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EXTREME POINTS IN SPACES BETWEEN DIRICHLET AND
VANISHING MEAN OSCILLATION

K.J. WIRrTHS AND J. XI1AO

For p € (0,00) define Q,,0(82) as the space of all Lebesgue measurable complex-
valued functions f on the unit circle 84 for which [, , f(2)ldz|/(2r) = 0 and

1 / M@ = HF 1 g = o(117)
1J1

(2)? |z — w|2-P

as the open subarc I of JA varies. Note that each Qpo(8A) lies between the
Dirichlet space and Sarason’s vanishing mean oscillation space. This paper deter-
mines the extreme points of the closed unit ball of Qp0(8A) equipped with an
appropriate norm.

1. INTRODUCTION

Denote by A and A the open unit disk and the unit circle in the finite complex
plane C, respectively. For p € (0,00), let Q,(8A) (respectively Qp0(0A)) be the class
of all Lebesgue measurable functions f: A — C for which [, f(z)|dz|/(27) = 0 and

1 |£(z) = f(w)[? _ » : »
Sp(f,I) = (271')2/1 ey |dz||dw]| = O(|I|P) (respectlvely ol ))
as I C A varies. Here and throughout this paper, I means an open subarc of A
and |I| stands for the normalised arclength of I C dA, that is, |I| = [, |dz|/(2n).
It is clear that Qp0(0A) C Q,(dA). For convenience, equip f € Q,(0A) with the
following norm

Sp(f, I)11/2
= su .
17llepto) = sup [Z£2~]
So, @,(8A) is a Banach space and @Qp,0(94) is its closed subspace.
In the case p € (0,1) both classes were introduced in [3) and [6] when Essén,
Nicolau, and Xiao studied the boundary behaviour of the holomorphic Q,-spaces (see
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{1]). More important is that the article [9] (see [4] for another proof) proved that
Qp(0A) C BMO(9A) and equality occurs as p > 1. In Section 4 of our current paper,
we shall demonstrate that Qpo(0A) C VMO(OA) and equality happens again as
p > 1. Here BMO(OA) (respectively VMO(8A)) is John-Nirenberg’s [5] (respectively
Sarason’s [8]) space of functions with bounded respectively vanishing mean oscillation
on A . More precisely, for ¢ > 1 and a Lebesgue measurable function f : 8N — C we
say f € BMO(dA) provided [, f(2)|dz|/(27) =0 and ||f|lq-m0 = sél;%ff(z) < 0,

where
+ 1 q 1/q
z) =sup|—= dz ,
e =omlmm o

and here, the supremum is taken over all open subarcs I C 3A such that z € I.
Moreover we call f € VMO(9A) if f € BMO(8A) and

1) = oy [ Swlaul

q
ldz| =0,

. 1 1
o JAUCR T YR
where the supremum ranges through all open subarcs I C 9A with |I| < 4.

Motivated by Axler-Shields’ work [2], this paper is devoted to an investigation of
the extreme points of the closed ball of Q,0(04A) (as well as Q,(0A)), but also ex-
tends those corresponding results on VMO(8A) (as well as BMO{8A)). The main
results of this note are presented in Section 2. Of particular interest are some ex-
amples of the extreme/nonextreme points provided in Section 3. In the meantime, it
is worth mentioning that our functions g, constructed as the extreme points of the
closed unit ball of (Qp,0(8A), - llg,(ea)) are still extreme points of the closed unit
ball of (VMO(8A),|| - l|l2-nmo) - Besides this, the method of constructing some nonex-
treme points of the closed unit ball of (Qp0(8A), |- llgp(02)) is valid for the space

(VMO(8A), |l - llq-m0) - In other words, there are some nonextreme points in the
closed unit ball of (VMO(BA), || - |lq-mo0)-

2. RESULTS

First of all, let us determine the extreme points of the closed unit ball of @, 0(9A).
For f € Qp(84), p € (0,00), define the function E,(f,-) on A by

