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Synthesis: Viscous, Diffusive, Inhomogeneous,
Parallel Shear Flow

In this chapter we explore equilibria and perturbations in a stratified, parallel shear
flow with the effects of viscosity and diffusion included, effectively unifying Chap-
ters 2, 3, 4, and 5. The goal is to develop numerical solution methods that have wide
applicability to the study of small-scale processes in the oceans and atmosphere and
explore some applications of those methods.

6.1 Expanding the Basic Equations

We start with the Boussinesq equations for a viscous, diffusive, inhomogeneous
fluid. The divergence equation is, as usual,

�∇ · �u = 0.

The momentum equation (1.19), neglecting the Coriolis acceleration but retaining
viscosity and restoring buoyancy, is

D�u
Dt

= −�∇π + bê(z) + ν∇2�u, (6.1)

and the buoyancy equation (1.25) is

Db

Dt
= κ∇2b. (6.2)

We assume the perturbation solution

�u = U (z, t)ê(x) + ε �u′,
b = B(z, t)+ εb′,
π = �+ επ ′. (6.3)

At this stage, we have not yet assumed that the background state (U, B,�) is
steady. No assumption is made regarding the background pressure �.
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154 Synthesis: Viscous, Diffusive, Inhomogeneous, Parallel Shear Flow

6.1.1 Continuity

As usual we deal with the easiest equation first:

�∇ · �u′ = 0.

6.1.2 Momentum

The momentum equation (6.1), with the perturbation solution (6.3), becomes

[
∂

∂t
+ U

∂

∂x
+ ε�u′ · �∇

] [
U (z, t)ê(x) + ε�u′]

= −�∇ (�+ επ ′)+ (B(z, t)+ εb′) ê(z) + ν∇2
[
U (z, t)ê(x) + ε�u′] . (6.4)

With ε = 0, this gives the three component equations:

∂U

∂t
= −∂�

∂x
+ ν

∂2U

∂z2
(6.5)

0 = −∂�

∂y
(6.6)

0 = −∂�

∂z
+ B. (6.7)

The first equation shows that the background flow is governed by the combi-
nation of the streamwise pressure gradient and viscosity, as we saw previously
in section 5.1. Strict equilibrium (∂U/∂t = 0) can be satisfied only when
∂2U/∂z2 = const.1 As in the homogeneous case, the “frozen flow” approxima-
tion holds provided σ � � 1/Re (section 5.2). The second equation shows that the
background pressure does not depend on y, while the third describes hydrostatic
balance between the vertical pressure gradient and the buoyancy.

At O(ε), (6.4) gives(
∂

∂t
+ U

∂

∂x

)
�u′ + Uzw

′ê(x) = −�∇π ′ + b′ê(z) + ν∇2�u′. (6.8)

Observe that this perturbation momentum equation combines the terms seen
previously in (2.14), (3.7), (4.7), and (5.13).

6.1.3 Buoyancy

Substitution of (6.3) into (6.2) gives[
∂

∂t
+ U

∂

∂x
+ ε�u′ · �∇

] [
B(z, t)+ εb′] = κ∇2

[
B(z, t)+ εb′] . (6.9)

1 Set ∂U/∂t = 0 in (6.5) then cross-differentiate with (6.7) to eliminate �. You’ll find that ∂3U/∂z3 = 0.
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For the unperturbed flow, this is

∂B

∂t
= κ

∂2 B

∂z2
(6.10)

Strict equilibrium requires that both sides vanish, hence

∂B

∂z
= N 2 = const.,

as was seen in section 2.7.
Repeating the arguments we used in the previous chapter for inhomogeneous

flows, we can show that quasi-equilibrium requires

σ � � 1

Re Pr
,

where σ � = σh/u0 is the growth rate scaled by the background shear, Re is the
Reynolds number, and Pr = ν/κ is the Prandtl number. If Pr ≥ 1, then the
previous condition σ � � 1/Re is sufficient.

The perturbation part of (6.9) is obtained by subtracting (6.10) and omitting
terms of order ε2: (

∂

∂t
+ U

∂

∂x

)
b′ + Bzw

′ = κ∇2b′. (6.11)

Note that (6.11) combines the buoyancy perturbation equations for a motion-
less, inhomogeneous fluid (2.12), and a stratified, nondiffusive, parallel shear flow
(4.10).

