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Algebraic Varieties with Boundaries

A boundary of an algebraic variety is a divisor with real coefficients. In this
chapter, we introduce basic concepts of algebraic varieties with boundaries.
Using the language of numerical geometry, we define cones of curves and
divisors. According to the Hironaka desingularization theorem, it is possible
to use birational morphisms to make algebraic varieties smooth and divisors
normal crossing. We focus on log canonical divisors of algebraic varieties
with boundaries, and define concepts of KLT (Kawamata log terminal) pairs
and DLT (divisorially log terminal) pairs. The Kodaira vanishing theorem
for smooth projective varieties can be extended to KLT or DLT pairs by
constructing covering spaces using the covering trick. We also discuss the
classification of algebraic varieties and singularities in lower dimensions.

1.1 Q-divisors and R-divisors

The linear equivalence class of a divisor determines a coherent sheaf which
is called a divisorial sheaf. Algebraic geometry often deals with coherent
sheaves, but this book focuses on the language of divisors. It is like dealing
with differential forms themselves instead of cohomology classes of differen-
tial forms in differential geometry.

Fix a base field k. An algebraic variety X is an irreducible reduced separated
scheme of finite type over k.

An algebraic variety X is attached with the structure sheaf OX and a local
ring OX,P at each point P . If the local ring OX,P is a regular local ring, then X

is said to be nonsingular at P . In this book, we mostly work over characteristic
0, so we will use the word smooth instead of nonsingular which sounds
better.
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1.1 Q-divisors and R-divisors 7

When dim X = n, X is smooth if and only if for every closed point P on X,
the maximal ideal mP of the local ring is generated by n elements x1, . . ., xn.
Such x1, . . ., xn is called a regular system of parameters or local coordinates.
When k = C, this is equivalent to saying that the set of closed points of X

forms a complex manifold.
The set of all smooth points Reg(X) of an algebraic variety X is a non-empty

open subset of X, and its complement set Sing(X) = X \ Reg(X), which is a
proper closed subset of X, is called the singular locus of X.

An algebraic variety X is said to be normal if the local ring at every point
is an integrally closed domain. Since normal local rings of dimension 1 are
regular, the singular locus of a normal algebraic variety is a closed subset
of codimension at least 2. That is, it is the closure of several points with
codimensions at least 2.

Every algebraic variety X can be easily modified into a normal one: There is
a unique finite morphism f : Xν → X from a normal algebraic variety which
is isomorphic over Reg(X). This is called the normalization of X.

Normality can be checked by Serre’s criterion ([94]):

Theorem 1.1.1 An algebraic variety X is normal if and only if the following
two conditions are satisfied:

(1) (R1) Its singular locus is a closed subset of codimension at least 2.
(2) (S2) For any open subset U and any closed subset Z of codimension at

least 2, the restriction map �(U ,OX) → �(U \ Z,OX) is bijective.

From now on, we will always assume that X is a normal algebraic variety.
A prime divisor on X is a closed subvariety of codimension 1. A divisor is a
formal finite sum of prime divisors D = ∑

diDi . Unless otherwise stated, the
coefficients di are integers and Di are distinct prime divisors. In other words,
divisors are elements in the free Abelian group Z1(X) generated by all prime
divisors on X.

D is said to be effective if all coefficients di are nonnegative. For two divisors
D, D′, we write the inequality D ≥ D′ if D − D′ is effective. D is said to be
reduced if di = 1 for all i.

Let D be a prime divisor on a normal algebraic variety X and let P be the
generic point of D, then the local ring OX,P is a discrete valuation ring with
the function field k(X) as its quotient field.

For a rational function h ∈ k(X)∗, its divisor div(h) is defined as

div(h) =
∑

vD(h)D.

Here the sum runs over all prime divisors D, and νD is the discrete valuation
of the local ring at the generic point of D. It is known that the right-hand side
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8 1 Algebraic Varieties with Boundaries

is a finite sum. Any divisor defined by a nonzero rational function is called a
principal divisor.

For a divisor D, the corresponding divisorial sheaf OX(D) is defined as the
following: for any open subset U of X,

�(U ,OX(D)) = {h ∈ k(X)∗ | div(h)|U + D|U ≥ 0} ∪ {0}.
Also we define

H 0(X, D) = H 0(X,OX(D)).

If a nonzero global section s of OX(D) corresponds to a rational function h,
we define the divisor of s by

div(s) = div(h) + D,

which is effective. Generally we can also define the divisor div(s) of a rational
section s of OX(D) by the corresponding rational function h as the above
equation, but in this case div(s) is not necessarily effective. For example, if we
take s1 to be the rational section corresponding to the rational function h = 1,
then the corresponding divisor is just D.

There is an isomorphism (OX(D))η � OX,η on the generic point η of X.
Moreover, by taking the dual, we have

OX(D)∗ := Hom(OX(D),OX) � OX(−D),

hence the divisorial sheaf OX(D) is a reflexive sheaf of rank 1. Here a reflexive
sheaf is a coherent sheaf which is isomorphic to its double dual: F ∗∗ � F .

A divisor D is called a Cartier divisor if its divisorial sheaf OX(D) is
invertible. In other words, this is to say that, in a neighborhood of each point P ,
this divisor is a principal divisor defined by some rational function depending
on P . To distinguish from Cartier divisors, we call this divisor a Weil divisor
or an integral divisor. Denote by Div(X) the set of all Cartier divisors. There
is an inclusion Div(X) ⊂ Z1(X), and they coincide when X is smooth.

Two divisors D, D′ on an algebraic variety X are said to be linearly
equivalent, and denoted by D ∼ D′, if D − D′ is a principal divisor. Note
that D ∼ D′ if and only if OX(D) � OX(D′). In other words, divisorial
sheaves can be viewed as linear equivalence classes of divisors. Here D, D′

are not necessarily Cartier divisors.
The relative version is as follows. Given a morphism f : X → S between

algebraic varieties, two divisors D, D′ on X are said to be relatively linearly
equivalent over S, and denoted by D ∼S D′, if there exists an open covering
{Si} of S such that D|Si

∼ D′|Si
after restriction over each Si . Here we

remark that in some other references, D, D′ are defined to be relatively
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1.1 Q-divisors and R-divisors 9

linearly equivalent over S if there exists a Cartier divisor B on S such that
D ∼ D′ + f ∗B. In general these two definitions are not the same and the
assumption in our definition is weaker. But under certain conditions, for
example, when f is proper surjective with connected geometric fibers, it is
easy to see that these two definitions coincide.

A closed subset B on a smooth algebraic variety X is called a normal
crossing divisor if at each closed point P there is a regular system of
parameters z1, . . ., zn of the local ring OX,P and an integer 1 ≤ r ≤ n such
that the defining equation of B is of the form z1 · · · zr = 0 locally around P .
In this case, every irreducible component of B is smooth. Also, the union of
several irreducible components of B is again a normal crossing divisor.

For an algebraic variety X and a closed subset B, the set of points at which
X is smooth and B is a normal crossing divisor is an open subset of X, which
is denoted by Reg(X, B). The complement set Sing(X, B) = X \ Reg(X, B)

is called the singular locus of (X, B).

Remark 1.1.2 A normal crossing divisor defined above is also called a simple
normal crossing divisor in many references.

If X is a complex algebraic manifold and z1, . . ., zn are regular local
coordinates on the complex manifold associated to X, then a normal crossing
divisor B satisfying the same condition as above is not necessarily a simple
normal crossing divisor in the algebraic setting. In fact, irreducible components
of B may have self-intersection. So, we use the term “simple” in the algebraic
setting in order to distinguish with the analytic setting.

For example, in the affine plane C2 with coordinates x, y, the closed subset
defined by the equation x2+y2+y3 = 0 is irreducible but has self-intersection
at the point (0, 0), therefore it is a normal crossing divisor on the complex
manifold, but not a simple normal crossing divisor.

One feature of this book is to consider divisors which don’t necessarily have
integral coefficients. If the coefficients di in D = ∑

diDi are rational numbers
(respectively, real numbers), then D is called a Q-divisor (respectively, an
R-divisor). Note that a Q-divisor is also an R-divisor. Those are elements
in Z1(X) ⊗ Q or Z1(X) ⊗ R, respectively, and these vector spaces are
usually denoted by Z1(X)Q and Z1(X)R. We will see soon that the range of
discussions is expanded widely by considering Q-divisors and R-divisors.

Let D = ∑
diDi be an R-divisor on X, where Di are distinct prime

divisors. D is said to be effective if all coefficients di are nonnegative. For
two R-divisors D, D′, we write the inequality D ≥ D′ if D − D′ is effective.
D is said to be reduced if di = 1 for all i. The support of D is the union
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10 1 Algebraic Varieties with Boundaries

of all Di with di � 0, and is denoted by Supp(D). Set D+ = ∑
di>0 diDi

and D− = ∑
di<0(−di)Di , then D+ and D− are effective R-divisors with

no common irreducible component and the equality D = D+ − D− holds.
D+, D− are called the positive part and the negative part of D, respectively.

For two R-divisors D = ∑
i diDi and D′ = ∑

i d ′
iDi , define their maxi-

mum to be max{D, D′} = ∑
i max{di , d ′

i}Di . For example, D+ = max{D, 0},
D− = max{−D, 0}. Similarly we can define min{D, D′} = ∑

i min{di , d ′
i}Di .

The round up (respectively, round down) of an R-divisor is defined via the
round up (respectively, round down) of coefficients:

�D� =
∑

�di�Di , �D� =
∑

�di�Di .

A Q-divisor (respectively, an R-divisor) is said to be a Q-Cartier divisor
(respectively, an R-Cartier divisor) if it is an element of Div(X) ⊗ Q
(respectively, Div(X) ⊗ R). Note that if a Q-divisor is an R-Cartier divisor,
then it is automatically a Q-Cartier divisor. For a Q-Cartier divisor D, there
exists a positive integer m such that mD is a Cartier divisor. However, in
general there might not be a nonzero multiple to make an R-Cartier divisor
Cartier. X is said to be factorial (respectively, Q-factorial), if all Weil divisors
on X are Cartier divisors (respectively, Q-Cartier divisors).

Two R-divisors D, D′ are said to be R-linearly equivalent, denoted by
D ∼R D′, if D − D′ can be written as an R-linear combination of
principal divisors. The relative version and Q-linear equivalence can be defined
similarly.

Remark 1.1.3 Considering R-divisors is now essential to the development of
the minimal model theory. This book can be viewed as a revised version of
[76], in which only Q-divisors are treated. Later in [61], R-divisors already
played a central role. The divisorial Zariski decomposition (which is called
the sectional decomposition in [61]) is defined via limits of Q-divisors, so
R-divisors appear naturally. Moreover, it is proved in [60] that the existence
of Zariski decomposition (in a good sense, not only in codimension 1) into
R-divisors implies the finite generation of canonical rings.

Example 1.1.4 We give examples for a Q-Cartier Weil divisor which is not
Cartier and a Weil divisor which is not Q-Cartier.

(1) Let X be the hypersurface defined by the equation xy = z2 in the
3-dimensional affine space A3 with coordinates x, y, z, which is an alge-
braic surface with an ordinary double point at the origin (0, 0, 0). The line
D defined by the equation x = z = 0 is a prime divisor on X. At lease two
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1.2 Rational Maps and Birational Maps 11

equations are needed to define D in X, so D is not a Cartier divisor. On the
other hand, div(x) = 2D on X, so D is Q-Cartier.

(2) Let X be the hypersurface defined by the equation xy = zw in A4 with
coordinates x, y, z, w, which is a 3-fold with an ordinary double point at
the origin (0, 0, 0, 0). The 2-dimensional linear subspace D1 defined by the
equation x = z = 0 is a prime divisor on X, which is not a Q-Cartier
divisor (see Example 1.2.4 for the reason). It is the same for D2 defined by
x = w = 0. However, the sum D1 + D2 = div(x) is a Cartier divisor. See
Example 2.5.4(2) for related discussions.

1.2 Rational Maps and Birational Maps

A rational map f : X ��� Y between algebraic varieties is a morphism
f : U → Y from a non-empty open subset U of X. Since f might not be
defined on the whole X, such a map is denoted by a dashed arrow in this book.
If there is another non-empty open subset U ′ and a morphism f ′ : U ′ → Y

which coincides with f on U ∩ U ′, then we consider f = f ′ as the same
rational map. The domain of definition of a rational map f is defined to be the
largest U such that there is a morphism f : U → Y representing f .

The graph �f of a rational map f : X ��� Y is defined to be the closure of
the graph � ⊂ U × Y of the morphism f : U → Y in X × Y .

A rational map f : X ��� Y is said to be a birational map if there exist non-
empty open subsets U , V on X, Y such that f induces an isomorphism U � V .
In this situation, the inverse map f −1 : Y ��� X is also a birational map.

A morphism f : X → Y is said to be a birational morphism if it is a bira-
tional map. If U is the largest open subset of X on which f induces an isomor-
phism U � V , then Exc(f ) = X \ U is called the exceptional set of f . In this
situation, V is the domain of definition of f −1. A prime divisor contained in
the exceptional set is called an exceptional divisor over Y or an f -exceptional
divisor. Generally, a divisor whose support is contained in the exceptional set
is also called an exceptional divisor over Y or an f -exceptional divisor.

X and Y are said to be birationally equivalent if there exists a birational
map f : X ��� Y . In this case, we also say that one is a birational model to the
other.

For a morphism f : Y → X and a closed subset D of X, the inverse image
f −1(D) is a closed subset of Y . In this book, f −1(D) only means the set-
theoretic inverse image, and we do not consider its scheme structure. However,
for a divisor we can define its direct image and inverse image as the following.
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12 1 Algebraic Varieties with Boundaries

First, we define the inverse image or pullback of a Cartier divisor. For a
morphism f : Y → X and an invertible sheaf L on X, we can always define
the pullback f ∗L which is an invertible sheaf on Y . On the other hand, for a
Cartier divisor D on X, we can define its pullback only if the image f (Y ) is
not contained in the support of D. In this situation, the pullback f ∗D is defined
by pulling back the local equation of D. If D is given by a rational section s of
the invertible sheaf OX(D) by div(s) = D, then the pullback f ∗D is given by
the rational section f ∗s of the invertible sheaf f ∗OX(D).

For an R-Cartier divisor D, if we write it as an R-linear combination of
Cartier divisors D = ∑

diDi , then we can define the pullback by f ∗D =∑
dif

∗Di . Here Di are Cartier divisors, not prime divisors. In other words,
the pullback of R-Cartier divisors can be defined by extending the coefficients
of the pullback map f ∗ : Div(X) → Div(Y ) of Cartier divisors. Note that this
definition does not depend on the expression of D. The pullback f ∗D is also
called the total transform of D.

On the other hand, we cannot define the pullback for a general divisor which
is not an R-Cartier divisor. However, if the morphism f : Y → X is a birational
map, we can define another form of “pullback” (the strict transform by the
inverse map f −1) as the following.

Let f : X ��� Y be a birational map and let D be a prime divisor on X.
For the domain of definition U , if D ∩ U � ∅, then the image (f |U)(D ∩ U)

is a locally closed subvariety of Y . If its closure is a prime divisor on Y , then
we denote the closure by f∗D; if D ∩ U = ∅ or the image (f |U)(D ∩ U)

has codimension at least 2, then we set f∗D = 0. Here f∗D is called the strict
transform or birational transform of D. Generally for R-divisors, the definition
can be extended by linearity f∗(

∑
diDi) = ∑

dif∗(Di) and we consider the
linear map f∗ : Z1(X)R → Z1(Y )R by extending the coefficients.

Example 1.2.1 For a birational projective morphism f : Y → X and any
prime divisor D on X, the strict transform f −1∗ D on Y is again a prime divisor,
which is not 0.

In fact, the inverse map f −1 is well defined at the generic point of D, and
there is no prime divisor contracted by f −1, hence the strict transform is a
prime divisor.

Remark 1.2.2 A birational map f : X ��� Y between normal algebraic
varieties induces an isomorphism between function fields k(X) � k(Y ). For a
prime divisor D on X whose strict transform f∗D is nonzero, this isomorphism
identifies the local rings at generic points of D and f∗D.
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1.2 Rational Maps and Birational Maps 13

When we consider birationally equivalent algebraic varieties as a whole,
we identify the divisors defining the same discrete valuation ring, which is
equivalent to identifying prime divisors connected by strict transforms.

Similarly, for a subvariety Z of higher codimension, we can define the strict
transform f∗Z in a similar way: If Z∩U � ∅ and f |U induces an isomorphism
at the generic point of Z, then we define f∗Z to be the closure of (f |U)(Z∩U)

in Y . We refer to Section 1.4 for the definition in general case.
A birational map f : X ��� Y is said to be surjective in codimension 1 if the

map f∗ : Z1(X) → Z1(Y ) is surjective, that is, for any prime divisor E ⊂ Y

there is a prime divisor D on X such that E = f∗D. Moreover, it is said to be
isomorphic in codimension 1 if f∗ : Z1(X) → Z1(Y ) is bijective. The minimal
model theory mainly deals with the phenomenon in codimension 1, so these
maps play important roles.

Example 1.2.3 A classical example of birational maps is a blowup. In this
book, blowing up along a smooth center is important. A blowup is obtained by
gluing the following local construction.

(1) Define the rational map f : X = An ��� Y = Pr−1 from the n-
dimensional affine space to a projective space by f (x1, . . ., xn) = [x1 :
. . . : xr ]. Let Z be the linear subspace of X defined by x1 = · · ·= xr = 0,
then the domain of definition of f is U = X \ Z.

The graph X′ ⊂ X × Y of f is defined by xiyj = xjyi (1 ≤ i, j ≤ r),
where y1, . . ., yr are the homogeneous coordinates of Y . The first projection
p : X′ → X is the blowup along center Z. E = p−1(Z) is the exceptional
set of the birational morphism p, which is a prime divisor. p induces an
isomorphism X′ \ E → X \ Z. Moreover, E � Z × Pr−1.

In this case, p is surjective in codimension 1, but p−1 is not.
(2) Let X1 be a subvariety of X which is not contained in Z. The strict

transform X′
1 = p−1∗ (X1) of X1 is the closure of p−1(X1 \ Z). In this

case, p1 = p|X′
1

: X′
1 → X1 is the blowup of X1 along center Z ∩ X1. In

particular, the case Z ⊂ X1 is important. If X1 ⊂ Z, we can think X′
1 = ∅,

in other words, the variety disappears after the blowing up.
If X1 � Z, p1 is a birational morphism. However, the exceptional set

Exc(p1) does not necessarily coincide with E ∩X′
1. For example, consider

n = 4, r = 2, X1 ⊂ A4 is the subvariety defined by the equation x1x3 +
x2x4 = 0. This is the situation in Example 1.1.4(2). In this case, Z ⊂ X1,
the exceptional set C of p1 : X′

1 → X1 is isomorphic to P1, and p1(C) is
the origin. Hence p1 is isomorphic in codimension 1, and so is p−1

1 .
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14 1 Algebraic Varieties with Boundaries

Example 1.2.4 Consider the situations in Example 1.1.4.

(1) For a Q-Cartier Weil divisor which is not Cartier, the pullback might not
be a Weil divisor but only a Q-divisor.

The blowup f : X′ → X of X along the origin Z = (0, 0, 0) as the center
gives a resolution of singularity. The exceptional set C ⊂ X′ is isomorphic
to P1. We have f ∗D = f −1∗ D + 1

2C.
The projection formula (f ∗D · C) = (D · f∗C) stated later (before

Proposition 1.4.3) can be confirmed by the following facts: (f −1∗ D·C) = 1,
(C2) = −2, and f∗C = 0.

(2) Non-Q-Cartier divisors cannot be pulled back according to the projection
formula.

Consider the blowup p1 : X′
1 → X1 at the end of Example 1.2.3(2).

We change the notation by f : X′ → X. Then X′ is smooth. As the
exceptional set C ⊂ X′ is isomorphic to P1 which is only 1-dimensional,
p1 is isomorphic in codimension 1.

If the pullbacks f ∗D1, f ∗D2 of D1, D2 exist, they would have to
coincide with the strict transforms f −1∗ D1, f −1∗ D2 since there are no
other prime divisors in the supports of f −1(D1), f −1(D2). However,
intersecting with C, we have (f −1∗ D1 · C) = −1 and (f −1∗ D2 · C) = 1.
Since f∗C = 0, this violates the projection formula (f ∗D ·C) = (D ·f∗C)

which holds for pullbacks.

A coherent sheaf F on an algebraic variety X is said to be generated
by global sections if the natural homomorphism H 0(X, F) ⊗ OX → F is
surjective.

For a Cartier divisor D, its complete linear system is defined by |D| = {D′ |
D ∼ D′ ≥ 0}, and its base locus is defined by Bs |D| = ⋂

D′∈|D| Supp(D′).
When Bs |D| = ∅, |D| is said to be free, which is equivalent to that the
corresponding coherent sheaf OX(D) is generated by global sections.

D is also said to be free if |D| is free, and D is said to be semi-ample if there
exists a positive integer m such that mD is free.

More generally, a finite-dimensional linear subspace V ⊂ H 0(X, D)

corresponds to a (not necessarily complete) linear system � = {div(s) |
s ∈ V \ {0}}. As an algebraic variety, � is isomorphic to the projective
space P(V ∗) := (V \ {0})/k∗. The base locus of � is defined similarly by
Bs � = ⋂

D′∈� Supp(D′), and � is said to be free if Bs � is empty, which is
equivalent to that the natural homomorphism V ⊗OX → OX(D) is surjective.

The fixed part of a linear system � is the effective divisor F = minD′∈� D′.
In other words, F is the maximal divisor such that F ≤ D′ for all D′ ∈ �.
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1.2 Rational Maps and Birational Maps 15

In this case, the image of the natural injection H 0(X, D − F) → H 0(X, D)

contains V . Being viewed as a subspace of H 0(X, D − F), V corresponds to
the linear system �′ = {D′ − F | D′ ∈ �}, which is called the movable part
of �. We write � = �′ + F . By definition, the support of F coincides with
the codimension 1 components of Bs �.

A non-empty linear system � induces a rational map �� : X ��� P(V ) :=
(V ∗ \ {0})/k∗ to its dual projective space. The domain of definition of
�� contains U = X \ Bs �; for P ∈ U , ��(P ) is the point in P(V )

corresponding to the hyperplane {s ∈ V | s(P ) = 0} of V . In other words,
if we take a basis s1, s2, . . ., sm ∈ V , then we can define ��(P ) =
[s1(P ) : s2(P ) : · · · : sm(P )] ∈ P(V ). Note that here si(P ) is not a well-
defined value, but [s1(P ) : s2(P ) : · · · : sm(P )] is a well-defined point as long
as P ∈ U . In particular, when � is free, �� is a morphism. The rational map
given by the movable part of a linear system coincides with the rational map
given by the original linear system.

In general, for a morphism f : Y → X and a linear system � on X, the
pullback is defined by f ∗� = {f ∗D′ | D′ ∈ �}. If there is a morphism to a
projective space, a free linear system can be obtained by pulling back the linear
system consisting of all hyperplanes.

The base locus of a linear system can be removed in the following
sense:

Proposition 1.2.5 Let � be a linear system of Cartier divisors on a normal
algebraic variety X. Then there exists a birational projective morphism
f : Y → X from a normal algebraic variety Y such that the pullback has
the form f ∗� = �1 + F , where F is the fixed part of f ∗� and the linear
system �1 is free.

