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In this paper, we investigate from a theoretical point of view the 2D reaction-diffusion

system for electrodeposition coupling morphology and surface chemistry, presented and

experimentally validated in Bozzini et al. (2013 J. Solid State Electr. 17, 467–479). We ana-

lyse the mechanisms responsible for spatio-temporal organization. As a first step, spatially

uniform dynamics is discussed and the occurrence of a supercritical Hopf bifurcation for

the local kinetics is proved. In the spatial case, initiation of morphological patterns in-

duced by diffusion is shown to occur in a suitable region of the parameter space. The

intriguing interplay between Hopf and Turing instability is also considered, by investigating

the spatio-temporal behaviour of the system in the neighbourhood of the codimension-

two Turing–Hopf bifurcation point. An ADI (Alternating Direction Implicit) scheme based

on high-order finite differences in space is applied to obtain numerical approximations of

Turing patterns at the steady state and for the simulation of the oscillating Turing–Hopf

dynamics.

Key words: Reaction-diffusion models; Pattern formation; Turing-Hopf instability; ADI

method; Finite differences

1 Introduction

Alloy electrodeposition processes have been shown to exhibit electrokinetic instabilities

that can lead to compositional heterogeneity in the bulk of electrodeposits. Starting from

this evidence, a number of papers have insightfully investigated the formation of spatio-

temporal structures from an experimental point of view, but the attempts to single out the

factors leading to the development of specific patterns have hardly exceeded the empirical

level.
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The notable circumstance that experimental patterns found in electrodeposition pro-

cesses exhibit structures that are strongly reminiscent of those found in many different

natural systems (such as fish and animal coat markings, sand dunes, grass landscapes)

has suggested that such experimental electrochemical scenarios could be explained within

the reaction-diffusion modelling framework [40, 45].

In fact, since the pioneering intuition of Alan Turing [66], pattern formation in reaction-

diffusion systems has become the paradigm for models of spatial self-organization and the

question “How do these patterns arise?” has produced stimulating research in the field of

non-linear dynamics [46,47,51]. As a matter of fact, Turing’s diffusion-driven instability is

now universally recognized as one of the leading mechanisms of spatial pattern formation

in reaction-diffusion systems and the related Turing patterns have been the subject of

extensive studies in a variety of applied contexts [20, 21, 25, 28, 32, 46, 48, 51, 65].

In this regard, chemistry seems to have had a privileged role. As insightfully ex-

pressed in [68], the advantage of chemical systems over biological ones is that one

can perform experiments under controllable conditions and manipulate the relevant

parameters in order to generate patterns. Chemical systems can hence offer rigorous

experimental validation of the theoretical predictions and can thereby probe fundamental

issues about pattern formation. Turing patterns in a chemical reactor were first exper-

imentally observed by De Kepper’s group in a chlorite–iodide–malonic acid (CIMA)

reaction [18] and later confirmed by Ouyang and Swinney who observed striped as

well as spotty patterns [53]. The chance to experimentally detect Turing structures

has produced a renewed interest in these systems as shown by the large number

of theoretical [35, 58], computational [43, 44, 67] and experimental studies in the field

[6, 42, 52].

The mathematical modelling of electrochemical dynamics and of the related pattern

formation processes has been mainly developed for variants of the activator-inhibitor

mechanism and focused on electrocatalysis [36, 40, 45] more than electrodeposition. Nev-

ertheless, in this field experimental pattern formation has been observed in a series of

experiments regarding, among others, Ag [27,38], Co–In [39] and Ni–P–W–Bi [15] alloys.

Also the mathematical description of these phenomena has generally been developed

within the reaction-diffusion modelling approach, with the rather artificial ansatz of

considering exclusively concentrations of the reactive species as state variables for the

electrodeposition models [26, 37, 59–61].

In a series of recent papers [7–15] and [63] we used the reaction-diffusion modelling

approach to rationalize the formation of morphological patterns in electrodeposition. The

novelty of our approach was to consider more natural state variables: the morphology

(surface profile) – that is the crucial observable – and the surface chemistry (composition)

– that in fact controls the growth process – coupled through non-linear and physic-

ally straightforward electrochemical source terms. The resulting two variable non-linear

reaction-diffusion system led to the formation of Turing patterns as well as to the devel-

opment of transition front waves and allowed us to gain a detailed understanding of the

3D electrocrystallisation process.

In this paper, we consider the spatially 2D reaction-diffusion system introduced in [15]

and based on classical textbook electrokinetics, which notably improves our previous

model studied in [9] that contained rather crude physico-chemical approximations. As
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shown in [15] by extensive numerical simulations, this new model is interestingly flexible in

terms of accounting for typical electrokinetic control phenomena and includes all spatio-

temporal organization types that, to the best of our efforts, we have been able to find in

the experimental literature (see [15] and references therein for a comprehensive gallery of

the experimental results). In [15] the spatial pattern initiation was not investigated from

an analytical point of view and we wish to address this point in detail in the present paper:

we show that our model supports spatial pattern initiation, because of Turing’s diffusion-

driven instability, and that it can also exhibit a variety of spatio-temporal phenomena.

This feature of our model can be in part explained by observing that it displays interesting

dynamics in the spatially uniform case since the physically relevant steady state can lose its

stability via a transcritical bifurcation as well as via a supercritical Hopf bifurcation. This

latter circumstance seems to be noteworthy because recent studies [2, 3] have shown that

the emergence of spatio-temporal patterns in reaction-diffusion systems can be related

to the presence of unstable homogeneous states, like those found beyond a supercritical

Hopf bifurcation.

The simultaneous appearance of Turing instability, which leads to steady spatial struc-

tures, with Hopf instability, which gives rise to temporal oscillations, is of great interest

because these bifurcations are responsible for the breaking of spatial and temporal sym-

metries, respectively. The coupling between these two kinds of instabilities was first

theoretically investigated in the 90’s in the framework of the Lengyel–Epstein model of

the CIMA reaction [56]. Since then it has become a key topic for pattern formation in the

reaction-diffusion framework and has been extensively investigated in chemistry, physics

and biology [2, 3, 24, 33, 48, 49, 55].

The Turing–Hopf (TH) interaction can take place either due to different competing

bifurcations of multiple stationary states [23, 25] or through a codimension-two TH bi-

furcation [24,57]. For small two-dimensional systems, the following scenarios are expected

in the neighbourhood of a codimension-two TH bifurcation point: (i) a TH bistability

regime, where either a stationary spatial pattern or a spatially uniform oscillating solu-

tion can be attained, depending on the initial conditions; (ii) a TH 2D mixed mode,

such as stripes and hexagons, oscillating homogeneously in time with one frequency;

(iii) a subharmonic Turing mode, resulting in a spatial pattern with two wavenum-

bers and one frequency; (iv) a subharmonic TH mode, which leads to spatial patterns

with two wavenumbers and two frequencies. In addition, when large systems are con-

sidered, spatial modulations of the amplitude can lead to long-wavelength instabilities

[25].

Both Turing and Hopf instabilities have been experimentally observed separately in

the CIMA reaction by varying the concentration of the colour indicator in the reactor

[25, 54]. Moreover, in [69, 70] a variety of both stationary and oscillating structures

were obtained in the numerical simulations of a system with interacting modes. On the

other hand, due to the interaction between Turing and Hopf instabilities, oscillatory

Turing patterns were also found in the Belousov–Zhabotinsky reaction in a water-in-oil

microemulsion [34] and in the chlorine dioxide–iodine–malonic acid (CDIMA) reaction

[50].

