ERRATUM

Intracortical connections are not required for oscillatory activity in the visual cortex

GEOFFREY M. GHOSE and RALPH D. FREEMAN

Group in Vision Science, School of Optometry, University of California, Berkeley (article appeared in *Visual Neuroscience* (1997), 14, 963–979)

Due to a software translation incompatibility, errors were introduced in the final version of the manuscript submitted for the above publication. Readers are advised to note the following corrections:

On p. 965, the first line of text below equation (1) should read "where m is the order of the gamma function, λ is the coefficient of variation"

On p. 965, the last line of text above equation (3) should read "the assumption of equal weights among the inputs $(w_i = 1 \text{ for all } i)$:"

On p. 971, equation (7) should read

$$E(t > 0) = [(1 - e^{-\gamma t}) - C]\theta \tag{7}$$

On p. 971, the last sentence of the second full paragraph in the right hand column should read "The simulated complex cell has a

firing threshold θ of 4.5 [eqn. (3)] and is discharged at a rate of 82.5 spikes/s when stimulated and 0.3 spikes/s in the absence of stimulation."

On p. 972, in the third and fourth lines of the first column the q_I should be replaced by θ_I .

On p. 972, in the twelfth and thirteenth lines of the first column the "g" should be replaced by a " γ " for the decay constant.

On p. 974, the twenty-first line of the first column should be changed to read "However, in the visual cortex, field potentials are largely generated by"

A corrected version of the paper is reproduced on pp. 963R-979R following.