Proof Let V ⊂ H 0(X, D) be the linear subspace corresponding to �. The
image of the natural map V ⊗ OX → OX(D) can be written as IOX(D),
where I is an ideal sheaf on X. Take f to be the normalization of the blowup
along I , then the inverse image ideal sheaf IOY is an invertible sheaf on Y .
Then IOY (f ∗D) is the image of the natural map V ⊗ OY → OY (f ∗D), so it
can be written as the form OY (f ∗D − F) for some effective divisor F . Since
the natural map V ⊗ OY → OY (f ∗D − F) is surjective, the linear system
�1 = f ∗� − F is free and F is the fixed part of f ∗�. �

For an R-divisor D on a normal proper algebraic variety X, the set of global
sections H 0(X, �D�) is a finite-dimensional k-linear space. Considering all
positive integer multiples mD of D and taking a direct sum, we define the
section ring of D by
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16 1 Algebraic Varieties with Boundaries

R(X, D) =
∞⊕

m=0

H 0(X, �mD�).

Here m runs over all nonnegative integers. It admits a graded k-algebra
structure defined by

H 0(X, �mD�) ⊗ H 0(X, �m′D�) → H 0(X, �(m + m′)D�)

since

�mD� + �m′D� ≤ �(m + m′)D�.

The Iitaka–Kodaira dimension κ(X, D) of an R-divisor can be defined by
the transcendental degree of the section ring:

κ(X, D) =
{

tr.degk R(X, D) − 1 if R(X, D) � k;

−∞ otherwise.

The Iitaka–Kodaira dimension takes value among −∞, 0, 1, . . ., n = dim X. In
particular, when it takes the maximal value, that is, when κ(X, D) = dim X,
D is said to be big. For example, ample divisors are big.

If R(X, D) = k, that is, H 0(X, �mD�) = 0 for any m > 0, then κ(X, D) is
defined to be −∞ instead of −1. The reason is the following lemma:

Lemma 1.2.6 ([47, Theorem 10.2], [116, Theorem II.3.7]) There exist positive
real numbers c1, c2 such that for any sufficiently large and sufficiently divisible
integer m,

c1m
κ(X,D) ≤ dim H 0(X, �mD�) ≤ c2m

κ(X,D).

Remark 1.2.7 The canonical ring is the section ring of the canonical divisor,
which is proved to be finitely generated for smooth projective varieties ([16]),
and one of the main goals of this book is to explain the proof. However, in
general, the section ring R(X, D) of a divisor D is not necessarily finitely
generated. There exist examples such that the anti-canonical ring (i.e. the
section ring of the anti-canonical divisor −KX) of a 2-dimensional variety is
not finitely generated ([125], see also Example 2.4.8). Also, the anti-canonical
ring R(X, −KX) is not a birational invariant.

The relative version is as follows. Let f : X → S be a proper morphism
from a normal algebraic variety. The relative global sections of a coherent
sheaf F on X are given by the direct image sheaf f∗F . F is said to be generated
by relative global sections if the natural homomorphism f ∗f∗F → F is
surjective.
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1.3 Canonical Divisors 17

A Cartier divisor D on X is said to be relatively free if the corresponding
coherent sheaf OX(D) is generated by relative global sections. D is said to be
relatively semi-ample if there exists a positive integer m such that the multiple
mD is relatively free.

For an R-divisor D on X, the direct image sheaf f∗(OX(�D�)) is a coherent
OS-module. Considering all positive integer multiples mD of D and taking a
direct sum, we define the relative section ring of D by

R(X/S, D) =
∞⊕

m=0

f∗(OX(�mD�)),

which is a graded OS-algebra.
The relative Iitaka–Kodaira dimension is defined by the Iitaka–Kodaira

dimension of the generic fiber. Here we always assume that f is surjective
with irreducible geometric generic fiber, and define

κ(X/S, D) = κ(Xη̄, D|Xη̄
).

Here Xη is the generic fiber which is the fiber of f over the generic point
η of S and Xη̄ is the geometric generic fiber which is the base change of
Xη to the algebraic closure of k(S). D is said to be relatively big or f -big
if κ(X/S, D) = dim Xη̄. In Section 1.5.1, we will give an equivalent definition
for (relative) bigness using Kodaira’s lemma (Corollary 1.5.10).

1.3 Canonical Divisors

A normal algebraic variety X is automatically associated with a Weil divisor
KX which is called the canonical divisor. KX is the key player of this book. The
canonical ring is the section ring of the canonical divisor. The minimal model
program (MMP) is a sequence of operations that “minimizes” the canonical
divisor.

As X is normal, the singular locus Sing(X) is a closed subset of X of
codimension at least 2. Since the complement set U = X \ Sing(X) is smooth,
the sheaf of differentials �1

X/k is a locally free sheaf of rank n = dim X over

U . The determinant ωU = det(�1
X/k|U) is an invertible sheaf on U . Taking a

nonzero rational section θU of ωU , we get a canonical divisor KU = div(θU ) of
U . Since X \U contains no prime divisors of X, the restriction map of divisors
Z1(X) → Z1(U) is bijective. Denote by KX ∈ Z1(X) the corresponding
divisor of KU ∈ Z1(U), which is called the canonical divisor of X.
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18 1 Algebraic Varieties with Boundaries

Remark 1.3.1 (1) By construction, KX depends on the choice of θU . How-
ever, traditionally our discussions proceed as if the canonical divisor is a
fixed one. Nevertheless, in this book, all discussions are independent of the
choice of θU .

On the other hand, the corresponding divisorial sheaf ωX = OX(KX)

is uniquely determined. It is called the canonical sheaf. The canonical
sheaf ωX is a natural subject. However, since we consider the pair with
an R-divisor called the “boundary divisor,” the canonical divisor is easier
to handle.

(2) In this book, the following situation appears frequently: Let f : Y → X

be a birational morphism between normal algebraic varieties and let B

be an R-divisor on X such that KX + B is R-Cartier. Consider the
pullback f ∗(KX + B). By using the isomorphism between function fields
f ∗ : k(X) → k(Y ), we can take the same rational differential form θ which
defines KX and KY (in particular, KX = f∗KY ), then the R-divisor C can
be defined by the equation f ∗(KX + B) = KY + C. Here C is uniquely
determined as the sum of the strict transform f −1∗ B and an R-divisor
supported on the exceptional set of f .

We will discuss general boundary divisors later, here we first consider the
case when X is a smooth algebraic variety and B = ∑

Bi is a normal crossing
divisor. Denote n = dim X. The sheaf of differentials �1

X(log B) with at most
logarithmic poles along B is naturally defined as a locally free sheaf of rank n

with the following property. For any closed point P ∈ X, choose a regular sys-
tem of parameters x1, . . ., xn of the local ring OX,P such that the local equation
of B is x1 · · · xr = 0 for some integer r . In this case, the stalk �1

X(log B)P is a
free OX,P -module with basis dx1/x1, . . ., dxr/xr , dxr+1, . . ., dxn.

The determinant �n
X(log B) of �1

X(log B) is isomorphic to OX(KX + B).
Therefore, KX + B is called the logarithmic canonical divisor or just log
canonical divisor. This is the origin of the terminology “log.”

In general, a log canonical divisor KX + B is a sum of the canonical divisor
and an effective R-divisor. Usually certain conditions on singularities will be
imposed on the pair (X, B), which will be discussed in Sections 1.10 and 1.11.
The log canonical ring is defined to be R(X, KX + B), and the log Kodaira
dimension is defined to be κ(X, KX + B).

Let X be a smooth projective variety. R(X) = R(X, KX) is the canonical
ring of X. Pm(X) = dim H 0(X, mKX) is called the m-genus, which is an
important birational invariant having been studied for a long time. Its growth
order κ(X, KX) is called the Kodaira dimension, sometimes simply denoted
by κ(X). X is said to be of general type if KX is big.
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1.3 Canonical Divisors 19

When working with induction on dimensions, one key is the adjunction
formula.

Let D be a smooth prime divisor on a smooth algebraic variety X. Then the
log canonical divisor and the canonical divisor of the prime divisor satisfy the
following adjunction formula:

(KX + D)|D = KD .

In this formula, KX|D and D|D have no natural meaning, but the adjunction
itself is given by the map

ResD : �n
X(log D) → �n−1

D ,

which is induced by the residue map

ResD : �1
X(log D) → OD .

The residue map is a natural map which is independent of the choice of
coordinates. Therefore, the adjunction formula is also a natural formula. Note
that this adjunction formula still holds if D is normal and D ∩ Sing(X) has
codimension at least 2 in D, since we can first apply the above adjunction
formula to D \ Sing(X) ⊂ X \ Sing(X), then extend it to D by the normality.

When D is not a prime divisor but a normal crossing divisor, if we take an
irreducible component D1 of D and write E = (D −D1)|D1 , then we have the
adjunction formula

(KX + D)|D1 = KD1 + E.

Here the restriction E is well defined since the intersection of D − D1 and D1

is of codimension 1 on D1.
More generally, we can consider the adjunction formula as a relation

between canonical divisors of relevant varieties. For example, consider a
surjective finite morphism f : Y → X between smooth algebraic varieties,
which is a ramified cover whose ramification locus is a smooth prime divisor D

on X with ramification index m. The set-theoretic inverse image E = f −1(D)

is a smooth prime divisor on Y and f ∗D = mE. In this case, the ramification
formula or the adjunction formula with respect to the ramification is the
following:

KY = f ∗KX + (m − 1)E.

If written as

KY = f ∗
(

KX + m − 1

m
D

)
,
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20 1 Algebraic Varieties with Boundaries

then it looks like the adjunction formula for subvarieties. The latter formula is
the origin of considering log canonical divisors with boundary divisors with
rational coefficients. Also, if you write

KY + E = f ∗(KX + D),

you will find that “ramification is killed by log setting.”
As another example of the adjunction formula, consider the blowup of an

n-dimensional smooth algebraic variety X along an r-codimensional smooth
subvariety Z. The blowup f : Y → X is a birational morphism with
exceptional set E, which is a prime divisor isomorphic to a Pr−1-bundle over
Z. The changing of canonical divisors is given by

KY = f ∗KX + (r − 1)E.

As shown in the following example, if X is a singular normal algebraic
variety and D is a prime divisor on X intersecting Sing(X) such that
D ∩ Sing(X) contains an irreducible component of codimension 1 on D, then
the singularities contribute to the adjunction formula. This phenomenon is
called the subadjunction formula, which is very important.

Example 1.3.2 Let X be the quadric surface defined by the equation
xy + z2 = 0 in the projective space P3 with homogeneous coordinates
x, y, z, w. X has a singularity at [0 : 0 : 0 : 1]. Let H be a hyperplane
section of X, then KX ∼ −2H .

The projective line L defined by x = z = 0 is a prime divisor on X. We have
div(x) = 2L on X, hence L ∼Q

1
2H . Therefore, (KX + L)|L ∼Q − 3

2H |L
since L|L ∼Q

1
2H |L. On the other hand, KL ∼ −2H |L. Therefore, we have

the subadjunction formula (KX + L)|L = KL + 1
2H |L (see Remark 1.11.14).

1.4 Intersection Numbers and Numerical Geometry

Problems in algebraic geometry are equivalent to solving systems of poly-
nomial equations, which are highly nonlinear. Numerical geometry attempts
to linearize those problems using intersection numbers. In the following two
sections, we explain basic definitions in numerical geometry. In Chapter 2,
we will explain the basepoint-free theorem and the cone theorem which are
important theorems in numerical geometry. The explanation here is according
to Kleiman ([80]). We refer to the original paper for the proof of the ampleness
criterion.
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1.4 Intersection Numbers and Numerical Geometry 21

All definitions here will be for a proper morphism f : X → S between
algebraic varieties over a field k. In the case S = Spec k, the definitions are
for a proper algebraic variety X. We use words “relative” or “over S” for all
definitions in this section. In the case S = Spec k, those words can be removed.
For simplicity, one can just consider S = Spec k and ignore the word “relative,”
the context will be almost the same. However, it is indispensable to consider
the relative version in applications.

In the following definition, k is an arbitrary field, and X is of finite type
over k, not necessarily irreducible or reduced. However, in this book when
considering Cartier divisors, X is always assumed to be a normal algebraic
variety.

A closed subvariety Z on X is called a relative subvariety over S if f (Z) is a
closed point of S. In particular, if dim Z = 1, it is called a relative curve over S.
Denote dim Z = t and take t invertible sheaves L1, . . ., Lt on X. Then the
intersection number (L1 · · ·Lt ·Z) is defined as the coefficient of the following
polynomial ([80, p. 296])

χ(Z, L⊗m1
1 ⊗ · · ·⊗ L

⊗mt
t ⊗ OZ) = (L1 · · ·Lt · Z)m1 · · ·mt + (other terms).

Here m1, . . ., mt are variables with integer values and

χ(Z, •) =
∑

(−1)p dimk Hp(Z, •)

is the Euler–Poincaré characteristic. Here X itself is not necessarily proper,
but Z is proper as f (Z) is a point, hence the cohomology groups are finite-
dimensional.

The intersection number (L1 · · ·Lt · Z) takes integer value and it is a
symmetric t-linear form with respect to L1, . . ., Lt ([80, p. 296]). That is, it
is independent of the order of Li and

((L
⊗n1
1 ⊗ L

′⊗n′
1

1 ) · · ·Lt · Z) = n1(L1 · · ·Lt · Z) + n′
1(L

′
1 · · ·Lt · Z).

For Cartier divisors D1, . . ., Dt , define

(D1 · · ·Dt · Z) = (OX(D1) · · ·OX(Dt) · Z).

In particular, when dim Z = 1, taking ν : Zν → Z to be the normalization
where Zν is a smooth projective curve, then by the Riemann–Roch theorem,

(D1 · Z) = degZν (ν
∗(OX(D1)|Z)).

When Z = X, we simply write (D1 · · ·Dt) = (D1 · · ·Dt · X). If, moreover,
all Di are the same D, then write (D1 · · ·Dt) = (Dt ).

By multi-linearity, the definition of (D1 · · ·Dt · Z) can be extended to the
case when Di are R-Cartier divisors, which takes value in real numbers.
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22 1 Algebraic Varieties with Boundaries

Remark 1.4.1 (1) Here we use Euler–Poincaré characteristic to give a simple
definition for intersection numbers, but the correct geometric definition of
intersection numbers is by adding up local intersection numbers to get the
global intersection number. This is how the number of “intersection points”
is defined originally. Using the geometric definition, for effective R-Cartier
divisors Di and a t-dimensional relative subvariety Z, if the intersection⋂t

i=1 Supp(Di)∩Z is non-empty and of dimension 0, then the intersection
number is positive, and if the intersection is empty, then the intersection
number is 0. These two definitions of intersection numbers coincide.

(2) By using the definition of intersection numbers of divisorial sheaves, we
can define the self-intersection number of a divisor, which seems to be
a weird name. For example, for an effective Cartier divisor D on an
n-dimensional algebraic variety, the self-intersection number (Dn) can be
either positive or nonpositive.

(3) In this book, a curve is an irreducible reduced projective variety of
dimension 1. The intersection number considered in this book is mainly
the intersection number of a Cartier divisor with a curve.

Among all curves, rational curve plays a very important role in the
minimal model theory (see Sections 2.7 and 2.8). A rational curve is a
curve whose normalization is isomorphic to P1. In general a rational curve
might have singularities and not necessarily be isomorphic to P1 itself.

Example 1.4.2 The intersection number of a divisor and a curve can be defined
if this divisor is a Q-Cartier divisor. However, the intersection number is not
necessarily an integer if the divisor is not Cartier. In general it cannot be defined
if the divisor is not Q-Cartier.

Consider X, as in Example 1.1.4 or 1.2.4, and let X̄ be its compactification
in the projective space P3 or P4.

(1) X̄ is defined by the equation xy = z2 in P3 with homogeneous coordinates
u, x, y, z. The compactification D̄ of D is a prime divisor defined by x =
z = 0. In this case, (D̄2) = 1

2 .
In fact, take a plane H̄ , then H̄ |X̄ ∼ div(x) = 2D̄ and (H̄ · D̄) = 1.

(2) X̄ is defined by the equation xy = zw in P4 with homogeneous coordinates
u, x, y, z, w. The compactifications D̄1, D̄2 of D1, D2 are prime divisors
defined by x = z = 0, x = w = 0. Take the curve C defined by
y = z = w = 0. D̄1 + D̄2 is a Cartier divisor and ((D̄1 + D̄2) · C) = 1.
The blowup f1 : Y1 → X̄ is isomorphic in codimension 1. If intersection
numbers (D̄i · C) (i = 1, 2) could be defined, by the projection formula
stated later (before Proposition 1.4.3), (D̄i · C) = (f −1

1∗ D̄i · f −1
1∗ C).
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1.4 Intersection Numbers and Numerical Geometry 23

The right-hand side can be calculated to be 1, 0 for i = 1, 2. This is absurd
since the relations between D̄1, D̄2 and C are symmetric.

Two invertible sheaves L, L′ are said to be relatively numerically equivalent,
denoted by L ≡S L′, if (L · C) = (L′ · C) for any relative curve C. When
the base is clear, we just write L ≡ L′. The Abelian group consisting of
isomorphism classes of all invertible sheaves is denoted by Pic(X) and the
subgroup consisting of all invertible sheaves relatively numerically equivalent
to OX is denoted by Picτ (X/S). The quotient group Pic(X)/Picτ (X/S) is a
finitely generated Abelian group ([80, p. 323]), which is called the relative
Neron–Severi group, and is denoted by NS(X/S). ρ(X/S) = rank NS(X/S)

is called the relative Picard number. When S = Spec k, it is just called the
Picard number and is denoted by ρ(X).

If L1 ≡S OX, then the equality (L1 · L2 · · ·Lt · Z) = 0 holds for arbitrary
L2, . . ., Lt , Z ([80, p. 304]). Also, for any coherent sheaf F on a relative
subvariety Z, χ(Z, F) = χ(Z, F ⊗ L1) holds ([80, p. 311]).

Two R-Cartier divisors D, D′ are said to be relatively numerically equiv-
alent, denoted by D ≡S D′ or D ≡ D′, if (D · C) = (D′ · C) for any
relative curve C. The numerical equivalence class of D is denoted by [D].
The set of all numerical equivalence classes of R-Cartier divisors coincides
with NS(X/S) ⊗ R, which is a ρ(X/S)-dimensional real vector space and is
denoted by N1(X/S).

If X is a smooth complete complex manifold, D ≡ D′ is equivalent to
having the same cohomology class [D] = [D′] ∈ H 2(X, R).

Fix an integer t , a finite formal linear sum of t-dimensional relative
subvarieties Z = ∑

ajZj is called a relative t-cycle. The coefficients ai can
be integers, rational numbers, or real numbers depending on the situation. By
linearity, intersection numbers can be defined for relative t-cycles. In this book,
we only consider the case t = 1 or dim X − 1.

Relative 1-cycles C, C′ are said to be numerically equivalent, denoted by
C ≡S C′, if (D · C) = (D · C′) for any Cartier divisor D. The set N1(X/S) of
all numerical equivalence classes of relative 1-cycles with real coefficients is
a finite-dimensional real vector space. N1(X/S) and N1(X/S) are dual linear
spaces to each other.

Let g : Y → X be a proper morphism from another algebraic variety. For
a relative subvariety Z on Y over S, the direct image g∗Z as an algebraic
cycle is defined as the following: if dim g(Z) = dim Z, then g∗Z =
[k(Z) : k(g(Z))]g(Z); if dim g(Z) < dim Z, then g∗Z = 0. Here g(Z) is
the set-theoretic image of Z, and [k(Z) : k(g(Z))] is the extension degree of
function fields. If g is a birational morphism, then g∗Z coincides with the strict
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24 1 Algebraic Varieties with Boundaries

transform defined before. Also, for a relative t-cycle Z = ∑
ajZj , its direct

image can be defined as g∗Z = ∑
ajg∗Zj by linearity.

For a relative t-cycle Z and invertible sheaves L1, . . ., Lt on X, the
projection formula

(g∗L1 · · · g∗Lt · Z) = (L1 · · ·Lt · g∗Z)

holds ([80, p. 299]). In this book, we often use this formula for t = 1 in which
case

(g∗L · C) = (L · g∗C).

Proposition 1.4.3 ([80, p. 304]) Let f : X → S and g : Y → X be two proper
morphisms. Consider the pullback g∗L of an invertible sheaf L on X.

(1) If L ≡S 0, then g∗L ≡S 0. Therefore, g induces a natural linear map
g∗ : N1(X/S) → N1(Y/S).

(2) When g is surjective, conversely, if g∗L ≡S 0, then L ≡S 0, hence the
pullback map g∗ is injective.

Proof (1) For any relative curve C′ on Y ,

(g∗L · C′) = (L · g∗C′)

=
{

[k(C′) : k(g(C′))](L · g(C′)) if dim g(C′) = 1,

0 if dim g(C′) = 0,

which implies the assertion.
(2) If g is surjective, for any relative curve C on X, there exists a relative

curve C′ on Y such that C = g(C′), which proves the assertion. �

On the other hand, let h : S → T be a proper morphism, then the
identity map on Div(X) induces a surjective linear map (1/h)∗ : N1(X/T ) →
N1(X/S). By taking the dual, (1/h)∗ : N1(X/S) → N1(X/T ) is injective.

For proper morphisms g : Y → X and f : X → S, the composition of
g∗ : N1(X/S) → N1(Y/S) and (1/f )∗ : N1(Y/S) → N1(Y/X) is 0.

1.5 Cones of Curves and Cones of Divisors

Cones and polytopes in finite-dimensional vector spaces play important
roles in this book. In Chapter 2, morphisms from algebraic varieties can
be constructed by using faces of convex cones (the cone theorem). Also, in
Chapter 3, a sequence of rational maps can be analyzed from the behavior of a
sequence of polytopes.
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1.5 Cones of Curves and Cones of Divisors 25

1.5.1 Pseudo-Effective Cones and Nef Cones

We will define the closed convex cone generated by numerical equivalence
classes of curves in the real vector space N1(X/S) and the closed convex
cones generated by numerical equivalence classes of effective divisors and nef
divisors in the dual space N1(X/S).

A subset C in a finite-dimensional vector space V is called a convex cone if
for any a, a′ ∈ C and r > 0, a + a′ ∈ C and ra ∈ C hold. It is called a closed
convex cone if moreover it is a closed subset.

For an element u ∈ V ∗ in the dual space, define Cu≥0 = {v ∈C | (u·v)≥ 0}.
Cu=0 and Cu<0 can be defined similarly. The dual closed convex cone of a
closed convex cone C is defined by

C ∗ =
⋂
v∈C

V ∗
v≥0 = {u ∈ V ∗ | (u · v) ≥ 0 for any v ∈ C }.

As C is a closed convex cone, v ∈ C is equivalent to (u ·v) ≥ 0 for all u ∈ C ∗.
That is, C = C ∗∗.

For a morphism f : X → S, an invertible sheaf L on X is said to
be relatively ample, or ample over S, or f -ample, if there exists an open
covering {Si} of S, positive integers m, N , and locally closed immersions
gi : Xi = f −1(Si) → PN × Si such that L⊗m|Xi

� g∗
i p∗

1OPN (1), where
p1 : PN × Si → PN is the first projection. Here the left-hand side is the mth
tensor power of L, and the right-hand side is the pullback of the invertible
sheaf corresponding to a hyperplane section by the first projection and gi . A
Cartier divisor D is said to be relatively ample if its divisorial sheaf OX(D)

is relatively ample. A morphism admitting a relatively ample invertible sheaf
is said to be quasi-projective. In particular, if all immersions gi are closed
immersions, then the morphism is said to be projective.

