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Abstract. We prove that crossed products of fiberwise essentially minimal zero-
dimensional dynamical systems, a class that includes systems in which all orbit closures
are minimal, have isomorphic K-theory if and only if the dynamical systems are strong
orbit equivalent. Under the additional assumption that the dynamical systems have no
periodic points, this gives a classification theorem including isomorphism of the associated
crossed product C∗-algebras as well. We additionally explore the K-theory of such crossed
products and the Bratteli diagrams associated to the dynamical systems.
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1. Introduction
In 1990, Putnam proved in [17] that the crossed product C∗-algebras associated to minimal
Cantor systems are AT-algebras of real rank zero. Using the classification results of Elliott
in [7] and Dadarlat and Gong in [5], one sees that such C∗-algebras are classifiable by their
K-theory. In 1995, Putnam, along with Thierry Giordano and Christian Skau, expanded
this classification theorem to include dynamics; in [9], they showed that there is a condition
on minimal Cantor systems, called ‘strong orbit equivalence’, that is equivalent to isomor-
phism of the K-theory associated to the dynamical systems, and therefore is equivalent
to the isomorphism of the crossed product C∗-algebras. This dynamical classification
was motivated by Krieger’s theorem [12, 13], which says that for ergodic non-singular
systems, the associated von Neumann crossed product factors are isomorphic if and only
if the systems are orbit equivalent. The goal of this paper is to provide an extension of
the dynamical classification theorem of Gioradno, Putnam, and Skau [9, Theorem 2.1] to
include a larger class of zero-dimensional dynamical systems which we describe below.
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2 P. Herstedt

In our previous paper [11], we determined a condition on a zero-dimensional dynamical
system called ‘fiberwise essentially minimal’ (see Definition 2.2) that guarantees that
the associated crossed product is an AT-algebra. As its name suggests, this class is a
broadening of minimal (and also essentially minimal). It additionally includes all systems
whose orbit closures are minimal; more generally, it includes all systems whose points
are all positively and negatively recurrent. If we assume that fiberwise essentially minimal
zero-dimensional systems additionally have no periodic points, their crossed products have
real rank zero and are therefore classifiable by K-theory (due to the work of Elliott in [7]
and Dadarlat and Gong in [5]). This was an expansion of the work done on the minimal
Cantor case in 1990 by Putnam [16, 17] in which the crossed products are simple, and work
done on the essentially minimal case in 1992 by Putnam and Skau along with Herman [10]
in which the crossed products are not necessarily simple. Some more non-simple results
in this realm can be found in [3]. Our result from [11] includes many more non-simple
crossed products.

This paper expands on the work in [11] in two major ways. The first is what we explore in
§3, where we discuss some specifics about theK-theory of the crossed products. We define
‘large subalgebras’ of our crossed products (see Definition 3.6) which are AF-subalgebras
(see Theorem 3.7) that have the same K0 group as the crossed product (see Theorem 3.9).
This mirrors the result of large subalgebras in the minimal case by Putnam [17]. We also
give a simple description of the K1 group of the crossed product in Theorem 3.10.

The second major aspect of this paper is expanding the dynamical classification of
minimal Cantor systems that coincides with the K-theoretic classification, introduced by
Giordano, Putnam, and Skau [9]. They introduce the notion of ‘strong orbit equivalence’,
which we expand to the fiberwise essentially minimal case in Definition 2.2. In §4, we
discuss how the circle algebra direct system that gives the AT-algebra of the crossed
product gives us a sequence of Kakutani–Rokhlin partitions, which we then use to create
a Bratteli–Vershik–Kakutani model of the dynamical system, which is an ordered Bratteli
diagram whose Vershik system is conjugate to the original dynamical system. Using this
Bratteli diagram along with our K-theory results, we then prove Theorem 5.2, which tells
us that for fiberwise essentially minimal zero-dimensional systems,K-theory isomorphism
of the crossed products is equivalent to strong orbit equivalence of the dynamical systems.
This, combined with the classification result of [5, 7], gives us Theorem 5.3, which
tells us that if the dynamical systems have no periodic points, this is also equivalent to
isomorphism of the crossed products.