In the neighbourhood of a codimension-two TH point, chaotic 2D dynamics has

also been observed both experimentally [5] and numerically [49] although a theoretical
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characterization of the mechanisms leading to chaos has only rarely been provided [1].

In this respect, within the ecological context, a fascinating debate is currently going

on: see e.g. [2, 3]. In [3] the authors use the concept of generalized models developed

in [31] to show that in a modified diffusive predator-prey Rosenzweig–McArthur model,

spatially irregular self-sustained non-stationary patterns or even spatio-temporal chaos can

appear for parameter values in the neighbourhood of the TH bifurcation point. Instead,

in [2], where a two species reaction-diffusion predator-prey system with a ratio-dependent

functional response is considered, spatio-temporal chaos is not found in the close vicinity

of the TH bifurcation, but rather for parameter values far from the bifurcation point.

These two examples show how the occurrence of chaotic spatio-temporal dynamics near

a TH point is still a controversial issue.

In the present paper, we will show that the spatio-temporal phenomenology occurring

in the neighbourhood of a codimension-two TH point can be further enriched by focusing

on the possible destabilization à la Turing of the limit cycle born by a supercritical

Hopf bifurcation. In [55] this mechanism is referred to as TH instability or diffusive

instability of the Hopf limit cycle and represents a different way in which Turing and

Hopf instabilities can interact. We will exploit the analytical approach developed in [55],

which employs perturbation expansions, to find appropriate normal modes useful for the

study of the TH instability of the Hopf limit cycle. We show that, in the neighbourhood

of the TH point, our system can exhibit both a classical TH bistability regime and a TH

instability of the Hopf cycle which possibly results in oscillatory inhomogeneous patterns.

The possible occurrence of 2D chaotic spatio-temporal dynamics is also discussed in

this context. These theoretical findings will be illustrated through an extensive gallery of

numerical simulations both for stationary and oscillating Turing patterns.

The structure of the paper is detailed below. In Section 2, we recall the main features

of the 2D reaction-diffusion system introduced in [15]; a brief overview of the system

properties in the spatially uniform case is provided in Section 3; the conditions for the

emergence of spatial patterns via Turing instability are discussed in Section 4; higher

codimension bifurcation points are treated in Section 5 and in Section 6 we investigate,

from the analytical point of view, the destabilization à la Turing of the Hopf limit cycle

and the resulting spatio-temporal dynamics in the neighbourhood of the codimension-two

TH bifurcation point. In Section 7, we show the numerical simulations, some information

about the numerical methods used and a qualitative discussion about the role of some

parameters of crucial electrochemical interest in the selection of the typology of patterns

obtained. Concluding remarks and possible ramifications of the obtained results are

reported in Section 8.

2 The model

In this paper, we deepen the analysis of the reaction-diffusion model proposed in [15],

whose key feature is the coupling of one equation for the morphology η(x, y, t) with one

for the surface chemistry θ(x, y, t). η ∈ � is adimensional and expresses the instantaneous

increment of the electrodeposit profile. 0 � θ(x, y, t) � 1 is the surface coverage with the
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functionally crucial adsorbate. The PDE system in adimensional form is given by

∂η

∂t
= Δη + f(η, θ),

∂θ

∂t
= dΔθ + g(η, θ),

(2.1)

where Δ is the two-dimensional Laplacian operator and d = Dθ/Dη is the ratio of the

diffusion coefficients for the individual chemical and morphological processes, respectively.

The non-linear source terms that account for generation (deposition) and loss (corrosion)

of the relevant material are given by

f(η, θ) = A1 (1 − θ) η − A2η
3 − B (θ − α) ,

g(η, θ) = C (1 + k2 η) (1 − θ) [1 − γ (1 − θ)] − D [θ (1 + γθ) + k3ηθ (1 + γθ)] .
(2.2)

Model (2.1)–(2.2) is defined for (x, y, t) ∈ [0, Lx]×
[
0, Ly

]
×[0, T ], with Lx, Ly characteristic

lengths of the electrode and T a characteristic time of the electrodeposition process. We

also require (2.1)–(2.2) to be supplemented by zero-flux boundary conditions and the

following initial conditions:

η(x, y, 0) = η0(x, y), θ(x, y, 0) = θ0(x, y), (x, y) ∈ [0, Lx] ×
[
0, Ly

]
.

The physical meaning of the source terms (2.2) is briefly described here; full details

are provided in [15]. The term A1(1 − θ)η accounts for the charge-transfer rate at sites

free from adsorbates; A2η
3 describes mass-transport limitations to the electrodeposition

process. The term −B(θ − α) quantifies the effect of adsorbates on the electrodeposition

rate. The parameter 0 < α � 1 takes into account the fact that adsorbates can have

both inhibiting and enhancing effects on the growth rate. The source term g, that can

be regarded as g(η, θ) = C gads(η, θ) − D gdes(η, θ), features adsorption (parameter C) and

desorption (parameter D) terms including both chemical (expanded to second order)

and electrochemical (first order) contributions. Moreover, the source terms (2.2) contain

two major improvements with respect to the ones used in [9]: (i) they are physically

more straightforward, as their analytical form is fully compatible with classical theories

of electrodeposition kinetics and (ii) they are more flexible because non-linearities and

couplings can be switched on and off simply by properly choosing parameter values, thus

allowing us to build a hierarchy of models from the same analytical concept.

For simplicity and without loss of generality, the results reported in this work are

derived under the following assumptions: (i) all the constants are taken as real positive

or equal to zero, with 0 < γ � 1; (ii) k3 < k2, meaning that adsorption is the dominating

chemical contribution to growth; (iii) the following relation holds:

D =
C(1 − α)(1 − γ + γα)

α(1 + γα)
, (2.3)

implying that adsorbates enhance the growth rate and the adsorption and desorption

rates are proportional (D ∝ C). The source terms (2.2) with condition (2.3) allow model

(2.1) to support a multiplicity of spatially uniform equilibria, i.e. real solutions (η∗, θ∗) of
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Figure 1. Bifurcation diagram in the (B, η∗) plane showing how the number of spatially uniform

equilibria (η∗, θ∗) for model (2.1)–(2.2) with assumption (2.3) changes upon varying the parameter

B. The values for the other parameters are: α = 0.5; γ = 0.2; k2 = 2.5; k3 = 1.5; A1 = 10; A2 = 30.

The parameter C has no role in deciding the number and the numerical value of spatially uniform

equilibria. Here θ∗ = 0.5 (20 η∗ − 60 η∗3 +B)/(10 η∗ +B). In this specific case, three threshold values

B∗
i exist and there are three possible scenarios: 5 equilibria exist for B ∈ (0, B∗

1 )∪(B∗
2 , B

∗
3 ); 7 equilibria

exist for B ∈ (B∗
1 , B

∗
2 ); 3 equilibria exist for B > B∗

3 . We observe that Pe = (ηe, θe) = (0, α) is always

a spatially uniform equilibrium for the system.

the system

A1 (1 − θ) η − A2η
3 − B (θ − α) = 0

C (1 + k2 η) (1 − θ) [1 − γ (1 − θ)] − D θ (1 + γθ) − Dk3ηθ (1 + γθ) = 0.

As an example, in Figure 1 we show, for a specific choice of the other parameter values

given in the figure caption, a bifurcation diagram in the (B, η∗) plane showing how the

number of spatially uniform equilibria (η∗, θ∗) changes by varying the parameter B.

