JFP 13 (1): 179-190, January 2003. © 2003 Cambridge University Press
DOI: 10.1017/S0956796803001916 Printed in the United Kingdom

Chapter 17

List Utilities

module List (
elemIndex, elemIndices,
find, findIndex, findIndices,
nub, nubBy, delete, deleteBy, (\\), deleteFirstsBy,
union, unionBy, intersect, intersectBy,
intersperse, transpose, partition, group, groupBy,
inits, tails, isPrefixOf, isSuffixOf,
mapAccumL, mapAccumR,
sort, sortBy, insert, insertBy, maximumBy, minimumBy,
genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex, genericReplicate,
zip4, zip5, zip6, zip7,
zipWith4, =zipWith5, =zipWith6, zipWith7,
unzip4, unzip5, unzip6, unzip7, unfoldr,

-- ...and what the Prelude exports

-— [1((2), [1), -- This is built-in syntax
map, (++), concat, filter,
head, last, tail, init, null, length, (!!),

foldl, foldll, scanl, scanll, foldr, foldrl, scanr, scanrl,
iterate, repeat, replicate, cycle,

take, drop, splitAt, takewWhile, dropwWwhile, span, break,
lines, words, unlines, unwords, reverse, and, or,

any, all, elem, notElem, lookup,

sum, product, maximum, minimum, concatMap,

zip, zip3, zipWith, zipWith3, unzip, unzip3

) where

infix 5 \\

179

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

180 CHAPTER 17. LIST UTILITIES

elemIndex :: Eq a => a -> [a] -> Maybe Int

elemIndices :: EgQ a => a -> [a] -> [Int]

find :: (a -> Bool) -> [a] -> Maybe a

findIndex :: (a -> Bool) -> [a] -> Maybe Int

findIndices :: (a -> Bool) -> [a] -> [Int]

nub :: Eg a => [a] -> [a]

nubBy :: (a -=> a -> Bool) -> [a] -> [a]

delete :: Eq a => a -> [a] -> [a]

deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]

(\\) :: Eq a => [a] -> [a] -> [a]

deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

union :: Eq a => [a] -> [a] -> [a]

unionBy :: (a -=> a -> Bool) -> [a] -> [a] —-> [a]

intersect :: Eq a => [a] -> [a] -> [a]

intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

intersperse t: a -> [a] -> [a]

transpose t: [[al]l -> [[all

partition :: (a -> Bool) -> [a] -> ([al,[al])

group :: Eg a => [a] -> [[a]]

groupBy t: (a -=> a -> Bool) -> [a] -> [[a]]

inits t: [a] -> [[a]]

tails t: [a] => [[a]l]

isPrefixOf :: Eq a => [a] -> [a] -> Bool

isSuffixOf :: Eg a => [a] -> [a] -> Bool

mapAccumL t: (a -=> b -> (a, c)) -=> a -> [b] > (a, [c])

mapAccumR t: (a -=> b -> (a, c)) -=> a -> [b] -> (a, [c])

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]

sort :: Ord a => [a] -> [a]

sortBy :: (a -> a -> Ordering) -> [a] -> [a]

insert t: Ord a => a -> [a] -> [a]

insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]

maximumBy :: (a -> a -> Ordering) -> [a] -> a

minimumBy :: (a -> a -> Ordering) -> [a] -> a

genericLength :: Integral a => [b] -> a

genericTake :: Integral a => a -> [b] -> [b]

genericDrop :: Integral a => a -> [b] -> [Db]

genericSplitAt :: Integral a => a -> [b] -> ([b],[b])

genericIndex :: Integral a => [b] -> a -> b

genericReplicate :: Integral a => a -> b -> [b]

zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]

zip5 :: [a] => [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]

zip6 :: [a] => [b] -> [c] -> [d] -> [e] -> [f]

