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A DUALITY PROOF OF SAMPLING LOCALISATION IN
RELAXATION SPECTRUM RECOVERY

R.J. LOY, C. NEWBURY, R.S. ANDERSSEN AND A.R. DAVIES

In a recent paper, Davies and Anderssen (1997) examined the range of relaxation
times, on which the linear viscoelasticity relaxation spectrum could be reconstructed,
when the oscillatory shear data were only known on a fixed finite interval of fre-
quencies. In particular, they showed that, for such oscillatory shear data, knowledge
about the relaxation spectrum could only be recovered on a specific finite interval of
relaxation times. They referred to this phenomenon as sampling localisation. The
purpose of this note is show how their result can be proved using a duality argument,
and, thereby, establish the fundamental nature of sampling localisation in relaxation
spectrum recovery.

In an oscillatory shear experiment, one makes measurements of the amplitude ra-
tio and the phase lag which are then transformed to their equivalent, storage modulus
G"(w) and loss modulus G"(w) values (see [8]). The determination of the relaxation spec-
trum H{T) from such data reduces to solving the following first kind Fredholm integral
equations

and

o w M = r 1 r a a
JO 1 + UJ*TZ T

The difficulty with solving such integral equations is their ill-posedness, which is
directly reflected in the sensitivity of H(r) with respect to small perturbations in either
or both of G'(UJ) and G"(ui). Various methods have been proposed to overcome this
challenge. Some are quite general and apply to all types of Fredholm integral equations
(see [6]), while others specifically address the solution of (1) and (2) (see [3]). Among
the latter, the most popular are the algorithms which determine a discrete relaxation
spectrum {TJ, g{}, where T, and g{ denote, respectively, the relaxation time and the
elastic modulus of the i-th Maxwell mode. In the version in [6], the relaxation times
T{ are assumed to be known and Tikhonov regularisation is utilised to allow a large
number N of modes to be fitted. On the other hand, in [3] the algorithm is non-linear,
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because it fits both the elastic moduli and the relaxation times simultaneously. It achieves
stabilisation through the non-linear fitting and the restriction of the number N of the
modes to be small.

An alternative strategy to that in [l], not yet widely applied in the rheological
literature, is to limit attention to the specific information required about the phenomenon
of interest, which, in the current context, would correspond to linear (inner product)
functionals of the relaxation spectrum; namely,

(3) Le(H)= r
Jo

where the function 6, which characterises the form of this linear solution-functional, is
known. The clear advantage of this approach is that, formally, such linear functionals
can often be redefined as corresponding linear (inner product) data-functionals, which,
in the current context, would take either of the following forms

(4) M G ' ) = I™ <j>'{u)G'(u))duj,
Jo

or

Jo
Consequently, once the form of 4>'(UJ) or <j>"(ui) has been determined for a given 6, the
problem of evaluating the solution-functional Lg(H) has been reduced to simply perform-
ing a smoothing operation on the observational data for the storage and loss moduli, in
order to estimate the data-functional L#(G') or L#>(G").

It is shown in [4] how to construct the functions <j>'(ui) and <j>"{ui) which correspond
to the following solution-functionals

tb rb
 H(T)

(6) Lg(H) =T]ab= / H(T) dr, and Lg(H) = 5O& = / —— dr, 0 ^ a < b < oo,
Ja Ja T

which define the partial viscosity 77̂  and the elastic modulus gat, over intervals of relaxation
times (a, b).

The basic lemma, which they utilise, formalises the Fourier inversion deconvolution
applied by [5] when analysing the electrical properties of polar polymers. Using this
Lemma, [4] essentially showed that, formally, the construction of functions such as <j>'(ui)
and <j>"{u) reduces, in one way or another, to taking inverse Fourier transforms of functions
of the form

(7) $(r) = 6 ( r ) c o s h -7T7- , 6(r) = /
\2 ) Jo

where Q(r) denotes the logarithmic Fourier transform of 6(T). For example, 0( r ) = 1,
when 6{T) = d(£n,T), the Dirac delta function centred at r = 1, and 6( r ) = exp(itr),
when 6(T) = S(^£n(T/t)J. An analysis of this result was then used to establish various
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sampling localisation constraints on the recovery of estimates of the relaxation spectrum
H(T) from oscillatory shear measurements. In particular, [4] demonstrated that the
widespread belief that measurements performed on the frequency range wmjn < u> < wmax

determine the relaxation spectrum on the reciprocal range uj^ln < T < w ^ is imprecise.
The correct interval on which the relaxation spectrum is determined is

(8) exp (7r/2)W-?n < r < exp (-nfflu^,

which is shorter than the reciprocal frequency range by 1.36 decades (approximately).
These results have been used to construct moving average formulae for the determination
of elastic moduli of equation (6) (see [2]).