Condition (2.3) ensures that: (i) the parameter C has no role in deciding the number

and the numerical value of spatially uniform equilibria; (ii) Pe = (ηe, θe) = (0, α) is a

spatially independent equilibrium for any choice of all parameter values.

Since Pe is characterized by ηe = 0, it corresponds to a flat electrode surface, from which

corrugation and morphology can develop. For this reason, the related stability properties

and possible destabilization mechanisms are particularly relevant from the physical point

of view. Thus, in the following, we focus on Pe and investigate the mechanisms responsible

for pattern formation in (2.1)–(2.2). Toward this aim, we start by giving a brief overview

on the Pe destabilization mechanisms in the spatially uniform case.

https://doi.org/10.1017/S0956792514000370 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000370


Spatio-temporal organization in a morphochemical electrodeposition model 149

3 The spatially uniform case: a brief overview

The Jacobian matrix J(η, θ) evaluated at the homogeneous steady state Pe is given by

J(ηe, θe) =

[
A1 (1 − α) −B

C(k2 − k3)F1(α, γ) −C F2(α, γ)

]
, (3.1)

with

F1(α, γ) = (1 − α)(1 − γ + αγ); F2(α, γ) =
2αγ(1 + αγ − γ) + 1 − γ

α(1 + αγ)
. (3.2)

Linear stability analysis easily shows that there are two specific bifurcations by which

Pe can lose its stability in the spatially uniform case. One is the transcritical bifurcation,

where the attracting equilibrium Pe loses its stability because it exchanges its stability

properties with another equilibrium. Let be τe = tr(J(ηe, θe)) and δe = det(J(ηe, θe)). At

the bifurcation value, Pe becomes non-hyperbolic since one real eigenvalue of the related

Jacobian matrix vanishes. Hence, the transcritical bifurcation can be detected by requiring

δe = 0, i.e.

B =
A1 (1 − α)F2(α, γ)

(k2 − k3)F1(α, γ)
.

The other bifurcation involved is the Hopf one, where the attracting equilibrium Pe loses

its stability because a couple of complex conjugate eigenvalues of J(ηe, θe) crosses the

imaginary axis. The Hopf bifurcation can then be detected by requiring τe = 0 and δe > 0,

that is

C =
A1 (1 − α)

F2(α, γ)
, B >

A1 (1 − α)F2(α, γ)

(k2 − k3)F1(α, γ)
. (3.3)

Figure 2(a) shows such bifurcation lines in the parameter space (C,B) for a specific choice

of the other parameter values: the vertical and horizontal ones are the Hopf and the

transcritical lines, respectively. The regions on the right-hand side of the Hopf line and

above the transcritical line are characterized by τe < 0 and δe > 0, so that, in the spatially

uniform case, the homogeneous equilibrium Pe is unconditionally stable.

For parameter choices below the transcritical bifurcation line, δe < 0 holds, so that Pe

can be destabilized by small homogeneous perturbations and the system trajectories tend

toward a different stable steady state. Moreover, in the region on the left of the Hopf line

and above the transcritical one, Pe is unstable and we expect homogeneous oscillations

due to the presence of a stable limit cycle, caused by a supercritical Hopf bifurcation. We

will consider this scenario in more detail in Section 6. In the following, we focus on the

spatial case and start by looking for the occurrence of the Turing instability phenomenon

which – since Turing’s pioneering intuition of 1952, [66] – has been considered one of the

leading mechanisms for spatial pattern formation in reaction-diffusion systems.

4 Pattern formation via Turing instability

Using linear stability analysis, we show the occurrence of spatial patterns induced by

diffusion, i.e. the diffusion-driven or Turing instability phenomenon for system (2.1)–(2.2). As

widely known in literature, a reaction-diffusion system is said to exhibit diffusion-driven

instability if a spatially uniform steady state – that is locally stable in the absence of
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Figure 2. Bifurcation diagram in the parameter space (C,B). The values for the other parameters

are: α = 0.5; γ = 0.2; k2 = 2.5; k3 = 1.5; A1 = 10; A2 = 30. (a) Detail of the bifurcation diagram for

d = 20. R1 is the region in the parameter space (C,B) where conditions (4.4) for the spatial pattern

initiation are satisfied. For this choice of the parameter values, the codimension-two bifurcation

points TH and TB have coordinates (CTH, BTH ) = (2.8061, 109.13), (CTB, BTB) = (2.8061, 19.7979)

(b) Bifurcation diagram in the parameter space (C,B): it clearly shows how, for increasing values

of the parameter d, the related Turing region becomes larger.

diffusion – becomes unstable to small spatial perturbations when diffusion is present [51].

As far as the diffusion-driven instability is concerned, linear stability analysis is considered

a useful technique to obtain conditions – expressed in terms of the system parameters –

for the development of unstable behaviour and to determine the characteristic length of

the resulting spatial pattern. In the following, we briefly recall such conditions. To this

end, we rewrite the electrodeposition model (2.1)–(2.2) in the following general form:

∂w

∂t
= D̃Δw + S(w), (4.1)

with zero-flux boundary conditions on a 2D domain. In (4.1)

w =

(
η

θ

)
, D̃ =

(
1 0

0 d

)
, S =

(
f(η, θ)

g(η, θ)

)
,

i.e. w contains the system variables, D̃ contains the diffusion coefficients and S accounts for

the reaction kinetics. The homogeneous equilibrium Pe = we = (ηe, θe) satisfies S(we) = 0

and its stability can be analysed by studying the behaviour of the system when a small

inhomogeneous perturbation δw is introduced in the neighbourhood of we, i.e. w = we+δw.

The perturbation δw can be written in terms of its spectral decomposition given by

δw(z, t) =
∑
k

cke
σktUk(z),

where the Uk(z) are the spatial eigenfunctions associated with the spatial eigenvalues λk ,

with k ∈ �, of the unbounded non-negative linear operator −Δ with zero-flux boundary

conditions on ∂Ω. The eigenvalues σ = σ(λk) account for the temporal part and describe
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the growth rate of the perturbation; they are obtained by solving the second order

algebraic equation

|J(ηe, θe) − λk D̃ − σ I | = 0, (4.2)

where J(ηe, θe) is the Jacobian matrix evaluated at the steady state Pe and I is the 2 × 2

identity matrix. The occurrence of Turing instabilities for a given λk corresponds to the

fact that equation (4.2) admits a positive solution σ.

For the general system (4.1), it can be easily shown that the Turing space – consisting

of parameters resulting in Turing instability – is bounded by the following inequalities:

Je
11 + Je

22 < 0,

Je
11J

e
22 − Je

12J
e
21 > 0,

dJe
11 + Je

22 > 0,

(Je
22 + dJe

11)
2 > 4 d δe.

(4.3)

Here, Je
ij stands for the ij entry of the Jacobian matrix J(Pe) evaluated at the equilibrium

Pe = (ηe, θe). The first two inequalities are derived by stability considerations on the

homogeneous equilibrium Pe in the absence of diffusion, the others are obtained by

considerations on the onset of instability when diffusion is introduced. We refer to [51]

and references therein for the explicit derivation of (4.3).

Taking into account these general conditions, we turn to the electrodeposition model

(2.1)–(2.2) and show that the spatially homogeneous equilibrium Pe = (0, α) can undergo

diffusion-driven instability. The set of conditions (4.3) for diffusion-driven instability hence

specializes as

A1 (1 − α)

F2(α, γ)
< C <

dA1 (1 − α)

F2(α, γ)
,

B >
A1 (1 − α)F2(α, γ)

(k2 − k3)F1(α, γ)
,

B <
d2A2

1 (1 − α)2 + C F2(α, γ) [2A1d (1 − α) + C F2(α, γ)]

4 dC (k2 − k3)F1(α, γ)
.