-> [(alblcldlelf)]
zip7 :: [a] => [b] -> [¢] -> [d] -> [e] -> [f] -> [g]
-> [(alblcldlelflg)]

zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]

zipWith5 :: (a->b->c->d->e->f) ->
[a]l->[b]->[c]->[d]->[e]->[f]

zipWith6 :: (a->b->c->d->e->f->g) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]

zipWith7 :: (a->b->c->d->e->f->g->h) ->
[a]l]->[b]->[c]->[d]->[e]->[f]1->[g]->[h]

unzip4 :: [(a,b,c,d)] -> ([al,[bl,[c],[d])

unzip5 :: [(a,b,c,d,e)] -> ([al,[bl,[c],[d],[e])

unzip6 :: [(a,b,c,d,e,f)] -> ([al,[bl,[c],[d]l,[e]l,[£])

unzip? :: [(a,b,c,d,e,f,9)] -> ([al,[b]l,[c],[d]l,[e]l,[£1,[9])

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

17.1. INDEXING LISTS 181

This library defines some lesser-used operations over lists.

17.1 Indexing Lists

e elemIndex val list returns the index of the first occurrence, if any, of val in 1list
as Just index. Nothing isreturned if not (val ‘elem‘’ list).

e elemIndices val list returns an in-order list of indices, giving the occurrences of
valin list.

o find returns the first element of a list that satisfies a predicate, or Nothing, if there is no such
element. findIndex returns the corresponding index. findIndices returns a list of all
such indices.

17.2 “Set” Operations

There are a number of “set” operations defined over the List type. nub (meaning “essence”)
removes duplicates elements from a list. delete, (\\), union and intersect (and their By
variants) preserve the invariant that their result does not contain duplicates, provided that their first
argument contains no duplicates.

e nub removes duplicate elements from a list. For example:

nub [1,3,1,4,3,3] = [1,3,4]

e delete xremoves the first occurrence of x from its list argument, e.g.

delete ’'a’ "banana" == "bnana"

e (\\) is list difference (non-associative). In the result of xs \\ ys, the first occurrence of
each element of ys in turn (if any) has been removed from xs. Thus,
(xs ++ ys) \\ xs == ys.

e union is list union, e.g.

"dog" ‘union’ "cow" == "dogcw"

e intersect is list intersection, e.g.

[1,2,3,4] ‘intersect’ [2,4,6,8] == [2,4]

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

182 CHAPTER 17. LIST UTILITIES
17.3 List Transformations

e intersperse sep inserts sep between the elements of its list argument, e.g.

intersperse ',’ "abcde" == "a,b,c,d,e"

e transpose transposes the rows and columns of its argument, e.g.

transpose [[1,2,3],[4,5,6]] == [[1,4]1,[(2,5],[3,6]]

e partition takes a predicate and a list and returns a pair of lists: those elements of the
argument list that do and do not satisfy the predicate, respectively; i.e.

partition p xs == (filter p xs, filter (not . p) xs)

e sort implement a stable sorting algorithm, here specified in terms of the insertBy func-
tion, which inserts objects into a list according to the specified ordering relation.

e insert inserts a new element into an ordered list (arranged in increasing order).

e group splits its list argument into a list of lists of equal, adjacent elements. For example

group "MiSSiSSippi" J— [IlMll,nill,llssn,llin,llssll,nill,vlppu,llill]

e inits returns the list of initial segments of its argument list, shortest first.
inits llabcll == [“","a","ab","abc"]

e tails returns the list of all final segments of its argument list, longest first.

tails "abc" == ["abc", "bc", "c",""]

e mapAccumL f s 1 applies f to an accumulating “state” parameter s and to each element
of 1 in turn.

e mapAccumR is similar to mapAccumL except that the list is processed from right-to-left
rather than left-to-right.

17.4 unfoldr

The unfoldr function is a “dual” to foldr: while foldr reduces a list to a summary value,
unfoldr builds a list from a seed value. For example:

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

17.5. PREDICATES 183

iterate f == unfoldr (\x -> Just (x, f X))

In some cases, unfoldr can undo a foldr operation:

unfoldr £’ (foldr f z xs) == xs
if the following holds:

f'r (£ x y) = Just (x,y)

fr z = Nothing

17.5 Predicates

isPrefixOf and isSuffixOf check whether the first argument is a prefix (resp. suffix) of the
second argument.