Here we recall the following useful fact. Let f : X → S and g : Y → X

be two projective morphisms, let A be an f -ample Cartier divisor on X, and
let B be a g-ample Cartier divisor on Y . Then ng∗A + B is ample over S for
sufficiently large n ([44, II.7.10]).

In the following, X is assumed to be normal and the morphism f : X → S

is assumed to be projective.
In general, the convex cone consisting of numerical equivalence classes of

all effective R-Cartier divisors is neither closed nor open. This is because
there might be infinitely many prime divisors showing up when considering
a limit of effective divisors in N1(X/S). The closure of this cone is denoted
by Eff(X/S), which is called the relative pseudo-effective cone. An R-Cartier
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26 1 Algebraic Varieties with Boundaries

divisor D is said to be relatively pseudo-effective if its numerical equivalence
class [D] is contained in Eff(X/S).

The set of interior points of the closed convex cone Eff(X/S) is called the
relative big cone and is denoted by Big(X/S). Recall that in Section 1.2, we
introduced the definition of an R-Cartier divisor D being relatively big or f -
big. By Kodaira’s lemma later (Corollary 1.5.8), it can be shown that an R-
Cartier divisor D is relatively big if and only if its numerical equivalence class
[D] is contained in Big(X/S).

An R-Cartier divisor D is said to be relatively nef or f -nef if (D · C) ≥ 0
for any relative curve C. This is also called relatively numerically effective.
“Nef” is an abbreviation, but it is commonly used now. The set of numerical
equivalence classes of all nef R-Cartier divisors is a closed convex cone in
N1(X/S), which is denoted by Amp(X/S) and called the relative nef cone.

The set of interior points of the relative nef cone is called the relative ample
cone and is denoted by Amp(X/S). An R-Cartier divisor D is said to be
relatively ample or f -ample if its numerical equivalence class is contained in
Amp(X/S). This definition will be justified by Kleiman’s theorem discussed
later (Theorem 1.5.4): For a Cartier divisor D, being f -ample in this sense is
equivalent to being f -ample in the original sense.

By definition, the sum of a relatively ample R-Cartier divisor and a relatively
nef R-Cartier divisor is again a relatively ample R-Cartier divisor.

In the dual space N1(X/S), the cone of relative curves is the convex cone
generated by numerical equivalence classes of all relative curves, which is in
general neither open nor closed. Its closure is called the closed cone of relative
curves, which is denoted by NE(X/S). By definition, the latter is the dual
closed convex cone of the relative nef cone and the relative ample cone:

Amp(X/S) = {u ∈ N1(X/S) | (u · v) ≥ 0 for all v ∈ NE(X/S)} and

Amp(X/S) = {u ∈ N1(X/S) | (u · v) > 0 for all v ∈ NE(X/S) \ {0}}.

Remark 1.5.1 The cones Amp(X/S) and NE(X/S) considered here contain
interior points, but contain no linear subspaces. This is because f : X → S

is assumed to be a projective morphism. For example, NE(X/S) contains no
lines since the intersection number of a relatively ample divisor with a nonzero
element in NE(X/S) is always positive by Theorem 1.5.4. A relatively ample
divisor is also called a polarization as it gives the positive direction.

The structures of relative nef cones and closed cones of relative curves are
important themes of this book.
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Proposition 1.5.2 ([80, p. 337]) Let f : X → S and g : Y → X be two
projective morphisms, and let L be an invertible sheaf on X.

(1) If L is f -nef, then the pullback g∗L is (f ◦ g)-nef.
(2) If g is surjective and g∗L is (f ◦ g)-nef, then L is f -nef.
(3) If g is surjective, then

g∗Amp(X/S) = Amp(Y/S) ∩ g∗N1(X/S).

(4) Assume that g is surjective. If moreover g is a finite morphism, then

g∗Amp(X/S) = Amp(Y/S) ∩ g∗N1(X/S),

otherwise

g∗Amp(X/S) = ∂Amp(Y/S) ∩ g∗N1(X/S).

Here ∂ is the boundary of the closed convex cone.

Proof The proof of (1) and (2) is similar to that of Proposition 1.4.3. (3)
follows from (2).

(4) When g is a finite morphism, the pullback of a relatively ample invertible
sheaf is again a relatively ample invertible sheaf, hence the former assertion
follows. On the other hand, when g is not a finite morphism, the pullback of
a relatively ample invertible sheaf is never a relatively ample invertible sheaf,
hence the latter assertion follows from (3). �

It was shown that a nonfinite morphism gives a face of the relative nef cone.
Conversely, sometimes it is possible to construct a nonfinite morphism from
a face of the relative nef cone; this is the contraction theorem in the minimal
model theory.

Example 1.5.3 (1) Let X be a smooth projective complex algebraic surface
and let C be a curve on X with negative self-intersection (C2) < 0.

For any curve C′ different from C, the intersection number is always
nonnegative: (C · C′) ≥ 0. Denote by C ′ ⊂ N1(X) the closed convex cone
generated by the numerical equivalence classes of all curves C′ different
from C, then the closed cone of curves NE(X) is generated by C ′ and [C].

Since (C ·C′) ≥ 0 for all C′ ∈ C ′, [C] � C ′. Therefore, one can see that
[C] generates an extremal ray of NE(X). Taking the dual, we get a face
F = Amp(X)C=0 of Amp(X).

According to a result of Grauert ([33]), there exists a compact complex
analytic surface Y with only normal singularities and a birational morphism
f : X → Y between complex analytic surfaces such that C is contracted
to a point. That is, f (C) is a point and there is an isomorphism
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f : X \ C → Y \ f (C). However, Y is in general not an algebraic variety.
But according to a result of Artin ([6]), if C � P1, then Y is a projective
algebraic surface and f becomes a birational morphism between algebraic
varieties.

In this sense, it may or may not be possible to construct a morphism
from a face of the nef cone.

(2) Let X be an Abelian variety, that is, a smooth projective algebraic variety
with an algebraic group structure. In this case, any prime divisor D on X

is nef, and

Amp(X) = {v ∈ N1(X) | (vn) > 0}0.

Here n = dim X and 0 on the right-hand side means one of the connected
components.

1.5.2 Kleiman’s Criterion and Kodaira’s Lemma

In this subsection, we introduce Kleiman’s ampleness criterion. We also prove
Kodaira’s lemma, which characterizes big divisors.

Theorem 1.5.4 (Kleiman’s criterion [80]) For a projective morphism f : X →
S between algebraic varieties, a Cartier divisor D on X is relatively ample if
and only if its numerical equivalence class is contained in the relative ample
cone Amp(X/S).

Remark 1.5.5 Kleiman’s criterion is a paraphrase of Nakai’s criterion for pro-
jectivity and ampleness using the language of cones of divisors. In Kleiman’s
criterion as well as Nakai’s criterion, X is not necessarily assumed to be
irreducible or reduced. It is also not necessarily assumed to be projective, and
whether a proper scheme is projective can be determined by whether Amp(X)

is not empty.
As ampleness is an algebro-geometric property which is nonlinear, we can

say that it is linearized by Kleiman’s criterion using conditions in numerical
geometry. This is a typical example of numerical geometry.

An invertible sheaf L on a projective algebraic variety X induces a func-
tional hL on the dual space N1(X). By Kleiman’s criterion, L is ample if and
only if hL is positive on the closed cone of curves NE(X).

This condition is strictly stronger than the condition that hL(C) = (L ·C) >

0 for any curve C. We explain this by the following example:

Example 1.5.6 (Mumford’s example) Let � be a smooth projective complex
algebraic curve of genus at least 2 and let F be a locally free sheaf on � of rank
2 and of degree 0. The last condition means that

∧2
F ≡ O� . Assume that F
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is stable, that is, deg(M) < 0 for any invertible subsheaf M of F . Such F

can be constructed by using unitary representations of the fundamental group
π1(�). In this case, for any surjective morphism f : C → � from a smooth
projective curve, f ∗F is also stable.

Let X = P(F ) be the corresponding P1-bundle over � and L = OP(F )(1).
Let C0 be a curve on X. If it is not a fiber of f , take f : C → � to be the
composition of the normalization g : C → C0 and the projection C0 → �.
In this case, g∗L is an invertible sheaf which is a quotient of f ∗F , hence its
degree is positive. If C0 is a fiber of f , then (L ·C0) = 1. That is, the inequality
(L · C0) > 0 holds for any curve C0 on X. On the other hand, (L2) = 0 since
deg(F ) = 0, which means that L is not ample.

The following Kodaira’s lemma gives a characterization of big divisors.

Theorem 1.5.7 (Kodaira’s lemma) (1) A Cartier divisor D on a normal pro-
jective algebraic variety X is big if and only if there exists a positive integer
m, an ample Cartier divisor A, and an effective Cartier divisor E such that
mD = A + E.

(2) For a surjective projective morphism f : X → S from a normal algebraic
variety to a quasi-projective algebraic variety, a Cartier divisor D on X is
relatively big if and only if there exists a positive integer m, a relatively
ample Cartier divisor A, and an effective Cartier divisor E such that
mD = A + E.

In other words, big divisors are divisors bigger than ample divisors.

Proof (1) As ample divisors are big, the condition is sufficient.
Conversely, assume that D is big. Denote n = dim X. Take a very ample

Cartier divisor A and a general element in its complete linear system Y ∈ |A|.
Consider the following exact sequence:

0 → OX(mD − Y ) → OX(mD) → OY (mD|Y ) → 0.

Look at the first part of the corresponding long exact sequence

0 → H 0(X, mD − Y ) → H 0(X, mD) → H 0(Y , mD|Y ),

as dim Y = n−1, the dimension of the last term is bounded by cmn−1 for some
constant c. But by the bigness, the central term goes much larger, so the first
term is not 0 for sufficiently large m. Hence there exists an effective divisor E

with linear equivalence mD −Y ∼ E. In this case, mD −E ∼ Y is ample and
the proof is completed.

(2) As the restriction of relatively ample (respectively, effective) divisors on
the generic fiber are ample (respectively, effective), the condition is sufficient.
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Conversely, assume that D is relatively big. By the argument of (1), for a
relatively ample Cartier divisor A, there exists a sufficiently large m such that
the direct image sheaf f∗(OX(mD−A)) � 0. Take a sufficiently ample Cartier
divisor B on S such that

H 0(X, mD − A + f ∗B) = H 0(S, f∗(OX(mD − A)) ⊗ OS(B)) � 0.

Then there exists an effective Cartier divisor E with linear equivalence mD −
A + f ∗B ∼ E. In this case, mD − E ∼ A − f ∗B is relatively ample and the
proof is completed. �

As a corollary, together with Kleiman’s criterion, the definition of relative
big cones is justified:

Corollary 1.5.8 For a surjective projective morphism f : X → S from a
normal algebraic variety to a quasi-projective algebraic variety, a Cartier
divisor D on X is relatively big if and only if the numerical equivalence class
[D] is contained in the relative big cone Big(X/S).

Proof By Kleiman’s criterion and Kodaira’s lemma, D is relatively big if and
only if [D] is an interior point of the closed convex cone generated by effective
divisors. �

Corollary 1.5.9 Amp(X/S) ⊂ Eff(X/S).

Proof As ample divisors are big, we have an inclusion Amp(X/S) ⊂
Big(X/S) between open cones. The conclusion follows by taking
closures. �

Kodaira’s lemma can be generalized as the following:

Corollary 1.5.10 (1) An R-Cartier divisor D on a normal projective alge-
braic variety X is big if and only if there exists an ample R-Cartier divisor
A, and an effective R-Cartier divisor E such that D = A + E.

(2) For a surjective projective morphism f : X → S from a normal algebraic
variety to a quasi-projective algebraic variety, an R-Cartier divisor D on
X is relatively big if and only if there exists a relatively ample R-Cartier
divisor A and an effective R-Cartier divisor E such that D = A + E.

Proof (1) Assume that D = A + E. Then there exists an ample Q-Cartier
divisor A′ and an effective R-Cartier divisor E′ such that we can write A =
A′ + E′, hence D is big.
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Conversely, assume that D is big. By the proof of Kodaira’s lemma, for
sufficiently large m, there exists an ample Cartier divisor A and an effective
divisor E such that �mD� = A + E. Since mD − �mD� is effective, the
assertion is proved.

(2) It is similarly deduced from the relative version of Kodaira’s lemma. �

Proposition 1.5.11 Let f : Y → X be a birational morphism between normal
projective algebraic varieties and let D be an R-Cartier divisor on X. Then D

is big if and only if the pullback f ∗D is big.

Proof For a rational function h ∈ k(X) � k(Y ), divX(h) + �mD� ≥ 0 is
equivalent to divX(h) + mD ≥ 0. Here the subscript X means taking the
corresponding divisor on X. The latter is equivalent to divY (h) + mf ∗D ≥ 0,
which is then equivalent to divY (h) + �mf ∗D� ≥ 0. Therefore, the natural
homomorphism H 0(X, �mD�) → H 0(Y , �mf ∗D�) is bijective, and the
assertion is concluded. �

Theorem 1.5.12 ([92, Theorem 2.2.16]) Let X be an n-dimensional projective
algebraic variety and let D be a nef R-Cartier divisor. Then D is big if and
only if (Dn) > 0.

Proof If D is big, then we can write D = A + E for some ample Q-divisor A

and some effective R-divisor E. In this case, since D and A are nef,

(Dn) = (Dn−1 · A) + (Dn−1 · E) ≥ (Dn−1 · A)

= (Dn−2 · A2) + (Dn−2 · A · E) ≥ · · ·≥ (An) > 0.

Here we use the fact that if D1, . . ., Dn are R-divisors on X such that
D1, . . ., Dn−1 are nef and Dn is either effective or nef, then (D1 · · · Dn) ≥ 0.

Conversely, to show that D is big provided that D is nef and (Dn) > 0, we
will show the following slightly generalized statement: If for two nef R-Cartier
divisors L, M we have (Ln) > n(Ln−1 · M), then L − M is big. The theorem
follows by taking M = 0.

First, we assume that L, M are ample Q-Cartier divisors. We may assume
that they are both very ample by taking a common multiple. Taking m general
elements Mi ∈ |M| (1 ≤ i ≤ m), by the exact sequence

0 → OX(m(L − M)) → OX(mL) →
⊕

i

OMi
(mL),

the Riemann–Roch theorem, and the Serre vanishing theorem, when m → ∞,
we have
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dim H 0(X, m(L − M))

≥ dim H 0(X, mL) −
m∑

i=1

dim H 0(Mi , mL|Mi
)

= (Ln)

n!
mn −

m∑
i=1

(Ln−1 · Mi)

(n − 1)!
mn−1 + O(mn−1)

= (Ln) − n(Ln−1 · M)

n!
mn + O(mn−1).

Here note that for each Mi , the dimension of H 0(Mi , mL|Mi
) is independent of

the choice of Mi , and it can be estimated by O(mn−2). Therefore, L−M is big.
Then we consider the general case. We may take two sufficiently small

ample R-Cartier divisors H , H ′ such that H ′ − H is big and L + H , M + H ′

are ample Q-Cartier divisors. Here H , H ′ can be taken sufficiently small in the
sense that ((L + H)n) > n((L + H)n−1 · (M + H ′)) holds. Then we already
showed that L + H − M − H ′ is big, which implies that L − M is big. �

We can investigate how cones of divisors change under birational maps:

Lemma 1.5.13 Let α : X ��� X′ be a birational map between normal Q-
factorial varieties which is isomorphic in codimension 1 and let f : X → S

and f ′ : X′ → S be projective morphisms with f = f ′ ◦ α.

(1) α induces an isomorphism α∗ : N1(X/S) → N1(X′/S) between real
linear spaces.

(2) α∗(Eff(X/S)) = Eff(X′/S).
(3) If α is not an isomorphism, then α∗(Amp(X/S)) ∩ Amp(X′/S) = ∅.

Proof (1) Since α is isomorphic in codimension 1, there is a 1–1 corre-
spondence between prime divisors on X and X′. Hence Z1(X) � Z1(X′).
Take a divisor D on X and take its strict transform D′ = α∗D. Applying
the desingularization theorem discussed in Section 1.6, there exists a smooth
algebraic variety W and birational projective morphisms g : W → X and
g′ : W → X′ such that we can write g∗D = (g′)∗D′ + E, where g∗E = 0 and
g′∗E = 0. Assume that D ≡S 0, then g∗D ≡S 0.

In the following we will show that D′ ≡S 0. We may assume that E � 0
otherwise it is obvious. Write E = E+ − E− into the positive part and the
negative part. If E+ � 0, then by the negativity lemma (Lemma 1.6.3), there
exists a curve C contracted by g′ such that (E+ · C) < 0 and (E− · C) ≥ 0.
On the other hand, ((g′)∗D′ · C) = (D′ · g′∗C) = 0 and (g∗D · C) = 0, a
contradiction. We can get a contradiction similarly if E− � 0.
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(2) follows from (1) as the strict transform of an effective divisor is again
effective.

(3) As the intersection is an open cone, if the intersection is non-empty, then
there exists a relatively ample divisor D on X such that α∗D is a relatively
ample divisor on X′. Since α is isomorphic in codimension 1, for any integer
m, α∗ : f∗OX(mD) → f ′∗OX′(mD′) is an isomorphism. Therefore,

X = ProjS

( ∞⊕
m=0

f∗OX(mD)

)
� ProjS

( ∞⊕
m=0

f ′
∗OX′(mD′)

)
= X′

and α is an isomorphism. �

1.6 The Hironaka Desingularization Theorem

The desingularization theorem was established by Hironaka for algebraic
varieties in characteristic 0. Although it is expected that the same theorem
holds for positive characteristics and mixed characteristics, it is only proved in
dimension 2 and for positive characteristics in dimension 3, while it remains
open in the general case. Together with the Kodaira vanishing theorem,
they are very important theorems in characteristic 0. Here we introduce the
desingularization theorem ([45]) without proof.

Theorem 1.6.1 (Hironaka desingularization theorem) (1) For any algebraic
variety X defined over a field of characteristic 0, there exists a smooth
algebraic variety Y and a birational projective morphism f : Y → X.

(2) For any algebraic variety X defined over a field of characteristic 0 and a
proper closed subset B of X, there exists a smooth algebraic variety Y ,
a normal crossing divisor C on Y , and a birational projective morphism
f : Y → X with the following properties:

(a) If B is non-empty, then the set-theoretic inverse image f −1(B) is a
union of several irreducible components of C.

(b) The exceptional set Exc(f ) is a union of several irreducible compo-
nents of C.

For each statement, we can assume further the following properties hold:

(1’) f is isomorphic over the smooth locus Reg(X) = X \ Sing(X), and the
exceptional set Exc(f ) coincides with the set-theoretic inverse image of
the singular locus f −1(Sing(X)).

(2’) f is isomorphic over Reg(X, B) and the exceptional set Exc(f ) coincides
with the set-theoretic inverse image f −1(Sing(X, B)).
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A birational morphism with the property in (1) is called a resolution of
singularities of the algebraic variety X. A birational morphism with the
property in (2) is called a log resolution of the pair (X, B). For the definition
of normal crossing divisors please refer to Section 1.1.

Remark 1.6.2 (1) If replacing the two conditions for the log resolution by the
condition that f −1(B) ∪ Exc(f ) is a normal crossing divisor, we call
it a log resolution in weak sense. This is called a log resolution in some
literature. On the other hand, if we assume furthermore that Exc(f ) is the
support of an f -ample divisor in condition (b), we call it a log resolution
in strong sense. In this case, the f -ample divisor supported on Exc(f ) has
negative coefficients according to Lemma 1.6.3 below.

(2) Hironaka’s desingularization can be obtained by blowing up along smooth
centers finitely many times. Since there exists a relatively ample divisor
supported on the exceptional divisor with negative coefficient for a blowup
along a smooth center, Hironaka’s desingularization obtained in this way
is a log resolution in strong sense.

By Theorem 1.6.4, starting from any log resolution, one can construct
a log resolution in strong sense by further taking blowups along the
exceptional set.

(3) In the latter part of the above theorem, a normal crossing divisor is in the
sense of the Zariski topology, which is a “simple normal crossing divisor.”
It does not hold for normal crossing divisors in the complex analytic sense.
For example, take the divisor B defined by the equation x2 + y2z = 0 in
X = C3. The singular locus of B is the line defined by x = y = 0 and B is
a normal crossing divisor in the complex analytic sense if z � 0. However,
the origin P = (0, 0, 0) has the so-called pinch point singularity, no blowup
which is isomorphic outside P can make B a normal crossing divisor.

(4) The above theorem is proved in Hironaka’s original paper ([45]), but it
has been shown that there exists a more precise “canonical resolution” in
subsequent developments. The canonical resolution admits strong functo-
riality such that any local isomorphism (isomorphism between two open
subsets) of the pair (X, B) lifts to a local isomorphism of (Y , C). However,
the canonical resolution is not unique, it is only shown that there exists a
universal choice ([11, 46, 140, 142]).

Lemma 1.6.3 (Negativity lemma) Let f : X → Y be a birational projective
morphism between normal algebraic varieties and let D be an R-Cartier
divisor on X supported in the exceptional set Exc(f ).
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(1) If D is nonzero and effective, then there exists a curve C which is contracted
by f and passes through a general point of an irreducible component of D

such that (D · C) < 0.
(2) If D is f -nef and nonzero, then the coefficients of D are all negative.

Furthermore, the support of D coincides with the set-theoretic inverse
image f −1(f (Supp(D))).

(3) If D is f -ample, then the support of D coincides with Exc(f ).

Proof We may assume that Y is affine. Consider 0 ≤ i ≤ dim f (Supp(D))

and j = dim X − 2 − i. Take Yi by cutting Y by general hyperplane sections
i times and take Xij by cutting f −1(Yi) by general hyperplane sections j

times. Since i + j = dim X − 2, Xij is a normal algebraic surface. Let Yij be
the normalization of f (Xij ), then f induces a birational projective morphism
fij : Xij → Yij . Note that Dij = D|Xij

is an R-Cartier divisor supported in
the exceptional set Exc(fij ).

(1) Since D is nonzero and effective, so is Dij for some i, j . By the Hodge
index theorem, applying Corollary 1.13.2 to π : X̃ij → Yij and π∗Dij , where
X̃ij is a resolution of Xij , we get (Dij )

2 < 0. In particular, there exists an
irreducible component C of Dij such that (Dij · C) < 0. View C as a curve in
X, we have (D · C) < 0. Note that by construction, C comes from cutting an
irreducible component of D by hyperplane sections, so such C passes through
a general point of an irreducible component of D.

(2) We may write Dij = D+
ij −D−

ij in terms of its positive and negative parts.

Since Dij is fij -nef, (D+
ij )

2 ≥ (D+
ij · Dij ) ≥ 0. By the Hodge index theorem

(Corollary 1.13.2), D+
ij = 0. Hence the coefficients of Dij are negative. As

i, j varies, any coefficient of D appears as the coefficient of some Dij . So, the
coefficients of D are all negative. If the support of D does not coincide with
f −1(f (Supp(D))), then there is a curve C intersecting Supp(D) properly such
that f (C) is a point. Then (D · C) < 0, a contradiction.