(4.4)

We observe that d > 1 is required in order to satisfy the first condition in (4.4). The other

conditions hold when

A1 (1 − α)F2(α, γ)

(k2 − k3)F1(α, γ)
<

d2A2
1 (1 − α)2 + C F2(α, γ) [2A1d (1 − α) + C F2(α, γ)]

4 dC (k2 − k3)F1(α, γ)

⇔ [dA1 (1 − α) − C F2(α, γ)]
2 > 0,

that is always satisfied for dA1 (1 − α) �C F2(α, γ). Inequalities (4.4) allow us to locate a

region in the parameter space such that Pe is stable to small perturbations in the absence

of diffusion, but it can be unstable to small spatial perturbations when the diffusion is

not neglected.

When diffusion mechanisms are considered, Pe can destabilize in the parameter region

where conditions for Turing instability are satisfied: the formation of stationary spatial
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patterns is hence expected because of the interaction between the non-linear reaction

terms and the diffusion process. Figure 2(a) shows the Turing region R1 in the parameter

space (C,B) for a fixed diffusion parameter d = 20; Figure 2(b) shows how the Turing

region R1 becomes larger for increasing values of the diffusion parameter d.

At this point, it becomes particularly intriguing to investigate: (i) how the formation

of inhomogeneous stationary patterns caused by Turing instabilities interacts with the

appearance of homogeneous oscillations due to the Hopf bifurcation and (ii) if such

interplay can lead to interesting classes of spatio-temporal patterns. The next sections are

devoted to these topics.

5 Higher-codimension bifurcation points

The points where different bifurcation curves meet correspond to bifurcations of codi-

mension higher than one which are likely to have a notable physical bearing since they

entail the possibility of complex spatio-temporal dynamics. For example, the transcritical

and the Turing bifurcation curves meet at the point TT in Figure 2(a), whose coordinates

are

CTT =
dA1 (1 − α)

F2(α, γ)
, BTT =

A1 (1 − α)F2(α, γ)

(k2 − k3)F1(α, γ)
,

where d > 1. Moreover, the two other points TB and TH in the bifurcation diagram in

Figure 2(a) are interesting for the quest of potentially complex dynamics.

(i) Point TB, the intersection of the transcritical and Hopf lines, is characterized by the

fact that both eigenvalues of the Jacobian matrix J(ηe, θe) are equal to zero. This

indicates the occurrence of a Takens–Bogdanov bifurcation, in which a branch of

Hopf bifurcations vanishes as the steady state of interest undergoes a saddle-node

bifurcation. The occurrence of Takens–Bogdanov bifurcation is in many cases related

to the existence of homoclinic bifurcations and is hence diagnostic of possible complex

dynamics. In the parameter space (C,B), the codimension-two bifurcation point TB

has coordinates

CTB =
A1 (1 − α)

F2(α, γ)
, BTB =

A1 (1 − α)F2(α, γ)

(k2 − k3)F1(α, γ)
.

(ii) Point TH, where Hopf and Turing bifurcation curves meet, has coordinates

CTH =
A1 (1 − α)

F2(α, γ)
, BTH =

A1 (1 − α)F2(α, γ)(1 + d)2

4 d (k2 − k3)F1(α, γ)
.

In the neighbourhood of a TH point, the formation of inhomogeneous stationary patterns

caused by Turing instabilities, interacts with the appearance of homogeneous oscillations

due to a Hopf bifurcation possibly leading to the emergence of an interesting class of

spatio-temporal patterns. TH instabilities in the neighbourhood of a TH point can in fact

be considered an important mechanism for the appearance of spatio-temporal dynamics.
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6 Turing–Hopf instabilities of the Hopf cycle

The study of the TH instabilities of the spatially uniform periodic solution involves the

interesting problem of understanding how the oscillations of the stable limit cycle can im-

pact the formation of diffusive instabilities in a reaction-diffusion model. Inspired by [55],

we investigate the formation of spatio-temporal patterns at the onset of TH instabilities.

More precisely: (a) we consider the non-linear ODE reaction model and explicitly show

the occurrence of a supercritical Hopf bifurcation by deriving an asymptotic expansion

of the limit cycle solution Θ(t) which can develop after the Hopf bifurcation; (b) we

investigate the onset of diffusive instabilities of the spatially uniform periodic solution for

the electrodeposition model (2.1)–(2.2). To this end, we consider the model parameters in

a neighbourhood of a codimension-two TH point, where the asymptotic expansion of the

limit cycle and the Turing analysis of diffusive instabilities are both valid.

To address the above point (a), we first consider the reaction part of the electrodeposition

model

η̇ = f(η, θ),

θ̇ = g(η, θ),
(6.1)

where η̇ and θ̇ stand for the time derivatives of η and θ; f, g are given by (2.2) and (2.3).

Recalling the analysis in the previous sections, we know that: (i) the spatially homogeneous

equilibrium Pe = (ηe, θe) = (0, α) is a stationary point for (6.1); (ii) the Jacobian matrix

J(Pe) is given by (3.1)–(3.2); (iii) the Hopf bifurcation can be obtained by setting τe = 0

and δe > 0, namely by requiring (3.3) to hold. It follows that Pe is stable for τe < 0, it

loses its stability when τe = 0 and a limit cycle can arise surrounding the unstable steady

state for 0 < τe � 1.

In order to derive an asymptotic expansion of this limit cycle solution in the neigh-

bourhood of the bifurcation point, we first translate the steady state Pe onto the origin,

by considering the new variables U = η − ηe, V = θ − θe so that the model transforms to

Ẋ = J(Pe)X + Ψ (X), (6.2)

where X = (U(t), V (t)) and Ψ (X) contains all non-linearities. Model (6.1), thus, becomes

U̇ = A1 U (1 − V − α) − A2 U
3 − B V ,

V̇ = C (1 + k2 U) (1 − V − α) [1 − γ (1 − V − α)]

+ C (V + α) [1 + γ (V + α)] (1 + k3 U)K(α, γ),

where K(α, γ) = (α−1)(1−γ+γα)
α(1+γ α)

. In the following, we consider B and C as bifurcation

parameters and we set the other parameter values to: α = 0.5, γ = 0.2, k2 = 2.5, k3 = 1.5,

A2 = 30, d = 20, A1 = 10, so that we can refer to the bifurcation diagram in Figure 2(a). It

is worth noting that parameters B, C in model (1)–(2) are the coefficients for the processes

related to adsorption, i.e. attachment of molecules to the growing surface. Accordingly

one has

U̇ = 10 (0.5 − V )U − 30U3 − B V ,

V̇ = C (1 + 2.5U) (0.5 − V ) (0.90 + 0.2V ) − 0.8181C (V + 0.5) (1.10 + 0.2V ) (1 + 1.5U) .
(6.3)
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Now we consider in (6.2) the invertible analytical change of coordinates

Y = H(X) = ΓX + G(X), (6.4)

which transforms a neighbourhood of the origin into another one. If H is such that

Y =

(
z

ż

)
, (6.5)

where z(t) is an unknown function, then it is possible to show that the integration of

system (6.1) can be reduced to the integration of a second order differential equation in

the variable z(t) [55]. Moreover, if f and g in (6.1) are polynomial functions of degree M,

in the neighbourhood of the origin the transformation H is close enough to the matrix

transformation Γ [55]. The main problem is how to choose the matrix transformation Γ .