6.1.4 Eliminating the Pressure

We eliminate the pressure, as we have done before, by combining the divergence
of (6.8) with the Laplacian of its vertical component. The divergence gives the
pressure equation:2

∇2π ′ = −2Uz
∂w′

∂x
+ ∂b′

∂z
. (6.12)

Taking the Laplacian of the vertical component of (6.8) and substituting the vertical
derivative of (6.12), we obtain:(

∂

∂t
+ U

∂

∂x

)
∇2w′ − Uzz

∂w′

∂x
= ∇2

H b′ + ν∇4w′. (6.13)

In (6.13) and (6.11), we have two equations for the two unknowns w′ and b′. It
is possible to combine these further into a single equation, but we will not do that

2 Compare this with equations (2.16) and (3.11).
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156 Synthesis: Viscous, Diffusive, Inhomogeneous, Parallel Shear Flow

here. Instead, we substitute the normal mode forms w′ = {ŵ(z)eσ t eι(kx+�y)}r and
b′ = {b̂(z)eσ t eι(kx+�y)}r to obtain a pair of ordinary differential equations:

(σ + ιkU )∇2ŵ − ιkUzzŵ = − k̃2b̂ + ν∇4ŵ

(σ + ιkU )b̂ + Bzŵ = κ∇2b̂,

(6.14)

(6.15)

where ∇2 = d2/dz2 − k̃2.

6.2 Numerical Solution

Viscous and diffusive effects complicate the stability analysis, and in many prob-
lems they are not of central interest. Even so, the added effort is well justified.
Computing instabilities of inviscid stratified shear flows requires extremely fine
grid resolution, and can therefore be very slow. The inclusion of very weak viscos-
ity, e.g., Re = 106, stabilizes the numerical algorithm and thereby approximates
the inviscid result with much lower computational cost.

The normal mode equations (6.14) and (6.15) can be written in matrix form:

σ

( ∇2 0
0 1

)(
ŵ

b̂

)
=
( −ιkU∇2 + ιkUzz + ν∇4 −k̃2

−Bz −ιkU + κ∇2

)(
ŵ

b̂

)
.

These are discretized to form a generalized eigenvalue problem with 2N × 2N
matrices:

σ A�x = B�x .
The eigenvector �x is a concatenation of the discretized forms of ŵ and b̂:

�x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ŵ1

ŵ2
...

ŵN

b̂1

b̂2
...

b̂N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the matrices are

A =
( ∇2 0

0 I

)

B =
( −ιk �U · ∇2 + ιk �Uzz · I + ν∇4 −k̃2I

− �Bz · I −ιk �U · I + κ∇2

)
.
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6.2 Numerical Solution 157

Each matrix is composed of four N × N submatrices, which in turn are combina-
tions of the Laplacian, the squared Laplacian, and input vectors U and B defined
in the usual way. Left-multiplications such as �U · ∇2 are computed as described in
section 3.5.2.

6.2.1 Boundary Conditions

As in the homogeneous case, we assume that ŵ = 0 at the boundaries. We also
have the choice of rigid (ŵz = 0) or frictionless (ŵzz = 0) boundaries.

For an inhomogeneous fluid, we also need boundary conditions for the buoyancy,
and again there are two choices. First, we can assume that the buoyancy at the
boundary is fixed, i.e., the perturbation from equilibrium is zero:

b̂ = 0.

The second choice is that the boundary is insulating, i.e., the diffusive buoyancy
flux −κ∂b/∂z vanishes. In normal mode form, this is expressed as

b̂z = 0.

Insulating boundaries, like frictionless boundaries, are often preferable in cases
where there is no physical boundary, because they have minimal effect.

For the numerical solution described above, we need a matrix to compute the
second-derivative of b̂, and that matrix must incorporate the appropriate boundary
conditions. In the case of fixed-buoyancy boundaries, the matrix can be exactly
the same as we use to compute the second-derivative of ŵ, because the boundary
condition is mathematically identical to ŵ = 0. But in the case of insulating bound-
aries, a separate second-derivative matrix is needed. The design of that matrix is
the same as that described in section 5.5.

6.2.2 A Note on Applications

The theory encompassed in (6.14) and (6.15) includes every case we have discussed
in Chapters 2, 3, 4, and 5 as special cases. For example, we can look at solutions of
the Orr-Sommerfeld equation for homogeneous, viscous flows by setting Bz = 0.
We can solve the Benard problem (section 2.4) by setting U = 0 and Bz to a
negative constant. We can also combine these problems, e.g., to find the effect
of stratification on the Tollmein-Schlichting instability, or the effect of shear on
Benard convection (problem 19).

Solutions of the Taylor-Goldstein equation for inviscid stratified shear flows
(Chapter 4) are obtained by setting ν = κ = 0. These include all of the wavelike
phenomena listed in section 4.5: internal gravity waves, vortical waves, baroclinic
normal modes as well as the vertical structure functions used in the description of
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internal solitary waves, bores, and hydraulic jumps. In practice, one sets ν and κ to
small but nonzero values. This gives close approximations to the inviscid limit but
minimizes distortions due to roundoff error, and is therefore the preferred method
for solving the Taylor-Goldstein equation.