17.6 The “By” Operations

By convention, overloaded functions have a non-overloaded counterpart whose name is suffixed
with “By”. For example, the function nub could be defined as follows:

nub :: (Eq a) => [a] -> [a]
nub [] = [1]
nub (x:xs) = x : nub (filter (\y -> not (x == y)) xs)

However, the equality method may not be appropriate in all situations. The function:

nubBy s (a -> a -> BOOl) -> [a] -> [a]
nubBy eq [] = []
nubBy eq (x:xs) = X : nubBy eq (filter (\y -> not (eq X y)) xs)

allows the programmer to supply their own equality test. When the “By” function replaces an Eq
context by a binary predicate, the predicate is assumed to define an equivalence; when the “By”
function replaces an Ord context by a binary predicate, the predicate is assumed to define a total
ordering.

The “By” variants are as follows: nubBy, deleteBy, deleteFirstsBy (the By variant of
\\), unionBy, intersectBy, groupBy, sortBy, insertBy, maximumBy, minimumBy.

The library does not provide elemBy, because any (eq x) doesthesamejobaselemBy eq x
would. A handful of overloaded functions (elemIndex, elemIndices, isPrefixOf, is-
Suffix0f) were not considered important enough to have “By” variants.

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

184 CHAPTER 17. LIST UTILITIES

17.7 The “generic” Operations

The prefix “generic” indicates an overloaded function that is a generalised version of a Prelude
function. For example,

genericLength :: Integral a => [b] -> a
is a generalised version of 1ength.

The “generic” operations are as follows: genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex (the generic version of ! !), genericReplicate.

17.8 Further “zip” Operations

The Prelude provides zip, zip3, unzip, unzip3, zipWith, and zipWith3. The List library
provides these same three operations for 4, 5, 6, and 7 arguments.

17.9 Library List

module List (
elemIndex, elemIndices,
find, findIndex, findIndices,
nub, nubBy, delete, deleteBy, (\\), deleteFirstsBy,
union, unionBy, intersect, intersectBy,
intersperse, transpose, partition, group, groupBy,
inits, tails, isPrefixOf, isSuffixOf,
mapAccumL, mapAccumR,
sort, sortBy, insert, insertBy, maximumBy, minimumBy,
genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex, genericReplicate,
zip4, zip5, zip6, zip7,
zipWith4, =zipWith5, =zipWith6, zipWith7,
unzip4, unzip5, unzip6, unzip7, unfoldr,

-- ...and what the Prelude exports

-—— [1(C(C), [1)s -- This is built-in syntax
map, (++), concat, filter,
head, last, tail, init, null, length, (!!),

foldl, foldll, scanl, scanll, foldr, foldrl, scanr, scanrl,
iterate, repeat, replicate, cycle,

take, drop, splitAt, takewhile, dropwWwhile, span, break,
lines, words, unlines, unwords, reverse, and, or,

any, all, elem, notElem, lookup,

sum, product, maximum, minimum, concatMap,

zip, zip3, zipWith, zipWith3, unzip, unzip3

) where

import Maybe( listToMaybe )

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

17.9. LIBRARY LIST 185

infix 5 \\

elemIndex
elemIndex X

Eq a => a -> [a] -> Maybe Int
findIndex (x ==

I| oo

elemIndices :: Eg a => a -> [a] -> [Int]
elemIndices x findIndices (x ==

find :: (a => Bool) -> [a] -> Maybe a

find p

findIndex
findIndex p

[/

listToMaybe . filter p

(a => Bool) -> [a] -> Maybe Int

listToMaybe . findIndices p

findIndices (a => Bool) -> [a] -> [Int]

findIndices p xs = [ i ]| (%x,1) <- zip xs [0..], p X ]

nub :: Eqg a => [a] -> [a]

nub = nubBy (==

nubBy t: (a -> a -> Bool) -> [a] -> [a]

nubBy eq [] =[]

nubBy eq (x:xs) = x : nubBy eq (filter (\y -> not (eq X y)) xs)
delete :: Eq a => a -> [a] —> [a]

delete = deleteBy (==

deleteBy t: (a => a -> Bool) -> a -> [a] -> [a]

deleteBy eq x [] =[]

deleteBy eq x (y:ys) = if x ’‘eq’ y then ys else y : deleteBy eq x ys
(\\) :: Eq a => [a] -> [a] -> [a]