(3) By (2), all coefficients of D are negative. If the support of D does not
coincide with Exc(f ), then there is a curve C not contained in Supp(D) such
that f (C) is a point. Then (D · C) ≤ 0, a contradiction. �

Let X be a smooth algebraic variety and let B be a normal crossing divisor
on X. A smooth subvariety Z is called a permissible center with respect to the
pair (X, B) if the following is satisfied: For the local ring OX,P at every point
P ∈ X, there exists a regular system of parameters z1, . . ., zn and integers
r , s, t such that the equations of B, Z are z1 · · · zr = 0, zs = · · · = zt = 0,
respectively. Here, 0 ≤ r ≤ n and 0 ≤ s ≤ t ≤ n, but there is no specific
relation between r and s, t .
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The blowup f : Y → X along a permissible center Z with respect to (X, B)

is called a permissible blowup. In this case, the exceptional set E is a smooth
prime divisor on Y and coincides with the set-theoretic inverse image f −1(Z).
The sum C = f −1∗ B + E with the strict transform is a normal crossing
divisor on Y . We have KY = f ∗KX + (t − s)E and f ∗B = f −1∗ B +
max{r − s + 1, 0}E.

The desingularization theorem also contains the following statement:

Theorem 1.6.4 ([45]) Let X be a smooth algebraic variety defined over a field
of characteristic 0, let B be a normal crossing divisor on X, and let f : Y → X

be a proper birational morphism from another smooth algebraic variety Y .
Then there exists a sequence of blowups fi : Xi → Xi−1 (i = 1, . . ., n) and a
birational morphism g : Xn → Y with the following properties:

(1) X = X0 and f ◦ g = f1 ◦ · · ·◦ fn.
(2) fi is a permissible blowup with respect to (Xi−1, Bi−1). Here B = B0

and the normal crossing divisor Bi on Xi is defined inductively by Bi =
f −1

i∗ Bi−1 + Exc(fi).

1.7 The Kodaira Vanishing Theorem

The Kodaira vanishing theorem holds only in characteristic 0. There are
counterexamples in positive characteristics ([118]). The vanishing theorem
and its generalizations are indispensable tools for the minimal model. Here
we introduce the Kodaira vanishing theorem ([82]) without proof.

Theorem 1.7.1 (Kodaira vanishing theorem) Let X be a smooth projective
complex algebraic variety and let D be an ample divisor on X. Then for any
positive integer p > 0, Hp(X, KX+D) = 0. Here KX is the canonical divisor
of X.

The Kodaira vanishing theorem is a theorem in complex differential geom-
etry established for a compact complex manifold X. Let L be a holomorphic
line bundle on a compact complex manifold X. L is always endowed with a
C∞ Hermitian metric h. The curvature of the corresponding connection of h

determines a C∞ (1, 1)-form on X. In this case, the following assertion holds
by the Kodaira embedding theorem:

Theorem 1.7.2 ([83]) Let X be a compact complex manifold and let L be a line
bundle with a Hermitian metric h. If the curvature

√−1� is positive definite
everywhere, then X has a projective complex algebraic variety structure and
L is the line bundle corresponding to an ample divisor.
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We have the following implications:

Algebraic
geometry ⇒ Complex differential

geometry ⇒ Numerical
geometry

Ample
divisors ⇒ Line bundles

with positive curvatures ⇒ Numerically positive
divisors

The feature of the Kodaira vanishing theorem is that the canonical divisor
appears in the statement and it provides a more accurate vanishing compared
to the Serre vanishing theorem below. This paves the way for geometric
applications. To be applied in higher dimensional algebraic geometry, the
Kodaira vanishing theorem is greatly generalized and used in many directions,
as will be discussed in Section 1.9.

Remark 1.7.3 The Kodaira vanishing theorem is originally proved for alge-
braic varieties defined over complex numbers, but it holds also for algebraic
varieties defined over any field in characteristic 0, since a field in characteristic
0 which is finitely generated over the prime field Q can be always embedded
into C.

Theorem 1.7.4 (Serre vanishing theorem [126], [44, III.5.2]) Let X be a
projective scheme over a field k, let L be an ample sheaf on X, and let F

be a coherent sheaf on X. Then there exists a positive integer m0 such that for
any integer m ≥ m0, the following assertions hold:

(1) F ⊗ L⊗m is generated by global sections.
(2) For any positive integer p > 0, Hp(X, F ⊗ L⊗m) = 0.

The Serre vanishing theorem holds without conditions on characteristics of
the field k and singularities of X. It has much more applicability than the
Kodaira vanishing theorem, but it is weaker.

The log version of the Kodaira vanishing theorem can be proved by the
adjunction formula ([117]):

Corollary 1.7.5 Let X be a smooth projective algebraic variety defined over
a field of characteristic 0, let B be a normal crossing divisor on X, and let D

be an ample divisor on X. Then for any positive integer p > 0, Hp(X, KX +
B + D) = 0.

Proof We do induction on the dimension n of X and the number r of prime
divisors of B. If r = 0, this is just the Kodaira vanishing theorem. If r > 0,
take a prime divisor B1 of B, denote B ′ = B − B1 and C = B ′|B1 . By the
adjunction formula, we get an exact sequence

0 → OX(KX +B ′+D) → OX(KX +B+D) → OB1(KB1 +C+D|B1) → 0.
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38 1 Algebraic Varieties with Boundaries

By the inductive hypothesis, for any positive integer p > 0, Hp(X, KX +B ′ +
D) = Hp(B1, KB1 + C + D|B1) = 0. This concludes the assertion. �

1.8 The Covering Trick

The covering trick is a classical method to construct new algebraic varieties
from a given one by using cyclic coverings. However, in this method, the new
algebraic variety may have singularities even if the given algebraic variety is
smooth. Therefore, we describe how to construct a covering without creating
new singularities.

First, we describe the construction of cyclic coverings. Let X be an algebraic
variety over an algebraically closed field k, let h be a nonzero rational function
on X, and let m be a positive integer coprime to the characteristic of k. When
k = C, m can be taken arbitrarily. Consider the function field extension
K = k(X)[h1/m], take Y to be the normalization of X in K with the natural
morphism f : Y → X. The extension Y/X is a Galois extension with a cyclic
Galois group, and the extension degree m′ = [k(Y ) : k(X)] is a divisor of m.

Y can be constructed as the following. Assume that X is covered by affine
open subsets Ui = Spec(Ai). The fractional field of Ai is the function field
k(X). Take Bi to be the normalization of Ai in K , then Y is obtained by gluing
affine varieties Spec(Bi).

Example 1.8.1 Let X be a smooth complex algebraic variety, let D be a divisor
on X, and let s be a global section of OX(mD). The zero divisor div(s) of s

and the divisor div(h) of the rational function h corresponding to s is related by

div(s) = div(h) + mD.

Here div(s) is an effective divisor but div(h) is not necessarily effective and
might have poles along D in general.

Assume that B = div(s) is reduced and is a smooth subvariety of X.
Consider Y to be the cyclic covering of X induced by h. In this case, Y is
smooth and f : Y → X is a finite morphism branched along B. Here D is
not contained in the branch locus. Indeed, for any point P in B, take a regular
system of parameters z1, . . ., zn such that B = div(z1), then the regular system
of parameters of any point Q over P can be taken as z

1/m

1 , z2, . . ., zn.
One should be careful that if B = div(s) has singularities, then Y has

singularities correspondingly. When the support of B is a normal crossing
divisor, Y has at worst toric singularities, which is easier to handle. This will
be discussed in Section 3.7.
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1.8 The Covering Trick 39

We can produce a more useful covering by considering the Kummer
covering, a generalization of cyclic covering.

Theorem 1.8.2 ([52]) Let X be a smooth projective algebraic variety defined
over an algebraically closed field of characteristic 0 and let B be a normal
crossing divisor on X. Fix a positive integer mi for each irreducible component
Bi of B. Then there exists a smooth projective algebraic variety Y and a finite
morphism f : Y → X with the following properties:

(1) The set-theoretic inverse image C = f −1(B) is a normal crossing divisor.
(2) For each i, there exists a reduced divisor Ci such that the pullback of Bi

as a divisor can be written as f ∗Bi = miCi . Here a reduced divisor is a
divisor with all coefficients equal to 1.

(3) f is a Galois covering and the Galois group G is an Abelian group.

One feature of this covering is that it is a finite morphism branched along
a normal crossing divisor such that the covering space is again smooth. Note
that the branch locus of f is a normal crossing divisor containing B, but they
do not coincide in general. Moreover, since X is smooth, f is a flat morphism.

Proof Denote n = dim X. Take a very ample divisor A such that miA − Bi is
very ample for all i. For each i, take n general global sections sij (j = 1, . . ., n)
in H 0(X, miA − Bi). We may assume that for each i, j , Mij = div(sij ) is
smooth and

∑
i,j Mij + ∑

i Bi is a normal crossing divisor.
Take the rational function hij corresponding to sij and take fij : Yij → X

to be the normalization of X in k(X)[h1/mi

ij ]. It is easy to see that the branch
locus is Mij + Bi and the ramification index is mi .

Take f : Y → X to be the normalization of the fiber product of all
fij : Yij → X over X. In other words, Y is just the normalization of X in the

field k(X)[h1/mi

ij ]ij . We will check that this Y satisfies the required properties.
For any point P in X, denote by Bil (l = 1, . . ., r) and Mjqkq (q = 1, . . ., s)

the irreducible components of
∑

i,j Mij + ∑
i Bi containing P . Note that

r + s ≤ dim X = n.
If r = 0, that is, P is not contained in the support of B, then by construction,

Yij is smooth over a neighborhood of P , and there is nothing to prove. So we
may assume that r ≥ 1.

By the numbers of Mij , for each il , there exists at least one pl such that
Milpl

does not contain P . Denote h̄jqkq = hjqkq /hilpl
if jq = il ; otherwise

h̄jqkq = hjqkq h
mjq

A , where hA is a local equation of the divisor A. In this case,

hi1p1h
mi1
A , . . ., hirpr h

mir

A , h̄j1k1 , . . ., h̄jsks
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is a part of a regular system of parameters of OX,P . Indeed, in a neighborhood
of P , these functions are exactly the defining equations of

Bi1 , . . ., Bir , Mj1k1 , . . ., Mjsks ,

which form a normal crossing divisor in a neighborhood of P . The localization
Y ×X SpecOX,P is étale over the normalization of SpecOX,P in

k(X)
[
h

1/mi1
i1p1

, . . ., h
1/mir

irpr
, h

1/mj1
j1k1

, . . ., h
1/mjs

jsks

]
= k(X)

[
h

1/mi1
i1p1

hA, . . ., h
1/mir

irpr
hA, h̄

1/mj1
j1k1

, . . ., h̄
1/mjs

jsks

]
.

Therefore, Y is smooth. The properties on C and Ci can be checked similarly.
�

The covering in the above theorem preserves smoothness by adding branch
locus artificially. The covering below is a natural construction for a Q-Cartier
Weil divisor which is not Cartier:

Proposition 1.8.3 Let X be a normal algebraic variety defined over an
algebraically closed field of characteristic 0 and let D be a divisor on
X. Assume that for some positive integer r , rD is Cartier and moreover
OX(rD) � OX. Take r to be the minimal one, then there exists a Galois finite
morphism f : Y → X from a normal algebraic variety whose Galois group is
the cyclic group of order r such that f is étale in codimension 1 and f ∗D is a
Cartier divisor on Y .

Proof Fix an everywhere nonzero global section s of OX(rD). The corre-
sponding rational function h satisfies divX(h) = −rD. Take Y to be the
normalization of X in the function field extension L = k(X)[h1/r ]. L is a
field as r is minimal. Then −f ∗(D) = divY (h1/r ) is Cartier. It is easy to see
that f is étale over the locally free locus of OX(D), and in particular, f is étale
over X \ Sing(X). �

Such f : Y → X is called the index 1 cover of the divisor D. In particular,
if D = KX, it is called the canonical cover.

Remark 1.8.4 (1) This covering is not unique, it depends on the choice of s.
Take another global section s′, there is a nowhere 0 function u such that
s′ = us. The normalization of X in k(X)[u1/r ] gives an étale covering
X′ → X, and the base change to X′ gives an isomorphism Y ×X X′ �
Y ′ ×X X′. Here Y ′ is the cyclic covering obtained by s′. Therefore, this
covering is unique up to étale base changes.
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1.9 Generalizations of the Kodaira Vanishing Theorem 41

(2) Fix a point P ∈ X and take rP to be the minimal positive integer such
that rP D is Cartier in a neighborhood of P , then f −1(P ) consists of r/rP

points by construction. In particular, f is étale over the points where D is
Cartier.

1.9 Generalizations of the Kodaira Vanishing Theorem

According to [76], we generalize the Kodaira vanishing theorem to different
directions in order to apply it to higher dimensional algebraic geometry. The
generalized vanishing theorems will be used as the key point of proofs in each
part of this book.

In this section, we always assume that the base field is of characteristic 0.
First, we extend the Kodaira vanishing theorem to R-divisors:

Theorem 1.9.1 Let X be a smooth projective algebraic variety and let D be an
ample R-divisor on X such that the support of �D� − D is a normal crossing
divisor. Then for any positive integer p > 0, Hp(X, KX + �D�) = 0.

Here we prove the following equivalent theorem:

Theorem 1.9.2 Let X be a smooth projective algebraic variety, let B be an
R-divisor on X with coefficients in (0, 1) and supported on a normal crossing
divisor, and let D be an integral divisor on X. Assume that D − (KX + B) is
an ample R-divisor. Then for any positive integer p > 0, Hp(X, D) = 0.

Proof Write B = ∑
biBi . Here Bi are prime divisors and

∑
Bi is a normal

crossing divisor. As ampleness is an open condition, for each i we can take a
fraction ni/mi (0 < ni < mi) sufficiently close to bi such that D − (KX +∑

(ni/mi)Bi) is an ample Q-divisor. In the following we may assume that
B = ∑

(ni/mi)Bi .
Take the covering f : Y → X as in Theorem 1.8.2 for irreducible

components Bi of B with positive integers mi . By construction, f ∗B is a
divisor with integral coefficients. The Galois group G acts on the invertible
sheaf OY (KY −f ∗(KX +B)) equivariantly in the following way. The action of
G on the tangent sheaf TY induces the action on the canonical sheaf OY (KY ),
and the action of G on OY (−f ∗(KX + B)) is induced from that on OY as
−f ∗(KX + B) is a G-invariant divisor. Since f is flat, the direct image sheaf
f∗OY (KY − f ∗(KX + B)) is a locally free sheaf with a G-action and the
G-invariant part L = (f∗OY (KY −f ∗(KX +B)))G is an invertible sheaf. Here
since G is Abelian, f∗OY decomposes to a direct sum of invertible sheaves
corresponding the G-eigenspaces, and hence L is invertible.
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42 1 Algebraic Varieties with Boundaries

L can be written as the form of a divisorial sheaf OX(E). In order to deter-
mine E, we only need to look at the generic points of the branched divisor of f .
First, any prime divisor not contained in B is not an irreducible component of
E. Indeed, for any finite Galois covering g : W → Z between smooth varieties
with Galois group G, we have a natural isomorphism (g∗ωW)G � ωZ , which
means that over U = X \Supp(B), L|U = (f∗OY (KY −f ∗(KX +B)))G|U =
(f∗OY (KY − f ∗(KX)))G|U � OU .

For the generic point P of Bi , set x1 to be the regular parameter of the
discrete valuation ring OX,P . Then for a point Q on Y over P , y1 = f ∗x1/mi

1
is a regular parameter and the invertible sheaf OY (KY − f ∗(KX + B)) is
generated by the section y

−(mi−1)+ni

1 . Since 0 < ni < mi , G-invariant sections
are generated by 1. Therefore, it turns out that E = 0. In summary, L =
(f∗OY (KY − f ∗(KX + B)))G = OX.

As the pullback of an ample divisor by a finite morphism is ample, the
pullback f ∗(D−(KX+B)) is again ample. By the Kodaira vanishing theorem,
for any positive integer p > 0, Hp(Y , KY + f ∗(D − (KX + B))) = 0. As f

is finite, there is no higher direct image, hence Hp(X, f∗OY (KY + f ∗(D −
(KX+B)))) = 0. As the G-invariant part is a direct summand, Hp(X, D) = 0.

�

Next, we prove the relative version of the vanishing theorem:

Theorem 1.9.3 Let X be a smooth algebraic variety, let B be an R-divisor on
X with coefficients in (0, 1) and supported on a normal crossing divisor, let D

be an integral divisor on X, and let f : X → S be a projective morphism to
another algebraic variety. Assume that D − (KX + B) is a relatively ample
R-divisor. Then for any positive integer p > 0,

Rpf∗(OX(D)) = 0.

We will prove the following equivalent theorem:

Theorem 1.9.4 Let X be a smooth algebraic variety, let f : X → S be a
projective morphism to another algebraic variety and let D be a relatively
ample R-divisor on X such that the support of �D� − D is a normal crossing
divisor. Then for any positive integer p > 0,

Rpf∗(OX(KX + �D�)) = 0.

Proof As the assertion is local on S, we may assume that S is affine. Replacing
the integral part of D by a linearly equivalent one while keeping �D� − D

unchanged, we may assume that the support of D is a normal crossing divisor.
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However, D is not necessarily effective. We may assume that D is a Q-divisor
as ampleness is an open condition.

Shrinking S if necessary, we can find a sufficiently large integer m such that
mD is an integral divisor and there exists a closed immersion g : X → PN ×S

such that OX(mD) � g∗p∗
1OPN (1), where p1 is the first projection.

Next, take a projective algebraic variety S̄ to be the compactification of S,
and take X̄ to be the normalization of the closure of X in PN ×S̄. The projective
morphism f̄ : X̄ → S̄ and the finite morphism ḡ : X̄ → PN × S̄ are naturally
induced.

Here X̄ is possibly singular and the extension of D is a Q-Cartier divisor D̄

defined by OX̄(mD̄) � ḡ∗p∗
1OPN (1). Since D̄ is relatively ample over S̄, we

can choose an ample Cartier divisor A1 on S̄ such that D̄ + f̄ ∗A1 is ample. As
S is affine, we may assume that the support of A1 is contained in S̄ \ S.

Take h : Y → X̄ to be a log resolution of the pair (X̄, D̄ + f̄ ∗A1) in strong
sense. As X is smooth and the support of D is a normal crossing divisor, h can
be assumed to be the identity over X. We may choose a Q-Cartier divisor A2

supported in the exceptional set of h such that D̄′ = h∗D̄ + h∗f̄ ∗A1 + A2 is
ample. By construction, the support of D̄′ is a normal crossing divisor, and by
Theorem 1.9.1, for any positive integer p, Hp(Y , KY + �D̄′�) = 0. Note that
the support of h∗f̄ ∗A1 + A2 is contained in Y \ X.

Consider the following spectral sequence:

E
p,q
2 = Hp(S̄, Rq(f̄ ◦ h)∗(OY (KY + �D̄′�))) ⇒ Hp+q(Y , KY + �D̄′�).

For any positive integer m1, replacing A1 by m1A1, the above argument still
works. When m1 is sufficiently large, by the Serre vanishing theorem, for any
positive integer p and any integer q,

Hp(S̄, Rq(f̄ ◦ h)∗(OY (KY + �D̄′�))) = 0.

Also the coherent sheaf Rq(f̄ ◦ h)∗(OY (KY + �D̄′�)) on S̄ is generated by
global sections.

By the spectral sequence, when q > 0, H 0(S̄, Rq(f̄ ◦ h)∗(OY (KY +
�D̄′�))) = 0. Therefore, Rq(f̄ ◦ h)∗(OY (KY + �D̄′�)) = 0. We conclude
the theorem by restricting on S. �

The next lemma shows that the conditions in the definitions of KLT and LC
(log canonical) defined in Sections 1.10 and 1.11 are birational properties:

Lemma 1.9.5 Let f : Y → X be a proper birational morphism between
smooth algebraic varieties and let B, C be R-divisors on X, Y supported
on normal crossing divisors such that f ∗(KX + B) = KY + C. Then the
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coefficients of B are all contained in the open interval (−∞, 1) if and only if
so are the coefficients of C.

The same also holds for the condition that the coefficients are contained
in the half-open interval (−∞, 1]. Moreover, in this case, assume that the
irreducible components of B with coefficients exactly 1 are disjoint, then the
coefficients of C − f −1∗ B are all contained in the open interval (−∞, 1).

Proof As B = f∗C, if the coefficients of C are all contained in the open
interval (−∞, 1), then the coefficients of B are all contained in the open
interval (−∞, 1).

Conversely, assume that the coefficients of B are all contained in the open
interval (−∞, 1). First, we consider the case that f is a permissible blowup
with respect to the pair (X, B). Set B = ∑

biBi . Suppose that the center Z of
the blowup is of codimension r and contained in B1, . . ., Bs . Note that r ≥ s.
The coefficient e of the exceptional divisor E of f in C is given by

e =
s∑

j=1

bj + 1 − r .

As bj < 1, we have e < 1. Since the coefficients of other prime divisors of
C coincide with those of B, the coefficients of C are all contained in the open
interval (−∞, 1).

The general case can be reduced to the above case by applying Theorem
1.6.4. The later part can be proved similarly. �

We can also prove the following lemma which will be used in Section 1.11:

Lemma 1.9.6 Fix an n-dimensional pair (X, B) of a normal algebraic variety
and an effective R-divisor such that KX + B is R-Cartier and let P be a
point on X. Take effective Cartier divisors D1, . . ., Dn passing through P such
that P is an irreducible component of

⋂
Di . Then there exists a log resolution

f : Y → (X, B+∑
Di) such that if we write KY +C = f ∗(KX +B+∑

Di),
then there exists an irreducible component C1 of C with coefficient at least 1
and f (C1) = {P }.
Proof We may assume that X is affine by shrinking X. Write Di = div(hi),
where hi are regular functions on X. Define the morphism h : X → Z = An

by h = (h1, . . ., hn). By assumption, h is quasi-finite in a neighborhood of
P . Take E1, . . ., En to be coordinate hyperplanes of Z, and h∗Ei = Di by
construction. Take g : Z′ → Z to be the blowup at the origin and take F to
be the exceptional divisor, we get g∗(KZ + ∑

Ei) = KZ′ + F + ∑
g−1∗ Ei .

As differential forms on Z with poles along
∑

Ei can be pulled back by h,
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h∗(KZ + ∑
Ei) ≤ KX + B + ∑

Di . By taking a log resolution f : Y →
(X, B + ∑

Di) which factors through X ×Z Z′, we may assume that the
exceptional set contains a prime divisor C1 mapping onto F , and this satisfies
the requirements. �

Using the relative version of the vanishing theorem, it is easy to show the
following generalization:

Theorem 1.9.7 ([76, Theorem 1.2.3]) Let X be a smooth algebraic variety, let
f : X → S be a projective morphism to another algebraic variety, and let D

be a relatively nef and relatively big R-divisor on X such that the support of
�D� − D is a normal crossing divisor. Then for any positive integer p > 0,

Rpf∗(OX(KX + �D�)) = 0.

Proof Since the assertion is local on S, we may assume that S is affine. By
Kodaira’s lemma, we can write D = A+E for some relatively ample R-Cartier
divisor A and some effective R-Cartier divisor E. If 0 < ε < 1, then D−εE =
(1 − ε)D + εA is relatively ample.

