/2, we have |NG(X)| ≥ ε(|X|) · |X|.

A classical result of Komlós and Szemerédi states that any graph G contains a sublinear
expander subgraph retaining almost the same average degree. A priori, this subgraph can have
much smaller order than G, but by definition, this sublinear expander subgraph is at least as large
as the crux (say c 1

2
(G)). We remark that this was in fact one of the motivations for the notion of

crux.

Lemma 2.2 (Lemma 2.2, [8]). Let C > 30, ε1 ≤ 1/(10C), k> 0 and d > 0. Then every graph G with
d(G)= d has a subgraph H such that H is an (ε1, k)-expander, d(H)≥ (1− δ)d and δ(H)≥ d(H)/2,
where δ:= Cε1

log 3 .
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Figure 1. A 3-chain and a 4-wheel.

The following lemma is a slightly modified version of Theorem 3.12 in [23]. It finds linear-size
balls robustly in sublinear expanders. By size of a ball, we mean the number of vertices in the ball.

Lemma 2.3. For any 0< ε1 < 1 the following holds for each n≥ 60. Suppose that G is an n-vertex
(ε1, 15)-expander. For any set W ⊆V(G) with |W| ≤ ε1

n
20 log2 n , there is a ball B⊆G−W with size

at least n/10 and radius at most 20
ε1

log3 n.

Lemma 2.4 (Proposition 3.10, [23]). For every m′ ≤m the following is true. Every ball Br(v) of
radius r with size m contains a connected subgraph of radius at most r with centre v and size m′.

A key property of expanders is the following short diameter property.

Lemma 2.5 (Corollary 2.3, [16]). Let ε1 > 0, H be an n-vertex (ε1, 15)-expander and X, X′,W ⊆
V(H). If |X|, |X′| ≥ x≥ 8 and |W| ≤ 1

4ε(x)x, then there is a path in H −W from X to X′ of length
at most 2

ε1
log3 n.

2.2 Large wheels in expanders
To find vertices in many Hamiltonian subsets, we use the following structures.

Definition 2.6 (Chain/wheel). An 
-chain/
-wheel is the graph obtained from a path/cycle by
replacing 
 edges in the path/cycle with 
 cycles, which are disjoint up to possible common end-
vertices of the initial edges.

Examples of a chain and a wheel are depicted in Fig. 1. It iseasy to see that an 
-wheel has at least
2
 different Hamiltonian subsets, since for each of the 
 cycles there are two choices for a path
between the end-vertices of the initial edge it replaced.

The following lemma finds an almost linear-size wheel in a sublinear expander, from which we
can quickly derive Theorem 1.2. The proof of Lemma 2.7 will be given in Section 3.

Lemma 2.7. Let 0< ε1 < 1 and H be an (ε1, 15)-expander of order n, where n is sufficiently large.
Then there exists an 
-wheel in H with 
 ≥ (

ε1
20

)16 (2n/ log16 n).

2.3 Crux function
We also need some control on the crux function and the expander mixing lemma.

Lemma 2.8 (Expander mixing lemma [1]). For any (n, d, λ)-graph G and two vertex subsets X and

Y, we have
∣∣∣∣e(X, Y)− d

n |X||Y|
∣∣∣∣ ≤ λ

√
|X||Y|

(
1− |X|

n

) (
1− |Y|

n

)
.
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Proposition 2.9. For every graph G with average degree d and every 0< α < α′ < 1, we have

cα(G)≤
⌈ α

α′ (cα′(G)− 1)+ 1
⌉
.