Theorem 6.1 addresses this question

Theorem 6.1 ( [55]) Let us assume that τ2
e − 4 δe < 0. Then there exists an invertible trans-

formation of variables in (6.4) such that (6.5) holds. The matrix Γ is any non-trivial linear

combination of {(
1 0

Je
11 Je

12

)
,

(
0 1

Je
21 Je

22

)}
. (6.6)

The function z in (6.5) satisfies the following second order equation:

z̈ − τeż + δez = G(z, ż),

where G(z, ż) does not involve linear terms in z, ż.

Remark 6.1 Following the proof of Theorem 6.1 in [55], we observe that the generators of

Γ can be obtained by solving the linear system

J(ηe, θe)

(
g11

g12

)
=

(
g21

g22

)
, (6.7)

that is equivalent to define the matrix Γ as a linear combination of the matrices in (6.6).

Moreover, if Γ satisfies (6.7), the following holds:

Γ J(ηe, θe)Γ
−1 =

(
0 1

−δe τe

)
. (6.8)

Let

Γ =

(
g11 g12

g21 g22

)
.

For the chosen parameter values, one has τe = 5 − 1.7818C and δe = C (0.45B − 8.9090).
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Then by (6.8) it follows, through straightforward algebra,

Γ ∝
(

0.2 0

1 −0.2B

)
.

Accordingly, we consider the new variable

z = 0.2U, ż = U − 0.2B V + o(U V,U2, V 2),

so that system (6.3) is equivalent to the second order equation for the unknown z

z̈ − τeż + δez = G(z, ż), (6.9)

where

G(z, ż) = 250
zż

B
− 1250

z2

B
− 3750 z3 − 9 × 10−12 BC + 1.8181

Cż2

B
− 18.1818

Czż

B

+ 45.4545
Cz2

B
− 17.3636Czż + 86.8181Cz2 + 18.6363

Czż2

B

− 186.3636
Cz2ż

B
+ 465.9090

Cz3

B
.

Seeking an oscillation with small finite positive amplitude ε, we set

z(t) = εζ(t),

obtaining from (6.9) the following weakly non-linear oscillator

ζ̈ − σζ̇ + ρζ = εG1(ζ, ζ̇, ε) (6.10)

with

G1(ζ, ζ̇, ε) = 250
ζζ̇

B
− 1250

ζ2

B
− 3750 ε ζ3 − 9 × 10−12 BCε−2 + 1.8181

Cζ̇2

B
− 18.1818

Cζζ̇

B

+ 45.4545
Cζ2

B
− 17.3636Cζζ̇ + 86.8181Cζ2 + 18.6363

εCζζ̇2

B

− 186.3636
εCζ2ζ̇

B
+ 465.9090

εCz3

B
.

It follows that the cyclic solution of system (6.1) corresponds to the non-trivial periodic

solution of the second-order differential equation (6.10). To find an asymptotic expansion

of such a solution, we apply the Krilov–Bogoliubov–Mitropolski averaging method [4,62].

We hence introduce the new variables r = r(t) and β = β(t) such that

ζ = r cos(t + β); ζ̇ = −r sin(t + β).
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The corresponding averaged equations are, therefore,

ṙ =
r

2
[τe − p(r, ε)] ,

β̇ = q(r, ε),

with p(r, ε) and q(r, ε) given by

p(r, ε) =
ε

π r

∫ 2 π

0

sinΦG1(r cosΦ,−r sinΦ; ε)dΦ,

q(r, ε) =
−ε

2π r

∫ 2 π

0

cosΦG1(r cosΦ,−r sinΦ; ε)dΦ.

Direct integration yields

p(r, ε) = 46.5909
ε2 r2 C

B
, q(r, ε) = ε2 r2

[
1406.25 − 177.04

C

B

]
.

Taking ε2 = |τe| as in [55], we obtain

ṙ =
r

2
τe

[
1 − 46.5909 r2

C

B

]
, β̇ = r2 τe

[
1406.25 − 177.04

C

B

]
.

If τe > 0, an orbitally asymptotically stable limit cycle exists with r2 = 0.0214B
C

and

β̇ = τe[30.1829B
C

− 3.8]. We can then provide the uniform asymptotic expansion of the

solution of (6.9) in terms of the small parameter τe

z(t) = εζ(t) = ε r cos(t + β) = 0.14628

√
τe B

C
cos

[
1 + τe

(
30.18

B

C
− 3.8

)]
t + o(τe),

and obtain the cycle solution Θ(t) = (η̄(t), θ̄(t)) of system (6.1)

η̄(t) = ηe + 5 z(t), θ̄(t) = θe − 5B−1 [ż(t) − 5 z(t)] .

From the above representation, it clearly appears that for τe > 0 and close enough to the

bifurcation value, i.e. 0 < τe � 1, an orbitally asymptotically stable limit cycle appears

for the system (6.1) that surrounds the unstable equilibrium (ηe, θe). For τe → 0, the

limit cycle shrinks toward (ηe, θe) which changes stability crossing the line τe = 0. In

other words, (ηe, θe) undergoes a supercritical Hopf bifurcation. Such a phenomenology

is clearly depicted in Figure 3 where we show the numerical solutions of the ODE system

(6.1) obtained by the Matlab routine ode45 for a selection of C values near the Hopf

bifurcation point.

We can now address point (b) by examining the ways in which the above limit cycle

can give rise to Turing instabilities near a TH point. TH instabilities generated by the

limit cycle take place when a temporal eigenvalue σ – a root of equation (4.2) – exists

such that Re(σ) > 0. Such TH instabilities are defined as weak if equation (4.2) has at

least one real root σ > 0 and strong if the roots σ are complex-conjugate with positive
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Figure 3. Occurrence of a supercritical Hopf bifurcation. Numerical solutions of the ODE system

(6.1) for B = 22 and C chosen in the neighbourhood of the Hopf bifurcation value C∗ = 2.8061. By

increasing C up to C∗, progressively smaller limit cycles are obtained, collapsing on the equilibrium

Pe.

real part. The following Theorem 6.2 states the conditions for the occurrence of weak or

strong TH instabilities.

Theorem 6.2 ([55]) Let λk be a positive spatial eigenvalue. Let τT and δT be defined as

τT = tr(J(ηe, θe) − λkD̃), δT = det(J(ηe, θe) − λkD̃).

Further assume that the reaction system has a limit cycle attained via a Hopf bifurcation. If

τT � 0 and δT < 0 then weak TH instabilities appear. If τT > 0, TH instabilities appear

and they are weak provided τ2
T − 4δT � 0 while they are strong if τ2

T − 4δT < 0.

As far as the features of the expected patterns are concerned, weak instabilities are

characterized by dominant inhomogeneous steady patterns onto which slightly time

periodic oscillations can be overlapped, exhibiting the same frequency as the limit cycle.

https://doi.org/10.1017/S0956792514000370 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000370


158 D. Lacitignola et al.

Strong instabilities instead feature intermittent switching between: (i) the inhomogeneous

patterns, represented by the set of positiveness of the spatial eigenfunction, and (ii) its

complementary pattern represented by the set of negativeness of the spatial eigenfunction.

In such a case σi =
√
δT − τ2

T/4 is the frequency of oscillations of the pattern that is

different from the frequency of the limit cycle [55].

7 Numerical investigations

Hexagonally arranged spots or stripes are typical Turing patterns in 2D reaction-diffusion

systems, but also rhombic or labyrinthine patterns have been observed [35]. In order

to accurately predict the spatial features of the expected Turing patterns, non-linear

bifurcation analysis and the amplitude equations formalism must be used, see i.e. [19, 22,

29, 30]. Nevertheless, this kind of analysis is beyond the scope of the present paper, for

this reason we resorted to numerical investigation of pattern selection issues.