The above methods lead to a solution procedure F for the analysis of viscous,
diffusive, stratified, parallel shear flows. It is most commonly a subroutine. Having
written and tested the subroutine, we treat it as a “black box,” which accepts inputs
and gives back outputs but does not need to be modified internally. If used correctly,
F can solve a vast range of problems, based both on idealized models and on
observational data. In the following sections 6.3 and 6.4, we will discuss different
ways of defining the inputs and interpreting the outputs so that F will be maximally
useful.

6.3 2D and Oblique Modes: Squire Transformations

Here, we consider the effect of stratification, viscosity, and diffusion on the growth
rates of oblique modes. Recall that an oblique mode is one whose wave vector
(k, �) points at a nonzero angle ϕ from the x axis, the angle of obliquity. The
corresponding 2D mode has a wave vector of the same magnitude, k̃, but parallel
to the x axis (Figure 3.10).

6.3.1 Transforming the Buoyancy

Consider an oblique mode that obeys the equations for viscous, diffusive, stratified
shear flow:

(σ + ιkU )∇2ŵ − ιkUzzŵ = −k̃2b̂ + ν∇4ŵ (3D1)

(σ + ιkU )b̂ + Bzŵ = κ∇2b̂, (3D2)

where

∇2 = d2

dz2
− k̃2 ; k̃ =

√
k2 + �2.

Suppose also that we have a solution algorithm

σ = F(z,U, Bz, ν, κ; k, �). (6.16)

The corresponding 2D mode with wave vector (k̃, 0) obeys:

(σ + ιk̃U )∇2ŵ − ιk̃Uzzŵ = −k̃2b̂ + ν∇4ŵ (2D1)

(σ + ιk̃U )b̂ + Bzŵ = κ∇2b̂, (2D2)

and therefore has the solution algorithm σ2D = F(z,U, Bz, ν, κ; k̃, 0) .
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Is there a transformation that makes these (2D) equations isomorphic with the
(3D)? We begin by defining the Squire transformations

σ = cosϕ σ̃ ; b̂ = cosϕ ˜̂b; ν = cosϕ ν̃.

Now substitute these into (3D1) and divide out the common factor cosϕ. The result
is isomorphic to (2D1).

(σ̃ + ιk̃U )∇2ŵ − ιk̃Uzzŵ = −k̃2 ˜̂b + ν̃∇4ŵ. (3̃D1)

Turning to equations (3D2) and (2D2), we now define two more transforma-
tions:

Bz = cos2 ϕ B̃z; κ = cosϕ κ̃.

Substituting into (3D2) and dividing out cos2 ϕ, we obtain:

(σ̃ + ιk̃U )
˜̂b + B̃zŵ = κ̃∇2 ˜̂b. (3̃D2)

With all these transformations, (3̃D1) and (3̃D2) are isomorphic to (2D1) and
(2D2), respectively, and can therefore be solved using the same solution algorithm:
σ̃ = F(z,U, B̃z, ν̃, κ̃; k̃, 0), or

σ3D = cosϕ × F
(

z,U,
Bz

cos2 ϕ
,

ν

cosϕ
,

κ

cosϕ
; k̃, 0

)
.

The growth rate of the 3D mode is cosϕ times that of a corresponding 2D mode
that exists in a fluid with increased viscosity, diffusivity and stratification. In most
circumstances this means that the oblique mode will have a slower growth rate,
but if any of those three factors should increase the growth rate, and do so rapidly
enough to compensate for the factor cos ϕ, then the oblique mode can grow faster.

6.3.2 Oblique and Veering Flows: Transforming the Velocity

In the inviscid case we found that a normal mode perturbation in a shear flow is
affected only by the component of the background flow that is parallel to its own
wave vector (section 4.3, Figure 4.7). The same is true in a viscous fluid, as we
now confirm. As before, we define the transformed background velocity profile

Ũ (z) = k

k̃
U (z) = cosϕ U (z). (6.17)

Now, everywhere in (3D1, 2), replace kU with k̃Ũ :

(σ + ιk̃Ũ )∇2ŵ − ιk̃Ũzzŵ = −k̃2b̂ + ν∇4ŵ (3̃D1)

(σ + ιk̃Ũ )b̂ + Bzŵ = κ∇2b̂. (3̃D2)
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This set is isomorphic to (2D1, 2) under the transformation (6.17), and therefore
has the same solution algorithm:

σ3D = F(z, Ũ , Bz, ν, κ; k̃, 0). (6.18)

For a typical shear instability, this means that the growth rate of the 3D mode
will be reduced relative to the corresponding 2D mode. There are cases where this
is not true, though. Recall the definitions of the Reynolds and bulk Richardson
numbers:

Re = hu0

ν
; Rib = b0h

u2
0

,

A decrease in u0 decreases Re and increases Rib, and if either of these changes
should increase the growth rate, a 3D mode may be the most unstable (see the
example below). Also, some instabilities, such as convection, turn out to be damped
by shear, so that reducing u0 increases the growth rate, with interesting results as
you will see in homework project 19.