(\\) = foldl (flip delete)

deleteFirstsBy
deleteFirstsBy eq

(a => a -> Bool) -> [a] -> [a] -> [a]
foldl (flip (deleteBy eq))

I| oo

union :: Eq a => [a] -> [a] -> [a]
union = unionBy (==
unionBy :: (a => a -> Bool) -> [a] -> [a] -> [a]

unionBy eq xs ys xs ++ deleteFirstsBy eq (nubBy eq ys) Xs

intersect :: Eq a => [a] -> [a] -> [a]
intersect = intersectBy (==
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

intersectBy eq xs ys [x | X <- Xs, any (eq x) ys]

intersperse t: a -> [a] -> [a]

intersperse sep [] = [1]

intersperse sep [x] = [x]

intersperse sep (x:XS) = X : sep : intersperse sep Xs

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

186 CHAPTER 17. LIST UTILITIES

-- transpose is lazy in both rows and columns,
- and works for non-rectangular ’'matrices’

-- For exampler transpose [[112]1[3141511[]] = [[113]1[214]1[5]]
-- Note that [h | (h:t) <- xss] is not the same as (map head xss)
- because the former discards empty sublists inside xss
transpose t: [[al]l -> [[all
transpose [] =11
transpose ([] ¢ XSs) = transpose XsSs
transpose ((x:xs) : xss) = (x : [h | (h:t) <- xss])

transpose (Xs : [t | (h:t) <- xss])
partition (a -> Bool) -> [a] -> ([al,[a])

partition p xs = (filter p xs, filter (not . p) xs)

-- group splits its list argument into a list of lists of equal, adjacent
-- elements. e.g.,

—— group "Mississippi" == ["M","i","ss","i","ss","i","pp","i"]
group :: Eqg a => [a] -> [[a]]
group = groupBy (==
groupBy :: (a -=> a -> Bool) -> [a] -> [[a]]
groupBy eq [] = [
groupBy eq (x:Xs) = (X:ys) : groupBy eq zs

where (ys,zs) = span (eq X) Xs

-- inits xs returns the list of initial segments of xs, shortest first.

—— e.g., inits "abc" == ["","a","ab","abc"]
inits t: [a] -> [[a]]

inits [] = [[1]

inits (x:xs) = [[]] ++ map (x:) (inits xs)

-- tails xs returns the list of all final segments of xs, longest first.

-- e.g., tails "abc" == ["abc", "bc", "c",""]
tails t: [a] => [[a]l]
tails [] = [[1]
tails xxs@(_:xs) = xxs : tails xs
isPrefixOf :: Eq a => [a] -> [a] -> Bool
isPrefixOf [] _ = True
isPrefixOf [1] = False
isPrefixOf (x:xs) (y:ys) = x ==y && isPrefixOf xs ys
isSuffixOf :: Eq a => [a] -> [a] -> Bool
isSuffixOf x y = reverse x ‘isPrefixOf’ reverse y
mapAccumL t: (a => b -> (a, ¢)) -=> a -> [b] -> (a, [c])
mapAccuml. £ s [] = (s, [1)
mapAccuml. £ s (x:xSs) = (s'’,y:ys)

where (s’, v ) = f s x

(s’’,ys) = mapAccumL f s’ xs

mapAccumR t: (a => b -> (a, ¢)) -=> a -> [b] -> (a, [c])
mapAccumR f s [] = (s, [1)
mapAccumR f s (x:xs) = (s'', y:ys)

where (s’'’',y ) = f s’ x
(s', ys) mapAccumR f s xs

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

17.9. LIBRARY LIST 187

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]
unfoldr f b = case f b of

Nothing -> ]

Just (a,b) -> a : unfoldr f b
sort t: (Ord a) => [a] -> [a]
sort = sortBy compare
sortBy :: (a -=> a -> Ordering) -> [a] -> [a]
sortBy cmp = foldr (insertBy cmp) []
insert :: (Ord a) => a -> [a] -> [a]
insert = insertBy compare

insertBy :: (a => a -> Ordering) -> a -> [a] -> [a]
insertBy cmp x [] [x]
insertBy cmp x ys@(y:ys’

- ) -

case cmp x y of
GT -> y : insertBy cmp X ys’