The Bratteli–Vershik–Kakutani models developed in this paper suggest that more results
in [9] could be generalized to the semisimple (minimal orbits) case. One cannot expect
the results to hold for the entire fiberwise essentially minimal case. For example, [9,
Theorem 2.2] tells us that orbit equivalence of minimal Cantor systems is equivalent to
an isomorphism between the K0 groups modulo their infinitesimal groups. Considering
the shift on the one-point compactification of the integers (an essentially minimal system),
this K0 group modulo the infinitesimal group is isomorphic to Z, which is the same as
if the space was just a single point. Certainly there is no orbit equivalence between these
spaces. However, in the semisimple case, these K0 modulo infinitesimal groups are more
interesting, and an application of the techniques developed in this paper to expand this
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Dynamical classification for fiberwise essentially minimal systems 3

result is a possibility. Considering [9, Theorem 2.2] also tells us that orbit equivalence is
equivalent to a map preserving invariant probability measure, so expanding this result is
of interest to ergodic theory.

2. Preliminaries
This section introduces terms that will be used to prove the main theorems of the paper,
along with some examples and some previous relevant results.

Let X be a totally disconnected compact metrizable space and let h : X → X be
a homeomorphism of X. We call (X, h) a zero-dimensional system. Let α be the
automorphism of C(X) induced by h; that is, α is defined by α(f )(x) = f (h−1(x))

for all f ∈ C(X) and all x ∈ X. Then we denote the crossed product of C(X) by α by
C∗(Z, X, h) (or, less commonly, C∗(Z, C(X), α)). We denote the ‘standard unitary’ of
C∗(Z, X, h) by u, which is a unitary element of C∗(Z, X, h) that satisfies uf u∗ = α(f )

for all f ∈ C(X).
We will use the disjoint union symbol

⊔
to denote unions of disjoint sets. We will not

always say explicitly that the sets in this union are disjoint, as this will be implied by the
notation. By a partition P of X, we mean a finite set of mutually disjoint compact open
subsets of X whose union is X.

We say that a non-empty closed subset Y of X is a minimal set if it is h-invariant and
has no non-empty h-invariant proper closed subsets. By Zorn’s lemma, minimal sets exist
for every zero-dimensional system. We say that a dynamical system (X, h) is essentially
minimal if it has a unique minimal set, and additionally that (X, h) is minimal if the unique
minimal set is X.

The following definition is introduced as [11, Definition 1.9]. Given a subset U of X,
we use the notation

λU : U → Z>0 ∪ {∞} = inf{n ∈ Z>0 | hn(x) ∈ U}.
This is the ‘first return time map’ of U under the homeomorphism h.

Definition 2.1. Let (X, h) be a zero-dimensional system and let P be a partition of X (see
Figure 1). We define a system of finite first return time maps subordinate to P to be a tuple

S = (T , (Xt )t=1,...,T , (Kt )t=1,...,T , (Yt ,k)t=1,...,T ;k=1,...,Kt , (Jt ,k)t=1,...,T ;k=1,...,Kt )

such that we have the following.
(1) We have T ∈ Z>0.
(2) For each t ∈ {1, . . . , T }, Xt is a compact open subset of X. That S is subordinate to

P means that for each t ∈ {1, . . . , T }, Xt is contained in an element of P .
(3) For each t ∈ {1, . . . , T }, Kt ∈ Z>0.
(4) For each t ∈ {1, . . . , T } and each k ∈ {1, . . . , Kt }, Yt ,k is a compact open subset

of Xt . Moreover, for each t ∈ {1, . . . , T }, {Yt ,1, . . . , Yt ,Kt } is a partition of Xt ;
that is,

Kt⊔
k=1

Yt ,k = Xt .
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4 P. Herstedt

FIGURE 1. An illustration of Definition 2.1. For each base Xt , we divide the base into pieces Yt ,k that come back
to Xt only after applying Jt ,k iterations of the homeomorphism.

(5) For each t ∈ {1, . . . , T } and each k ∈ {1, . . . , Kt }, Jt ,k ∈ Z>0. Using Definition 2.1,
we define {Jt ,k} = λXt (Yt ,k). Moreover, for each t ∈ {1, . . . , T }, {hJt ,1(Yt ,1), . . . ,
hJt ,Kt (Yt ,Kt )} is a partition of Xt ; that is,

Kt⊔
k=1

hJt ,k (Yt ,k) = Xt .