Take g : Y → X to be a log resolution of (X, D + E) in strong sense, and
take h : Y → S to be the composition with f . We can choose a sufficiently
small effective R-divisor A′ supported on the exceptional set of g such that
−A′ is g-ample and D′ = g∗(D − εE) − A′ is h-ample. By Theorem 1.9.4,
for any positive integer p,

Rph∗(OY (KY + �D′�)) = Rpg∗(OY (KY + �D′�)) = 0.

By the spectral sequence

E
p,q
2 = Rpf∗(Rqg∗(OY (KY + �D′�))) ⇒ Rp+qh∗(OY (KY + �D′�)),

Rpf∗(g∗(OY (KY + �D′�))) = 0 holds for p > 0.
Take ε and A′ to be sufficiently small, then �D′� = �g∗D�. Take B =

�D�− D and g∗(KX + B) = KY + C, by Lemma 1.9.5, the coefficients of C

are less than 1. Therefore, by

g∗(KX + �D�) = g∗(KX + B + D) = KY + C + g∗D ≤ KY + �g∗D�

(here note that C + g∗D is an integral divisor) and g∗(KY + �g∗D�) = KX +
�D�, we have

g∗(OY (KY + �D′�)) = OX(KX + �D�),

which proves the theorem. �
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Higher dimensional algebraic geometry became greatly developed since the
following result was proved:

Corollary 1.9.8 (Kawamata–Viehweg vanishing theorem [53, 139]) Let X be
a smooth projective algebraic variety and let D be a nef and big R-divisor on
X such that the support of �D�−D is a normal crossing divisor. Then for any
positive integer p > 0,

Hp(X, KX + �D�) = 0.

1.10 KLT Singularities for Pairs

We can define various singularities for a pair (X, B), where X is a normal
algebraic variety and B is an R-divisor on X. B is called the boundary of
the pair for historical reasons. These singularities appear naturally in the
minimal model theory. Vanishing theorems can be also generalized to these
singularities. The characteristic of the base field is always assumed to be 0 if
not specified.

First, we define the KLT condition. This is a very natural condition
corresponding to the L2-condition in complex analysis. It does not depend on
the choice of log resolutions. Furthermore, it is easy to handle since it satisfies
the so-called “open condition” in the sense that it is stable under perturbation
of the divisors. The KLT condition defines a category in which the minimal
model theory works most naturally and easily.

For simplicity, sometimes we denote a pair (X, B) and a morphism
f : X → S together by a morphism f : (X, B) → S.

Definition 1.10.1 A pair (X, B) is KLT if it satisfies the following conditions:

(1) KX + B is R-Cartier.
(2) The coefficients of B are contained in the open interval (0, 1).
(3) There exists a log resolution f : Y → (X, B) such that if we write

f ∗(KX + B) = KY + C, then the coefficients cj of C = ∑
cjCj are

contained in (−∞, 1). Here Cj are distinct prime divisors.

Condition (1) is necessary in order to define the R-divisor C in condition (3).
The support of C is contained in the union of the set-theoretic inverse image
of the support of B and the exceptional set of f , which is a normal crossing
divisor. The coefficients cj of C play an important role in higher dimensional
algebraic geometry. Further, −cj is called the discrepancy coefficient and 1−cj

is called the log discrepancy coefficient.
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Historically, KLT singularity is just called log terminal singularity in [54].
Condition (3) in the definition of KLT does not depend on the choice of log

resolutions:

Proposition 1.10.2 Assume that (X, B) satisfies conditions (1) and (2) in
Definition 1.10.1 and there exists a log resolution f : Y → (X, B) in weak
sense satisfying condition (3). Then (X, B) is KLT. Moreover, for any log
resolution f ′ : Y ′ → (X, B) in weak sense, condition (3) in Definition 1.10.1
holds.

Proof For two log resolutions f1 : Y1 → X, f2 : Y2 → X, there exists a third
log resolution f3 : Y3 → X dominating them. That is, there exist morphisms
gi : Y3 → Yi (i = 1, 2) such that f3 = fi ◦ gi . Therefore, the assertion follows
from Lemma 1.9.5. �

The following proposition is obvious:

Proposition 1.10.3 (1) A pair (X, B) is KLT if and only if there exists an open
covering {Xi} of X such that the pairs (Xi , B|Xi

) are all KLT.
(2) Let (X, B) be a KLT pair and let B ′ be another effective R-divisor such

that B ≥ B ′ and B − B ′ is R-Cartier, then (X, B ′) is again KLT.
(3) When X is a normal complex analytic variety, we can define the KLT

condition similarly by using complex analytic resolution of singularities.
When X is a complex algebraic variety, for a pair (X, B), the algebraic
KLT condition and the analytic KLT condition are equivalent.

Remark 1.10.4 Take regular functions h1, . . ., hr on the polydisk X = �n =
{(z1, . . ., zn) ∈ Cn | |zi | < 1} and write the corresponding divisors by Bi =
div(hi). Take real numbers bi ∈ (0, 1). Then (X, B = ∑

biBi) is KLT if and
only if the function h = ∏ |hi |−bi is locally L2 everywhere.

Indeed, the L2-condition on integrability can be studied via resolutions of
singularities. When the support of B is a normal crossing divisor, the absolute
value of a regular function with poles along B satisfies the L2-condition if
and only if the coefficients of B are in (−∞, 1), which is exactly the KLT
condition.

We introduce quotient singularities as an important example of KLT pairs.
An algebraic variety X is said to have quotient singularities if it is a quotient

variety of a smooth algebraic variety in an étale neighborhood of each point P .
That is, there exists a neighborhood U of P , an étale morphism g : V → U

such that P ∈ g(V ), and a smooth algebraic variety Ṽ with a finite group
action G such that V � Ṽ /G.
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Example 1.10.5 Fix a positive integer r and integers a1, . . ., an. Define the
action of the cyclic group G = Z/(r) on the affine space X̃ = An by zi �→
ζ ai zi . Here (z1, . . ., zn) are coordinates of X̃ and ζ is a primitive rth root of 1.
Then the quotient space X = X̃/G has only quotient singularities. The image
P0 of the origin might or might not be an isolated singularity, depending on the
values of ai . X is said to have a cyclic quotient singularity of type 1

r
(a1, . . ., an)

at P0.

Proposition 1.10.6 For an algebraic variety X with quotient singularities, the
pair (X, 0) with divisor B = 0 is KLT.

Proof As discrepancy coefficients remain unchanged under étale morphisms,
we may assume that X is a global quotient variety. That is, there is a smooth
algebraic variety X̃ and a finite group G such that X = X̃/G. It is not hard to
see that KX is Q-Cartier, indeed, |G| · KX is Cartier.

Take a log resolution f : Y → X and write f ∗KX = KY + C. Take Ỹ to
be the normalization of Y in the function field k(X̃) and take f̃ : Ỹ → X̃ and
πY : Ỹ → Y to be the induced morphisms, write f̃ ∗K

X̃
= K

Ỹ
+ C̃. Take a

prime divisor E on Y contained in the exceptional set of f and take a prime
divisor Ẽ on Ỹ such that πY (Ẽ) = E. Denote the coefficients of E, Ẽ in C, C̃
by c, c̃, respectively, denote the ramification index of Ẽ with respect to πY by
e, then we have

ce = c̃ + e − 1.

Here c̃ ≤ 0 as X̃ is smooth, hence c < 1. �

A KLT pair admits the following special log resolution. We call it a very log
resolution in this book.

Proposition 1.10.7 Let (X, B) be a KLT pair consisting of a normal algebraic
variety and an R-divisor. Then there exists a log resolution f : Y → (X, B)

such that if we write f ∗(KX +B) = KY +C, then the support of the R-divisor
C′ = max{C, 0} is a disjoint union of smooth prime divisors.

Proof Fix a log resolution f0 : Y0 → (X, B) and write f ∗
0 (KX + B) =

KY0 + C0. Choose two prime divisors in C0 and blowup along their intersec-
tion, we get g1 : Y1 → Y0. The composition with f0 gives a new log resolution
f1 : Y1 → X. We will show that a very log resolution can be constructed by
repeating this operation.

Write C0 = ∑
c0jC0j . Take a positive number n such that the inequality

c0j ≤ 1 − 1
n

holds for all j . n will be fixed in the following process.
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For any log resolution f : Y → (X, B), write f ∗(KX + B) = KY + C and
C = ∑

cjCj . Note that cj ≤ 1 − 1
n

for all j by the proof of Lemma 1.9.5. We
define a sequence of integers r(f ) = (r3(f ), . . ., r2n(f )) by the formula

ri(f ) = #

{
(j1, j2) | j1 <j2, Cj1 ∩ Cj2 � ∅, 2 − i

n
< cj1 + cj2 ≤ 2 − i − 1

n

}
.

For two sequences (r3, . . ., r2n) and (r ′
3, . . ., r ′

2n), we consider the lexicograph-
ical order. As ri ≥ 0, the set of sequences (r3, . . ., r2n) satisfies the DCC (short
for descending chain condition). That is, there is no infinite strictly decreasing
chain.

For a given f , take the minimal i such that ri(f ) � 0 and take a pair (j1, j2)

realizing it. That is, j1 < j2, Cj1 ∩ Cj2 � ∅, and 2 − i
n

< cj1 + cj2 ≤ 2 − i−1
n

.
Take g : Y ′ → Y to be the blowup along center Z = Cj1 ∩ Cj2 , denote f ′ =
f ◦g, and write (f ′)∗(KX+B) = KY ′ +C′. The coefficient e of the exceptional
divisor E = Exc(g) in C′ satisfies 1 − i

n
< e ≤ 1 − i−1

n
.

The construction of Y ′ kills the intersection of Cj1 and Cj2 , and produces
the intersections of E with the strict transforms of Cj1 , Cj2 , and Cj which
intersect with Cj1 ∩ Cj2 . Note that e + cj ≤ 2 − i

n
as cj ≤ 1 − 1

n
. So these

new intersections do not contribute to rk(f
′) for k ≤ i. Therefore, rk(f

′) =
rk(f ) = 0 for k < i and ri(f

′) = ri(f ) − 1, which means that r(f ′) <

r(f ). Since there is no infinite strictly decreasing chain for the sequence r(f ),
eventually we can get a log resolution f such that ri(f ) = 0 for all i. This
concludes the proof. �

Note that the log resolution in the above proposition is obtained by blowing
up repeatedly, it does not satisfy condition (2’) in Theorem 1.6.1. Also, the
proposition cannot be extended to DLT pairs.

We can generalize the vanishing theorem to KLT pairs:

Theorem 1.10.8 ([76, 1.2.5]) Let X be a normal algebraic variety, let
f : X → S be a projective morphism, let B be an R-divisor on X, and
let D be a Q-Cartier integral divisor on X. Assume that (X, B) is KLT and
D − (KX +B) is relatively nef and relatively big. Then for any positive integer
p, Rpf∗(OX(D)) = 0.

Proof Take a log resolution g : Y → (X, B), denote h = f ◦ g, and write
g∗(KX + B) = KY + C. Note that g∗D − (KY + C) is h-nef and h-big. Here
note that the coefficients of g∗D are not necessarily integers.

By Theorem 1.9.7, for any positive integer p, Rpg∗(OY (�g∗D − C�)) =
Rph∗(OY (�g∗D − C�)) = 0. Hence Rpf∗(g∗(OY (�g∗D − C�))) = 0.

For a rational function r ∈ k(X) � k(Y ), if divX(r) + D ≥ 0, then
divY (r) + g∗D ≥ 0. In this case, divY (r) + �g∗D� ≥ 0 and then divY (r) +
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�g∗D − C� ≥ 0 since the coefficients of C are contained in the open interval
(−∞, 1). This shows that the natural inclusion

g∗(OY (�g∗D − C�)) ⊂ g∗(OY (�g∗D�)) � OX(D)

is indeed an isomorphism and the proof is finished. �

Remark 1.10.9 In a KLT pair (X, B), X has only rational singularities, and
hence is Cohen–Macaulay ([76, 1.3.6]).

This asserts that KLT is a “good” singularity. On the other hand, LC to be
introduced in Section 1.11 is not “good” in this sense. This fact will not be
used in this book.

Consider a pair (X, B) consisting of a normal algebraic variety and an
effective R-divisor such that KX + B is R-Cartier. In Chapter 2, we will
introduce the multiplier ideal sheaf in order to measure how far this pair is
from being KLT.

The set of points P ∈ X in whose neighborhood the pair (X, B) is not KLT
is a closed subset of X. It is called the non-KLT locus of the pair (X, B). The
cosupport of the multiplier ideal sheaf coincides with the non-KLT locus. Also,
the vanishing theorem can be generalized using multiplier ideal sheaves (see
Section 2.11).

1.11 LC, DLT, and PLT Singularities for Pairs

The KLT condition is easy to handle since it is an open condition with respect
to changes of coefficients of divisors. However, in the minimal model theory,
since it is necessary to consider the limits of divisors, it is necessary to consider
the closed condition called the LC condition. Among LC pairs, we call by KLT
pairs the pairs obtained by increasing boundaries of KLT pairs. The property of
general LC pairs is not so good, but for KLT pairs it is possible to have similar
discussions as for KLT pairs. Besides, there are conditions called DLT and PLT
(purely log terminal) between KLT and LC, which are a little complicated but
very useful. In this book, we develop the minimal model theory mainly for
DLT pairs. The characteristic of the base field is always assumed to be 0 if not
specified.

1.11.1 Various Singularities

Definition 1.11.1 A pair (X, B) is LC if it satisfies the following conditions:

(1) KX + B is R-Cartier.
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(2) The coefficients of B are contained in the half-open interval (0, 1].
(3) There exists a log resolution f : Y → (X, B) such that if we write

f ∗(KX + B) = KY + C, then the coefficients cj of C = ∑
cjCj are

contained in the half-open interval (−∞, 1]. Here Cj are distinct prime
divisors.

When (X, B) is an LC pair, (X, B) is said to have log canonical singulari-
ties. Same as Proposition 1.10.2, condition (3) above does not depend on the
choice of log resolutions. Also, the same assertion as in Proposition 1.10.3
holds for LC pairs.

Example 1.11.2 The property of singularities of LC pairs is not always good.
Let Z be a smooth projective n-dimensional algebraic variety such that

KZ ∼ 0, that is, ωZ � OZ . Take an ample invertible sheaf L and take the
total space Y = SpecZ(

⊕∞
m=0 L⊗m) of the dual sheaf L∗. Y admits an A1-

bundle structure over Z. Denote X = Spec(
⊕∞

m=0 H 0(Z, L⊗m)), there is a
natural birational morphism f : Y → X which contracts the 0-section E of
Y → Z to a point P = f (E).

By the adjunction formula (KY + E)|E ∼ KE ∼ 0, we have KY + E ∼ 0
and KX ∼ 0, which implies that f ∗KX ∼ KY + E. Hence (X, 0) is LC.

The higher direct images of OY are supported on the singular point P of X:

Rpf∗OY �
∞⊕

m=0

Hp(Z, L⊗m) ⊃ Hp(Z,OZ).

For p = n, Hn(Z,OZ) � 0, hence X is not a rational singularity. Moreover,
if Z is an Abelian variety, then for 0 < p ≤ n, the right-hand side is not 0, and
X is not Cohen–Macaulay.

As the property of singularities of LC pairs is not always good, we consider
intermediate conditions:

Definition 1.11.3 A pair (X, B) is DLT if it satisfies the following conditions:

(1) KX + B is R-Cartier.
(2) The coefficients of B are contained in the half-open interval (0, 1].
(3) There exists a log resolution f : Y → (X, B) such that if we write

f ∗(KX + B) = KY + C, then the coefficients cj of C = ∑
cjCj

are contained in the open interval (−∞, 1) for those Cj contained in the
exceptional set of f .

A pair (X, B) is PLT if it satisfies the above conditions (1) and (2) and the
following condition (3’):
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(3’) For any log resolution f : Y → (X, B), if we write f ∗(KX + B) = KY +
C, then the coefficients cj of C = ∑

cjCj are contained in the open
interval (−∞, 1) for those Cj contained in the exceptional set of f .

Remark 1.11.4 (1) In [76], a condition called WLT (short for weak log
terminal) is considered. The definition of WLT is by assuming further that
the log resolution in condition (3) of the definition of DLT is in strong
sense. By using similar argument as in Proposition 1.10.2, it can be shown
that DLT and WLT are indeed equivalent ([136]). In this book, we will just
use DLT rather than WLT.

(2) For a log resolution f : Y → X of (X, B), when considering the
relation f ∗(KX + B) = KY + C, sometimes we just write “a morphism
f : (Y , C) → (X, B).”

Example 1.11.5 (1) Take the affine space X = An and coordinate hyper-
planes B1, . . ., Bn, denote B = ∑

biBi . Then (X, B) is KLT (respectively,
PLT, DLT) if and only if 0 ≤ bi < 1 for all i (respectively, 0 ≤ bi ≤ 1 for
all i and bi < 1 except for at most one i, 0 ≤ bi ≤ 1 for all i). Furthermore,
DLT and LC coincide.

(2) Let X = A2/Z2 be the quotient of the 2-dimensional affine space A2 with
coordinates x, y by the order 2 cyclic group Z2 action (x, y) �→ (−x, −y).
That is, it is a cyclic quotient singularity of type 1

2 (1, 1). This singularity
is the same as the ordinary double point in Example 1.1.4(1). Denote the
image of the coordinate axes in X by B1, B2 and take B = ∑

biBi . Then
(X, B) is KLT (respectively, PLT, LC) if and only if 0 ≤ bi < 1 for all
i (respectively, 0 ≤ bi1 ≤ 1 for one i1 and 0 ≤ bi2 < 1 for the other i2,
0 ≤ bi ≤ 1 for all i). Furthermore, PLT and DLT coincide.

Indeed, the blowup f : Y → X of X along the image of the origin (0, 0)

is a log resolution. The exceptional set E is isomorphic to P1, f ∗Bi =
f −1∗ Bi + 1

2E, and f ∗KX = KY . So the assertion can be checked easily.

(3) Take X = A2 to be the 2-dimensional affine space with coordinates x, y
and a prime divisor D = div(x2 + y3). We determine the necessary and
sufficient condition for the pair (X, dD) to be KLT or LC for a real number
d (see Figure 1.1).

We can construct a log resolution of (X, dD) in the following way. First,
take the blowup f1 : Y1 → X along the origin P0 = (0, 0), the exceptional
set E1 is a prime divisor isomorphic to P1. The strict transform D1 =
f −1

1∗ D is smooth, E1 and D1 intersect at one point P1.
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P0

D

f1←− P1

E1 D1

f2←− P2

E2 D2

E′
1

f3←− E′′
1

D3

E′
2

E3

Figure 1.1 A log resolution of (X, D).

Take the blowup f2 : Y2 → Y1 along P1, the exceptional set E2 is a
prime divisor isomorphic to P1. Three smooth prime divisors E2, D2 =
f −1

2∗ D1, and E′
1 = f −1

2∗ E1 intersect at one point P2.
Take the blowup f3 : Y = Y3 → Y2 along P2, the exceptional set E3

is a prime divisor isomorphic to P1. The union of four prime divisors E3,
D3 = f −1

3∗ D2, E′′
1 = f −1

3∗ E′
1, and E′

2 = f −1
3∗ E2 is a normal crossing

divisor.
The composition f : Y → X is a log resolution of (X, dD). We have

KY = f ∗KX + E′′
1 + 2E′

2 + 4E3 and f ∗D = D3 + 2E′′
1 + 3E′

2 + 6E3.
Therefore, the pair (X, dD) is KLT (respectively, LC) if and only if 0 ≤
d < 5/6 (respectively, 0 ≤ d ≤ 5/6).

(4) Consider the example in Examples 1.1.4(2) or 1.2.4(2). In addition to the
prime divisors D1, D2, consider prime divisors D3, D4 defined by y = z =
0 or y = w = 0. Note that D3 +D4 and KX are Cartier divisors. Take B =∑4

i=1 Di and consider the pair (X, B). Take the resolution of singularities
f : X′ → X as in Example 1.2.4(2), then B ′ = ∑4

i=1 f −1∗ Di is a normal
crossing divisor. As f is isomorphic in codimension 1, f ∗(KX + B) =
KX′ + B ′.

The pair (X, B) is LC but not DLT. Here, as the exceptional set of f

is not a normal crossing divisor, f is a log resolution in weak sense, but
not a log resolution in the sense of Theorem 1.6.1(2). In order to obtain a
log resolution, we need to do further blowups on X′ along the exceptional
set of f and that will induce an exceptional divisor with log discrepancy
coefficient 1. However, this is not a rigorous proof of the fact that (X, B) is
not DLT.

The blowup g : Y → X along the origin (0, 0, 0, 0) of X is a log
resolution. The exceptional set E is a prime divisor isomorphic to P1 ×
P1 and C = ∑4

i=1 g−1∗ Di + E is a normal crossing divisor. Since
g∗(KX + B) = KY + C, (X, B) is LC.
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(5) Take a smooth projective algebraic curve C of genus 1 and two line bundles
L1, L2 of negative degrees. Take Y to be the total space of the vector bundle
L = L1 ⊕ L2 and denote by C1, C2, E the subvarieties of Y corresponding
to subbundles L1 ⊕0, 0⊕L2, 0⊕0, respectively. Note that E � C. Denote
X = Spec(

⊕∞
m=0 H 0(C, L⊗−m)), there is a natural birational morphism

f : Y → X which contracts E to a point P = f (E). Write Bi = f (Ci).
Then f ∗(KX + B1 + B2) = KY + C1 + C2 and the pair (X, B1 + B2) is
not DLT but LC. Indeed, X is not a rational singularity. The pairs (Bi , 0)

are also LC.

We introduce one more definition:

Definition 1.11.6 A pair (X, B) is KLT if it satisfies the following conditions:

(1) (X, B) is LC.
(2) There is another effective R-divisor B ′ such that B ′ ≤ B and (X, B ′) is

KLT.

In this situation, for any positive real number ε smaller than 1, (X, (1−ε)

B + εB ′) is KLT. That is, KLT is the limit of KLT. For this reason, different
from general LC pairs, it shares similar properties as a KLT pair.

Toric varieties provide good examples (see [31, 79] for details):

Proposition 1.11.7 Let T be an algebraic torus and let T ⊂ X be a toric
variety, that is, a T -equivariant open immersion into a normal algebraic
variety with a T -action. Consider the complement set B = X \T as a reduced
divisor. Then the following assertions hold:

(1) The pair (X, B) is LC. Moreover, it is KLT.
(2) X is Q-factorial if and only if the corresponding fan consists of simplicial

cones.

Proof (1) Take a T -equivariant resolution of singularities f : Y → X such
that f −1(T ) � T and C = Y \ f −1(T ) is a normal crossing divisor.

Denote dim T = n and take coordinates x1, . . ., xn by pulling back from the
standard embedding T ⊂ An. The regular differential form θ = dx1/x1 ∧· · ·∧
dxn/xn on T can be extended to a logarithmic differential form on X and gives
a global section of KX + B without zeros. Therefore, KX + B ∼ 0.

Similarly θ extends to a global section of KY + C without zeros. Therefore,
the equality f ∗(KX + B) = KY + C holds, and hence (X, B) is LC.

