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Immunoregulation is crucial to septic shock (SS) but has not been clearly explained. Our aim was to explore potential biomarkers
for SS by pathway and transcriptional analyses of immune-related genes to improve early detection. GSE57065 and GSE95233
microarray data were used to screen diferentially expressed genes (DEGs) in SS. Gene Ontology and KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathway enrichment analyses of DEGs were performed, and correlations between immune cell and
pathway enrichment scores were analyzed. Te predictive value of candidate genes was evaluated by receiver operating char-
acteristic (ROC) curves. GSE66099, GSE4607, and GSE13904 datasets were used for external validation. Blood samples from six
patients and six controls were collected for validation by qRT-PCR and western blotting. In total, 550 DEGs in SS were identifed;
these genes were involved in the immune response, infammation, and infection. Immune-related pathways and levels of in-
fltration of CD4+TCM, CD8+Tcells, and preadipocytes difered between SS cases and controls. Seventeen genes were identifed
as potential biomarkers of SS (areas under ROC curves >0.9). Te downregulation of CD8A, CD247, CD3G, LCK, and HLA-DRA
in SS was experimentally confrmed.We identifed several immune-related biomarkers in SS that may improve early identifcation
of disease risk.

1. Introduction

Septic shock (SS) is defned as an infection-related circulatory
dysfunction and metabolic disorder and is clinically associated
with myocardial dysfunction and decreased ejection fraction
[1, 2]. Patient signs and symptoms include fever, rapid heart
rate, shortness of breath, weakness and sweating, hypoxia, and
altered mental status [3]. Kidney failure, malignancy, diabetes,
chronic lung disease, congestive heart failure, and immuno-
suppressionmay also increase the risk of SS [4]. Currently, SS is
the leading cause of death among hospitalized patients, with
a fatality rate of up to 40% [5, 6]. Although tissue perfusion can
be quickly regained in patients with SS after a positive fuid

resuscitation and symptomatic treatment with vasoactive drugs
and anti-infection agents, the risk of recurrence after hospital
discharge is high [7]. Furthermore, more than half of the
survivors have impaired physical or neurocognitive function,
mood disorders, and poor quality of life [8, 9]. To reduce the
mortality rate and improve the quality of life of patients after SS
resuscitation, clinical studies are ongoing; however, early
untreatable multiorgan failure makes the recovery process
difcult. Terefore, in addition to improving programmed
management, increasing the specifcity of early recognition can
also efectively improve survival in SS.

Innate immunity and adaptive immunity play a key role
in the response to SS. During the induced infammatory

Hindawi
Genetics Research
Volume 2023, Article ID 9991613, 19 pages
https://doi.org/10.1155/2023/9991613

https://doi.org/10.1155/2023/9991613 Published online by Cambridge University Press

https://orcid.org/0000-0002-3254-805X
https://orcid.org/0009-0005-5252-5997
https://orcid.org/0000-0002-1251-1663
https://orcid.org/0000-0002-4075-7249
https://orcid.org/0000-0002-9510-0957
https://orcid.org/0000-0002-5869-6085
mailto:zhq9712@gmu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9991613
https://doi.org/10.1155/2023/9991613


response, monocytes, macrophages, and neutrophils are
activated, exacerbating vascular damage by producing cy-
tokines, proteases, kinases, and reactive oxygen species [10].
Immunosuppressive responses are active in patients with SS
[11], and the apoptosis of B cells and follicular dendritic cells
is involved in this process [12]. T lymphocytes contribute
markedly to the immune system, and T-cell abnormalities
have been found in patients with SS [13]. Furthermore,
immune dysfunction has been shown to impair the ability to
clear primary infections and increase secondary infections
[14, 15]. Tolsma et al. found that neutropenia and specifc
immunodefciency are independently associated with an
increased risk of death in patients with SS [16]. However, the
mechanism by which immune dysfunction contributes to
the progression of SS remains unclear despite the important
implications for the development of biomarkers.