(6) The set

P1(S) = {hj (Yt ,k) | t ∈ {1, . . . , T }, k ∈ {1, . . . , Kt }, and j ∈ {0, . . . , Jt ,k − 1}}
is a partition of X. Note that this combined with condition (5) also implies

P2(S) = {hj (Yt ,k) | t ∈ {1, . . . , T }, k ∈ {1, . . . , Kt }, and j ∈ {1, . . . , Jt ,k}}
is a partition of X.

The following definition is introduced as [11, Definition 1.20].

Definition 2.2. Let (X, h) be a zero-dimensional system and let Z ⊂ X be a closed subset.
We say that the triple (X, h, Z) is a fiberwise essentially minimal zero-dimensional system
if there is a quotient map ψ : X → Z such that:
(1) ψ |Z : Z → Z is the identity map;
(2) ψ ◦ h = ψ ;
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Dynamical classification for fiberwise essentially minimal systems 5

FIGURE 2. An illustration of Example 2.4(2). Each fiber over z ∈ Z is a copy of Y , aside from the fiber at ∞ ∈ Z,
which is a singleton (this is pictured as the middle fiber). The picture is meant to depict how the singleton is

connected to nearby fibers topologically.

(3) for each z ∈ Z, (ψ−1(z), h|ψ−1(z)) is an essentially minimal system and z is in its
minimal set.

The following is [11, Theorem 2.1], linking Definitions 2.1 and 2.2.

THEOREM 2.3. Let (X, h) be a zero-dimensional system. Then there exists some closed
Z ⊂ X such that (X, h, Z) is fiberwise essentially minimal if and only if for any partition
P of X, (X, h) admits a system of finite first return time maps subordinate to P .

Examples 2.4
(1) By [11, Proposition 1.18], zero-dimensional systems in which all points are positively

and negatively recurrent are fiberwise essentially minimal. In particular, this includes
systems in which orbit closures are minimal, called ‘semisimple’ by Furstenberg in
[8]. Thus, examples of fiberwise essentially minimal zero-dimensional systems can
be found by looking at the local structure of orbit closures.

(2) The following is [11, Example 1.21(c)]. Let Z = Z ∪ {∞} be the one-point compact-
ification of the integers and let (Y , h′) be an essentially minimal zero-dimensional
system. Let X = (Y × Z)/(Y × {∞}) and let π : Y × Z → X be the quotient map.
Let h̃ = π(h′ × id) : Y × Z → X and let h : X → X be the continuous map satis-
fying h ◦ π = h̃, which is obtained from the universal property of the quotient map.
One checks that h is a homeomorphism. Define ψ̃ : Y × Z → Z by ψ̃((y, z)) = z

and then let ψ : X → Z be the continuous map satisfying ψ ◦ π = ψ̃ , which is
obtained from the universal property of the quotient map. One checks that ψ itself
is a quotient map, and then one checks that (X, h) is a fiberwise essentially minimal
zero-dimensional system (using Z and ψ as defined above). See this in Figure 2.

The following is [11, Theorem 2.2]. By an AT-algebra, we mean a C∗-algebra that is
the direct limit of ‘circle algebras’. By ‘circle algebra’, we mean an algebra isomorphic to
a finite direct sum of matrices and matrices over C(S1).
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6 P. Herstedt

THEOREM 2.5. Let (X, h, Z) be a fiberwise essentially minimal zero-dimensional system.
Then C∗(Z, X, h) is an AT-algebra.

The following is a consequence of the proof of Theorem 2.5 that will be useful later on.

COROLLARY 2.6. Let (X, h, Z) be a fiberwise essentially minimal zero-dimensional
system, let P be a partition of X, let a1, . . . , an ∈ C∗(Z, X, h), and let ε > 0. Then there
is a circle algebra A ⊂ C∗(Z, X, h) and a partition P ′ of X that is finer than P such that
we have the following.
(1) The diagonal matrices of A are C(P ′).
(2) For each k ∈ {1, . . . , n}, there is a bk ∈ A such that ‖ak − bk‖ < ε.

On its own, Theorem 2.5 gives us a reason to study fiberwise essentially mini-
mal zero-dimensional systems in the context of operator algebras, as AT-algebras are
C∗-algebras with very nice structure. If the following conjecture holds, then fiberwise
essentially minimality plays a very important role in the structure of zero-dimensional
dynamical systems.