-> x : ys
maximumBy :: (a -=> a -> Ordering) -> [a] -> a
maximumBy cmp [] = error "List.maximumBy: empty list"
maximumBy cmp xs = foldll max xs
where
max X y = case cmp x y of
GT -> x
_>y
minimumBy :: (a => a -> Ordering) -> [a] -> a
minimumBy cmp [] = error "List.minimumBy: empty list"
minimumBy cmp xs = foldll min xs
where
min x y = case cmp x y of
GT -> vy
-> X
genericLength :: (Integral a) => [b] -> a
genericLength [] = 0
genericLength (x:xs) = 1 + genericLength xs
genericTake :: (Integral a) => a -> [b] -> [b]
genericTake _ [] = [1]
genericTake 0 = 1]
genericTake n (x:xs)
| n >0 = x : genericTake (n-1) xs
| otherwise = error "List.genericTake: negative argument"”
genericDrop :: (Integral a) => a -> [b] -> [b]
genericDrop 0 xs = Xs
genericDrop _ [] = [1]
genericDrop n (_:xs)
| n >0 = genericDrop (n-1) xs
| otherwise = error "List.genericDrop: negative argument"”

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

188 CHAPTER 17. LIST UTILITIES

genericSplitAt
genericSplitAt 0 xs
genericSplitAt _ []
genericSplitAt n (x:xs)

(Integral a) => a -> [b] -> ([b],[b])
([1,xs)
([1,01)

[

| n >0 = (x:Xs',x8'")
| otherwise = error "List.genericSplitAt: negative argument"
where (xs’,xs’’) = genericSplitAt (n-1) xs
genericIndex :: (Integral a) => [b] -=> a -=> b
genericIndex (x:_) O = X
genericIndex (_:xXs) n
| n >0 = genericIndex xs (n-1)
| otherwise = error "List.genericIndex: negative argument”
genericIndex _ _ = error "List.genericIndex: index too large"
genericReplicate :: (Integral a) => a -> b -> [Db]
genericReplicate n x = genericTake n (repeat x)
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4d = zipWith4 (,,,)
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (,,,,)
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] —>
[(a,b,c,d,e,f)]
zip6 = zipWith6 (,,,,,)
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] —>
[g] -> [(a,b,c,d,e,f,9)]
zip7 = zipWith7 (,,,/4s)
zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]

zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
z abcd: zipWith4 z as bs cs ds
zipWith4 = 11

zipWith5 :: (a->b->c->d->e->f) >
[a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
z abcde : zipWith5 z as bs cs ds es
zipWith5 = [1

zipWith6 :: (a->b->c->d->e->f->g) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6é z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= zabocdef : zipWith6 z as bs cs ds es f£s
zipWithé = [1

zipWith7 :: (a->b->c->d->e->f->g->h) ->
[a]l]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= zabcdefg: zipWith7 z as bs cs ds es fs gs

zipwith7 =[]
unzip4 :: [(a,b,c,d)] -> ([al,[b]l,[c],[d])
unzip4 = foldr (\(a,b,c,d) “(as,bs,cs,ds) ->

(azas,b:bs,c:cs,d:ds))

(C1,01,01,01)

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

17.9. LIBRARY LIST

unzip5
unzip5 =

unzip6
unzip6 =

unzip?7
unzip?7 =

189

[(a,b,c,d,e)] => ([al,[b],[c],[d],[e])
foldr (\(a,b,c,d,e) “(as,bs,cs,ds,es) ->

(atas,b:bs,c:cs,d:ds,e:es))

(e, 01, 01,01, 01)

[(a,b,c,d,e,£)] -> ([al,[b]l,[c],[d],[e]l,[£f])
foldr (\(a,b,c,d,e,f) " (as,bs,cs,ds,es,fs) ->

(atas,b:bs,c:cs,d:ds,e:es,f:fs))
(C1,01,01,01,01,001)

[(a,b,c,d,e,f,9)] -> ([al,[b]l,[c],[d]l,[e]l,[£1,[9])
foldr (\(a,b,c,d,e,f,g) “(as,bs,cs,ds,es,fs,gs) ->

(atas,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))
(C1,01,01,02,01,01,01)

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

https://doi.org/10.1017/50956796803001916 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796803001916