[Szu(f,l)]‘/2

Ep(f’ Z) i= sup IIlp

zel

b

where the supremum ranges over all open subarcs I C A such that z € I. It is easy
to establish the formula:
IfllQp82) = sup Ey(f,2).
z€HA
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This is due to an obvious fact that E,(f,-) is lower semi-continuous, that is, {z
€ A : Ep(f,z) > t} is an open set for every t > 0. Letting C(8A) be the class
of all continuous functions f : A — C, we can get further information on E,(f,-).
More precisely,

LEMMA 2.1. Let p€ (0,00) and let f € Q,0(0A). Then E,(f,-) € C(8D).

Proor: It suffices to prove that E,(f,-) is upper semi-continuous too, namely
that {z €0A 1 Ep(f,2) < t} is an open set for every ¢t > 0. To do this, fix ¢ > 0 and
let z € OA obey Ey(f,z) <t. If E,(f,2) # 0, then by f € Qp0(8A), there exists a

d > 0 such that
Sp(fy I) 2
sup ——= K |E(f,2)|".
rconin<s MIP [Ep(£,2)]
Now let J C 8A be an open subarc centred at z whose arclength |J| = ¢ is very small
compared to §. And, for w € J suppose I C 3A contains w. When {I| < §, one
has Sp(f,I)/|I|P < t%, thanks to the previous estimation. In the case |I| > & take

K =Jul. Then K is an open subarc containing z and hence

Sp(f, 1)  (1KI\PSp(f, K) _ (1KINP 2
p|I|p < (m) |KP < (W) [Bp(f,2)]"

Further, putting Ep(f,2) =t —7, 7 € (0,t), we get that Sp(f,I)/|I|P < t* and thus
Ep(fiw) <t when we J and |[J| =€ < 6[(t/(t e 1] . On the other hand, if
E,(f,2) = 0 then via the analysis on the open subarc K, we can select an open subarc

J centred at z such that E,(f,w) =0<t as w € J. This completes the proof.

THEOREM 2.2. Let p € (0,00) and f € Qp0(0A). Then f is an extreme point
of the closed unit ball of Qp0(04) if and only if Ep(f,-) is identical with 1.

PROOF: Assume that f is an extreme point of the closed unit ball of Qp0(84).
Since ||fllo,6a) < 1, one has that Ep(f,z) < 1 for all z € 8A. If Ep(f,) is
not identical with 1, then by Lemma 2.1, there is an open subarc J € 8A such
that sung(f,z) < 1. Choose a function g € Qp0(8A) such that |glig,n)

z€

< 1-supEp(f,2), g =0 outside J, and g # 0. When I C 9A is such that INJ =0,
zeJ

we obviously obtain
Sp(f +9,1) - Sp(f,I)
[I}? 717

<L

If I COA ensures INJ # 0, then

{gp(f-i——g,l_)_]lﬂ < [Sp(f,l)]l/z [S',,(g,[)]l/2

g g

Ssup Ep(f,2) + <L
1P sup o(f,2) +ll9lle,00) <
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Thus ||f+.9||Q,,(aA) 1. Similarly, ||f - y”Q,,(aA) 1. As g # 0, those inequalities
show that f is not an extreme point of the closed unit ball of @, ¢(0A), contradicting
the assumption. ' _
Conversely, let E,(f,-) = 1. If 2z € A, then there exists a sequence of
open subarcs I, containing zo such that Sp(f,I,)/|I.|P is convergent to 1. With-
out loss of generality, let I, := (an,b,), intervals moving counterclockwise. Then,
by passing to a subsequence, we may assume that a, — a and b, — b in the
usual sense. After that, let I,, C OA be the open subarc determined by the

interval (a,b), that is, I,, := (a,b). In this sense, I, is viewed as the limit-
ing open subarc of I,. Accordingly, S,(f,I.,)/|I:|°P = 1. Although I, does
not necessarily contain zg, it is easy to see that 2p belongs to 7,0 — the closure

of I,, — a closed subarc [a,b] of dA. Observe that since f € Qp0(0A), I, cannot
get small and hence I, is not empty.