As explained in [4] the functions <t>'(u) or <t>"{u)) possibly correspond to some type
of distribution, and it is the knowledge of their support which gives (8). Due to the im-
portance of (8) for experimental rheology and relaxation spectrum recovery, the question
naturally arises as to the exact nature of these and the relaxation spectra to which they
pertain. In terms of equation (7), this reduces to examining the properties of objects of
the form
(9) K, = ^ - J ($( r ) ) = ^-1(/(r)cosh(Ar)), /(r) = 6(r),

where T~x denotes the inverse Fourier transform.

For A > 0 (a constant), let

(10) &(r)=cosh(Ar), (r € R).

Take 1 ̂  p ^ 2 and consider the space

(11)

which is taken to have the graph topology; namely,

(12) H/llnA,] = ll/lli + lie* • /lip.

Since the Fourier transform of a Gaussian is, up to a factor of modulus one (that
is, up to an arbitrary translation), another Gaussian, such functions lie in F[A,p]. Their
linear span is dense in L^R), so F[X,p] is large from a practical point of view.

Given / € F[X,p], consider the functional KJ on L"(R) defined by

oo oo oo

(13) (Kf,g) = I Ur)f(r)9(r) dr = f f cosh (Ar)(/ * g)(s)e-ir' ds dr.
—oo —oo —oo

By the Holder and Hausdorff-Young inequalities,

(14) \(Kf,g)\ < ||& • /IIPIISII, < 116 • /IIPIMIP,
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where 1/p + l/q = 1. So this functional is continuous, and thus given by a function in
L9(R) which we again denote by /c/. Because of the presence of the cosh (Ar) term, one
cannot change the order of integration on the right hand side of (13). For each e > 0, set

oo

(15) (Kf(e), g)= I Ur)f(r)9(r)e-e2r2/2 dr.
—oo

Changing the order of integration on the right hand side of this last equation is valid,
and a short calculation yields

(16) (Kf(e),g) = V2n J - e e x p ( ~ ( X 2 - y ^
—oo ^

In the limit as e —¥ 0, the integrand will tend to zero dominatedly on \s\ > X + 6 for any
<5>0.

Now
OO / 1 \

(17) \(K, - Kf(e),g)\ ^ J Mr)\f(r)g{r)\(l - e x p ( - ^ V ) ) dr.
- o o ^ '

Since fA • / e L"(K), g € L"(R), and 1 - e x p ( - e V / 2 ) -> 0 and is bounded by 1, it
follows immediately from the dominated convergence theorem that (K/ — Kf(e),g\ —• 0
as e -> 0.

This establishes that, for any 5 > 0,

(18) <«M> = >/27rliin / ^ e x p ( ^ (A* _ S2)\ cos(^\(f * g)(s) ds .

Hence, this limit exists with value equal to the limit of («/(e),p), and moreover is
independent of <5 > 0.

As a consequence, it follows that {Kf,g) is independent of the values of ( / * g)(s)
for \s\ > X, with the form of Kf depending on the choice of / . In particular, consider the
functions /[<,,(,] that have support in the interval [a, b]. Suppose further that g vanishes on
[a-X,b + X\. When \s\ ̂  A and t € [a,b], then t- s S [a-A, 6 +A], so that g(t - s) = 0 .
Then

b

M * 9) (*) = / f(t)g(t -s)dt =

for \s\ ^ A. But, this means that (K/(at],ff) = 0 for all such g € ^ ( K ) , whatever their
behaviour outside [a, b]. This can only happen if the support of K/[o()) is contained in
[ a - A , 6 +A].

There is an alternative approach for the case p — 2. On taking / e F^,2] with
support in [—6, b], it follows that / is an entire function satisfying \f{z)\ ^ const -e*lIm2l,
so that

\f{z) cosh (Az)| ^ const e6|Im 'I+*IR"I < const .eC>+A>l2l.
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Since £A • / € L2(R), it follows from the Paley-Weiner theorem [7] that K} has support

in [ - 6 - A , 6 +A] .

In this way, it is established that, for suitable data functionals of compact support,

and modulo a logarithmic change of variable, functions such as (j>'{u)) and <t>"(w) will have

compact support.

As a direct result, the sampling localisation of [4] has been placed on a rigorous

footing.
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