In the following, we employ the same set of parameter values adopted for Figure

2(a) and we perform a numerical study to support the analytical results obtained in

the previous sections. We recall that we consider B and C as the only bifurcation

parameters and that the Turing Region in the parameter space (C,B) is the region R1

indicated in Figure 2(a). For this choice of the parameter values, the Hopf threshold is

C = Chopf = 2.8061 with B > 19.7979 and the codimension-two bifurcation points TH

and TB have coordinates (CTH, BTH ) = (2.8061, 109.13), (CTB, BTB) = (2.8061, 19.7979),

respectively. We show that the system can exhibit patterns both inside and outside the

Turing region and that the features of the obtained patterns can be very different, as a

result of the specific destabilization mechanism under consideration.

In order to solve the reaction-diffusion PDE system on the 2D spatial domain

[0, Lx] × [0, Ly] and for t ∈ [0, T ] we apply the Extended Central Difference Formu-

las (ECDF) for semi-discretization in space coupled with the ADI method in time that

approximate implicitly the diffusion term and explicitly the reaction terms. ADI–ECDF

schemes of order p = 2, 4, 6 have been recently introduced in [63] to deal with the ap-

proximation of Turing patterns that are stationary solutions of the PDE system in an

accurate and efficient way with a flexible choice of integration stepsizes both in space

and time. This task is challenging from the computational point of view because high

accuracy is required both in space, to capture the pattern structure, and in time, to

attain the stationary pattern in a stable way. Moreover, in [64] this approach has been

successfully applied to deal with the case of oscillating Turing patterns arising from

the superimposition of an external forcing term in the source, representing sinusoidally

modulated electrochemical control resulting in a notable smoothing effect. For these

reasons, we decided to apply the ADI–ECDF scheme of order p = 4 in space, as a

good compromise between accuracy and computational cost. Hence, we approximate the

model introduced in this paper for sets of parameters corresponding to Turing and TH

regions, where stationary patterns and patterns oscillating in space and time are expected,

respectively.

In Figures 4–6, we show (right panels) two auxiliary quantities that allow a more

straightforward presentation of our numerical results
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Figure 4. Spatial patterns in the Turing Region (a) B = 30, C = 3, Tf = 200 (b) B = 66, C = 3,

Tf = 30.

(i) ‖ηr+1−ηr‖2: the difference in norm between two consecutive patterns, i.e. the numerical

approximations at the times tr+1 and tr along the time integration. This quantity

quantifies the tendency of the solution to reach a stationary pattern: in this case this

difference should tend to zero (we can stop the time integration when this value is

less than an appropriate threshold);

(ii) 〈η(t)〉: an approximation of the integral 1
|Ω|

∫
Ω
η(x, y, t)dx dy. This second indicator is

a spatial mean value that, for longtime integration, allows us to discriminate between

stationary and oscillating patterns. In fact, if 〈η(t)〉 reaches an approximately constant

value, a stationary pattern tends to be attained, while an asymptotic oscillatory

behaviour of 〈η(t)〉 indicates an oscillating pattern.

It is worth stressing that, to distinguish between weak and strong TH instabilities these

two indicators are not sufficient. For this reason, in these cases, a selection of snapshots

of the numerical solutions at different integration times will be presented.

We first address the case of spatial pattern formation via Turing instability.

We consider parameter values in the Turing Region R1 in Figure 2(a) and take as

initial conditions random spatial perturbations of the stable homogeneous steady state

Pe. For our simulations, we consider the rectangular domain Ω = [0, 50] × [0, 36] and
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Figure 5. Spatial patterns for the morphology η(x, y, t) in the Turing Region.

(a) B = 90, C = 3, Tf = 100 (b) B = 99, C = 3, Tf = 180.

Nx = Ny = 50 space mesh points. For time integration we apply the ADI–ECDF method

with ht = 0.001. The final time is indicated as Tf .

Figures 4–5 show the Turing patterns of the morphology η in different points of the

Turing Region R1, i.e. for different (C,B) values, to emphasize the role of the parameters

B and C in the resulting pattern typology. In order to better elucidate this aspect, we

start from a point well inside the Turing region R1, i.e. B = 30 and C = 5, and then move

across R1 towards the point TH along the line C = 3. Figure 4(a), corresponding to the

pattern developed well inside the Turing region R1, depicts a pseudo-labyrinth stationary

Turing pattern. By increasing the value of B and moving toward the Hopf line, i.e. by

considering B = 66 and C = 3, such pattern turns into the more connected labyrinthine-

like structure depicted in Figure 4(b). This qualitative trend is well confirmed by further

increasing the value of B along the C = 3 line, as shown by the simulation in Figure 5(a)

for B = 90. Moreover, inside R1, the pattern typology changes again when approaching

the neighbourhood of the point TH: in fact, when B = 99, Figure 5(b) shows how the

labyrinthine-like structure breaks down yielding a stationary tessellation pattern. In the
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Figure 6. Spatial patterns in the Turing Region R1 obtained by varying the parameter A2. Here

Ω = [0, 100] × [0, 70], d = 20, B = 30, C = 3. (a) A2 = 5 (b) A2 = 2.

right panels of Figures 4–6, the corresponding increments and the time integrals 〈η(t)〉
show that stationary patterns are obtained at the final time of integration Tf .

It is worth stressing the peculiar role of the parameter A2 on the features of the Turing

patterns. From the arguments highlighted in Sections 3–4, the bifurcation thresholds do

not depend on A2 and then it is possible to conclude that A2 has no impact on the

destabilization of the homogeneous equilibrium Pe through the transcritical or the Hopf

bifurcation in the spatially uniform case or through the Turing bifurcation in the spatial

case. Hence, by varying only A2, the two parameter bifurcation diagram in Figure 2(a)

remains unchanged. Neverthless, numerical investigations show that A2 has an interesting

role in pattern selection.

We found that, well inside the Turing Region R1 (e.g. for low values of B within R1),

low values of A2 cause a disruption of the labyrinthine structure, resulting in reversed

spots and worms Turing patterns. The qualification reversed indicates that such spots

and worms actually represent holes in the morphology, rather than outgrowth structures

as in the conventional case. The more A2 is decreased the more fragmented the spotty-

worms pattern appears, with high prevalence of reversed spotty structures, as shown in

Figure 6(b). By fixing low values of A2 and moving toward the TH point (e.g. for
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Figure 7. Case d = 20, B = 90, C = 3. Numerical simulations for A2 = 1. Snapshots show

different stages of the spatial pattern formation at times t = 10, 20, . . . , 90.

higher values of B), in the transient dynamics one observes spotty structures while in the

stationary limit an intriguing coexistence is found between spots and stripes, as showed

in Figures 7 and 8.