As in the inviscid case (section 4.12), the solution algorithm (6.18) for parallel
flows is easily extended to handle veering flows by replacing (6.17) with the more
general definition:

Ũ (z) = kU (z)+ �V (z)

k̃
. (6.19)

In practice, one loops over a range of wave vectors (k, �) and repeats the stability
analysis for each case using Ũ (z) as given by (6.19).

6.4 Shear and Diffusion Scalings

The normal mode equations for a viscous, diffusive, stratified, parallel shear flow
are [reproducing (6.14) and (6.15)]

(σ + ιkU )∇2ŵ − ιkUzzŵ = −k̃2b̂ + ν∇4ŵ (6.20)

(σ + ιkU )b̂ + Bzŵ = κ∇2b̂, (6.21)

where ∇2 = d2/dz2 − k̃2 as usual. Suppose that we have a solution algorithm

[σ, ŵ, b̂] = F(z,U, Bz, ν, κ; k, �). (6.22)

We now introduce a general length scale L and velocity scale V and use them to
define nondimensional equivalents for the quantities in (6.20) and (6.22):

z� = z

L

U � = U

V
; ŵ� = ŵ

V
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σ � = σ
L

V
{k�, ��, k̃�} = {k, �, k̃}L

d

dz
= 1

L

d

dz�
⇒ ∇2 = 1

L2

(
d2

dz�2
− k̃�2

)
ν� = ν

LV
; κ� = κ

LV

B� = B
L

V 2
; b̂� = b̂

L

V 2
. (6.23)

By substitution, one may now write a scaled version of (6.20, 6.21) and show
that it is isomorphic to the original version (the student should do this), so that the
same solution algorithm holds:

[σ �, ŵ�, b̂�] = F(z�,U �, B�
z� , ν

�, κ�; k�, ��). (6.24)

Choices for the scales L and V are endless. We will look at two particularly useful
choices: shear scaling and diffusion scaling.

While these generalized scalings always “work,” i.e., you can input them to
the solution procedure and get the correct (scaled) answer as in (6.24), they are
not necessarily the most natural scalings for a particular problem. For example,
although V 2/L has the right units for a buoyancy scale, it has no logical connec-
tion to buoyancy. It may be more natural to define a separate buoyancy scale b0, so
that

B = b0β,

where β is a nondimensional function. As an example, perhaps the background
buoyancy profile is B = b0 tanh z

L , in which case β = tanh z�.
Likewise, we may wish to write the background velocity using a separate

velocity scale u0 and a nondimensional function γ :

U = u0γ,

an example being the linear function U = u0 z/h, where γ = z�.
While these choices are easily made, one must then relate them back to their

equivalents in the generalized scaling (6.23), for it is these that must be inserted
into the solution algorithm (6.24).

6.4.1 Example #1: Shear Scaling

We have used this scaling frequently. The length and velocity scales are:

L = h ; V = u0,
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and are intended to characterize the vertical variability of the background velocity
profile U (z). In this case we find that scaled viscosity and diffusivity defined in
(6.23) have recognizable forms:

ν� = ν

LV
= ν

hu0
= 1

Re
; κ� = κ

hu0
= ν

hu0

κ

ν
= 1

RePr

Scaling the Buoyancy

Now suppose we choose the alternative form B = b0β for the background buoy-
ancy profile, where b0 is some buoyancy scale that suits the problem and β is
a nondimensional function of z�. What should we then insert into the buoyancy
“slot” in the solution algorithm?

B� = B
L

V 2
= b0β

h

u2
0

= b0h

u2
0

β(z�) = Rib β(z
�).

The scaled buoyancy gradient is then

B�
z� = Rib βz� .

For example, let B = b0 tanh(z/h), so that β = tanh z�. Then the input to the
solution procedure would be

B�
z� = Rib βz� = Rib sech2z�.

With the above choices, the format for the solution algorithm is

[σ �, ŵ�, b̂�] = F(z�,U �, Rib βz� ,
1

Re
,

1

RePr
; k�, ��). (6.25)

6.4.2 Example #2: Diffusion Scaling

The shear scaling defined above (L = h; V = u0) can be used in any situation
as long as the background current is nonzero, i.e., u0 �= 0. If we need to allow for
the possibility that u0 = 0, we may do so by adopting the diffusive scaling. For
example, we might wonder what happens to Benard convection when a uniform
shear is imposed (Figure 6.1), retaining the option to set the background shear to
zero as a special case. We therefore choose the length scale to be the domain height
H as in the original Benard problem (section 2.4), and the diffusive velocity scale
V = κ/H .