In this study, we analyzed the immune-related pathways
involved in SS progression and identifed candidate bio-
markers. First, we screened diferentially expressed genes
(DEGs) between patients with SS and healthy controls based
on gene expression data from public databases, followed by
enrichment analyses of DEGs. An immune cell deconvo-
lution analysis and pathway-immune cell correlation anal-
ysis were performed to identify key immune-related genes.
Finally, the expression of key genes was validated by
quantitative real-time polymerase chain reaction (qRT-
PCR) and western blotting. A fowchart of the study is
displayed in Figure S1. Our fndings are expected to con-
tribute to the development of personalized immunotherapy
regimens for patients with SS.

2. Materials and Methods

2.1. Data Acquisition. Two microarray datasets, GSE57065
and GSE95233, were downloaded from the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) [17].
GSE57065 comprised data for 28 patients whose blood
samples were collected within 30min, 24 h, and 48 h after SS
and 25 healthy controls. Te GSE95233 included 22 healthy
controls and 51 patients with SS, sampled twice at admission
and once at D2 or D3. All samples from the GSE57065 and
GSE95233 datasets were detected using the GPL570 [HG-
U133_Plus_2] Afymetrix Human Genome U133 Plus 2.0
Array. GSE4607 and GSE13904 were used for the external
expression validation of candidate genes between healthy
controls and SS. GSE66099, which includes data for 30
systemic infammatory response syndrome (SIRS) and 181
SS samples, was used to compare the expression diferences
between SS samples and the samples of the diseases with
similar or related phenotypes to SS.

2.2. Data Preprocessing and Gene Annotation. Based on the
two datasets, the probe expression matrix after normaliza-
tion and log2 transformation was downloaded. Tereafter,
the annotation fle from the detection platform was obtained
to match the gene symbol by the probe number inside;
probes that did not match a gene symbol were removed. If
diferent probes were mapped to the same gene symbol, the

mean value of the probes was used as the fnal expression
value for the gene.

2.3. Screening for DEGs between SS Samples and Controls.
Te limma package version 3.10.3 in R [18] (http://www.
bioconductor.org/packages/2.9/bioc/html/limma.html) was
used to analyze diferences in gene expression between SS
samples and healthy controls. Te Benjamini & Hochberg
(BH) method [19] was used to calculate the adjusted p value.
Genes with an adjusted p value <0.05 and |logfold change
(FC)|> 1 were selected as DEGs.

2.4. Functional Enrichment Analyses of DEGs. DAVID ver-
sion 6.8 [20] (https://david-d.ncifcrf.gov/) was applied for
Gene Ontology (GO) [21] enrichment analysis of DEGs
according to three main categories, biological process (BP),
cell component (CC), molecular function (MF), as well as
Kyoto Encyclopedia of Genes and Genomes (KEGG) [22]
pathway enrichment analyses. Results with p< 0.05 and gene
count >2 were considered statistically signifcant.

2.5. Protein–Protein Interaction (PPI) Network Construction.
Te intersecting DEGs between the GSE57065 and
GSE95233 datasets were obtained to predict the PPI using
STRING version 10.0 [23] (http://www.string-db.org/).
During this analysis, the species was set to Homo, and the
highest confdence score was set to 0.9. Cytoscape version
3.4.0 [24] (http://chianti.ucsd.edu/cytoscape-3.4.0/) was
used to visualize the PPI network, and CytoNCA plug-in
version 2.1.6 [25] (http://apps.cytoscape.org/apps/cytonca)
was used to analyze the node degree with parameter setting
“without weight.”