In particular, for a graph G, for every 0< α < 1, cα(G)≤ �α(|G| − 1)+ 1� .
Proof. Let G′ be the graph on n := c

α
′(G) vertices for which the average degree is at least α′d. By

definition of the crux, it suffices to prove that there exists a subgraph H of G′ with at most k:=⌈
α

α
′ (n− 1)+ 1

⌉
vertices for which the average degree is at least αd. For this, consider a uniform

random k-vertex induced subgraphH of G′. The probability that a particular edge uv of G belongs

to such a subgraph equals (n−2
k−2)
(nk)

= (k2)
(n2)

. The expected size of H equals E(E(H))= e(G′) (
k
2)

(n2)
. Hence

the expected average degree equals

E(d(H))= 2E(E(H))
k

≥ α′dn
k

(k
2
)

(n
2
) = α′d(k− 1)

n− 1
≥ αd.

This implies that there exists at least one subgraph H ⊂G with order k and d(H)≥ αd. �
We remark (even while not needed in the remaining of the exposition) that Proposition 2.9 is

sharp for G=Kd+1, since H =Kαd+1 is the minimum subgraph of G with average degree at least
αd. More generally, it is asymptotically sharp for (n, d, λ)-graphs.

Proposition 2.10. Let 0< α < 1. Given ε > 0, if λ
d < εα, then for every (n, d, λ)-graph

G= (V , E)

cα(G)> (1− ε)αn.

Proof. Assume there exists a set S such that d(G[S])≥ αd and |S| < (1− ε)αn. Then

|e(S,V\S)| ≤ (1− α)d|S| = (1− α + αε)d|S| − αεd|S| < d|S| |V\S|
|V| − λ|S|.

This is a contradiction with the expander mixing lemma. �

2.4 Depth-first search
One of the main ideas in this paper is an algorithm that is similar to DFS, see step 2 in
Section 3. DFS is a graph exploration algorithm that visits all the vertices of an input graph. Here
we summarise the DFS algorithm for a graph G= (V , E). Let S be a stack (initially the empty set),
consisting of vertices in V . Let U be a set (initially V) of unexplored vertices in V , and let X be a
set (initially the empty set) of explored vertices in V . In every step, if S is empty and |U| > 0, then
we take an arbitrary element from U and put it into S. If the top vertex of S has a neighbour in U,
move such a neighbour from U to put it on top of S. If the top vertex of S has no neighbour in U,
move the top vertex of S to X. Stop when X =V .

The following properties hold throughout the process.

1. The stack S forms a path in G.
2. There is no edge of G between U and X.
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(a) (b)

Figure 2. The sets D, D′, X,W and path P and extension in the final step in Proposition 3.1.

3. Finding many Hamiltonian subsets with a common vertex
In this section, we will prove Lemma 2.7 in three steps and derive Theorem 1.2 from it.
Throughout the proof, we let

p= 20
ε1

log n, t = n
p10

, r = 2
ε1

log3 n.

We also assume that ε1 < 1 and n is sufficiently large, such that the inequalities used in the proof
are true.

First, we prove that expanders contain many disjoint cycles of appropriate length.

Step 1: finding many disjoint cycles

Proposition 3.1. Let H be an (ε1, 15)-expander of order n. Then H contains at least t disjoint cycles,
all of whose lengths are between p5 and p6.

Proof. Let C be a maximal collection of disjoint cycles of length between p5 and p6. Suppose
to the contrary that |C| < t. For ease of the reader, Figure 2 gives a depiction of the following
steps in the remaining of the proofs. Let W be the set of vertices contained in these cycles. Note
that |W| < tp6 = n

p4 . By applying Lemmas 2.3 and 2.4 twice, we can find two disjoint sets D and
D′ with diameter at most p3 and size n

p2 which avoid W. For this, it is sufficient to note that
n
p2 + n

p4 < ε1
n

20 log2 n and thus once D is constructed, one can find a large ball avoidingW ∪D (by
Lemma 2.3) and take a set D′ of the right size (by Lemma 2.4).

Let x= n
p2 . Note that ε(x)/4= ε1

4 log2 x ≥ ε1
4 log2 n > 1

p2 and thus |W| < n
p4 = x

p2 < xε(x)/4. Hence
by Lemma 2.5 we can find a path of length at most p3 connecting D and D′ while avoidingW.