The physico-chemical basis of the special role of A2, as evident from equation (2.2)

and as detailed in [15], resides in the fact that it defines the rate of metal deposition far

from equilibrium. This parameter can be easily tuned in an electrodeposition experiment,

e.g. by changing the type of ligand in the electroactive metal complex or by properly

adjusting the potentiostatic electrodeposition conditions (the latter approach is easier

from the operational point of view, but requires an insightful understanding of the

relevant electrokinetics and respective mathematical modelling). Moreover, B quantifies

the impact of the adsorbate on metal growth. In Figure 9 a selection of electrodeposits

is shown exhibiting conventional and reversed spots and worms obtained by varying A2

and B. The experiments refer to Au and AuMn electrodeposition from a cyanide bath

based on a deep eutectic solvent: on the basis of in situ spectroscopic evidence [16, 17],

cyanide can be regarded as the species corresponding to θ. Au and AuMn exhibit lower

and higher surface interactions with cyanide: the former metal can, thus, be regarded as a

case with lower B than the second one. In our example, A2 is controlled by adjusting the

applied electrodic potential. It can be noticed that: low A2 and B (Panel A) corresponds

to reversed spots and worms; high A2 while low B (Panel B) corresponds to conventional

spots and worms.

7.1 Spatio-temporal dynamics near the Hopf line

In this subsection, we numerically investigate the spatio-temporal system dynamics moving

toward the Turing Region from the Hopf one. We choose the parameter values near the
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Figure 8. Case d = 20, B = 99, C = 3, A2 = 1. Snapshots of the spatial patterns in the Turing

Region R1 at two different times: t = 200 (left panel), t = 360 (middle panel). In the right hand-side

panel, the time dependent behaviour of 〈η(t)〉 shows that at Tf = 360 the pattern has reached its

asymptotic state.

Figure 9. Au (A) and AuMn (B) experimental electrodeposits obtained at −1.1 V versus Au

quasi-reference electrode from Au(I) cyanocomplexes baths without and with MnCl2 employing a

deep eutectic solvent as the electrolyte. See the discussion in the main text.

Hopf bifurcation line, that is B = 109, C = 2.794. In Figures 10–12, a fascinating

competition between the Hopf and Turing instabilities is shown. As discussed in the

following, the winner of the space vs time competition is decided by the value of the

diffusion parameter d.

In Figure 10, we show the results of a representative numerical simulation carried out

until Tf = 200, with the diffusion parameter d = 20. Figure 10(a) shows some snapshots

of the morphology η(x, y, t) at different time values during the evolution: in the transient

period spotty patterns and tessellation can be recognized, while a spatially homogeneous

pattern oscillating in time is attained asymptotically for t � 150. In Figure 10(b), left

panel, we show the dynamics of the spatial average 〈η(t)〉, the inset highlights its oscillating

behaviour. In the right panel, we show the corresponding limit cycle for (〈η〉, 〈θ〉). The

initial condition (η0, θ0) is a spatially random perturbation of the homogeneous equilibrium

(ηe, θe) = (0, 0.5) and in fact the limit cycle is attained starting from inside.

Figures 11 and 12 show how the above spatio-temporal behaviour completely changes

by increasing the value of the diffusion coefficient d. For values of d higher that d = 20, in

the competition the spatial structure survives with respect to the homogeneous temporal

oscillations. Hence, in this case, stationary spatial patterns are present also in the Hopf

region, but only in a close neighbourhood of the Turing region. In Figure 11(a) the

case d = 100 is presented: the selection of time snapshots shows that - after a transient
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Figure 10. Spatio-temporal dynamics in the Hopf region, near the Hopf bifurcation line in the case

d = 20. The numerical values for the bifurcation parameters are: B = 109, C = 2.794. (a) Snapshots

of η(x, y, t) at different time values during evolution: a homogeneous pattern oscillating in time is

attained for t � 150. (b) Left panel: spatially averaged value 〈η〉. Right panel: corresponding limit

cycle in the phase plane (〈η〉, 〈θ〉).

regime, where a spotty solution oscillating in time is present – an entangled labyrinthine

pattern is attained as the stationary spatial pattern. The left panel of Figure 11(b) shows the

dynamics of 〈η(t)〉 until Tf = 10; in the right panel the corresponding limit cycle is shown.

As expected, for very large values of d the spatial structure tends to prevail. Moreover,

in the case d = 22, 735, no qualitative changes appear in the obtained phenomenology as

it can be observed in Figure 12. We recall that by increasing the value of the parameter
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Figure 11. Spatio-temporal dynamics in the Hopf region, near the Hopf bifurcation line in the

case d = 100. The numerical values for the bifurcation parameters are: B = 109, C = 2.794. In this

case the spatial domain is Ω = [0, 100] × [0, 70]. (a) Snapshots at times t = 1, 2, . . . , 9 of the spatial

patterns. (b) Left panel: spatially averaged value 〈η(t)〉 until Tf = 10. Right panel: corresponding

dynamics in the phase plane (〈η〉, 〈θ〉), where a stable focus is attained.
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Figure 12. Spatio-temporal dynamics in the Hopf region, near the Hopf bifurcation line in the

case d = 22, 735. The numerical values for the bifurcation parameters are: B = 109, C = 2.794. Left

panel: asymptotic stationary pseudo-labyrinthine pattern. Middle panel: spatially averaged value

〈η(t)〉 until Tf = 4. Right panel: corresponding dynamics in the phase plane (〈η〉, 〈θ〉), where a

stable focus is attained.

d, the corresponding Turing Region R1 becomes larger and then the B-coordinate of the

TH point increases (see Figure 2(b)). The above results thus suggest that by moving in

the Hopf region – close to the Hopf line – homogeneous oscillatory behaviour prevails

near the TH point, whereas stationary spatial organization can be found moving away

from the TH point along the Hopf line.

7.2 Oscillating Turing patterns

In this subsection, we propose a numerical validation of the analytical findings of Section

6 regarding TH instabilities of the spatially uniform periodic solution. To better elucidate

the relevant phenomenology, we scale the adimensional model (2.1) by introducing new

length and time scales: r =
√
ρ r′, t = ρ t′.

Dropping the primes, the scaled reaction-diffusion system becomes

∂η

∂t
= Δη + ρ f(η, θ),

∂θ

∂t
= dΔθ + ρ g(η, θ),

(7.1)

with f and g given by (2.2) and ρ a positive constant. The scale parameter ρ can be

interpreted as proportional to the area of the spatial 2D domain: in this sense, doubling

the domain size is equivalent to multiplying the original ρ by 4. In a more intuitive

interpretation [51], ρ may also be regarded as the relative strength of the reaction terms.

We fix d = 20 and the other parameter values as indicated in the caption of Figure 2. We

stress that the introduction of the scale parameter has no impact on the TH point that,

for the chosen set of parameter values, has coordinates (CTH, BTH ) = (2.8061, 109.13).

Since we want to investigate the system behaviour near the point TH , in the following

we set C = 2.794 and B = 109.
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First of all, we observe that for system (7.1) with reaction terms given by (2.2), the

quantities τT and δT can be explicitly written as

τT = ρ τe − λk (1 + d), δT = ρ2 δe + λ2
k d − λk ρ

[
Je

22 + d Je
11

]
,

where τe = A1(1 − α) − C F2(α, γ), δe = C [B F1(α, γ)(k2 − k3) − A1 F2(α, γ)(1 − α)] and Je
ij

and Fi(α, γ) given by (3.1) and (3.2), respectively.

We take Ω = [0, l] × [0, m] as spatial domain, where the non-dimensional lengths satisfy

l > m, such that the smallest positive spatial eigenvalue is given by λ(1,0) = π2/l2.

Hence

τT � 0 ⇐⇒ ρ �
π2 (d + 1)

l2 τe
.

For strong instability to occur, condition τT > 0 must hold. To test this case, we choose

l = Lx = 100 and m = Ly = 70 < l. For strong instability, it is required that ρ > 0.9595:

we set ρ = 50. Therefore τT = 1.0593 and τ2
T − 4 δT = −4, 48, 856, so that a strong TH

instability is expected, associated with λ(1,0). This implies the appearance of an intermit-

tent pattern whose theoretical frequency is σ
(20)
i = 529.5085 that is different from the

frequency ωcycle = 529.9987 of the limit cycle obtained via supercritical Hopf bifurcation.