Now suppose g € Qp, (04) and ||f + gllgy8a) < 1 and ||f —gllg,(00) € 1. In
order to prove that f is an extreme point, we must show that ¢ = 0. Fix 2z, € A
with the open subarc I,;, constructed above. Thus,

f(z) = f(w)
(12 = wl/| L) * /2

IzOXIzo

is an element of the unit sphere of LZ(I X Izo,(27r|Izol)_2|dz||dw|). From ||f
+ g”Qp(aA) 1, we also know that

F(2) = f(w) + 9(2) — g(w)
(|2 — w|/ |, P72

IszIZO

is a member of the closed unit ball of L2 (I x I, (27r|I,0|)_2|dz||dw|) , and similarly
when g is replaced by —g. Notice that

7 (2) = f(w) _ [f2) = f(w)] + [9(2) — g(w)]
(12 = wl/|L,, )~ P/?

Iigx Iz 2(|z - w|/|L,))* P2

L U@ - 1)~ [9(2) ~ 9(w)]
2|z — w|/|Ly)FTP? hgxiyg

IzOXIZO

and more importantly, that L? (Iz0 X I, (27r|120|)'2|dz||dw|) enjoys the property that
every point of the unit sphere is an extreme point of the closed unit ball ([7, p. 84,
problem 16]). So, the last equation implies that g(z) — g(w) =0 on I, x I, that is,
g is a constant on I, .

https://doi.org/10.1017/50004972700037175 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700037175

[5] Extreme points 369

For each 29 € A let J,, denote the largest open subarc covering I, such that
g|Jz, is constant. Obviously, as zg,wo € 84, Jz, N Jy, # @ induces J,; = Jyu,, and
so the collection {J,,} can contain at most countably many different open subarcs,
because || = 1. Relabel these disjoint open subarcs {K,}. The condition zo € I,
implies dA = UK,, (where K,, stands for the closure of K,). Thus A := A \ UK,
consists of all endpoints of all the subarcs K,,. In particular, A is a closed, countable
set. If A = 0, then {K,} contains only one element, namely dA, and thus g is a
constant function on dA. Note that [, . g(z)|dz|/(27) = 0. Accordingly, g = 0.

It remains to consider the case: A # 0. Using the Baire Category Theorem, we see
that the non-empty, countable, closed set A must have an isolated point ¢ € dA. Since
8N = UK, , we can conclude that there must be two disjoint open subarcs K, and K,
such that ¢ is an endpoint for them. Recall that g|K, and g|K,, are constant. If the
two constants do not coincide, then g has a jump discontinuity at ¢, which certainly
contradicts the condition g € Qp0(0A). If the two constants are the same, then g is
constant on the open subarc K, U{c}UK,,, which violates the maximality of the open
subarcs {J}zoe0a . Thus the case A # @ cannot occur, and therefore the proof of the
theorem is finished. 1|

Next, we shall deal with the extreme points of the closed unit ball of Q,(8A).. This
part may be considered as a consequence of the proof of the above theorem, although
the forthcoming result looks quite different from that of the extreme points of the closed
unit ball of Q,0(8A).

For f € Qp(0A) and z € A, we shall use Ep(f,2) = 1% to denote that E,(f, 2)
=1 and there exists some open subarc I, containing z that gives S,(f,I.)/|I [P =1.
This means that the supremum defining E,(f, 2) is attained.

COROLLARY 2.3. Letpe€ (0,00) and let f € Q,(04A). If f is an extreme point
of the closed unit ball of Q,(84) then there exist no two distinct points z; and z; in
A such that Ep(f,z1) < 1 and Ey(f,2z3) < 1. Conversely, if Ep(f,2) = 1% for all
z € 3\ with one possible exception, then f is an extreme point of the closed unit ball

of Q,(8D).