As T is affine, there exists an effective Cartier divisor B ′ with support B.
For a sufficiently small real number ε > 0, (X, B − εB ′) is KLT, and hence
(X, B) is KLT.
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(2) We may assume that X is affine and its fan consists of a single cone.
Irreducible components Bi of B correspond to points Pi on 1-dimensional rays
of this cone σ . The condition for Bi becoming a Q-Cartier divisor is that there
exists a regular function on X such that the corresponding divisor is a nonzero
multiple of Bi . This is equivalent to saying that there exists a linear functional
on σ which takes value 1 at Pi and 0 at all points on other rays, which is
equivalent to σ being simplicial. �

The following is a corollary of Lemma 1.9.6.

Corollary 1.11.8 Let (X, B) be an n-dimensional KLT pair and let P be a
point. Take sufficiently general effective Cartier divisors D1, . . ., Dn, E passing
through P and a positive number 1 > ε > 0. Then there exists a sufficiently
small number δ > 0 such that the pair (X, B + ∑

(1 − δ)Di + εE) is KLT in
a punctured neighborhood of P , but not LC at P .

Proof As D1, . . ., Dn, E are general outside P , take a log resolution f̄ : Y →
(X, B) and write f̄ ∗(KX+B) = KY +C̄, we may assume that C̄+f̄ ∗(

∑
Di +

E) is normal crossing outside f̄ −1(P ). The coefficients of D1, . . ., Dn, E in the
pair (X, B + ∑

(1 − δ)Di + εE) are strictly smaller than 1 for δ > 0, hence
the pair is KLT in a punctured neighborhood of P .

On the other hand, take the log resolution f and prime divisor C1 as in
Lemma 1.9.6, then the coefficient of C1 in f ∗E is at least 1 and the coefficient
of C1 in f ∗(KX + B + ∑

Di + εE) is strictly larger than 1. Hence (X, B +∑
(1 − δ)Di + εE) is not LC at P for sufficiently small δ > 0. �

1.11.2 The Subadjunction Formula

We will look at the behavior of singularities when restricting a given pair to
lower dimensions.

First, we show Shokurov’s connectedness lemma ([91, Theorem 17.4],
[128]), which is a consequence of the vanishing theorem:

Lemma 1.11.9 (Connectedness lemma) Let (X, B) be a pair of a normal
variety and an R-divisor such that KX + B is R-Cartier, and let f : (Y , C) →
(X, B) be a log resolution in weak sense. Write C = C+ − C−, where
C+, C− are effective R-divisors with no common irreducible component. Then
the natural homomorphism OX → f∗O�C+� is surjective and the induced
morphism Supp(�C+�) → f (Supp(�C+�)) has connected geometric fibers.

Proof Note that

−�C� − (KY + C − �C�) ≡ −f ∗(KX + B)
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is f -nef and f -big. As the coefficients of C − �C� are contained in the open
interval (0, 1), by the vanishing theorem (Theorem 1.9.7),

R1f∗(OY (−�C�)) = 0.

Since �C� = �C+� − �C−�, the natural homomorphism

f∗(OY (�C−�)) → f∗(O�C+�(�C−�))

is surjective. Since the support of the effective divisor C− is contained in
the exceptional set, the natural homomorphism f∗OY → f∗(OY (�C−�)) is
bijective. In the commutative diagram

OX � f∗OY −−−−→ f∗O�C+�⏐⏐� ⏐⏐�
f∗(OY (�C−�)) −−−−→ f∗(O�C+�(�C−�)),

the left vertical arrow is bijective, the bottom horizontal arrow is surjective, and
the right vertical arrow is injective, hence the top horizontal arrow is surjective.
We conclude the proof. �

Corollary 1.11.10 A DLT pair (X, B) is PLT if and only if the irreducible
components of �B� are disjoint from each other.

Proof The sufficiency is easy. In order to show the converse direction,
suppose that two irreducible components B1, B2 of �B� intersect. Take a log
resolution f : (Y , C) → (X, B) as in Lemma 1.11.9, then the strict transforms
f −1∗ B1, f −1∗ B2 are contained in the same connected component of the support
of �C+�. Then there exists an irreducible component of �C+� − f −1∗ B1

intersecting f −1∗ B1. Blowing up along the intersection, the coefficient of the
exceptional divisor is 1, which means that (X, B) is not PLT. �

Corollary 1.11.11 For a DLT pair (X, B), every irreducible component of
�B� is normal.

Proof We may assume that X is affine. Take B1 to be an irreducible component
of �B�. Since there are sufficiently many regular functions on X, we can take a
general effective R-divisor B ′ R-linearly equivalent to B−B1 such that �B ′� =
0. Indeed, take a sufficiently large integer N and take general global sections
s1, . . ., sN of the divisorial sheaf OX(�B�−B1), then div(si) ∼ �B�−B1 and
we may just take

B ′ = B − B1 +
∑

div(si)/N − �B� + B1 = B − �B� +
∑

div(si)/N .
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Since si are taken to be general, a log resolution f : Y → X of (X, B)

is also a log resolution of (X, B1 + B ′). So (X, B1 + B ′) is still DLT. Write
KY + C = f ∗(KX + B1 + B ′), then �C+� = f −1∗ B1. Therefore, Lemma
1.11.9 implies that D is normal. �

Remark 1.11.12 According to this corollary, the irreducible components of
�B� have no “self-intersection.” For example, if X is a smooth complex
algebraic variety and B is a reduced divisor normal crossing in analytic sense
but not simple normal crossing, then (X, B) is not DLT. This is derived from
the definition of normal crossing divisors in the definition of log resolutions.

Induction arguments on dimensions using the adjunction formula is compat-
ible with the property of DLT. The reason is the following result:

Theorem 1.11.13 (Subadjunction formula) Let (X, B) be a DLT pair and let Z
be an irreducible component of �B�. Then we can naturally define an effective
R-divisor BZ on Z satisfying

(KX + B)|Z = KZ + BZ ,

and the pair (Z, BZ) is again DLT. Moreover, if (X, B) is PLT in a neighbor-
hood of Z, then (Z, BZ) is KLT.

Proof Take a log resolution f : (Y , C) → (X, B) such that the coefficients
of exceptional prime divisors in C are less than 1. Write W = f −1∗ Z, CW =
(C − W)|W and BZ = (f |W)∗CW . Here the coefficients of CW are at most 1,
so are those of BZ .

Here we claim that the coefficients of BZ are contained in the half-open
interval (0, 1]. To see that BZ ≥ 0, after cutting X by general hyperplanes, we
may assume that dim X = 2. In this case, f : (Y , C) → (X, B) factors through
the minimal resolution of X (see Proposition 1.13.8). Hence there exists a pair
(Y1, C1) and birational morphisms f1 : Y → Y1, f2 : Y1 → X such that f =
f2 ◦ f1 and KY1 + C1 = f ∗

2 (KX + B), and moreover C1 ≥ 0. Then BZ ≥ 0.
As (KY +C)|W = KW +CW , we get (KX +B)|Z = KZ +BZ . Hence KZ +

BZ is R-Cartier. Note that f |W is a log resolution of (Z, BZ) and (f |W)∗(KZ+
BZ) = KW + CW .

Recall that every irreducible component of C with coefficient 1 is a strict
transform of an irreducible component of �B�. Take D to be an irreducible
component of CW with coefficient 1, then D is contained in the intersection of
f −1∗ �B� − W and W . Since Exc(f ) ∪ f −1∗ �B� is a normal crossing divisor,
D is not contained in Exc(f ). Therefore, D is not contained in the exceptional
set of f |W and hence (Z, BZ) is DLT.

The latter part is obvious. �
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Remark 1.11.14 It is possible that BZ � 0 even if B = Z, that is, KZ

might be smaller than expected, and this is why we use the word “sub.” For
example, consider the quadric surface X defined by the equation xy = z2 in
the affine space C3 with coordinates x, y, z and the divisor Z on X defined by
the equation x = z = 0. Then the pair (X, Z) is DLT and the subadjunction
formula in this case is (KX + Z)|Z = KZ + 1

2P (see Example 1.3.2).

For a pair (X, B), a subvariety Z of X is called an LC center if there exists a
log resolution f : (Y , C) → (X, B) such that there is an irreducible component
Ci of �C+� with Z = f (Ci).

Lemma 1.11.15 Fix a log resolution f : (Y , C) → (X, B) of an LC pair
(X, B). Then the LC centers of the pair (X, B) are exactly the images of
irreducible components of intersections of several irreducible components of
�C+�.

Proof Take the blowup Y along an irreducible component of the intersection
of several irreducible components of �C+�, we get a new log resolution and
the exceptional divisor has coefficient 1 in the new boundary. Hence the image
is an LC center. On the other hand, by an easy computation, blowing up along
other centers gives an exceptional divisor with coefficient strictly smaller than
1. By Theorem 1.6.4, any log resolution is dominated by a log resolution
obtained in this way, which concludes the proof. �

In particular, when (X, B) is DLT, there exists a log resolution f : (Y , C) →
(X, B) with �C+� = f −1∗ �B�, hence an LC center is nothing but an
irreducible component of the intersection of several irreducible components
of �B�. In other words, the reduced part of the boundary of the DLT pairs
obtained by applying the subadjunction formula several times to (X, B) are
LC centers.

We extend the vanishing theorem to DLT pairs. Note that the condition
“relatively ample” cannot be replaced by “relatively nef and relatively big”
as DLT is not an open condition.

Theorem 1.11.16 Let X be a normal algebraic variety, let f : X → S be a
projective morphism, let B be an R-divisor on X, and let D be a Q-Cartier
integral divisor on X. Assume that the pair (X, B) is DLT and D − (KX + B)

is relatively ample. Then for any positive integer p, Rpf∗(OX(D)) = 0.

Proof Take a log resolution g : (Y , C) → (X, B) in strong sense and denote
h = f ◦ g. By the definition of DLT, we may assume that the coefficients of
exceptional divisors in C are strictly less than 1, note that here we use the fact
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that DLT is equivalent to WLT (see Remark 1.11.4). Take a sufficiently small
effective R-divisor A supported on the exceptional set of g such that −A is
g-ample, �C + A� = �C�, and g∗D − (KY + C + A) is h-ample. Take a
sufficiently small number ε > 0 such that g∗D− (KY + (1−ε)C +A) is again
h-ample.

Write D′ −C′ = g∗D − ((1 − ε)C +A), where D′ is a divisor with integral
coefficients and C′ is an R-divisor with coefficients in the interval (0, 1), in
other words, take D′ = �g∗D − ((1 − ε)C + A)�. Since the support of C′

is a normal crossing divisor, by Theorem 1.9.3, for p > 0, Rpg∗(OY (D′)) =
Rph∗(OY (D′)) = 0. Therefore, for p > 0, Rpf∗(g∗(OY (D′))) = 0. Since
g∗D′ = D by definition and D′ ≥ �g∗D� as the coefficients of (1 − ε)C + A

are smaller than 1, we have g∗(OY (D′)) = OX(D) and the theorem is proved.
�

Here we remark that we can give an alternative proof by applying Lemma
2.1.8 to replace (X, B) by a KLT pair and then applying Theorem 1.9.3
directly.

1.11.3 Terminal and Canonical Singularities

In the end of this section, we introduce terminal and canonical singularities.
These singularities are not considered in the main part of this book. However,
they are important in applications and have a longer history than KLT, DLT,
LC, et cetera in dimensions 3 and higher. Originally 3-dimensional algebraic
geometry was successful because these singularities can be classified. How-
ever, classification of singularities is impossible in higher dimensions, and it is
replaced by using log pairs and induction on dimensions.

Definition 1.11.17 A normal algebraic variety X is said to have canonical
singularities if the following conditions are satisfied:

(1) KX is Q-Cartier.
(2) For a resolution of singularities f : Y → X, if write f ∗KX = KY + C,

then −C is effective.

Furthermore, X is said to have terminal singularities if the following is
satisfied:

(3) The support of −C coincides with the divisorial part of Exc(f ).

In terms of discrepancy coefficients, the feature of terminal singulari-
ties (canonical singularities) is that all discrepancy coefficients are positive
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(nonnegative). It is easy to see that conditions (2) and (3) do not depend on the
choice of resolutions of singularities.

The concept of terminal and canonical singularities can be also extended to
pairs.

Definition 1.11.18 A pair (X, B) consisting of a normal algebraic variety X

and an effective R-divisor B on X is said to have canonical singularities if the
following conditions are satisfied:

(1) KX + B is R-Cartier.
(2) For any resolution of singularities f : Y → X, if write f ∗(KY + B) =

KY + C, then −C + f −1∗ B is effective.

Furthermore, (X, B) is said to have terminal singularities if the following is
satisfied:

(3) The support of −C + f −1∗ B coincides with the divisorial part of Exc(f ).

In conditions (2) and (3), it is not sufficient to check for only one log
resolution.

As will be explained in Section 2.5, discrepancy coefficients are nondecreas-
ing under the MMP, hence the MMP preserves types of singularities. That is,
when applying a birational map in the MMP to an algebraic variety with certain
singularities, we get an algebraic variety with the same type of singularities.
In other words, the MMP can be considered within the category of varieties
having certain singularities. In particular, when considering the MMP starting
from a smooth algebraic variety, everything is within the category of terminal
singularities. Note that 2-dimensional terminal singularities without bound-
aries are just smooth, that is the reason why it is not necessary to consider
singularities in the classical 2-dimensional MMP.

1.12 Minimality and Log Minimality

The minimality in the minimal model theory is defined by the minimality of
canonical divisors. A log minimal model is the log version of a minimal model,
where the log canonical divisor is minimized. The MMP is a process to find a
“minimal model” which is a birational model with good properties for a given
algebraic variety.

First, we define “minimality” by the property of singularities and numerical
property of canonical divisors:
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Definition 1.12.1 (1) A projective morphism f : X → S from a normal
algebraic variety to another algebraic variety is said to be relatively
minimal over S if it satisfies the following conditions (a), (b). It is said
to be relatively minimal in weak sense over S if it satisfies the following
conditions (a’), (b).

(a) X has Q-factorial terminal singularities.

(a’) X has canonical singularities.

(b) KX is relatively nef over S.

(2) A projective morphism f : (X, B) → S from a pair consisting of a normal
algebraic variety and an R-divisor to another algebraic variety is said to be
relatively log minimal over S if it satisfies the following conditions (a), (b).
It is said to be relatively log minimal in weak sense over S if it satisfies the
following conditions (a’), (b).

(a) X is Q-factorial and the pair (X, B) is DLT.

(a’) The pair (X, B) is LC.

(b) KX + B is relatively nef over S.

The minimality in weak sense defined above leads to the minimality of the
canonical divisor KX and the log canonical divisor KX + B:

Proposition 1.12.2 (1) Let f : X → S be a relatively minimal morphism in
weak sense. Consider a projective morphism g : Y → S from another
normal algebraic variety and birational projective morphisms f ′ : Z → X

and g′ : Z → Y from a third normal algebraic variety with f ◦f ′ = g ◦g′.
If KY is Q-Cartier, then the inequality (f ′)∗KX ≤ (g′)∗KY holds. That is,
KX is minimal in birational equivalence classes.

(2) Let f : (X, B) → S be a relatively log minimal morphism in weak sense.
Consider a projective morphism g : (Y , C) → S from another pair of
a normal algebraic variety and an R-divisor, and birational projective
morphisms f ′ : Z → X and g′ : Z → Y from a third normal algebraic
variety with f ◦f ′ = g◦g′. Furthermore, assume the following conditions:

(a) For each irreducible component Bi of B, its strict transform Ci =
g′∗(f ′)−1∗ Bi is an irreducible component of C. If we denote the
coefficients of Bi , Ci by bi , ci , then the inequalities bi ≤ ci hold.

(b) For each irreducible component Cj of C satisfying f ′∗(g′)−1∗ Cj = 0,
its coefficient cj is 1.

If KY +C is R-Cartier, then the inequality (f ′)∗(KX+B) ≤ (g′)∗(KY +C)

holds. That is, KX + B is minimal in birational equivalence classes.
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Proof (1) By the desingularization theorem we may assume that Z is smooth.
Write (f ′)∗KX = KZ + E, (g′)∗KY = KZ + F .

Since X has canonical singularities, −E is effective. That is, KX is
smaller than KZ . So the condition on singularities guarantees the minimality
locally.

In order to see the global property, we apply the negativity lemma (Lemma
1.6.3). Write F −E = G+ −G−, where G+, G− are effective Q-divisors with
no common irreducible component. Our goal is to show G− = 0. Suppose that
G− � 0. As −E is effective, the support of G− is contained in the support of
F , which is contracted by g′.

By Lemma 1.6.3, there exists a curve C contracted by g′ such that
(G− · C) < 0 and (G+ · C) ≥ 0. Note that ((KZ + F) · C) = 0. On the
other hand, since KX is nef,

0 ≤ ((KZ + E) · C) = ((E − F) · C) = −(G+ · C) + (G− · C) < 0,

which is a contradiction. Therefore, G− = 0 and F − E is effective.

(2) We may assume that f ′, g′ are log resolutions. Write (f ′)∗(KX + B) =
KZ + E and (g′)∗(KY + C) = KZ + F .

Since (X, B) is LC, the coefficients of E are at most 1. Therefore, if we
denote by Ē the sum of the strict transform (f ′)−1∗ B and all exceptional
divisors of f ′ with given coefficients 1, then (f ′)∗(KX + B) is smaller than
KZ + Ē. So the LC condition guarantees the minimality locally.

Let us look at the global property. Write F −E = G+ −G−, where G+, G−

are effective R-divisors with no common irreducible component. Our goal is
to show G− = 0. Suppose that G− � 0.

Once it is shown that the support of G− is contracted by g′, the conclusion
follows exactly as the proof of (1). In order to show that the support of G− is
contracted by g′, for any prime divisor R on Z, we are going to show that R is
not an irreducible component of G− if g′∗R = Q is a prime divisor on Y .

If f ′∗R = P is a prime divisor on X, by assumption (a), the coefficient
of P in B is not greater than that of Q in C. This holds even if P is not an
irreducible component of B in which case we just formally set the coefficient
to be 0. Therefore, the coefficient of R in F −E is nonnegative and it is not an
irreducible component of G−.

If f ′∗R = 0, by assumption (b), the coefficient of Q in C is 1 while that of R

in E is at most 1. Therefore, the coefficient of R in F − E is nonnegative and
it is not an irreducible component of G−. �

https://doi.org/10.1017/9781009344647.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009344647.003


1.12 Minimality and Log Minimality 63

Remark 1.12.3 (1) In the minimal model theory in classical algebraic surface
theory, a minimal model is defined to be the minimal one under the
following relation using birational morphisms: For two smooth projective
algebraic surfaces X, Y , we define X ≤ Y if there exists a birational
morphism Y → X.

However, in dimensions 3 and higher, there are examples showing that
such a definition does not work ([25, 26]). Therefore, in the minimal model
theory discussed in this book, we consider projective algebraic varieties
with singularities, and define the minimal model by the size of canonical
divisors; the relation X ≤ Y between two birationally equivalent algebraic
varieties is defined by the inequality KX ≤ KY . Here the inequality of
divisors is by comparing the pullbacks on an appropriate birational model:
We write KX ≤ KY if f ∗KX ≤ g∗KY for birational projective morphisms
f : Z → X and g : Z → Y .

The relation (X, B) ≤ (Y , C) for log pairs is defined by f ∗(KX + B) ≤
g∗(KY + C) for birational projective morphisms f : Z → X and g : Z →
Y together with two conditions of (2) of the above proposition.

Such change of viewpoint has already been observed in the log version
of algebraic surfaces ([51]). The importance of considering the log version
showed up at that time. Furthermore, extending to the log version is
indispensable for the inductive proof of the existence of minimal models in
this book.

(2) From the above proposition, one can see that the minimality in weak
sense is equivalent to the minimality of canonical divisors. Furthermore,
according to Corollary 3.6.10 which is derived from the main theorems of
this book, minimal models are maximal among minimal models in weak
sense under the relation defined by birational morphisms.

Looking at this locally, we can say that: Canonical singularities are
characterized by the property that the canonical divisors are locally min-
imal. Furthermore, Q-factorial terminal singularities are maximal, among
those with canonical divisors locally minimal, under the relation defined
by birational morphisms.

For pairs, the log minimality in weak sense is equivalent to the minimal-
ity of log canonical divisors. But as a DLT blowup can be further blown up,
it is impossible to construct a “maximal minimal model.” However, if the
minimal model is KLT, then we can construct a maximal minimal model
by Corollary 3.6.10. This is a pair with Q-factorial terminal singularities.

Looking at this locally, we can say that: LC pairs are characterized by the
property that the log canonical divisors are locally minimal. Furthermore,
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by looking at only KLT pairs, Q-factorial terminal pairs are maximal,
among pairs with log canonical divisors locally minimal, under the relation
defined by birational morphisms.

Therefore, the theory requiring Q-factorial terminal singularities can be
regarded as “maximalist” and the theory requiring canonical singularities
or LC singularities can be regarded as “minimalist.” Models that are
expected to be obtained using the minimal model program will be
“maximalist.”

(3) Let α : X ��� Y be a birational map between normal algebraic varieties
projective over S. X, Y are said to be crepant or K-equivalent to each other
if there are birational projective morphisms f : Z → X, g : Z → Y from
a third normal algebraic variety with g = α ◦ f such that f ∗KX = g∗KY .
Here the comparison of canonical divisors is by using rational differential
forms identified by the birational map. By the above proposition, bira-
tionally equivalent minimal models are crepant to each other.

Furthermore, given effective R-divisors B, C on X, Y , assume that
KX +B and KY +C are R-Cartier. The pairs (X, B) and (Y , C) are said to
be log crepant or K-equivalent to each other if f ∗(KX+B) = g∗(KY +C),
or just crepant for simplicity. When considering minimal models with
boundaries, only being birational is not enough, we should also pay
attention to how to define the boundaries. This is settled in Section 2.5.5.

1.13 The 1-Dimensional and 2-Dimensional Cases

In this section, we describe known results including the finite generation of
canonical rings in dimensions up to 2. Many of them are special phenomena
which only happen in dimensions up to 2. In particular, we describe the
classification of DLT pairs in dimension 2. We obtain a subadjunction formula
from this, and apart from this formula, other results will not be used in
subsequent sections. For a DLT pair in arbitrary dimension, its structure in
codimension 2 can be considered by cutting down the dimension by general
hyperplanes and reducing to the classification of DLT pairs in dimension 2.

1.13.1 The 1-Dimensional Case

First, we discuss the 1-dimensional case briefly. Take an algebraic curve X,
that is, a smooth projective 1-dimensional algebraic variety. Denote its genus
by g. If g = 0, then X � P1 and R(X, KX) � k. If g = 1, then KX ∼ 0 and
R(X, KX) � k[t]. These cases are simple.
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In the following we consider the case g ≥ 2. This condition is equivalent to
X being of general type. It is also equivalent to that the degree of the canonical
divisor is positive deg(KX) > 0 since the degree of the canonical divisor KX is
2g −2. The plurigenera are given by dim H 0(X, mKX) = (2m−1)(g −1) for
m ≥ 2. As KX is ample, the canonical ring R(X, KX) is finitely generated and

X = Proj R(X, KX).

X is called a hyperelliptic curve if there exists a finite morphism π : X → P1

of degree 2. The canonical linear system |KX| is always free, but it is very
ample if and only if X is not a hyperelliptic curve. When X is a hyperelliptic
curve,

|KX| = π∗|OP1(g − 1)|,

where π is the morphism corresponding to |KX|. In this case, |3KX| is very
ample ([44, IV.5]).