Using these scales, the nondimensional viscosity and diffusivity defined in (6.23)
take very simple forms:

ν� = ν

V H
= ν

κ
= Pr, (6.26)

κ� = κ

V H
= 1. (6.27)
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B(z)H

b0

U(z)

Figure 6.1 Definitions for the sheared Benard problem.

Scaling the Buoyancy

Suppose we choose the scaling B = b0 β for the buoyancy profile (where b0 is
some buoyancy scale that suits the problem, e.g., Figure 6.1, and β is a nondimen-
sional function of z� as described previously). In the solution algorithm (6.24), the
buoyancy gradient input is determined as follows:

B� = B
H

V 2
= b0β

H

κ2/H 2
= b0 H 3

κ2
β = b0 H 3

κν

ν

κ
β = Ra Prβ ⇒ B�

z� = Ra Pr βz� .

For the linear profile B = −b0z/H (Figure 6.1), β = −z� . Then the input to the
solution algorithm would be B�

z� = Ra Pr βz� = −Ra Pr .

Scaling the Velocity

Now suppose we want to impose a background velocity

U = u0γ,

where u0 is a suitable velocity scale and γ is a nondimensional function. The
appropriate input to the solution algorithm would be

U � = U

V
= u0γ

κ/H
= u0 H

κ
γ = u0 H

ν

ν

κ
γ = RePrγ.

For example, we may assume a linear background shear as in Figure 6.1: U =
u0z/H . In this case the velocity slot in the solution procedure would be filled by
U � = RePrz�. The special case of zero background flow corresponds to the limit
Re → 0.

In summary, using the diffusive scaling with alternative forms for both buoyancy
and velocity, the solution algorithm has the form:

[σ �, ŵ�, b̂�] = F(z�, RePr γ,−Ra Pr βz� , Pr, 1; k�, ��). (6.28)

Keep in mind that the solution algorithm F has not changed since it was
first defined in (6.16). The procedures outlined in this and the previous section
will enable you to use it to solve a wide range of theoretical and observational
problems.

https://doi.org/10.1017/9781108640084.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108640084.007


164 Synthesis: Viscous, Diffusive, Inhomogeneous, Parallel Shear Flow

6.5 Application: Instabilities of a Stably Stratified Shear Layer

Back in section 4.6, we studied Kelvin-Helmholtz and Holmboe instabilities using
a highly simplified analytical model of an inviscid fluid. Here, we study the corre-
sponding phenomena in a more realistic context, including the effects of viscosity
and diffusion, using smoothly varying profiles, and solving the equations via the
numerical techniques developed in this chapter.

Consider a stratified shear layer in which the velocity and the buoyancy may
change over different length scales:

U � = tanh z� ; β = tanh Rz�, (6.29)

where shear scaling (section 6.4.1) is used and the constant parameter R is the ratio
of shear layer thickness (Figure 6.2a) to stratified layer thickness (Figure 6.2b).
While the case R = 1 is the most common, flows with R > 1 are frequently found
in seawater, where momentum diffuses faster than buoyancy (Table 1.1). In this
section we’ll discuss cases with R = 1 and R = 3.

In the inviscid limit, the Miles-Howard theorem (section 4.7) requires that Ri be
less than 1/4 somewhere in the flow. Here we will assume that Re is large so that
the frozen flow hypothesis is valid and the Miles-Howard theorem is approximately
valid.3 When R = 1, the Richardson number is a minimum at the center of the
shear layer (Figure 6.2c, blue). The Miles-Howard criterion therefore requires that
Rib < 1/4. An exact expression is available for the stability boundary on the
k� − Rib plane (section 4.4):

–1 0 1
–3

–2

–1

0

1

2

3

–1 0 1 0

Figure 6.2 (a) Scaled velocity and (b) buoyancy profiles for the Holmboe model
(6.29) with R = 1, 3. (c) Ri profile for the case Rib = 0.1, or Ri0 = 0.3.
Asterisks indicate shear scaling (section 6.4.1).

3 If Re � 1, the only effect is a change in the critical Richardson number proportional to 1/Re (Thorpe et al.,
2013). In the present cases the difference is negligible.
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Rib = k�(1 − k�). (6.30)

The critical state for instability is k� = 1/2, Rib = 1/4.
When R �= 1, the value of Ri at the center of the shear layer is different from

Rib. We call that central value Ri0; it is equal to Rib R. In the case R = 3, Ri
decreases from Ri0 at the center of the shear layer to zero at infinity (Figure 6.2c,
green), so the Miles-Howard criterion is satisfied regardless of how large Ri0 is.
As you might guess, this distinction has a profound effect on the nature of the
instability.