PROOF: Let f be an extreme point of the closed unit ball of Q,(9A). Without
loss of generality, we may assume that | f|lg,8a) = 1 in that if ||f|lg,5a) < 1 then
we may select g = (1 —€)f and h = (1 +¢)f, where 0 < ¢ < min{1, ||f||5;(am -1},
and hence it turns out from the equation f = (g + h)/2 that f cannot be an extreme
point of the closed unit ball of Q,(0A). In order to reach our goal, suppose otherwise
that there are two distinct points zx € A, k = 1,2 such that E,(f,z) <1, k=1,2;
and use Ix, k = 1,2 to denote the two open subarcs of A which have {z1,2;} as
endpoints. Define a function g € Q,(0A) by gl5, = €1, gli, = —€2, where e¢ > 0,
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k =1,2 are chosen so that [, g(z)|dz] =0 and ||gllg,a0) < 1 — max E,(f, zx). Now,

let I be an open subarc of dA. If both 2z, and 23 are not in I, then ¢ is constant on
I and thus S,(f + g,I)/|I|IP = Sp(f, I)/|I|IP < 1. If one of 2, say, 2, lies in I, then

et 2\ LRI L Ik / ’ o9,
[sp(fl;lrpg I)] "< [SP&LU]W [S|(1'g|—p1)

1/2
|7 < B 2) +gllgy0m) < 1

Accordingly, it follows that ||f + gllg,(aa) < 1. Similarly, ||f — gllg,(9a) < 1. Because
f may be written as the sum of (f +¢)/2 and (f — g)/2, the function f is not an
extreme point of the closed unit ball of Q,(8A), violating the given condition.

On the other hand, if w € OA is such that E,(f,z) = 1% for all z € A\
{w}, then to each z € A \ {w}, there corresponds an open subarc I, such that z
€ I, and Sp(f,I.)/|L,|P = 1. Now let g € Q,(0A) satisfy ||f + gllg,a) < 1 and
|f — gllQp82) € 1. To complete the proof, we must show g = 0. Applying the same
reasoning as in the argument for sufficiency of Theorem 2.2, we can prove that g|I,
is a constant. Since g is locally constant on the connected set 9A \ {w}, g = 0 as

Jon 9(2)|dz|/(27) = 0.

3. EXAMPLES

In this section we present some examples of either extreme points or nonextreme
points of the closed unit ball of Qp0(84).

EXAMPLE 3.1. (Extreme points.) Let p € (0,00), and for integers n = £1,=%2,...
let f.(z) = Az"™ where 2z € A and |A| =1. Then g, = fn/”fn”Qp(aA) are extreme
points of the closed unit ball of Qp0(0A).

PRroor: To make these examples more precise, by Theorem 2.2
Ep(gn,2) =1, VzedA.

In fact, some elementary calculations tell us that
11
Sp(fn, I) = 2P*1 / (|11 - t) sin?~2 (nt) sin® (nt) dt
0

and so that

op+1

1]
E2(fn,2) = sup / (1] — ¢) sin®~2 (nt) sin? (nnt) dt.
0

e, HIP

Thus, ||fallg,02) = Ey(fn, 2) for each z € A, and then E,(gn,-) =1 follows. g

In the sequel, we point out that not all points on the closed unit ball of @, 0(0A)
are extreme points. In fact, we consider a function first defined on [0,27) with mean
value zero and then extended periodically.
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ExaMPLE 3.2. (Nonextreme points) Let p € (0,00), and for & € (0,1) let

%, 8 < [0, 6);
fs(e) = 1, 6 € [6,2n - 8];
2"6_0, 8 € [2n — §,27).

Also put gs = fs — 1+ 6/(2m) on [0,27r) and extend it 2m-periodically. Then there
exists a J > 0 such that gs/[|gsllg,(0a) is a nonextreme point of the closed unit ball of

Qpo(0D).