To be more specific, if X is not a hyperelliptic curve, then the canonical ring
is generated by the degree 1 part H 0(X, KX) (a theorem of Max Noether [5,
p. 117]). On the other hand, if X is a hyperelliptic curve, then degree up to 3
parts are required to generate the canonical ring.

1.13.2 Minimal Models in Dimension 2

In the following, we consider the 2-dimensional case. For details please refer to
[10]. Let X be an algebraic surface, that is, a 2-dimensional algebraic variety.

Numerical geometry is particularly effective on algebraic surfaces. This is
because the intersection number becomes a symmetric bilinear form since
prime divisors are the same as curves. The following powerful theorem is
often used in algebraic surface theory. It can be used even for problems in
higher dimensional algebraic geometry, by cutting by hyperplane sections and
reducing to algebraic surfaces (see Lemma 1.6.3).

Theorem 1.13.1 (Hodge index theorem [44, Theorem V.1.9]) Let A, B be
Cartier divisors on a proper 2-dimensional algebraic variety X. If (A2) > 0,
(A · B) = 0, and B � 0, then (B2) < 0.

Corollary 1.13.2 Let f : Y → X be a resolution of singularities of an
algebraic surface and let D be a nonzero divisor on Y supported in the
exceptional set Exc(f ). Then (D2) < 0. Therefore, if the exceptional divisors
of f are E1, . . ., Er , then the matrix of intersection numbers [(Ei · Ej)] is
negative definite.
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Proof We may assume that X is projective. Take an ample divisor H on X,
then (f ∗H · f ∗H) > 0 and (f ∗H · D) = 0. If D ≥ 0, as Y is projective,
D � 0 implies D � 0. Therefore, (D2) < 0. In general, we can write D =
D+ − D− in terms of the positive part and the negative part, then (D2) ≤
(D+)2 + (D−)2 < 0. �

In general, given a resolution of singularities f : Y → X, the dual graph �

can be constructed from the exceptional set as the following:

(1) Take vertices v1, . . ., vr of � corresponding to prime divisors E1, . . ., Er in
Exc(f ).

(2) Join vi , vj with an edge if two distinct prime divisors Ei , Ej intersect and
associate the edge with weight (Ei · Ej).

(3) Associate each vertex vi with the self-intersection number (E2
i ) as its

weight.

First of all, we recall the minimality of algebraic surfaces. The definition
of minimal models in algbraic surface theory is different from that in higher
dimensional algebraic geometry. Hence here we use “minimal in the classical
sense.” Given two smooth algebraic surfaces X, Y , the relation X ≥ Y is
defined by that there is a birational projective morphism f : X → Y . An
algebraic surface minimal under this relation is defined to be minimal in the
classical sense.

A curve C on X is called a (−1)-curve if C � P1 and the self-intersection
number (C2) = −1. If we blow up a smooth algebraic surface Y at a point
P , then the exceptional set is a (−1)-curve. Conversely, a (−1)-curve can be
contracted to a smooth point:

Theorem 1.13.3 (Castelnuovo’s contraction theorem [44, Theorem V.5.7])
For a smooth algebraic surface X and a (−1)-curve C on X, there exists
a birational projective morphism f : X → Y to another smooth algebraic
surface such that f (C) is a point and f induces an isomorphism X \ C �
Y \ f (C).

Minimality is characterized by the absence of (−1)-curve:

Theorem 1.13.4 ([44, Proposition V.5.3]) A smooth algebraic surface X is
minimal in the classical sense if and only if there is no (−1)-curve on X.

Corollary 1.13.5 For a smooth projective algebraic surface X, its minimal
model in the classical sense always exists.

Proof In the case that f : X → Y is a contraction of a (−1)-curve, the Picard
number decreases exactly by one: ρ(X) = ρ(Y ) + 1. As the Picard number
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is always positive, a minimal model in the classical sense can be obtained by
taking contractions finitely many times. �

Minimal projective algebraic surfaces in the classical sense are classified
into the following three types:

(1) A surface with KX nef.
(2) A P1-bundle over a curve.
(3) P2.

In this book, (1) is called a minimal model, and (2) or (3) is called a Mori
fiber space. In case (1), the minimal model is unique, so it is the minimum
one. On the other hand, in cases (2) and (3), the minimal model (in the
classical sense) is not unique, so such a model is sometimes said to be relatively
minimal, but to avoid confusion we will not use this terminology.

Combining the existence of resolution of singularities and Castelnuovo’s
contraction theorem, we get the minimal resolution of singularities of a normal
algebraic surface. It is a minimal model in the relative setting, which is
obtained by considering ρ(Y/X) instead of ρ(X):

Corollary 1.13.6 ([44, Theorem V.5.8]) Let X be a normal algebraic surface.
Then among all birational projective morphisms g : Y → X from smooth
algebraic surfaces, there exists a unique minimal one in the classical sense.

We also have the following minimal log resolution of singularities which is
the log version of the minimal resolution of singularities:

Proposition 1.13.7 Let (X, B) be a pair consisting of a normal algebraic
surface and a reduced divisor. Then among all birational projective morphisms
g : Y → X from smooth algebraic surfaces such that the sum of f −1∗ B and
the exceptional divisor E is a normal crossing divisor, there exists a unique
minimal one in the classical sense.

For a projective algebraic curve C on a smooth algebraic surface X, the
following genus formula holds ([44, Example V.3.9.2]):

(KX · C) + (C2) = 2ḡ − 2 ≥ −2.

Here ḡ is called the virtual genus of C, which is a nonnegative integer. Take
g to be the genus of the smooth projective curve Cν obtained from taking
the normalization of C, then ḡ ≥ g. The difference ḡ − g comes from the
singularities of C. In particular, the equality holds if and only if C is smooth.

Minimal resolution of singularities is characterized by relative nefness of the
canonical divisor. This coincides with the definition of minimality in this book:
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Proposition 1.13.8 (1) A birational projective morphism f : Y → X from
a smooth algebraic surface to a normal algebraic surface is the minimal
resolution of singularities if and only if KY is relatively nef.

(2) Let f : Y → X be the minimal resolution of singularities of a normal
algebraic surface. If we write f ∗KX = KY + C, then C is effective.

Proof (1) If there is a (−1)-curve C such that f (C) is a point, then (KY ·C) =
−1 and KY is not relatively nef.

Conversely, if KY is not relatively nef, then there is a curve C such that
(KY · C) < 0 and f (C) is a point. By the Hodge index theorem (Corollary
1.13.2), (C2) < 0. On the other hand, by the genus formula, (KY ·C)+(C2) ≥
−2. Hence we have ((KY + C) · C) = −2, and hence C � P1 and (C2) = −1.
So C is a (−1)-curve.

(2) Write C = C+ − C−, where C+ and C− are effective divisors with no
common irreducible component. If C− � 0, then (KY · C−) = −(C+ · C−) +
(C− · C−) < 0, which contradicts the fact that KY is relatively nef. �

For the Euler characteristic χ(OX) = ∑
(−1)i dim Hi(X,OX) of a smooth

projective algebraic surface X, we have Noether’s formula

χ(OX) = 1

12
((K2

X) + c2(X)).

Here c2(X) is the second Chern class of the tangent bundle of X and −KX =
c1(X) is the first Chern class.

1.13.3 The Classification of Algebraic Surfaces

Let us consider the finite generation problem for canonical rings of smooth
projective algebraic surfaces. The important thing here is that canonical rings
are invariant under contractions of (−1)-curves: f ∗ : R(X′, KX′) � R(X, KX).
Therefore, in the following we consider X to be minimal.

In the classification of minimal models in the classical sense, for a Mori
fiber space in case (2) or (3), its canonical ring is just k, and the finite
generation is trivial. In the following we just consider case (1). The following
content is a deep result called the Kodaira–Enriques classification theory
for algebraic surfaces. In addition, Kodaira also classified (not necessarily
algebraic) compact complex surfaces, but we will not discuss them here ([9]).

The Kodaira dimension κ(X) takes value among 0, 1, 2. When κ(X) = 0,
there exists a positive integer r such that rKX ∼ 0. If we take r to be the
smallest one with such property, then r is among 1, 2, 3, 4, 6. In particular,
R(X, KX) � k[t r ].
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When κ(X) = 1, there exists a surjective morphism f : X → Y to a smooth
projective algebraic curve such that the generic fiber is an elliptic curve. The
following Kodaira’s canonical bundle formula holds:

KX ∼Q f ∗(KY + B).

Moreover, deg(KY + B) > 0. Here B is a Q-divisor on Y determined by types
of singular fibers of f and ∼Q means Q-linearly equivalent. Singular fibers are
completely classified and the corresponding coefficients of B are determined.
Here the coefficients of B are not necessarily contained in the open interval
(0, 1). This is because it also includes a part induced from the J -function
J : Y → P1 coming from the fibers of f . Anyway, there exists a positive
integer r such that rKX ∼ f ∗(r(KY +B)) and R(X, rKX) � R(Y , r(KY +B)).
The latter is finitely generated as r(KY +B) is an ample divisor, which implies
that R(X, KX) is finitely generated.

Consider the case κ(X) = 2. A minimal model X is of general type if
and only if the self-intersection number of the canonical divisor is positive
(K2

X) > 0. For m ≥ 2, by a vanishing theorem of Kodaira type, we have the
following plurigenus formula:

dim H 0(X, mKX) = 1

2
m(m − 1)(K2

X) + χ(OX).

We discuss the canonical models. A curve C on X is called a (−2)-curve if
C � P1 and (C2) = −2. On a minimal surface of general type, a (−2)-curve
is characterized by the condition (KX · C) = 0. This is because, on the one
hand, (C2) < 0 by the Hodge index theorem (Corollary 1.13.2) and on the
other hand, (KX ·C)+ (C2) ≥ −2 by the genus formula. According to Artin’s
contraction theorem ([6] or Theorem 1.13.10), we can contract all (−2)-curves
by a birational morphism; there exists a birational morphism g : X → Y to a
normal algebraic surface such that the exceptional set of g coincides with the
union of all (−2)-curves. Y is called the canonical model.

The canonical divisor KY of Y is a Cartier divisor and KX = g∗KY .
Therefore, there is an isomorphism g∗ : R(Y , KY ) � R(X, KX). Since
KY is ample, the canonical ring R(X, KX) is finitely generated and
Y = Proj R(X, KX). This is the proof of the finite generation of canonical
rings in dimension 2 by Mumford ([107]). More precisely, on the canonical
model, |5KY | is very ample ([17]).

1.13.4 Rational Singularities

For a minimal model X of general type, its canonical model Y has canon-
ical singularities because the birational morphism g : X → Y is crepant
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(KX = f ∗KY ). Canonical singularities in dimension 2 are known to be the
same as rational double points, that is, rational singularities of multiplicity
2. Such singularities were investigated in many different situations histori-
cally. They are also called Du Val singularities, Klein singularities, simple
singularities, or ADE singularities. Here we summarize the classification of
2-dimensional canonical singularities:

Theorem 1.13.9 Let P ∈ X be a canonical singularity in dimension 2.

(1) Take f : Y → X to be the minimal resolution of singularity, then the
exceptional set Exc(f ) is a normal crossing divisor whose irreducible
components are all (−2)-curves and the dual graph defined by their
intersections is among the Dynkin diagrams of type An, Dn, E6, E7, E8 (see
Figure 1.2).

Conversely, on a smooth algebraic surface, a normal crossing divisor
whose irreducible components are all (−2)-curves with dual graph of
type An, Dn, E6, E7, E8 can be contracted to a canonical singularity by
a birational projective morphism.

(2) When the base field is C, there exists an analytic neighborhood of P

isomorphic to the neighborhood of the origin of the hypersurface in C3

defined by one of the following equations:

An : x2 + y2 + zn+1 = 0, n ≥ 1;

Dn : x2 + y2z + zn−1 = 0, n ≥ 4;

E6 : x2 + y3 + z4 = 0;

An

Dn

E6

E7

E8

Figure 1.2 Dynkin diagrams.
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E7 : x2 + y3 + yz3 = 0;

E8 : x2 + y3 + z5 = 0.

Here (x, y, z) are coordinates of C3.
(3) When the base field is C, it is analytically isomorphic to the singularity of

the image of the origin of the quotient space C2/G by a finite subgroup G

of SL(2, C).

More generally, rational singularities on algebraic surfaces are defined by
Artin ([7]). Please refer to the original paper for the proof. The theorem is
characteristic free:

Theorem 1.13.10 Let X be a smooth algebraic surface and let Ei (i =
1, . . ., r) be projective curves on X such that the union E = ⋃

Ei is connected.
Assume that the matrix of intersections [(Ei · Ej)] is negative definite. Then
the following assertions hold:

(1) There exists a smallest effective integral divisor F = ∑
eiEi � 0 satisfying

the property that (F · Ei) ≤ 0 for all i. It is called the fundamental cycle.
(2) The inequality (KX · F) + (F 2) ≥ −2 holds.
(3) If the equality (KX · F) + (F 2) = −2 holds, then there exists a birational

projective morphism f : X → Y to a normal algebraic surface and the
exceptional set Exc(f ) coincides with E. In this case, the singularity of Y

is called a rational singularity.
(4) Rational singularities are Q-factorial. Moreover, R1f∗OX = 0. Con-

versely, a normal singularity on an algebraic surface Y with a resolution
of singularity f : X → Y satisfying R1f∗OX = 0 is a rational singularity.

The condition R1f∗OX = 0 is independent of the choice of resolutions of
singularities since for g : X′ → X a blowup of a smooth algebraic surface at a
point, R1g∗OX′ = 0 and g∗OX′ � OX hold.

Example 1.13.11 (1) On a smooth algebraic surface, a curve satisfying C �
P1 and (C2) < 0 can be contracted to a rational singularity.

(2) Dual graphs obtained by taking resolutions of singularities of 2-
dimensional DLT pairs (see Figure 1.3) can be contracted to rational
singularities.

Proposition 1.13.12 Let X be a normal algebraic surface with at most rational
singularities and let f : Y → X be a resolution of singularities. Then prime
divisors in the exceptional set of f are all isomorphic to P1 and the dual graph
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Type A

−2

−2 Type D

−3 −3

−2

−3 −2 −2

−2

−2 −2 −2 −2

−2

Type E6

−3 −4

−2

−3 −2 −2 −2

−2

−2 −2 −4

−2

Type E7

−2 −2 −2 −2 −2

−2

−3 −5

−2

−3 −3 −2

−2

−3 −2 −3

−2

Type E8

−3 −2 −2 −2 −2

−2

−2 −2 −5

−2

−2 −2 −3 −2

−2

−2 −2 −2 −3

−2

−2 −2 −2 −2 −2 −2

−2

Figure 1.3 2-dimensional DLT.

is a tree. Here a tree is a graph with all edges having weight one and with no
cycles.

Proof Since R1f∗OY = 0, limE H 1(E,OE) = 0 by [44, Theorem III.11.1].
Here the limit is the inverse limit for all subschemes E supported on the
exceptional set of f . Since the exceptional set of f is 1-dimensional, for
any effective divisor E supported in Exc(f ), we have H 1(E,OE) = 0. This
concludes the proof. �

Remark 1.13.13 According to a theorem of Grauert ([33]), for a smooth
complex analytic surface X and projective curves Ei (i = 1, . . ., r) on X

such that the union E = ⋃
Ei is connected and the matrix of intersections

[(Ei ·Ej)] is negative definite, there always exists a proper birational morphism
f : X → Y to a normal complex analytic surface such that the exceptional set
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of f coincides with E. However, Y does not necessarily admit an algebraic
structure and f is not necessarily algebraic.

1.13.5 The Classification of DLT Surface Singularities I

Numerical geometry becomes easy for normal algebraic surfaces. Even for
R-divisors which are not R-Cartier, intersection numbers and pullback by a
morphism can be well defined.

Let X be a normal algebraic surface and let D be an R-divisor on X. Take
a resolution of singularities f : Y → X and denote by Ei (i = 1, . . ., r) the
exceptional divisors. Mumford’s numerical pullback f ∗D = f −1∗ D + ∑

eiEi

is defined as the following ([106]): The coefficients ei are the solution of the
equations (f ∗D · Ei) = 0 for all i, which are uniquely determined since [(Ei ·
Ej)] is negative definite. If moreover D is effective, we can see that f ∗D is
again effective.

For two R-divisors D and D′, their intersection number can be defined by
(D · D′) = (f ∗D · f ∗D′).

From now on, we work on the classification of 2-dimensional DLT pairs.
Here, in all discussions, we assume that the base field is of characteristic 0.
There is also a classification in positive characteristics ([51]).

As the definition of pullback extends to all R-divisors, for a pair (X, B) we
can define the concept such as KLT and DLT without assuming that KX +B is
R-Cartier. Therefore, in the following, this assumption is removed. However,
as will be shown later in this section, it turns out that KX + B automatically
becomes R-Cartier.

First, we generalize the vanishing theorem slightly. For algebraic surfaces,
the normal crossing condition which is important in Theorem 1.9.7 can be
removed:

Proposition 1.13.14 Let X be a smooth projective algebraic surface defined
over an algebraically closed field of characteristic 0, let f : X → S be a
projective morphism to another algebraic variety, and let D be a relatively nef
and relatively big R-divisor on X. Then R1f∗(OX(KX + �D�)) = 0.

Proof Take a log resolution g : Y → X of (X, D). By Theorem 1.9.7, R1(f ◦
g)∗(OY (KY + �g∗D�)) = R1g∗(OY (KY + �g∗D�)) = 0. Then, arguing by
spectral sequence, we get R1f∗(g∗(OY (KY + �g∗D�))) = 0. In the exact
sequence

0 → g∗(OY (KY + �g∗D�)) → OX(KX + �D�) → Q → 0,
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the cokernal Q of the natural homomorphism has 0-dimensional support,
hence it does not have higher cohomologies. Therefore, the proof is completed.

�

DLT pairs have rational singularities:

Proposition 1.13.15 Let (X, B) be a 2-dimensional DLT pair defined over an
algebraically closed field of characteristic 0. Then X has rational singularities.
If (X, B) is only LC, then X has rational singularities at points in the support
of B.

Proof Since (X, B) is DLT, (X, 0) is again DLT. Here note that the condition
KX + B being R-Cartier is removed in the definition of DLT. As (X, 0)

has no boundary, it is KLT. Take the minimal resolution of singularities
f : Y → X and write f ∗KX = KY + C. As it is the minimal resolution,
C is effective. Since (X, 0) is KLT, �−C� = 0. Applying Proposition 1.13.14
to D = −f ∗KX, we get R1f∗OY = R1f∗(OY (�−C�)) = 0.

For the latter assertion, when the pair (X, B) is LC, (X, 0) is KLT at points
in the support of B. �

Rationality of singularities implies Q-factoriality:

Proposition 1.13.16 Algebraic surfaces defined over the complex number field
with only rational singularities are Q-factorial.

Proof Take a resolution of singularities f : Y → X. Consider Y as a complex
analytic variety, consider its sheaves in the classical topology instead of the
Zariski topology. Then there exists an exponential exact sequence

0 → ZY → OY → O∗
Y → 0.

Here the map OY → O∗
Y is defined by the exponential function z �→ e2πiz.

Note that such kind of exact sequence does not exist in the Zariski topology.
By assumption, R1f∗OY = 0, hence the map R1f∗O∗

Y → R2f∗ZY is
injective.

For any divisor D on X, its numerical pullback f ∗D is a Q-divisor, so we
can take a positive integer m such that mf ∗D is integral. Note that OY (mf ∗D)

determines an element in R1f∗O∗
Y whose image in R2f∗QY is 0 since (mf ∗D ·

E) = 0 for every f -exceptional curve E. Therefore, there exists a positive
integer m′ such that the image of OY (mm′f ∗D) in R2f∗ZY is 0. This induces
an isomorphism

OY (mm′f ∗D) � OY .
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The global section of the left-hand side corresponding to 1 of the right-hand
side determines a rational function h on Y such that div(h)Y = −mm′f ∗D.
Hence div(h)X = −mm′D which means that mm′D is Cartier. �

As 2-dimensional DLT pairs are rational singularities, they are Q-factorial,
and hence numerical pullback is actually the same as pullback. For an LC pair,
the same holds true on the support of the boundary.

Next, we show that the KLT or LC property is preserved under covering:

Lemma 1.13.17 Let f : Y → X be a finite surjective morphism étale in codi-
mension 1 between normal algebraic varieties defined over an algebraically
closed field of characteristic 0.

Let B be an effective R-divisor on X such that KX + B is R-Cartier and
write f ∗(KX + B) = KY + C. Then the pair (X, B) is LC if and only if the
pair (Y , C) is LC. The same holds true for KLT pairs.

Proof As f is étale in codimension 1, C is effective. Take a log resolution
g : X′ → X of (X, B) and take Y ′ to be the normalization of X′ in the function
field k(Y ). Denote the induced morphisms by h : Y ′ → Y and f ′ : Y ′ → X′.
Write g∗(KX + B) = KX′ + B ′ and h∗(KY + C) = KY ′ + C′.

First, we show that (X, B) is LC assuming that (Y , C) is LC. Take an
arbitrary prime divisor D contracted by g and denote its coefficient in B ′ by d.
Take a prime divisor E on Y ′ such that f ′(E) = D and denote the ramification
index of E with respect to f ′ by r . Then the coefficient of E in (f ′)∗D and
KY ′ − (f ′)∗KX′ are r and r − 1, respectively. Therefore, take e to be the
coefficient of E in C′, we get the relation

dr = r − 1 + e.

Since e ≤ 1 by assumption, we get d ≤ 1. Moreover, if e < 1, then d < 1.
Conversely, we show that (Y , C) is LC assuming that (X, B) is LC. By using

the result we just proved in the first part, we may replace Y by taking the
Galois closure and assume that the field extension k(Y )/k(X) is Galois from
the beginning. As the Galois group G acts on Y , we now take h : Y ′ → Y to be
a G-equivariant log resolution. For example, a canonical resolution (Remark
1.6.2(4)) is automatically G-equivariant. The quotient space X′ = Y ′/G has
quotient singularities. Denote by g : X′ → X and f ′ : Y ′ → X′ the induced
morphisms. Take a prime divisor E contracted by h and define D, e, d in the
same way as the first part. Although X′ is not smooth, we still have dr =
r − 1 + e. Since d ≤ 1 by assumption, we get e ≤ 1. Moreover, if d < 1, then
e < 1. �
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Remark 1.13.18 Here we give some remarks about the topology of algebraic
varieties defined over the complex number field. In general, the topology
of algebraic varieties is the Zariski topology, but when the base field is the
complex number field, the classical Euclidean topology is also useful. For
example, the exponential exact sequence that appeared in Proposition 1.13.16
makes sense only in the latter topology.

As an open subset in the Zariski topology is large, it admits nontrivial
structure itself, on the other hand, classical topology has polydisks as a base
and its local structure is trivial. Since there are many open subsets, even the
constant sheaf has nontrivial cohomology groups.

For algebraic varieties defined over the complex number field, many defini-
tions and results hold both for the Zariski topology and the classical topology.
Furthermore, in many cases they can be generalized to nonalgebraic complex
analytic varieties. For example, the definitions of DLT pairs and LC pairs can
be generalized using resolutions of complex analytic singularities. The same is
true for DLT pairs having rational singularities. The fact that LC and KLT are
preserved by étale in codimension 1 coverings can be also generalized since it
is a consequence of the ramification formula.