Now iteratively, we can build longer paths between two sets of size n
p2 = tp8 and diameter at

most p3 until the length is between p5 and p5 + 2p3, in such a way that the length increases in each
step by at least one and at most 2p3. Let D and D′ be the two current sets, with a path from v ∈D
to v′ ∈D′, say P. Let X be a set of size tp8 and diameter at most p3 which avoids D,D′, W, and
V(P). The latter is possible by Lemmas 2.3 and 2.4 as 2 n

p2 + n
p4 + p5 < ε1

n
20 log2 n . Take a path of

length at most p3 between X andD∪D′ avoidingW and P, which is again possible by Lemma 2.5.
Without loss of generality, this path is between x ∈ X and d ∈D′. As such, we can consider X and
D as the new sets and the union of the paths between x and d, d and v′, and v′ and v as the new
path P′. Then |P| < |P′| ≤ |P| + p3 + p3.

By iterating this, we reach a path P1 of length between p5 and p5 + 2p3 between the two sets D
andD′. Applying Lemma 2.5 a final time, gives a path P2, avoidingW and P1, betweenD andD′ of
length at most p3. The union of P1, P2 and 2 connecting paths in D and D′ gives a cycle of length
between p5 and p5 + 6p3 < p6. This cycle is disjoint from those in C, contradicting the maximality
of C. �
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Step 2: finding a long chain
Having found many disjoint cycles in Step 1, we now prove that we can connect some of them

in a chain. Here we use an algorithm, similar to DFS, where we explore the set of cycles (instead
of set of vertices).

Proposition 3.2. Let 0< ε1 < 1 and H be an (ε1, 15)-expander of order n. Let p= 20
ε1

log n, t = n
p10

and r = 2
ε1
log3 n. If H contains at least t disjoint cycles, all of whose lengths are between p5 and p6,

then there exists an 
-chain with 
 ≥ t/p3 and each path between two consecutive cycles on the chain
has length at most r = 2

ε1
log3 n.

Proof. Let C be a set consisting of t disjoint cycles, all of whose lengths are between p5 and p6. To
find the desired chain, we perform a process similar to DFS on C.

During the process, We keep track of the following four sets:

• a stack S (initially the empty set), consisting of cycles (which are ordered) in C,
• a set U (initially C) of unexplored cycles in C,
• a set X (initially the empty set) of explored cycles in C,
• a set P (initially the empty set) of pairwise (vertex) disjoint paths.

In every step, we do one of the following replacements.

• If S is empty and |U| > 0, then take an arbitrary element from U and put it to the top of S.
• If S is not empty and |U| > 0 and

– if there exists a path P of length at most r, all of whose internal vertices do not belong
to (a cycle of) C nor (a path in) P , which connects the top element in S and an arbitrary
cycle C inU, then we remove the cycle C fromU and push it onto the top of S, and push
the path P into P ,

– if no such path P exists, then take the top element from S and put it into X.
• If |U| = 0, then stop.

Throughout the process, observe that

1. at any step of the process, there exists an |S|-chain which connects all cycles in S and each
path between two consecutive cycles has length at most r;

2. there does not exist a path P, whose internal vertices are not in C and P , with length at
most r, which connects (a cycle in) X and (a cycle in) U; and

3. |P| ≤ |C| − |U|.
We run this process until the point that |U| = t

3 . Suppose to the contrary that |S| < t/p3. Then
|X| = t − |U| − |S| ≥ t/3 and |P| ≤ 2t/3. Observe also that

∑
C∈X

|C|,
∑
C∈U

|C| ≥ t/3 · p5,
∑
P∈P

|P| ≤ 2t/3 · r = 4t
3ε1

log3 n≤ ε1tp5

24 log2 n
≤ ε(tp5/3)tp5/24 and

∑
C∈S

|C| ≤ tp3 ≤ ε(tp5/3)tp5/24.