Conjecture 2.7. Let (X, h) be a zero-dimensional system. Then C∗(Z, X, h) is an
AT-algebra if and only if (X, h) is fiberwise essentially minimal.

What Conjecture 2.7 would imply is that there is something unique about the structure
of fiberwise essentially minimal zero-dimensional systems that gives rise to the nicest
possible direct limit structure. If this is true, there is something very likely unique and
inherent about the dynamical systems themselves that is worth studying. It will also likely
have many consequences in the future of non-simple C∗-algebra classification, as this
direct limit structure (and lack thereof) tells us a lot about the K-theory of the crossed
product C∗-algebra.

Without specifying all of the details, there is ample evidence in the literature for the
validity of Conjecture 2.7. One direction is clear from Theorem 2.5. For the other direction,
one can prove that if C∗(Z, X, h) has stable rank one (which is a consequence of being
AT), then all orbit closures of (X, h) are essentially minimal. Although this is being stated
without proof, [17, Theorem 3.1] tells us that if an orbit closure has at least two minimal
sets, then the crossed product cannot have stable rank one. More results in this direction
are in [3], which closely examines what happens to Cantor systems when one has multiple
minimal sets in a single orbit closure. Since one can show that minimal orbit closures imply
fiberwise essential minimality (Example 2.4(1)), it is not hard to believe that essentially
minimal orbit closures also imply fiberwise essential minimality.

We now introduce the concepts important to the dynamical side of the discussion
in this paper. Let (X1, h1) and (X2, h2) be dynamical systems. By an orbit map, we
mean a homeomorphism F : X1 → X2 such that for all x ∈ X1, we have F(orbh1(x)) =
orbh2(F (x)), where orbh1(x) denotes the h1-orbit of x (and likewise for orbh2 ). We say
that (X1, h1) and (X2, h2) are orbit equivalent if there exists such an F . If the orbit map
satisfies F ◦ h1 = h2 ◦ F , we say that (X1, h1) and (X2, h2) are conjugate.
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Definition 2.8. Let (X1, h1) and (X2, h2) be dynamical systems and let F : X1 → X2 be
an orbit map. Then there are functions β, γ : X1 → Z, called orbit cocycles, that satisfy
(F ◦ hβ(x)1 )(x) = (h2 ◦ F)(x) and (hγ (x)2 ◦ F)(x) = (F ◦ h1)(x).

The following is a generalization of [9, Definition 1.3] from the minimal case to the
fiberwise essentially minimal case (to see this, simply take Z below to be a singleton).
When we consider orbit maps between (X1, h1, Z1) and (X2, h2, Z2) for closed sets
Z1 ⊂ X1 and Z2 ⊂ X2, we require that F(Z1) = Z2.

Definition 2.9. Let (X1, h1, Z1) and (X2, h2, Z2) be fiberwise essentially minimal
zero-dimensional systems. We say that (X1, h1, Z1) and (X2, h2, Z2) are strong
orbit equivalent if there is an orbit map F : X1 → X2 such that the orbit cocycles
β, γ : X1 → Z are continuous on X1 \ Z1.

3. K-theory
In this section, we discuss the K-theory of the crossed products associated to fiberwise
essentially minimal zero-dimensional systems. The K-theory of operator algebras has
an ordered group (defined below) of equivalence classes of projections, (K0, K+

0 ), and
a group of equivalence classes of unitaries, K1. K-theory is a classifying invariant for
C∗-algebras in sufficiently nice cases (being an AT-algebra is sufficient). For a general
reference on K-theory of operator algebras, see [4]. For some references on work done in
the minimal case, see [9, 17]. For a reference on work done in the essentially minimal case,
see [10].

Definition 3.1. An ordered group is a pair (G, G+), whereG is a countable abelian group
and G+ is a subset of G, called the positive cone, that satisfies the following:
(1) for all g1, g2 ∈ G+, we have g1 + g2 ∈ G+;
(2) for all g ∈ G, there are g1, g2 ∈ G+ such that g = g1 − g2;
(3) the identity of G is the only element in both G+ and −G+.
We call e ∈ G+ an order unit if for all g ∈ G+, there is some n ∈ Z>0 such that
ne − g ∈ G+.