The construction of index 1 covers can be also generalized. For example, for
an effective divisor D on a complex analytic variety X such that there is an
isomorphism OX(rD) � OX, take a regular function h such that div(h) = rD,
take the normalization of the subvariety defined by the equation zr = h in
the trivial line bundle X × C over X, we get the index 1 cover. Here z is the
coordinate in the fiber direction. When D is not effective, we can consider a
similar construction in X × P1.

However, as stated in Remark 1.1.2, we should take care of the concept of
normal crossing divisor. We should also take care of Q-factoriality. A complex
analytic variety X is analytically Q-factorial if for any analytic neighborhood
U of any point P ∈ X and any codimension 1 subvariety D defined on U , there
exists a neighborhood U ′ of P in U , a positive integer r , and a regular function
h on U ′ such that divU ′(h) = r(D ∩ U ′). As the algebraic Q-factoriality is
a condition for globally defined prime divisors, analytical Q-factoriality is a
stronger condition.

1.13.6 The Classification of DLT Surface Singularities II

We describe the classification of DLT pairs for algebraic surfaces. The
results are established in a sufficiently small analytic neighborhood near the
singularity.
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First, consider the structure near points in the support of the boundary:

Theorem 1.13.19 ([61]) Let X be an algebraic surface defined over the
complex number field and let B be a reduced divisor on X. Assume that (X, B)

is DLT. Then for any point P ∈ X in the support of B, there exists an analytic
neighborhood U such that one of the following assertions holds:

(1) U is smooth and B|U is a normal crossing divisor in complex analytic
sense.

(2) U has a cyclic quotient singularity of type 1
r
(1, s) and B|U is irreducible.

Here r , s are coprime positive integers. In more detail, there exists a
neighborhood U0 of the origin of the affine space C2 with coordinates
x, y, a group action by G = Z/(r) as x �→ ζx, y �→ ζ sy such that
the pair (U , B|U) is analytically isomorphic to (U0/G, B0/G). Here ζ is
a primitive rth root of 1 and B0 = div(x). In this case, (U , B|U) is PLT.

Conversely, pairs satisfying (1) or (2) are DLT.

Proof Take a sufficiently small analytic neighborhood U of P and take an
analytic irreducible component B1 of B ∩ U . We may assume that B1 remains
irreducible when replacing U by smaller neighborhoods. Here note that it is
possible that an (algebraic) irreducible component of B containing B1 and
passing P is strictly bigger than B1 when restricting to U .

Since X has rational singularities, it is analytically Q-factorial. Hence the
divisor B1 on U is Q-Cartier. Take r1 to be the smallest positive integer
such that r1B1 is Cartier. Then we may assume that OU(r1B1) � OU . Take
π1 : Y1 → U to be the index 1 cover. As π1 is étale in codimension 1, by
Lemma 1.13.17, (Y1, π∗

1 B) is LC.
If one of the analytic irreducible components of π∗

1 B is not Cartier, note
that Y1 has again rational singularities, we can construct an index 1 cover
π2 : Y2 → Y1 again. Therefore, we can construct a finite cover π : Y → U

étale in codimension 1 such that any analytically irreducible component of
C = π∗B is Cartier. By construction, Q = π−1(P ) is one point.

We will show that Y is smooth. Suppose not, take the minimal resolution of
singularities g : Z → Y . Take Cj to be an analytically irreducible component
of C, as Cj is Cartier, g∗Cj is an integral divisor. Note that the support of g∗Cj

contains the exceptional set of g.
Take s to be the number of such Cj . If s ≥ 2, then any exceptional divisor

of g has coefficients at least 1 in g∗C1 and g∗C2. Since KZ ≤ g∗KY , this
contradicts the fact that (Y , C) is LC.

Now s = 1. Take E1, . . ., Er to be the exceptional divisors of g. Since Y has
rational singularities, the dual graph of the exceptional divisors of g is a tree.
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Since (Y , C) is LC, we get g∗C1 = g−1∗ C1 + ∑
Ei and KZ = g∗KY . Since

C1 is analytically irreducible, set-theoretically g−1∗ C1 intersects the support of∑
Ei at one point. If the graph of g−1∗ C1 + ∑

Ei is not a tree, then we need
more blowups to get a log resolution of (Y , C), but this procedure will produce
an exceptional divisor with log discrepancy coefficient at least 2, which is a
contradiction.

On the other hand, if the graph of g−1∗ C1 + ∑
Ei is a tree, then there exists

an irreducible component E1 intersecting g−1∗ C1 + ∑
i�1 Ei at just one point.

But by (KZ ·E1) = 0 we get (E2
1) = −2, which contradicts to (g∗C1 ·E1) = 0.

In summary, we showed that Y is smooth. By a similar argument, we can
show that C is normal crossing. Note that Y \ Q is connected and simply
connected, so it coincides with the universal covering of U \ P . In particular,
π : Y → U is a Galois covering. Take G to be the Galois group.

Embed Y into the affine space C2 with coordinates x, y such that Q is the
origin. Since (Y , C) is LC and Q is contained in the support of C, we may
assume that the equation of C is xy = 0 or x = 0. By construction, C is
invariant under the action of G.

If the equation of C is x = 0, then B ∩ U is analytically irreducible, and
hence G is the Galois group of an index 1 cover which is isomorphic to Z/(r1).
We get into case (2) by diagonalizing the generator of G. Here if r , s are not
coprime, then there is a nontrivial subgroup of G with fixed locus outside Q,
which contradicts the fact that π : Y → U is étale in codimension 1.

Consider the case that the equation of C is xy = 0. First, consider the case
that every irreducible component of C is invariant under the action of G. By
choosing coordinates properly, the log canonical form dx/x∧dy/y is invariant
under the action of G, and determines a log canonical form θ ∈ H 0(U , KU +
B) on the quotient space Y/G � U . Since θ has no zeros, KU +B is Cartier on
U . Suppose that U is not smooth, take h : V → U to be the minimal resolution
of singularities and write h∗(KU +B) = KV +BV , then the coefficients of BV

are integers. Since h∗KU ≥ KV , the coefficients of BV are at least 1. This con-
tradicts the fact that (X, B) is DLT. Hence U is smooth and we get into case (1).

Next, suppose that there exists an element in G exchanging irreducible
components of C. Then B ∩ U is again analytically irreducible. Hence the
DLT pair (U , B) is PLT. Take G′ to be the subgroup of G consisting of all
elements preserving irreducible components of C, then G1 = G/G′ � Z/(2)

and the log canonical divisor KY ′ +C′ on Y ′ = Y/G′ is Cartier. Here C′ is the
image of C, which is a reduced divisor with two irreducible components. If Y ′
is not smooth, take g′ : Z′ → Y ′ to be the minimal resolution of singularities
and write (g′)∗(KY ′ + C′) = KZ′ + C′

Z , then the coefficients of C′
Z all equal

to 1. The action of G1 on Y ′ extends to Z′ and induces a birational morphism
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h : V = Z′/G1 → U = Y ′/G1. This is not necessarily the minimal resolution
of singularities, but if write h∗(KU +B) = KV +BV , then by the ramification
formula, the coefficients of BV all equal to 1, which contradicts the fact that
(U , B) is PLT. Therefore, Y ′ is smooth. Then G′ = {1} and the action of G1

exchanging irreducible components of C is étale in codimension 1, which is
absurd. �

As an application in arbitrary dimension, we can show the subadjunction
formula for DLT pairs (see Theorem 1.11.13):

Corollary 1.13.20 Let (X, B) be a DLT pair and let Z be an irreducible
component of �B�. Define the R-divisor BZ on Z by (KX +B)|Z = KZ +BZ .
Take an irreducible component P of BZ with coefficient p. Denote by bi the
coefficients of irreducible components of B containing P . Then there exist
positive integers mi , r such that

p = r − 1 + ∑
bimi

r
.

Proof As we can check the coefficient of P on its generic point, we may
assume that dim X = 2 and P is a point. The coefficient remains the same
when X is considered as a complex analytic variety, hence we just need to
consider two cases in Theorem 1.13.19 applied to (X, �B�). Case (1) is trivial,
we only consider case (2).

Let Y = C2, W = div(x), G = Z/(r), X = Y/G, and Z = W/G. Denote
the projection by π : Y → X. Take the origin Q ∈ Y and denote P = π(Q). In
the DLT pair (X, B), B = Z + ∑

biBi . Take Ci = π∗Bi and mi = (Ci · W)Q

which are local intersection numbers at Q. When Bi passes through P , mi is a
positive integer.

Since the covering π : Y → X is étale outside the origin, π∗(KX + Z) =
KY + W . On the other hand, π |W : W → Z is ramified over Q with index r ,
hence π∗P = rQ, KW = (π |W)∗KZ + (r − 1)Q. On the smooth variety Y

we have the usual adjunction formula (KY + W)|W = KW . Then the assertion
follows. �

Next we consider points outside the boundary:

Theorem 1.13.21 ([61]) Let X be an algebraic surface defined over the
complex number field. Assume that the pair (X, 0) is DLT. Then any point
P ∈ X is a quotient singularity. That is, there exists an analytic neighborhood
U of P which is analytically isomorphic to the quotient of a neighborhood of
the origin (0, 0) of C2 by the linear action of a finite subgroup G of the general
linear group GL(2, C).

Conversely, if X has quotient singularities, then (X, 0) is DLT.

https://doi.org/10.1017/9781009344647.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009344647.003


80 1 Algebraic Varieties with Boundaries

Proof Since B = 0, (U , 0) is KLT. First, take the index 1 cover π1 : Y1 → U of
KX. Since (Y1, 0) is also KLT and KY1 is Cartier, Y1 has canonical singularities.
Therefore, Y1 = U0/G1, where U0 is a neighborhood of the origin of C2 and
G1 is a finite subgroup of SL(2, C). Now U0 \ {0} is the universal cover of
U \ {P } and we get the conclusion.

The converse statement follows from the ramification formula and holds for
any dimension (Proposition 1.10.6). �

Birational geometry of algebraic surfaces works for arbitrary characteristics.
The classification theorem of minimal models works under certain modifica-
tion ([18, 19, 110]). The theory of rational singularities remains true, also the
contraction theorem remains true ([6, 7]). The dual graph of the resolution of
singularities of a DLT pair is completely classified, which is the same as in
characteristic 0 ([51]; Figure 1.3). However, in characteristic 0 the singularity
can be determined by the dual graph of the resolution of singularity, which
turns out to be a quotient singularity, but on the other hand, in positive
characteristics it is only known to be a rational singularity and the structure
of the singularity is not determined only by the dual graph of the resolution of
singularity, the classification seems to be more complicated. In addition, [51]
is the origin where the author was involved in the minimal model theory.

1.13.7 The Zariski Decomposition

Finally, we state the Zariski decomposition theorem for divisors on algebraic
surfaces:

Theorem 1.13.22 Let D be an integral divisor on a smooth projective surface
X. Assume that there exists a positive integer m such that |mD| � ∅. Then
there exists an effective Q-divisor N satisfying the following conditions:

(1) P = D − N is nef.
(2) (P · Ei) = 0 for every i, where E1, . . ., Em are irreducible components of

N .
(3) The matrix [(Ei · Ej)] is negative definite.

Moreover, N is uniquely determined by the above conditions.

Such a decomposition D = P +N is called the Zariski decomposition of D

([144]).

Proposition 1.13.23 Let X be a smooth projective surface and let f : X → Y

be a morphism to a minimal model in the classical sense. Assume that KY is
nef. Set N = KX−f ∗KY , then KX = f ∗KY +N is the Zariski decomposition.
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That is, we can say that the Zariski decomposition indeed gives the minimal
model without taking a birational model. This is the reason why Zariski
decomposition has drawn a lot of attention.

Example 1.13.24 We give an example of a log minimal model in dimension 2.
The correspondence between Zariski decompositions and log minimal models
holds in general ([51]).

Consider an irreducible curve B of degree 4 with three ordinary cusp
singularities on the projective plane X = P2. Here an ordinary cusp singularity
is a singularity analytically equivalent to the singularity given by the equation
x2 − y3 = 0 at the origin. By the genus formula, B is a rational curve, that
is, its normalization is isomorphic to P1. Let f : Y → X be the minimal log
resolution of the pair (X, B) and let C0 = f −1∗ B be the strict transform. Let
Pi (i = 1, 2, 3) be the three singular points on B. Over each point there are
three exceptional divisors Eij (i, j = 1, 2, 3) on Y . It is easy to calculate the
intersection numbers (C2

0) = −2 and (E2
ij ) = −j . C = C0 + ∑

i,j Eij is a

normal crossing divisor with all irreducible components isomorphic to P1. The
dual graph is shown in Figure 1.4.

The Zariski decomposition KY + C = P + N is given by

P = KY + C0 +
∑

i

(
Ei1 + 1

2
Ei2 + 2

3
Ei3

)
, N =

∑
i

(
1

2
Ei2 + 1

3
Ei3

)
.

Here P is nef and big with (P 2) = 1/2.

C

E21 E22

E23

E11E13

E12

E31

E33E32

Figure 1.4 Dual graph of the resolution of singularities.
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Denote by g : Y → Z the contraction of six curves Ei2, Ei3 (i = 1, 2, 3) in
the support of N and D = g∗C. Then KZ +D is ample and P = g∗(KZ +D).
The pair (Z, D) is a minimal model of the DLT pair (Y , C) which is also the
canonical model.

In Chapter 2, we will generalize the definition of Zariski decomposition in a
weak sense for pseudo-effective R-divisors in any dimension, which is called
the “divisorial Zariski decomposition.”

1.14 The 3-Dimensional Case

Let us consider the 3-dimensional case. In this situation, results in higher
dimensional algebraic geometry discussed in subsequent chapters are neces-
sary. Indeed, higher dimensional algebraic geometry starts from dimension
3. However, there are also special phenomena and results that only appear
in dimension 3. We will describe them briefly as a comparison to results in
dimensions up to 2. The results in this section will not be used in subsequent
sections.

The MMP, including the existence of flips, the termination of flips, and
the abundance conjecture which will be discussed in Chapter 2, is completely
understood in dimension 3 even for the log version.

As a consequence of the minimal model theory, the following theorem holds:

Theorem 1.14.1 Let X be a smooth projective 3-dimensional algebraic variety
over a field of characteristic 0. Then there exists a projective algebraic
variety X′ with at most Q-factorial terminal singularities and a birational
map f : X ��� X′ surjective in codimension 1 such that one of the following
assertions holds:

(1) X′ is a minimal model. That is, the canonical divisor KX′ is nef.
(2) X′ admits a Mori fiber space structure. That is, there exists a surjective

morphism g : X′ → Y to a normal algebraic variety Y with dim Y <

dim X and connected geometric fibers such that −KX is g-ample and
ρ(X/Y ) = 1.

Remark 1.14.2 (1) f is not necessarily a morphism and X′ is not necessarily
smooth, this is a feature in dimensions 3 and higher.

(2) X′ has terminal singularities means that the pair (X′, 0) with divisor
0 has terminal singularities. The concept of terminal singularities was
originally defined by Reid in dimension 3 ([121]). This was the starting
point of higher dimensional minimal model theory. However, log terminal
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singularities for algebraic surfaces already appeared before this ([51]). In
dimension 2, terminal singularities are impossible to be aware of since they
are automatically smooth.

(3) Any terminal singularity can appear in some minimal model. Terminal
singularities in dimension 3 are isolated singularities and are completely
classified (Theorem 1.14.5). For example, for two coprime positive integers
r , b with b < r , a cyclic quotient singularity of type 1

r
(1, −1, b) is a

terminal singularity (see Example 1.10.5 for the notation). The Cartier
index of a singularity P ∈ X is the minimal positive integer m such that
mKX is Cartier in a neighborhood of P . For example, the Cartier index of
a cyclic quotient singularity of type 1

r
(1, −1, b) is r . In particular, there are

minimal models with arbitrarily large Cartier indices.
(4) The existence of flips in dimension 3 was proved by Mori via an almost

complete classification of small contractions ([102]). As will be discussed
in Chapter 3, the existence of flips in arbitrary dimension is proved
in a completely different way by induction on dimensions, where the
generalization to the log version is essential.

(5) The termination of flips in dimension 3 was proved by Shokurov ([127]).
The termination of log flips in dimension 3 was proved in [65]. The
termination of flips remains open in arbitrary dimension.

The abundance theorem holds in dimension 3 ([63, 95–97]):

Theorem 1.14.3 Let X be a 3-dimensional minimal model. That is, X is a
projective algebraic variety with terminal singularities and KX is nef. Then
there exists a positive integer m such that the pluricanonical system |mKX| is
free. Associated with this, there exists a surjective morphism f : X → Y to a
normal projective algebraic variety with connected geometric fibers such that
KX ∼Q f ∗H for an ample Q-divisor H on Y . By definition, dim Y = κ(X).
In particular, the canonical ring is finitely generated.

Remark 1.14.4 (1) The log version of the abundance conjecture in dimension
3 was also proved ([78]).

(2) As will be shown in Chapter 3, the finite generation of canonical rings is
much weaker that the abundance theorem.

Terminal singularities in dimension 3 are completely classified as complex
analytic singularities ([101, 121, 124]):

Theorem 1.14.5 Let X be a 3-dimensional algebraic variety defined over the
complex number field with terminal singularities and take P ∈ X to be a
singular point. Then (X, P) is an isolated singularity. Take r to be the Cartier
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index, then there exists an analytic neighborhood of P isomorphic to the
neighborhood of the image of the origin of one of the following singularities:

(1) A cyclic quotient singularity of type 1
r
(a, −a, 1). Here r , a are coprime

positive integers (see Example 1.10.5 for the notation).
(2) General type: The quotient space of the hypersurface in C4 defined by the

equation xy+f (zr , w) = 0 at the origin by the cyclic group Z/(r). In other
words, the prime divisor in a 4-dimensional quotient singularity defined by{

(x, y, z, w) ∈ 1

r
(a, −a, 1, 0)

∣∣∣xy + f (zr , w) = 0

}
.

Here r , a are coprime positive integers and f has no constant term or w

term.
The following (3), (4) are also prime divisors in 4-dimensional quotient

singularities.
(3) Special type:{

(x, y, z, w) ∈ 1

2
(1, 0, 1, 1)

∣∣∣ x2 + y2 + f (z, w) = 0

}
, f ∈ m4, r = 2;

{
(x, y, z, w) ∈ 1

2
(1, 0, 1, 1)

∣∣∣ x2 + f (y, z, w) = 0

}
,

f ∈ m3 \m4, f3 � y3, r = 2;{
(x, y, z, w) ∈ 1

3
(0, 1, 2, 2)

∣∣∣ x2 + f (y, z, w) = 0

}
,

f ∈ m3, f3 = y3 + z3 + w3, y3 + zw2, or y3 + z3, r = 3;{
(x, y, z, w) ∈ 1

2
(1, 0, 1, 1)

∣∣∣ x2 + y3 + yf (z, w) + g(z, w) = 0

}
,

f ∈ m4, g ∈ m4 \m5, r = 2.

Here m is the maximal ideal of the origin.
(4) Exceptional type:{

(x, y, z, w) ∈ 1

4
(1, 3, 1, 2)

∣∣∣ x2 + y2 + f (z2, w) = 0

}
, r = 4.

Here f has no constant term or w term.

The exceptional type is different since f is not invariant under the group
action.

Example 1.14.6 A terminal singularity appearing as the target of a divisorial
contraction from a smooth 3-dimensional algebraic variety is either smooth or
among one of the following cases:
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(1) A cyclic quotient singularity of type 1
2 (1, 1, 1).

(2) The hypersurface defined by the equation xy + zw = 0 in C4.
(3) The hypersurface defined by the equation xy + z2 + w3 = 0 in C4.

In cases (2) and (3), KX is Cartier.
More complicated terminal singularities appear when taking divisorial con-

tractions from singular 3-dimensional algebraic varieties. Conversely, for the
equation of each singularity above, we can construct a divisorial contraction
f : Y → X explicitly by a weighted blowing up of X (see [128, Appendix]).

Let X be a 3-dimensional minimal projective algebraic variety. When
κ(X) = 3, we want to have a formula for plurigenera. Being of general type
for X is equivalent to that the self-intersection of the canonical divisor on a
minimal model is positive (K3

X) > 0 (Theorem 1.5.12). However, as KX is not
necessarily Cartier, (K3

X) is in general only a rational number.
By the finite generation of canonical rings, we can define the canonical

model Y = Proj R(X, KX). There exists a birational morphism g : X → Y

such that KX = g∗KY which is the same as in dimension 2. Here this equality
is in the following sense: For an integer m, mKX is Cartier if and only if mKY

is Cartier, moreover, in this case the equality mKX = g∗(mKY ) holds. In
particular, |mKX| is free if and only if |mKY | is free.

In order to state Reid’s plurigenus formula in [124], we introduce the
concept of baskets of singularities. Take {P1, . . ., Pt } to be the set of singular
points of X. Each singular point (X, Pi) is associated with a set of couples of
integers { 1

rij
(1, −1, bij )} which is called the basket. Here rij , bij are coprime

positive integers with bij < rij . For example, when (X, Pi) is a cyclic
quotient singularity of type 1

r
(1, −1, b), its basket just consists of one couple

{ 1
r
(1, −1, b)}, which coincides with the type of the quotient singularity. In

general, a 3-dimensional terminal singularity can be locally deformed into
several cyclic quotient singularities, in which case its basket is the collection
of types of those cyclic quotient singularities. The Cartier index ri of (X, Pi)

coincides with the least common multiple of rij in its basket. By considering
baskets, terminal singularities can be replaced by a set of virtual cyclic quotient
singularities.

Reid’s plurigenus formula for m ≥ 2 is the following:

dim H 0(X, mKX) = 1

12
m(m − 1)(2m − 1)(K3

X) + (1 − 2m)χ(OX)

+
∑
i,j

(
r2
ij − 1

12rij
(m − m̄) +

m̄−1∑
k=0

bij k · (rij − bij k)

2rij

)
.
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Here m denotes the residue of m modulo rij ([124]). This formula is a sum of a
polynomial in m and a periodic correction term with respect to m (see [144]).
The correction term runs over the baskets of all singularities. As plurigenera
are birational invariants, the left-hand side is the same as the starting smooth
model, but the right-hand side can be only computed on a minimal model
with singularities. In other words, when computing plurigenera on a smooth
model, the singularities of its minimal model appear, which is a surprising
phenomenon.

Also we have the following formula ([59]):

χ(OX) = − 1

24
(KX · c2(X)) +

∑
i,j

r2
ij − 1

24rij
.

Here, since X has only isolated singularities, the intersection number (KX ·
c2(X)) can be defined properly.

Remark 1.14.7 In this book, we will show the finite generation of canonical
rings. However, it is impossible to find a bound of the degrees of generators
depending only on the dimension. This can already be observed in dimen-
sion 3.

Let P be a singular point on a minimal model X. If m is not divisible by the
Cartier index r of P , then P is a basepoint of |mKX|. Hence for arbitrary large
m, we can construct examples such that |mKX| is not free.

For example, if dim X = 3 and P is a cyclic quotient singularity of type
1
r
(a, −a, 1), then the canonical ring cannot be generated by elements of degree

less than r . This is a completely different phenomenon from that in dimensions
up to 2, because singularities appear in minimal models in dimensions 3 and
higher.
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