2.6. Gene Set Enrichment Analysis (GSEA). Te R package
clusterProfler version 3.16.0 [26] (http://bioconductor.org/
packages/release/bioc/html/clusterProfler.html) was used
to perform GSEA. Te KEGG pathway gene set in the
molecular signature database [27] (MSigDB, http://software.
broadinstitute.org/gsea/msigdb/index.jsp) was used as the
background gene set. DEGs between SS samples and con-
trols with adjusted p< 0.05 and |logFC| > 0.263 were selected
as input genes and were sorted in descending order by
logFC. BH was fnally used to adjust p values, and pathways
with adjusted p values less than 0.05 were considered sta-
tistically signifcant.

2.7. Diferential Analysis of Functions and Pathways. By
considering c2.cp.kegg.v7.1.symbols.gmt in MSigDB as the
background gene set, the R package GSVA version 1.36.2
[28] (http://bioconductor.org/packages/release/bioc/html/
GSVA.html) was used to calculate the enrichment scores
for KEGG pathways in each sample. A score matrix was
obtained. Signifcant KEGG pathway diferences were
identifed using the limma package with threshold values of
adjusted p value <0.05 and |logFC| > 1.
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2.8. Immune and Stromal Cell Deconvolution Analysis.
xCell [29] (https://xcell.ucsf.edu/) was used to estimate the
enrichment scores for 64 types of immune and stromal cells
with a threshold of p< 0.05. Te Wilcoxon test was then
used to compare enrichment scores between SS samples and
controls, and signifcance was set at p< 0.05. Te shared
diferentially enriched immune cells between GSE57065 and
GSE95233 were obtained as candidates for further analyses.

2.9. Analysis of Correlations between Pathways and Immune
Cells. By considering the intersection of results obtained by
GSEA and GSVA, key pathways were selected. Spearman
correlation coefcients for relationships between the path-
way enrichment score and immune cell deconvolution score
in each sample were computed. Te intersecting relations
with adjusted p value <0.05 and |r| > 0.4 for GSE57065 and
GSE95233 were selected as signifcant cell-pathway
interactions.

2.10. Evaluation of Key Genes. Te intersection of pathway-
related genes involved in cell-pathway interactions and
genes in the PPI network with degrees over 10 was identifed
as key genes. Te R package ggstatsplot version 0.5.0 was
used to construct violin plots of key genes in diferent
groups, while the R package plotROC version 2.2.1 was used
to generate the diagnostic receiver operator characteristic
(ROC) curve for each gene.

2.11. Blood Sample Collection. Whole blood samples and
white blood cell samples from 12 participants (six patients
with SS and six healthy controls) were collected for qRT-
PCR and western blotting, respectively. Patients were di-
agnosed according to the criteria defned by the European
Society of Intensive Care Medicine/Society of Critical Care
Medicine. Patients with SS required a vasopressor to
maintain a mean arterial pressure greater than 65mmHg
and elevated serum lactate greater than 2mmol/L, despite
adequate fuid resuscitation [6, 30]. Patients with cancer,
diabetes, autoimmune diseases, or a history of viral infection
were excluded from the study. Healthy volunteers were
enrolled from the physical examination center, and subjects
with a history of major disease or infection were excluded.
All subjects were informed of the aims and procedures of
this study, and signed informed consent was obtained ac-
cordingly.Tis study was approved by the Ethics Committee
of the First Afliated Hospital of GannanMedical University
(No : LLSC-2021101302) and conformed with the Declara-
tion of Helsinki.

2.12. qRT-PCR Analysis. Te core genes in the PPI network
and genes with larger fold change values were selected for
qRT-PCR. Total RNA was extracted from whole blood
samples using TRIzol reagent (9109; TaKaRa, Kusatsu). After
reverse transcription, cDNA was quantifed by real-time
PCR with the ABI 7900HT FAST (Applied Biosystems)
and Power SYBR Green PCR Master Mix Kit (A25742;
Termo, Waltham, MA, USA). GAPDH was used as an

internal reference. Te forward and reverse primer se-
quences are shown in Table S1.Te reaction conditions were
as follows: 50.0°C for 2min, 95.0°C for 10min, and 40 cycles
at 95.0°C for 15 s and 60.0°C for 60 s. Te relative expression
level was detected in triplicate and was normalized using the
2−ΔΔct method.