6.5.1 Kelvin-Helmholtz Instability

Of all the instabilities of a stratified, parallel shear flow, the Kelvin-Helmholtz
instability is probably the most commonly observed in nature. A stationary insta-
bility, it grows in place to form a train of co-rotating vortices that visually resemble
surface waves breaking on a beach (e.g., Figure 6.4). These finite-amplitude man-
ifestations of the instability are called Kelvin-Helmholtz billows. The underlying
vortical structure is revealed more clearly in an echosounder image (Figure 6.5).
For other examples, see Figures 4.4, 4.5, and 12.1 and Smyth and Moum (2012),
or do a web search on “Kelvin-Helmholtz clouds.”

Figure 6.3 shows the growth rate σ �(k�, Rib) for the case R = 1, computed
numerically using the methods of section 6.2. Viscosity is weak (Re = 200), and
impermeable, frictionless boundaries are placed at z� = ±5. In the homogeneous
limit Rib = 0, this is just the hyperbolic tangent shear layer discussed in sec-
tion 3.9.1. The growth rate reaches a maximum value σ � = 0.19 at k� = 0.44,
consistent with the previous results.

As Rib is increased, the growth rate decreases, indicating the damping effect of
the stable buoyancy stratification. The wavenumber of the fastest-growing mode
increases slightly. The stability boundary is similar to the inviscid result (6.30), but
several differences are evident. For k� > 0.5, the stability boundary is slightly
lower. This shows that, in the presence of viscosity, lower Rib is required for
growth. Modes with smaller wavenumbers, k� < 0.5, are less affected by viscosity,
but they are more susceptible to the influence of boundaries. The boundaries tend
to enhance growth in this regime.

6.5.2 Holmboe Instability

We turn now to the case R = 3, i.e., where the stratification covers only the
inner 1/3 of the shear layer (Figure 6.2, green curves). In the homogeneous limit
Ri0 → 0, the value of R is irrelevant and we once again have a hyperbolic
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Figure 6.3 Growth rate versus scaled wavenumber and central/bulk Richardson
number for the hyperbolic tangent profiles (6.29) with R = 1; Re = 200;
Pr = 1. Only two-dimensional modes (�� = 0) are shown. The contour inter-
val is 0.0125, starting at zero. Instability is stationary. The solid white curve
indicates the fastest-growing mode at each Rib. Dashed curve shows the exact
stability boundary for the limit of zero viscosity and infinite domain height. Fric-
tionless, constant-buoyancy boundaries were placed at z� = ±10; grid increment
was �� = 0.1.

Figure 6.4 Kelvin-Helmholtz billow clouds, courtesy Brooks Martner, NOAA.

tangent shear layer with growth rate maximized at k� = 0.44 (Figure 6.6). If
the stratification is sufficiently weak, the shear drives Kelvin-Helmholtz instability
not much different from that found in the R = 1 case, although the wavenum-
ber decreases markedly with increasing Ri0. When the stratification is strong,
Kelvin-Helmholtz instability is supplanted by Holmboe instability. The boundary
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Figure 6.5 Echosounder image of a nonlinear internal wave propagating over the
continental shelf toward the Oregon coast. Cw indicates the direction of wave
propagation. Upper currents are in the direction of propagation, setting up a shear
within the wave. Note the difference in horizontal and vertical scales; at any x ,
the flow is approximately a parallel shear flow. Short arrows identify three layers
where disturbances grow as the wave passes. The uppermost layer forms a clearly
resolved train of Kelvin-Helmholtz billows. The lower two layers are too thin
for the growing disturbances to be well resolved. Reproduced from Moum et al.
(2003).

between the two is approximately (but not exactly) Ri0 = 1/4, and varies strongly
with R.

Note the similarity between the stability diagrams in Figures 6.6 and 4.11(b).
Both exhibit transitions between Kelvin-Helmholtz and Holmboe instabilities for
increasing Richardson numbers. This suggests that the essential mechanisms of
the instabilities are captured in the simple piecewise profiles. In our previous dis-
cussion of the Holmboe instability (section 4.6.3) we found that it is driven by a
resonance of vorticity waves and gravity waves. The threshold stratification corre-
sponds to Ri0 somewhat greater than 1/4 (Figure 6.6). Above this threshold, the
growth rate increases with increasing Ri0 until a maximum is reached (at Ri ≈ 1
for the case shown in Figure 6.6). Between these values, it is possible that the
fastest growing mode is oblique (see section 6.3).