LetW = ⋃
P∈P V(P)∪ ⋃

C∈S V(C), then |W| ≤ ε(tp5/3)tp5/12. By Lemma 2.5, there exists a path
avoiding vertices inW with length at most r between X and U, a contradiction. Hence |S| ≥ t/p3
and Observation 1 above implies the result. �
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Step 3: finding a long wheel
Finally, we prove that one can add a path between two cycles (near the ends) of the chain, to

find a wheel. To do so, we need to have sufficiently many cycles at the ends to be able to connect
them with Lemma 2.5.

Proposition 3.3. Let 0< ε1 < 1 and H be an (ε1, 15)-expander of order n. Let p= 20
ε1

log n, t = n
p10 ,

and r = 2
ε1
log3 n. If H contains an m-chain with m= t/p3 such that each cycle has length between

p5 and p6 and each path between two consecutive cycles has length at most r. Then H contains an

-wheel with 
 ≥ 2t/p6.

Proof. Let S= C1P1C2 . . . Pm−1Cm be the m-chain with |Pi| ≤ r. We shall expand and connect
two ends of this chain while avoiding a small middle segment to obtain a desired wheel. More
precisely, let

X1 =
m/2−m/p3⋃

i=1
V(Ci), W =

⎛
⎝ m/2+m/p3⋃

i=m/2−m/p3+1

V(Ci)

⎞
⎠ ∪

m⋃
i=1

V(Pi), X2 =
m⋃

i=m/2+m/p3+1

V(Ci).

It is easy to check |Xi| ≥m/3 · p5 for i= 1, 2, and |W| ≤ 2m/p3 · p6 +m · p3 ≤ ε(mp5/3)mp5/12,
since r < p3 and log (mp5/3)< log n. By Lemma 2.5, there exists a path P avoidingW between X1
and X2, say between Ci and Cj for some 1≤ i≤m/2−m/p3 and m/2+m/p3 + 1≤ j≤m. Then
the union of P and CiPiCi+1 . . . Pj−1Cj forms an 
-wheel with 
 ≥ 2m/p3 = 2t/p6, where possibly
Ci and/or Cj are deleted when P has an end-vertex equal to Ci ∩ Pi and/or Cj ∩ Pj−1. �

So we can find an 
-wheel with 
 ≥ 2n/p16 = ( ε1
20 )

16(2n/ log16 n) inH. Lemma 2.7 now follows
immediately from Propositions 3.1, 3.2, and 3.3.

Proof of Theorem 1.2. Take C = 30 log 3 and ε1 = 1/(10C). By Lemma 2.2, there exists an
(ε1, 15)-expander H in G such that d(H)≥ (1− δ)d > αd. Thus, by the definition of crux, we
have n:= |H| ≥ t = cα(G). Then by Lemma 2.7 there exists an 
-wheel in H (and thus also in G)
with 
 ≥ (

ε1
20

)16 (2n/ log16 n)≥ 2βt/ log16 t. Since an 
-wheel contains 2
 different cycles and any
vertex in an 
-wheel is contained in at least 2
−1 different cycles, we conclude. �

4. Proof of the main theorem
In this section, we prove Theorem 1.1.We shall perform three counting strategies and show that at
least one results in the desired lower bound for the number of Hamiltonian subsets. We start with
a smallest counterexample G and in the first two strategies, we shall find many vertices belonging
to many (different) Hamiltonian subsets. If those strategies fail to produce enough Hamiltonian
subsets, then Gmust contain a dense subgraph with sufficiently many Hamiltonian subsets.