2.13.Western Blot Analysis. Genes with the largest degree of
connections in the PPI network were selected for western
blot analysis. Antibodies against HLA-DRA (A11787) and
LCK (A2177) were obtained from ABclonal (Wuhan,
China), while the GAPDH antibody (60004-1-lg) was
purchased from Proteintech (Rosemont, IL, USA). Western
blot analysis was performed using standard procedures with
anti-HLA-DRA (1 :1000) and anti-LCK (1 :1000). After 2 h
of incubation with secondary antibodies (anti-rabbit IgG:
111-035-045, Jackson; anti-mouse IgG: 115-035-003, Jack-
son), the protein bands were developed via chem-
iluminescence using the Millipore ECL system (Billerica,
MA, USA).Tereafter, the bands were scanned and recorded
using Tanon Image (Tanon, Shanghai, China).

2.14. Statistical Analysis. Tanon Image was used to analyze
the gray level of the western blot data. Te qRT-PCR and
western blot results were analyzed using GraphPad Prism 5
(GraphPad Software, San Diego, CA, USA) and visualized
using histograms. Diferences in the mRNA and protein
expression levels of candidate genes between the SS and
control groups were analyzed by t-tests. Statistics p< 0.05,
p< 0.01, and p< 0.001 represent signifcant, highly signif-
cant, and extremely signifcant, respectively.

3. Results

3.1. Screening of DEGs between SS Samples and Healthy
Controls. Based on the expression matrix of GSE57065
and GSE95233, principal component analysis (PCA) was
performed (Figures 1(a) and 1(b)), which revealed a sharp
distinction between the SS and control groups in both
datasets. Tere were no signifcant outliers, and all
samples could be used for further analyses. In total, 763
and 933 DEGs were obtained from GSE57065 and
GSE95233, respectively, as shown in Figures 1(c) and 1(d).
DEGs with |logFC| > 2 were selected to construct
a heatmap (Figures 1(e) and 1(f )); these genes were
identifed as signifcantly diferentially expressed between
the SS and control groups.

3.2. Function and Pathway Enrichment Analyses of DEGs.
GO and KEGG pathway enrichment analyses of the DEGs in
the two datasets were performed. DEGs in GSE57065 were
mainly enriched for 124 GO-BP terms, 34 GO-CC terms,
30 GO-MF terms, and 32 KEGG pathways. DEGs in
GSE95233 were mainly enriched for 127 GO-BP terms,
37 GO-CC terms, 41 GO-MF terms, and 34 KEGG pathways.
Based on the ranking of p values, the top 10 GO functions
for GSE57065 and GSE95233 are displayed in Figures 2(a)
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Figure 1: Continued.
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Figure 1: Screening of DEGs between SS samples and controls. PCA diagrams of samples in GSE57065 (a) and GSE95233 (b) suggest that SS
samples and control samples could be clearly distinguished, with no signifcant outliers. A total of 763 and 933 DEGs fromGSE57065 (c) and
GSE95233 (d) were detected. Red triangles and blue squares represent upregulated and downregulated DEGs, respectively. Te top 10
upregulated and downregulated DEGs based on logFC values are labeled. Heatmaps showing the expression diferences of DEGs with
|logFC|> 2 between SS samples and controls in GSE57065 (e) and GSE95233 (f).
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Figure 2: Continued.
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and 2(b). Among them, the MHC class II protein complex
binding of GO-MF, T-cell receptor complex of GO-CC, and
T-cell activation of GO-BP showed the highest fold en-
richment in both datasets. Te enriched KEGG pathways
were broadly consistent across the two datasets (Figures 2(c)
and 2(d)), thereby suggesting good homogeneity and re-
liability among GSE57065 and GSE95233.