In the example shown in Figure 6.7, the fastest growing Holmboe instability is
in fact oblique, with wave vector directed about 45 degrees from the streamwise
direction. By symmetry, there is an accompanying mode with the opposite angle of
obliquity. The result, viewed from above or below, is a diamond pattern of standing
oscillations growing exponentially in time.
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Figure 6.6 Growth rate versus scaled wavenumber and central Richardson num-
ber for the Holmboe profiles (6.29) with R = 3; Re = 200; Pr = 9. The
contour interval is 0.0125, starting at zero. Instability is stationary in the lower
lobe (Kelvin-Helmholtz instability); oscillatory in the higher (Holmboe insta-
bility). The dashed curve shows the inviscid stability boundary for R = 1, for
comparison. Frictionless, constant-buoyancy boundaries were placed at z� =
±10; grid increment was �� = 0.1. The solid white curve denotes the fastest-
growing mode. The black dashed curve is the stability boundary for the case
R = 1.
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Figure 6.7 Holmboe instability growth rate versus scaled wavenumbers k� and ��

for Re = 200 and Ri0 = 0.3. The contour interval is 0.002, starting at zero. The
fastest-growing mode is oblique.
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6.6 Application: Analysis of Observational Data

Figure 6.8 shows profiles of currents and stratification observed just west of the
Straits of Gibraltar (Nash et al., 2012). Current profiles (Figure 6.8a) include
the zonal and meridional components, and extend to 450 m depth (just above
the bottom). Both components show a distinct bottom current, directed south-
west into the Atlantic. This is the Mediterranean Outflow, a gravity current
driven by the high salinity (and thus high density) of the Mediterranean water.
Above the outflow is a weak, nearly zonal return flow of fresher Atlantic
water.

The buoyancy profile (Figure 6.8b) shows that the water column is stratified in
the upper 150 m and near the bottom, but is much more homogeneous in the upper
flank of the outflow and for about 100 m above that, indicating that the flow is, or
has recently been, strongly turbulent.
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Figure 6.8 Profiles from the Mediterranean Outflow (Nash et al., 2012). (a) Zonal
(blue) and meridional (red) current velocity. (b) buoyancy relative to the bottom.
(c) Gradient Richardson number. (d) Squared shear magnitude (blue), and 4 times
squared buoyancy frequency (yellow). Red dots show depths where Ri < 1/4.
Horizontal lines show critical levels for the three fastest-growing instabilities.
(Data courtesy of Jon Nash, Oregon State University.)
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The gradient Richardson number Ri (Figure 6.8c) is high in the upper 300 m
and near the bottom, but is low in the Outflow. At several points, Ri < 1/4, sug-
gesting the possibility of instability. This possibility is further emphasized by the
squared shear (Figure 6.8d, blue), which is high in regions of low Ri (red dots in
Figure 6.8d). Shear maxima often coincide with minima of the buoyancy gradient
(yellow). Based on these profiles, one could hypothesize that shear instability is
common on the upper flank of the Outflow. That hypothesis can be tested via
numerical solution of the perturbation equations.

To prepare for this analysis, the profiles were interpolated onto a regular ver-
tical grid with spacing � = 2 m and lowpass filtered with cutoff of 12 m. The
squared shear, averaged over the water column, is greatest in the direction φ = 25◦

from current, roughly the direction of the outflow. Stability analysis was carried out
using the current projected onto this direction: Ũ = U cosφ + V sinφ, equivalent
to looking for instabilities with wave vectors pointed in this direction (cf. section
4.12).4

A grid of wavelengths λ = 2π/k̃ was chosen, ranging from 32 m to 10 km.
The reason for this choice is the rule of thumb for a shear layer instability: the
wavelength is about 7 times the thickness of the shear layer (e.g., Table 3.1 or sum-
mary of Chapter 4). After applying the 12 m lowpass filter, the thinnest shear layer
resolvable has thickness h ∼ 6 m, so we can guess that it would produce an insta-
bility with λ ∼ 40 m. The longest wavelength, 10 km, is intended to approximate a
hydrostatic gravity wave whose vertical structure covers the whole water column.
That wavelength was arrived at by trial and error. Modes at the short end of this
range are poorly resolved and are considered highly approximate. Resolution is
discussed in greater detail in Chapter 13.

To represent smoothing by ambient, small-scale turbulence, viscosity and dif-
fusivity were set to ν = κ = 1 × 10−4m2/s. Frictionless, insulating boundary
conditions were imposed at the surface and at the bottom. For each λ, the three
fastest-growing eigenvalues were saved.

When several modes are retained, the dependence of the resulting growth rates
on the wavelength can be difficult to make sense of, especially if the obliquity
angle φ is also varied. The solution is to examine the depth of the critical level for
each mode, as these tend to align themselves into a much more coherent pattern.
The critical level depths are approximately independent of wavelength, at least
over the range of wavelengths where the growth rate is large. Three depths are
shown by horizontal lines on Figure 6.8. Upon close inspection, one can see that
each depth coincides closely with a local maximum of the shear magnitude (cf.
Shear Production Theorem, section 3.11.2). Therefore, each of the peaks in the

4 This is a bit of corner-cutting. Ideally, one would scan over a range of directions to account for the veering of
the flow with depth.
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Figure 6.9 (a) Growth rates, and (b) critical level depths, versus wavelength for
the three fastest-growing modes. Points are color coded for manual matching of
σ ’s with zc’s.

growth rate shown in Figure 6.9a represents instability growing on a particular
shear layer. We refer to such a grouping as a mode family and are most interested
in the fastest-growing mode of each family.