Proof of Theorem 1.1. Recall that t = cα(G), α = 1/5, ε1 = 1
300 log 3 and β = (

ε1
20

)16. Choose d0
such that βx> log16 x whenever x≥ αd0 and Theorem 1.2 is true whenever d ≥ d0. Then choose
the constant B such that βbt/ log16 (bt)> βt/ log16 t + log2 (5b) whenever b≥ B

5 and t ≥ αd0.
LetG be a graph with average degree d ≥ d0 with minimum order n among all graphs for which

the theorem is not true. That is, h(G)< n
B2

βt/ log16 t , and for any proper subgraph of G, say G′, if
the average degree of G′ is at least d0, then h(G′)≥ |V(G′)|

B 2βt′/ log16 t′ , where t′ = cα(G′).
We now consider three strategies.
Strategy 1:
We will choose a set of vertices S in which every vertex belongs to at least 2βt/ log16 t different

Hamiltonian subsets of G. Let S be a set of vertices, which is initially the empty set. As long as
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G− S has average degree at least d
4 , by Lemma 2.2 there exists an (ε1, 15)-expander H ⊂G− S

with minimum degree at least d
5 . SoH has order at least cα(G). By Theorem 1.2, there is a vertex s

in H belonging to at least 2βt/ log16 t distinct Hamiltonian subsets. Now add s to S. If at the end, S
contains at least n

B vertices, we would reach a contradiction with the choice of G, being a graph
with less than n

B2
βt/ log16 t Hamiltonian subsets.

We may then assume that |S| < n
B . Note also that G− S, having average degree less than d

4 ,
contains less than d(n−|S|)

8 < m
4 edges, wherem= e(G).

Strategy 2:
We restart the search for Hamiltonian subsets in the bipartite graph G[S,V\S], where S is

the set constructed while executing Strategy 1. As long as the bipartite graph G[S,V\S] con-
tains at least m

4 edges, and hence has average degree at least d
4 , by Lemma 2.2 there exists an

(ε1, 15)-expander H ⊂G[S,V\S] with minimum degree at least d
5 and hence H has order at least

cα(G). Take a vertex s ∈V\S, then by Theorem 1.2 there are at least 2βt/ log16 t Hamiltonian subsets
containing s. Now add s to S. If G[S,V\S] contains at least m

4 edges, repeat this process.
We claim that we do not count the same Hamiltonian subset twice. For two different vertices

s1 and s2 which we added to S in Strategy 2, let Si be the set S before we move si, for i= 1, 2, then
si /∈ Si. Without loss of generality, assume that we added s1 to S before s2, i.e. S1 ⊂ S2, then s1 ∈ S2
and s2 /∈ S1. Let H be a Hamiltonian subset containing both s1 and s2. Since s1 /∈ S1, s1 ∈ S2 and
s1 ∈H, we have |H ∩ S1| < |H ∩ S2|. On the other hand, ifH was counted on both times, we would
have |H ∩ S1| = |H ∩ S2| = |H|/2 (as G[Si,V \ Si] is bipartite and |H| is even), a contradiction. If
we can repeat this at least n

B times, we have found the desired number of Hamiltonian subsets
again, which would be the desired contradiction.

Strategy 3:
After performing the two previous strategies, we ended up with a set S such that G− S

and G[S,V\S] both contain less than m
4 edges, so G[S] contains at least m

2 edges. Also we
know that |S| = 1

bn≤ 2 n
B , for some b≥ B

2 . Hence the average degree of G[S] is γ d for some
γ ≥ b

2 . By Proposition 2.9, this implies that
⌈
1
γ
(cα(G[S])− 1)+ 1

⌉
≥ cα/γ (G[S])≥ cα(G) and

thus γ (cα(G)− 2)< cα(G[S])= b′cα(G)= b′t for some b′ ≥ 4γ
5 ≥ 2b

5 ≥ B
5 . Since G is a minimal

counterexample, G[S] satisfies

h(G[S])≥ n/b
B

2βb′t/ log16 (b′t) ≥ 5b′ n/b
B

2βt/ log16 t ≥ n
B
2βt/ log16 t .