3.3.Constructionof aPPINetwork. Te intersection of DEGs
in GSE57065 and GSE95233 included 550 genes
(Figure 3(a)).Tese DEGs were used to construct a PPI using
STRING. A total of 1,104 interactions involving 243 proteins
were obtained (Figure 3(b)). Nodes with more connections
had larger contributions to the PPI network.

3.4. GSEA. With GSEA, 5 upregulated and 13 down-
regulated pathways were obtained in GSE57065, whereas 7
upregulated and 15 downregulated pathways were obtained
in GSE95233. According to the normalized enrichment
scores (NES), the top six upregulated pathways, including
Alzheimer’s disease, complement and coagulation cascades,
oxidative phosphorylation, and Parkinson’s disease, and the
top six downregulated pathways, such as graft versus host
disease, primary immunodefciency, and T-cell receptor
signaling pathway, were selected in both datasets and are
displayed in Figure 4.

3.5. Diferential Analysis of Enriched Pathways. Te en-
richment scores for KEGG pathways for each sample were
calculated using the GSVA algorithm. Based on the difer-
ential analysis of enriched pathways, both GSE57065 and
GSE95233 had 15 signifcantly downregulated KEGG
pathways. As shown in heatmaps (Figures 5(a) and 5(b)),
enrichment scores for these pathways difered signifcantly
between the SS and control groups.

3.6. Deconvolution Analysis of Immune and Stromal Cells.
To evaluate diferences in immune cell enrichment between
the two groups, we obtained the enrichment scores for 64
types of immune cells and stromal cells in each sample and
compared SS and healthy controls by a Wilcoxon test (Fig-
ures 6(a) and 6(b)). In total, 11 and 14 types of cells had
signifcantly diferent enrichment scores between the two
groups in GSE57065 and GSE95233, respectively. By con-
sidering the intersection (Figure 6(c)), six types of cells, in-
cluding megakaryocytes, CD8+T cells, CD4+TCM,
preadipocytes, osteoblasts, and epithelial cells, difered sig-
nifcantly between SS samples and controls in both datasets.

3.7. Correlations between Pathways and Immune Cells.
Te intersection of signifcant pathways obtained by GSEA
and GSVA included 12 KEGG pathways. Spearman corre-
lation coefcients were obtained to evaluate the relationships
among these 12 key pathways and frequencies of six sig-
nifcant cell types in each sample. Accordingly, 41 and
27 cell-pathway relationships were obtained in GSE57065
and GSE95233, respectively. Finally, 21 overlapped cell-
pathway relationships with signifcant positive correla-
tions were identifed. Tese 21 cell-pathway relationships
contained 10 key pathways and 3 key cells, including
CD8+T cells, CD4 +T cells, and preadipocytes; their re-
lationships in GSE57065 and GSE95233 are summarized in
Table 1.

3.8. Predictive Performance of Key Genes. Te intersection of
genes involved in 10 key pathways and genes in the PPI
network (with degrees >10), and 17 key genes (CD8A, HLA-
DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA,
ZAP70, MAPK14, CD247, CD3D, CD3E, CD3G, LCK,
PRKCQ, ITK, LAT, and FYN) were obtained, as shown in
Table 2.Te diferences in these 17 genes between SS samples
and controls in GSE57065 and GSE95233 were analyzed, and

(c) (d)

Figure 2: Functional and pathway enrichment analyses of DEGs. Top 10 GO functions of DEGs in GSE57065 (a) and GSE95233 (b) in the
BP, CC, andMF categories. Enriched KEGG pathways for GSE57065 (c) and GSE95233 (d). Te x-axis indicates fold enrichment, and the y-
axis indicates GO functions and KEGG pathways.Te larger the bubble, the greater the fold enrichment.Te smaller the bubble, the smaller
the p value.
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ROC curves were compared to explore their diagnostic value
in SS. All 17 genes were signifcantly diferentially expressed
in the two datasets (p< 0.05). Among them, 16 genes were
downregulated, and MAPK14 was upregulated in SS. Fur-
thermore, the ROC curves based on the two datasets

suggested that these candidate genes had superior diagnostic
values for SS, with area under the curve (AUC) values greater
than 0.9.Te violin plots and ROC curves for LCK andHLA-
DRA, which had the highest degrees of connections in the
PPI network, are shown in Figures 7(a) and 7(b).