For this simple case the growth rates and critical levels were matched by hand
using the color-coding of the data points, and thereby organized into mode families
as sketched on Figure 6.9. For more extensive datasets, one can automate the pro-
cess by constructing a histogram of zc. Mode families are then identified by peaks
in the histogram.

Each of the three mode families seen on Figure 6.9a has its own fastest-growing
mode and its own critical level. Of these, the most unstable (identified by the blue
curve) has zc at about 390 m depth (middle dashed line on Figure 6.8). Its growth
rate is 14 hr−1, so its amplitude grows by a factor e = 2.718 in about four minutes.
The growth rate peaks at a wavelength a little over 200 m. According to our factor-
of-7 rule this suggests a shear layer thickness around 30 m. Close inspection of
Figure 6.8b bears this out: a shear maximum is visible at about 390 m depth, and
30 m would be a reasonable estimate of its thickness.

The second fastest mode (highlighted in red on Figure 6.9a) is considerably
shorter, with wavelength 100 m, and has critical level at 410 m. The third mode
(yellow) is focused at 360 m depth. It also has wavelength 100 m, but a much
slower growth rate. Close inspection of Figure 6.8a shows corresponding shear
maxima at 410 and 360 m, and in each case the peak shear is roughly con-
sistent with the growth rate (reduced at 410 m, reduced further at 360 m).
Both shear maxima are thinner than the one at 390 m, explaining the shorter
wavelengths.
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Figure 6.10 Phase velocities of the fastest upstream and downstream neutrally
propagating internal waves as a function of wavelength.

None of these modes is associated with the upper flank as a whole5. That shear
layer is about 100 m thick and would therefore support instabilities of about 700 m
wavelength. In reality, these are damped by the close proximity of the bottom.
(To learn about boundary effects, try exercise 12.) Instead, instabilities grow on
smaller, more intense shear layers that develop more or less at random within the
larger shear flow.

One possibility is that each of these instabilities creates turbulence, which then
mixes out the shear layer that spawned it, returning Ri to values above 1/4
until gravity accelerates the flow once again. This process, called cyclic insta-
bility, is discussed further in section 12.3. Another possibility is that the “shear
layer” is actually a disruption of the measurements by an inquisitive sea creature.
(Despite concerns about the impending extinction of ocean life, such encounters
are frustratingly common, e.g., Pujiana et al., 2015).

Besides instabilities, one is often interested in neutrally stable wave modes
supported by observed profiles. These are obtained by simply rearranging the
computed eigenmodes to pick out those for which σ is nearly imaginary, e.g.,
|σr/σi | < 10−3. We then compute the phase speed c = −ισ/k. Because the
boundaries are fixed, the extremely fast surface and barotropic wave modes are
excluded; what this calculation gives us are the baroclinic modes (first, second,
etc.) as modified by whatever background current may be present.

For the Mediterranean Outflow profiles, the wave modes with fastest propaga-
tion upstream and downstream are shown in Figure 6.10. As is typical of internal
gravity waves, the phase speed increases with increasing wavelength, asymptoting
to a limiting value when the wavelength is several kilometers or more. Note that

5 Meaning the main shear layer extending between about 330 m and 430 m depth.
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both modes have phase speeds outside the range of the background velocity, i.e.,
they do not have critical levels. This suggests that the Mediterranean outflow is
hydraulically subcritical, i.e., information can propagate both upstream and down-
stream, hence we would not expect to find an internal hydraulic jump, at least at
this time and location.

6.7 Summary

Combining results from Chapters 2 through 5, we have developed a versatile set
of techniques for the analysis of instabilities and waves in stratified shear flows.
Viscosity and diffusion may originate with molecular effects or with turbulence,
and may be included either for physical realism or as a numerical strategy to reduce
resolution requirements. Besides idealized models like the Kelvin-Helmholtz and
Holmboe shear instabilities, we have seen how the techniques may be applied to
observational data.

6.8 Further Reading

See Smyth and Moum (2012) for an overview of Kelvin-Helmholtz instability in
the ocean. More information on Holmboe instability is in Carpenter et al. (2010).
Lab experiments confirming the linear theory of Kelvin-Helmholtz and Holmboe
instabilities may be found in Thorpe (1973) and Tedford et al. (2009b). Further
examples of normal mode analysis applied to observational data are Putrevu and
Svendsen (1992), Einaudi and Finnigan (1993), Sun et al. (1998), Tedford et al.
(2009a), Moum et al. (2011), Smyth et al. (2011), and Smyth et al. (2013).
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