PROOF: A key observation is that gs is convergent to the zero-function as 6 — 0.
Because fs is a Lipl-function, gs/llgsllq, ¢(0) is in @po(84). However, we show that
it is not an extreme point of the closed unit ball of @, 0(0A). By Theorem 2.2 we
know this will be done if one can prove that E,(fs,-) is not a constant function for
some d. For this it suffices to verify E,(fs5,0) # Ep(fs,n) for some 4. First, for any
open subarc (or subinterval) I = (a,b) C (0,d) we have

Sp(fs, I) _ 2P(2m)P2 /”“’ (b-a-t)
P~ (®—-ay52 ), “sin®Pt/2

Thus
P p—2 pb )42
sp SUnD) S 2Cm) (6~ 1)t

Z dt.
cs P 62tP  Jy sin®"Pt/2

Furthermore, by Lemma 2.1 and the limit

i L 8 (5-t)t2 _ 22-p
50 6P*2 [, sin® P t/2 +D(@+2)’

we can find a é; € (0,1) such that for § € (0,4,),

QP gP—2 1/2 Uo

Pl P = —.

Second, suppose I C @A is any open subarc containing w. If [I| £ (7 — 8)/(27),
then Sp(fs5,1) =0. If 1 > |I| > (7 — §)/(2x), then by the definition of f5,

' _ ! |£5(c) — fs(e™)|”
Sp(f671) < Sp(f&aaa) = (27!’)2 /S; Iei¢ — e,',/,lz_p dody,
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4
where Q is a domain defined by {J €;:

Jj=1
{(6,9):0< 8 <80<y<2m), j=1;
{(p9):2r-6<p<2mO<Pp<2m}, =2
& {(¢,9):0< ¢ <21,0< ¢ <68} j=3
{(6,9):0<p<2m2r-6<Pp <21}, j=4

It is a completely elementary estimation to obtain a d, € (0,1) such that for § € (0, 62),

//Qj IfJf:::)_lﬁl(ze_‘j)l dgdy < (= W‘s) (27;“0)2, j=1,2,3,4

Hence

Slfe]) 1 |fs(e%) = fa(e)[’ po\?
plIlp (271') / etd’ — eﬂ/)l2—p d¢d1/’ < (7) .

Consequently, E,(fs,m) < po/2 whenever § € (0,8,). Therefore there exists a &3
€ (0, min{8y,682}) such that E,(fs;,0) > po/2 and Ey(fs,,7) < po/2. This concludes
the proof. 0

Recall that the (boundary) Dirichlet space D(9A) consists of all Lebesgue mea-
surable complex-valued functions f on dA for which [, . f(z)(dz]/(27) =0 and

2 1
002 = [ [, /le&f(lz_)l| o] " < o

It is clear that D(0A) C [\ Qp,0(0A), and that every point on the closed unit ball
p>0

f (D(8A), 1l lp(aa)) is an extreme point and vice versa. An explicit computation
involving Ey(fs,-) above reveals that for p small one has to choose § small in order to
get a nonextreme point of the closed unit ball of (Qp,0(8A), || - lg,(84)) - This reflects
the fact that Qp o(0A) approaches D(0A) as p \, 0 in some sense.

4. APPENDIX

The first result of this section is to illustrate the important basic relationship
between Qpo(0A) and VMO(OA) mentioned in the introduction.

PROPOSITION 4.1. If 0 < py < p2 < o0 then Qp, 0(0A) C Qp,,0(84). In
particular, if p € (1,00) then Qpo(3A) = VMO(3A).

PROOF: It suffices to show that each @, 0(0A) coincides with VMO(A) when-
ever p > 1. First, we verify VMO(0A) C Qpo(64A). To do so, we observe the
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integrated Lip-character of Qp,0(0A) (which ma.y‘be worked out via the change of vari-
ables; see also [4, p. 579]): f € Qp0(dA) if and only if hmF »(f,0) = 0, where for
d€(0,1),

H
Fp(f’ 6) = sup [Il"l’/o sin?~2 /.f( t(s+t)) f(e")

ICaA,|I|<5

ds dt.