213 383550

GSE57065

GSE95233

(a)

(b)

Figure 3: PPI network construction. (a) Venn diagram showing 550 intersecting DEGs in the GSE57065 and GSE95233 datasets. (b) PPI
network involving 243 DEGs. Red and green circles represent upregulated and downregulated DEGs, respectively. Te larger the node, the
greater the degree. Gray lines represent protein-protein interactions. Te darker the line, the larger the value of |logFC|.
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3.9. Verifcation with External Datasets. To verify the ex-
pression diferences in the 17 candidate genes between
healthy controls and SS samples, GSE4607 and GSE13904
datasets were used for external verifcation. In the GSE4607
dataset (Figure 8(a)), all genes showed signifcant diferences
in expression between the two groups, of which only
MAPK14 was upregulated in SS. In the GSE13904 dataset
(Figure 8(b)),MAPK14was still overexpressed in SS, and the
other 15 genes were signifcantly downregulated in the SS
samples, except HLA−DQA1. Te GSE66099 dataset was
subsequently included to verify whether these genes have
expression specifcity in SS that enables their distinction
from other types of infammation. Expression levels of
CD3E, CD3G, FYN,HLA-DPA1,HLA-DPB1, andHLA-DRA

difered signifcantly between SIRS and SS (Figure 9), in-
dicating that these six genes may contribute to SS
infammation.

3.10. Experimental Expression Validation. A total of 12
whole blood samples (6 cases and 6 controls) were collected
to validate the expression of key genes. Among the 17 key
genes, those with the highest degrees of connections in the
PPI network (LCK and HLA-DRA) and genes with the
highest fold change values in the GSE57065 or GSE95233
datasets (CD8A, CD247, and CD3G) were selected for val-
idation by qRT-PCR. As depicted in Figure 10(a), the mRNA
expression levels of these fve genes were signifcantly lower
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in SS samples than in the control group. As determined by
western blotting (Figure 10(b)), the protein expression levels
of LCK and HLA-DRA were signifcantly lower in patients
with SS than in healthy controls.

4. Discussion

Sepsis and SS are life-threatening diseases caused by a dys-
regulated immune response to infection and may lead to
tissue and organ damage and even death [31, 32]. Currently,
there is no efective treatment for SS. Accordingly, the

disease burden can only be reduced by early detection,
resuscitation, and the prompt administration of appropriate
antibiotics [9]. Unlike sepsis, SS leads to uncontrolled and
intensifed infammatory responses, but the exact timing of
triggering this process is elusive, which underscores the
importance of identifying gene expression diferences be-
tween SS and normal controls, rather than sepsis, for di-
agnosis in patients early in disease progression [33].
Terefore, this study compared mRNA expression profles
between SS and normal samples and then identifed
17 immune-related genes involved in the progression of SS
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Figure 5: Diferential analysis of enriched pathways in the two datasets. Heatmaps show KEGG pathways with signifcant diferences in
enrichment scores between SS and control samples in GSE57065 (a) and GSE95233 (b).
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Figure 6: Continued.
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by bioinformatics analyses. Tese genes also showed the
potential to identify the risk of SS development in the
validation cohorts. Five of these 17 genes (including CD8A,
CD247, CD3G, LCK, and HLA-DRA) were experimentally
validated for expression, considering their central roles in
the PPI network and their consistent downregulation in SS
samples were fnally confrmed. Te novel biomarkers
proposed in this study are important to improve early
identifcation and the management of acute episodes and to
reduce septicemic deaths and disability. Tere are several
similar articles that reported the diagnostic biomarkers for
SS [34, 35], but our study difers in that we focus more on the
gene set involved in SS-related immune regulation. Tere-
fore, we also proposed three key immune cells including
CD4+T cells, CD8 +T cells, and preadipocytes that may be
regulated by immune-related candidate genes and involved
in disease progression in SS. Tese potential immune reg-
ulatory mechanisms are important clues for understanding
the role of candidate genes in disease diagnosis and for
developing new drugs to prevent SS.