Figure 13 shows the numerical simulation for the strong TH instability for d = 20,

ρ = 50 on the spatial domain Ω = [0, 100] × [0, 70]: 3D snapshots of the solution every

Δt = 0.5 until Tf = 4.5 show that the spatial structure oscillates both in space and time.

Figure 13(b), shows the oscillating behaviour of the space integral 〈η(t)〉 (left panel) and

the corresponding limit cycle in the phase plane (〈η(t)〉, 〈θ(t)〉) (right panel).

As far as the weak TH instability is concerned, Theorem 6.1 states that this type of

instability can occur if one of the following conditions hold: (a) τT > 0 and τ2
T −4 δT � 0,

(b) τT � 0 and δT < 0. To illustrate such phenomenology, we set l = 2. For the chosen

parameter values it is easy to verify that condition (b) is the only choice for weak TH

instability and that it is satisfied for 0.9623 < ρ < 1.1281. The positive values of λk for

which δT < 0 belong to the open interval Λ = (λ−, λ+), with δT (λ±) = 0, λ± given by [55]

λ± = ρ

(
d Je

11 + Je
22

)
±

√(
d Je

11 + Je
22

)2 − 4 d δe

2 d

and d Je
11 + Je

22 > 0. By choosing ρ = 1, we get τT = −51.794 < 0 and δT = −0.54 < 0.

Moreover, Λ = (2.1871, 2.5639) and λ(1,0) = π2

l2
= 2.4674 ∈ Λ. In this case, weak TH

instability is expected which could lead to a dominant steady pattern slightly oscillating

only in time with the same frequency of the limit cycle. However, although condition (b)

is met for the occurrence of weak TH instability, numerical investigations carried out for

the related values of the parameters have not captured this phenomenology. We find in

fact, as the asymptotic pattern, the spatially homogeneous limit cycle forming because of

the supercritical Hopf bifurcation. This is likely due to the smallness of the Λ set and

to the fact that, for this case, there is a very narrow range of the parameter values that

satisfy the weak TH instability.
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Figure 13. Strong TH instability, obtained for d = 20, ρ = 50, B = 109, C = 2.794, Ω =

[0, 100] × [0, 70]. (a) Snapshots of 3D spatial patterns every Δt = 0.5 until Tf = 4.5. Oscillations

both in space and time are evident looking at the colourbars and comparing the spatial structures

of the snapshots. (b) Left panel: spatially averaged value 〈η〉 as a function of time until Tf = 4.5;

the inset highlights the periodical behaviour with maximum and minimum values ca. ±0.16. (b)

Right panel: the corresponding dynamics in the (〈η〉, 〈θ〉) phase plane. The resulting limit cycle is

attained starting from the initial conditions (η0, θ0) (red internal spot) that are spatially random

perturbations of the equilibrium Pe. The (green) ∗ on the limit cycle corresponds to the final time

Tf = 4.5.
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8 Concluding remarks

In this paper, we investigated the emergence of spatio-temporal organization phenomena

for the morphochemical electrodeposition model introduced and experimentally validated

in [15]. Our theoretical and numerical findings confirm the extreme flexibility of this

mathematical model that is able to account for a great variety of spatial patterns found

experimentally. For suitable choices of the parameter values, we highlighted the following

scenarios: (i) oscillatory behaviour due to a supercritical Hopf bifurcation; (ii) spatial

pattern formation due to Turing instability; (iii) oscillatory spatial patterns due to an

interesting interplay between Turing and Hopf instabilities.

We analysed the system behaviour in the neighbourhood of the codimension-two TH

bifurcation point by exploiting the analytical approach developed in [55] where the study

of the diffusive instability of the spatially uniform periodic solution was applied to the

classical Schnakenberg reaction-diffusion model. In this sense, we have also offered a

validation of the Ricard–Mischler procedure with a model exhibiting a more complex and

general kinetics with respect to the Schnakenberg one.

Numerical challenges related to the simulations of the above scenarios – high accuracy

in the space approximation, longtime integration until asymptotic structures, tracking

of highly oscillating solutions – have been faced by using the ADI–ECDF schemes

introduced in [63] for stationary pattern. Thanks to this approach, that in this paper

approximates implicitly the diffusion term and explicitly the reaction terms, the showed

simulations have been obtained by using moderate stepsizes both in space and time with

consequently reduced computational costs.

Our results also provide a contribution to the debate on the possible emergence of

complex behaviours in the neighbourhood of the codimension-two TH point. In fact,

for our model, near the TH point no instances of spatio-temporal chaos have been

observed. In particular, when the system parameters approach the TH point from inside

the Turing region, we found that the stationary Turing patterns organize as labyrinthine

or tessellation patterns. Outside the Turing Region and in close vicinity of the TH point,

we found – in agreement with the phenomenology described in [55] – an intermittent

switching between complementary spatial patterns, denominated “strong TH instability”.

We have, however, found complex spatio-temporal behaviour for this system, but not in

the immediate vicinity of the TH point and for parameter choices well inside the Hopf

region, where the local system kinetics exhibits an oscillatory regime. This phenomenology

appears to be related to the system capability to support spiral wave behaviour in the

Hopf region as well as an intriguing phenomenon of spiral break up, that we have pointed

up in a recent paper [41].

Although a great number of studies have been performed to investigate the spatio-

temporal dynamics of chemical systems in the neighbourhood of a TH bifurcation point,

to the best of our knowledge, our paper provides the first example of such theoretical

investigations in the context of alloy electrodeposition, with a particular focus on the

arising of oscillating Turing patterns. As shown in [15], our system can be considered

as one of the few reaction-diffusion models in morphochemistry capable of developing

patterns in very good accordance with the experiments. As a consequence, the theoretical

findings obtained in this study are likely to have a very strong impact in the development of
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electrochemical pattern formation in alloy plating in view of control issues and functional

applications. Moreover, in order to get an as complete as possible picture of the system

spatio-temporal behaviour close to the codimension-two TH point, we are planning to

study system dynamics near the TH point on the basis of amplitude equations that

account for the coupling between a steady Turing-type mode and a Hopf mode. In fact,

possible resonances between the Turing and Hopf modes and their harmonics can give

rise to new spatio-temporal patterns. In this regard, we aim to derive conditions, expressed

in terms of the systems parameters, so that our model can exhibit a stable 2D TH mixed

mode as well as other kinds of mixed modes that can emerge as a result of sub-harmonic

instabilities.

We finally stress that the rich temporal and spatial dynamics entailed by

equation (2.1) and highlighted in this work have a notable bearing on the rationaliz-

ation of crucial aspects of 3D electrodeposit morphology. In fact, the discovery of TH

instabilities provides a natural framework – free of ad-hoc physical assumptions and

without need of dedicated numerical machinery – for the prediction and treatment of

dendritic morphologies with undercuts. Moreover, the morphological periodicities com-

bine in the time evolution of the electrodeposition profile in a way that is able to capture

many features of unstable growth shapes found experimentally. In particular, the existence

of strong TH instabilities opens up the possibility of achieving a time-averaged smoothing

behaviour in electrodeposition regimes exhibiting instantaneous roughening, with notable

potential impact on practical metal plating processes, in line with our findings of [12], but

based on a different physical mechanism, that can be controlled by both electrical and

chemical means.
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