For convenience, we use U < V' to denote that there is a constant ¢ > 0 such that
UgcV. If U £V and V £ U hold simultaneously then we say that U ~ V. In
addition, we write rI (v > 0) for the open arc with length r|I| and the same centre
as I, and f; the average of f over J CA: f; = (2x|J|)™" [, f(e*) dt. Now if f in
VMO(8A) then for any small € > 0 there is a § € (0,1/3) such that as |I| < §,

/ |f(e*) = far*ds < 2me|I|,
3I

and hence

| ) .
/ sinp—2“—tdt/|f(e”) — far|’ds |I|P-1/ |7 (e") = far|” ds S el IP.
0 2 i ar
Consequently
17l i . 2
[ a2 2 (15 - pul dsde S el
0 I

So, }in}) F,(f,6) =0, namely, f € Qp0(3D).
—

Second, we show that Qp0(0A) € VMO(0A). In case p € (1,2], the result
follows immediately from the definition. It remains to consider the case p > 2. Let
f € Qp,0(0A). Then for arbitrarily small € > 0 there exists a 6 € (1,1/2) such that
Sp(f,J) < €|J|P whenever |J| < d. Thus for I C A with [I| < 4, one has

. et — eitIZ—plf(eis) _ f(eit)|2
i 1.t
/I/I[f(e ) — f(e)|* dsdt < kZ//2 o ot dsdt

=1 <21k
[=5) i it\ 2
JI\2-» t8) __ elt
<SSy 1) =10
k=1 ls—ti/ing2t-k  |e*® —e¥*[>7P
o it |2
II\2-p 13 _ i
<Z || / / |/ (e f(ze ) dsdt
92-k1 Jo2—ky  |ei® — eit|2-P
S€|I|2,
which implies that f in VMO(@A). Therefore, the proof is complete. 0

The second conclusion of this section is an estimate of the distance from f
€ Qp(0A) to Qpo(dN).
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PROPOSITION 4.2. Let p€ (0,00) and f € Qp,(dA) with
d(f, Qp,0(84)) := inf{||f — gllo,(8a) : 9 € @po(dA)}.

Then

Sp(f, I)11/2
d(f, Qp,0(08)) ~ Mp(f): _}l—%[casauﬂka[ || ] .

PROOF: Since d(f, Qp,o(aA)) = 0 whenever f € Qp0(04), it is easy to show that
My(f) < d(f,Qpo(8D)), f € Qy(0D).

Regarding the reversed estimate, we define the function

oy 1 1-r2
fr(e )—ﬁ/wf(ﬂ)mwm

for r € (0,1) and f € Qp(8A). It is clear that f, € @p0(3A) and
10 - 10 =5 [ [0~ 1D T, = A=

Setting Thf(¢) = f((_/\_) and using Minkowski’s inequality, we see that for any small
e>0,

I = frllep(00)
r2

1-—
< -T —|dA
S [ W =T lyom g N

1—1r2

1 —72
< / 1f = Ta Fllguon) ——er|dA| + [| flloy0n / ik ¥}y
[A<e nl )|1—7'/\|2 (64) <MK |1 —r)2

:= Term; + Terms,.

Suppose § € (0,1). By the Lebesgue Dominated Convergence Theorem we know that

lim sup S(f TS 1) =0.
A—-0 1126 |I|p

Also the Triangle Inequality yields

wp SUBED S0
11<é |I}P ~in<s P
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Therefore, if € — 0 then

[Sp(f,l)]lﬂ.

Term; < sup TR

[1i<s

And, if r - 1 then Terms — 0 and thus

d(f,Qp,0(00)) < Iim [|f — frlloy(00) S Mp(f).

We are done. 1]

With the help of Proposition 4.1, we see that Proposition 4.2 extends Sarason’s

vanishing mean oscillation-version in [8]. Of course, Proposition 4.2 derives that f
€ Qp,0(8A) if and only if d(f, Qp,0(84)) =0.

(1]
(2]
(3]
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