In this study, DEGs between SS samples and controls
were mainly enriched in biological functions and pathways
related to immunological and infammatory responses.
Using the GSVA algorithm, signifcant diferences in
immune-related functions and pathways were also found
between them, including the T-cell receptor signaling
pathway, autoimmune disease, and primary immunodef-
ciency, among others. A related bioinformatics analysis
supported our fndings and demonstrated that DEGs in SS
were involved in immune response, chemokine-mediated
signaling, neutrophil chemotaxis, and chemokine activity
[36]. Additionally, immunodefciency is commonly ob-
served in patients with severe sepsis and SS and is associated
with an increased risk of short-term mortality [16].

Considering the role of immunodefciency in SS de-
velopment, we carried out deconvolution and correlation

analyses to determine the efect of immune cells on SS. Based
on our results, three key immune cell types, i.e.,
CD4 +T cells, CD8 +T cells, and preadipocytes, difered
signifcantly between SS samples and controls. In terms of
adaptive immunity, sepsis-induced apoptosis leads to lym-
phocytopenia in patients with SS, and this process involves
all types of Tcells, including T regulatory cells, CD4 +Tcells,
CD8 +Tcells, and natural killer cells, which are conducive to
immunosuppression [14]. Immunosuppression is a com-
pensatory anti-infammatory response that explains the
short-term death of SS patients, while survivors may ex-
perience a prolonged state of immunosuppression, which
could be reactivated by pathogenic infection [37]. During the
immunosuppression in SS, the loss of T-cell function is
associated with reduced resistance to secondary infections in
patients with SS [38]. Furthermore, decreased expression of
cytotoxic molecules weakens the lytic activity of
CD8+T cells [39]. In this study, the enrichment scores for
CD4+T cells and CD8+T cells were found to be signif-
cantly lower in SS cases than in controls. Roger et al. further
supported our fndings and proposed that rates of
CD4+T cell and CD8+T cell apoptosis were higher in
patients with SS than in controls [40]. Te above evidence
indicated that DEGs identifed in this study may trigger
immunosuppression and lead to SS by down-regulating
CD4+T cell and CD8+T cell levels. In addition, we also
proposed a relationship between preadipocytes and immune
defciency and T-cell receptor-related pathways. Several
factors secreted by preadipocytes have pro-infammatory
and anti-infammatory efects and can contribute to dis-
eases associated with immune system dysfunction [41].
Some immunodefciency virus protease inhibitors inhibit
preadipocyte diferentiation and promote adipocyte death
[42]. In this study, we found several genes involved in the T-
cell receptor signaling pathway, of which FYN is expressed in
human preadipocytes and is induced after the initiation of

Megakaryocytes
CD8+ T-cells
CD4+ TCM
Preadipocytes
Osteoblast
Epithelial cells

GSE57065

GSE95233

(c)

Figure 6: Diferential analysis of immune and stromal cell enrichment. Violin plots show the immune and stromal cells with signifcant
diferences in enrichment scores between SS samples and controls in GSE57065 (a) and GSE95233 (b). (c) Venn diagram of the intersection
of cells (megakaryocytes, CD8+T-cells, CD4 +TCM, preadipocytes, osteoblasts, and epithelial cells) with signifcant diferences in relative
abundance between SS samples and controls in both datasets.
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Figure 7: Continued.
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diferentiation [43]. Terefore, we hypothesized that pre-
adipocytes participate in the activation of immune-related
pathways during SS development by inducing the expression
of FYN; however, further mechanistic investigations are still
needed.