Since h(G)≥ h(G[S]), we derive the final contradiction. �

5. Proof of Proposition 1.3
We shall prove a similar bound for a larger class of β-graphs (see [6]). For 0< β < 1, an n-vertex
graph G is a β-graph if every pair of disjoint vertex sets A, B⊆V(G) of size |A|, |B| > βn are
connected by an edge. Note that by the expander mixing lemma, Lemma 2.8, an (n, d, λ)-graph
with d

|λ| ≥ 1
β2 is a β-graph. Hence, Proposition 1.3 follows from the following result.

Proposition 5.1. Let G be an n-vertex β-graph, then h(G)≥ ( n
1
2n

)
/
(( 12+3β)n

3βn
)
. Specifically, if β <

1/6, then h(G)≥ 2(
1
2−3β)n.

We first show that large subgraphs of a β-graph contain almost spanning cycles.

Lemma 5.2. Let G be an n-vertex β-graph and 0< c< 1. Then for every subset S with cn vertices,
G[S] contains a cycle of length at least (c− 3β)n.
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To prove this lemma, we need the following result.

Lemma 5.3 ([17], Theorem 1). Let k> 0, t ≥ 2 be integers. Let G be a graph onmore than k vertices,
satisfying that |NG(W)| ≥ t, for every W ⊆V(G) with k/2≤ |W| ≤ k. Then G contains a cycle of
length at least t + 1.

Proof of Lemma 5.2. By definition of a β-graph, for any vertex set U, if |U| ≥ βn, then we have
|NG(U)| > n− |U| − βn, for otherwise U and V\(U ∪N(U)) would be two sets of size at least
βn without an edge in between, a contradiction. Let W be any subset of S of size βn≤ |W| ≤
2βn. Then |NG[S](W)| ≥ |NG(W)| − (n− |S|)≥ n− 3βn− (1− c)n= (c− 3β)n. Now the result
follows from Lemma 5.3. �
Proof of Proposition 5.1. By Lemma 5.2, for any vertex set S of size 1

2n, we can find a cycle of
length at least ( 12 − 3β)n. For any such cycle C
, with ( 12 − 3β)n≤ 
 ≤ n/2, it is contained in at

most
( n−

n/2−


) ≤ ((
1
2+3β

)
n

3βn

)
different subsets of size n/2. So we can find at least

( n
1
2n

)
/
((

1
2+3β

)
n

3βn

)
Hamiltonian sets.

If β < 1/6, we have(
n
1
2n

)
/

(( 1
2 + 3β

)
n

3βn

)
= n · (n− 1) · . . . · (n− (1/2− 3β) n+ 1)

1
2n · ( 12n− 1

) · . . . · ( 12n− (1/2− 3β) n+ 1
) ≥ 2

(
1
2−3β

)
n.

�

6. Concluding remarks
In this paper, we proved a near optimal lower bound on the number of Hamiltonian subsets in
a graph with given minimum degree, which asymptotically gives much better bounds for large
graphs. Kim et al. [13, Theorem 1.3] proved that for d sufficiently large, any graphG different from
Kd+1 with minimum degree δ(G)≥ d has at least roughly twice as many Hamiltonian subsets as
Kd+1. The following extension of Komlós’s conjecture seems plausible.

Problem 6.1. Let d ≥ 3 be an odd integer. Let G be a graph different from Kd+1 with minimum
degree δ(G)≥ d. Is h(G)≥ 2h(Kd+1)?

Equality occurs if G ∈ {2Kd+1,Kd+1 �Kd+1,Kd+2\M}, where M is a maximum-size matching
of Kd+2, or when G=K3,3 and d = 3. Here Kd+1 �Kd+1 is the union of two Kd+1s which are
vertex-disjoint except from one common vertex. Notice that the same is not true for even d, as
then

h(Kd+2\M)= 2d+2 − d2 − 7
2
d − 4< 2h(Kd+1)= 2d+2 − d2 − 3d − 4.
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