Furthermore, 17 key genes were identifed in immune-
related cell-pathway pairs, and core genes from the PPI
network were selected for expression validation. Relevant
results suggested that the mRNA expression levels of CD8A,
CD247, and CD3G were downregulated in SS samples, while
LCK and HLA-DRA were decreased at both the mRNA and

protein levels. As a member of the Src family of kinases, LCK
is involved in changes in the activity of CD4+T cells and
CD8+ T cells during T-cell development [44]. LCK plays
a crucial role in T-cell diferentiation, survival, and activa-
tion [45]; however, the contribution of LCK to the devel-
opment of SS has not been explored. With regard to HLA-
DRA, studies have found that the reduced expression of
HLA-DR mRNA is correlated with increased mortality after
SS [46]. Winkler et al. reported that HLA-DR expression is
decreased in sepsis [47], and the reduced HLA-DR ex-
pression may be a characteristic feature of septic monocytes
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Figure 7: Predictive performance of key genes in the cell-pathway relations. (a) Violin plots show that LCK and HLA-DRA, which had the
highest in the PPI network, were signifcantly diferentially expressed between SS samples and controls in GSE57065 and GSE95233. (b)
ROC curves suggest that LCK and HLA-DRA have excellent abilities to diagnose SS with AUCs >0.9.
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Figure 8: External expression verifcation of 17 candidate genes using the GSE4607 (a) and GSE13904 (b) datasets.
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[14]. Furthermore, the dynamic changes in HLA-DRA gene
expression and helper T cell subsets in patients with sepsis
are indicative of immunosuppression [48]. Combined with
the results of this study, we speculated that the loss of LCK
and HLA-DRA expression may lead to the failure of T-cell
diferentiation and dynamic changes of helper Tcell subsets,
thus resulting in immunosuppression and the onset of SS.

Te main limitation of this study is that patients with
autoimmune diseases were excluded from the independent
clinical validation cohort, which to some extent afects the
extrapolation of the results. Furthermore, we only performed
a preliminary exploration of the potential roles of these genes
in disease. Te regulatory mechanisms by which these can-
didate genes contribute to immunosuppression during SS are
not clearly established. In future studies, bioinformatic ana-
lyses will be used to predict the upstream regulatory mech-
anisms, and experimental approaches will also be carried out
to confrm the regulatory efects of the candidate genes.
Additionally, due to limited sample size, we did not further
screen the most robust biomarkers out from the 17 identifed
key genes by LASSO regression and/or multivariate Cox

analyses. In the future, a most valuable predictive signature
should be developed based on more convincing methods and
larger sample size.

In conclusion, we found that DEGs between SS cases and
controls were mainly enriched in immune- and
infammation-related functions and pathways. In addition,
CD4+ T cells, CD8 +T cells, and preadipocytes were pro-
posed as key immune cells to involve in the SS progression.
Tese immune cells were also associated with 17 key
immune-related genes, among which the downregulation of
CD8A, CD247, CD3G, LCK, and HLA-DRA in SS samples
was further experimentally validated. Our fndings reveal
several novel biomarkers for the early identifcation of SS.

Data Availability

Microarray datasets including GSE57065, GSE95233,
GSE4607, GSE13904, and GSE66099 used in this study can
be downloaded from the GEO database at http://www.ncbi.
nlm.nih.gov/geo/. Te raw data of qRT-PCR and western
blot are available at https://doi.org/10.4121/19074482.
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Figure 10: Validation of expression patterns of key genes. (a) qRT-PCR results suggest that the mRNA expression levels of CD8A, CD247,
CD3G, LCK, andHLA-DRAwere lower in SS samples than in control samples. (b)Western blotting results revealed that the expression levels
of LCK and HLA-DRA were downregulated in SS at the protein level. ∗p< 0.05; ∗∗p< 0.01.
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