Given an ordered group (G, G+), we may write g ≥ 0 to denote g ∈ G+. The notation
g1 ≥ g2 means that g1 − g2 ∈ G+. By a homomorphism of ordered groups (G1, G+

1 ) and
(G2, G+

2 ), we mean a homomorphism of groups ϕ : G1 → G2 such that ϕ(G+
1 ) ⊂ G+

2 .
When we fix a particular order unit e ∈ G+, we may write the triple (G, G+, e) and call

this an ordered group with distinguished order unit. By a homomorphism of ordered groups
with distinguished order units (G1, G+

1 , e1) and (G2, G+
2 , e2), we mean a homomorphism

of ordered groups ϕ : G1 → G2 such that ϕ(e1) = e2.
We introduce notation important to the following proposition, which is [11, Proposition

2.2], and a direct consequence of [14, Theorem 2.4]. Let T denote the Toeplitz algebra,
the universal C∗-algebra generated by a single isometry s. Let K denote the C∗-algebra
of compact operators on a separable Hilbert space. Let A be a unital C∗-algebra and let
α be an automorphism of A, and let u be the standard unitary of C∗(Z, A, α). We denote
by T (A, α) the Toeplitz extension of A by α, which is the subalgebra of C∗(Z, A, α)⊗ T
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8 P. Herstedt

generated by A⊗ 1 and u⊗ s. The ideal generated by A⊗ (1 − ss∗) is isomorphic to
A⊗ K, and the quotient by this ideal is isomorphic to C∗(Z, A, α).

PROPOSITION 3.2. Let (X, h) be a zero-dimensional system. Let α be the automorphism
of C(X) induced by h; that is, α is defined by α(f )(x) = f (h−1(x)) for all f ∈ C(X) and
all x ∈ X. Let δ be the connecting map obtained from the exact sequence

0 C(X)⊗ K T (C(X), α) C∗(Z, A, α) 0,

where K0(C(X)⊗ K) is identified with K0(C(X)) in the standard way. Let i : C(X) →
C∗(Z, X, h) be the natural inclusion. Then there is an exact sequence

0 K1(C
∗(Z, X, h)) K0(C(X)) K0(C(X)) K0(C

∗(Z, X, h)) 0.δ id−α∗ i∗

Proof. Since K1(C(X)) = 0, this follows immediately from [14, Theorem 2.4].

Note that K0(C(X)) ∼= C(X, Z); we will use this identification throughout the paper.
Let C(X, Z)+ denote the subset of C(X, Z) consisting of f such that f (x) ≥ 0 for all
x ∈ X. Then it is easy to check that (C(X, Z), C(X, Z)+) is an ordered group and the
function χX is an order unit.

The following is closely related to [10, Proposition 5.1]; although the hypotheses are
broadened, the proof is essentially the same. Adopting the notation of Proposition 3.2, we
denote K0(C(X))/im(id − α∗) by K0(X, h).

PROPOSITION 3.3. Let (X, h, Z) be a fiberwise essentially minimal zero-dimensional
system and adopt the notation of Proposition 3.2. Let π : C(X, Z) → K0(X, h) denote the
quotient map. Define K0(X, h)+ = π(C(X, Z)+). Then (K0(X, h), K0(X, h)+, π(1)) is
an ordered group with distinguished order unit.

Proof. We check the conditions of Definition 3.1. Conditions (1) and (2) follow from
surjectivity of π . For condition (3), let g ∈ K0(X, h)+ ∩ −K0(X, h)+. This means that
there is f1 ∈ C(X, Z)+ such that π(f1) = g and f2 ∈ C(X, Z)+ such that π(−f2) = g.
However, then π(f1 + f2) = 0 and so f1 + f2 ∈ im(id − α∗). Let f ∈ C(X, Z) satisfy
f − α∗(f ) = f1 + f2. LetE = f−1(maxx∈X f (x)). Since f − α∗(f ) ≥ 0, we must have
h(E) ⊂ E. Let ψ be as in Definition 2.2 and let z ∈ ψ(E) and define Ez = E ∩ ψ−1(z).
Since h(Ez) ⊂ Ez, Ez is invariant so must intersect the minimal set. However, then by [10,
Theorem 1.1], since Ez �= ∅, we have

⋃
n∈Z≥0

hn(Ez) = ψ−1(z), and so Ez = ψ−1(z).
Since this holds for all z ∈ ψ(E), we see that f is constant on ψ−1(z) for all z ∈ Z. Since
ψ−1(z) is invariant for all z ∈ Z, we must have f = α∗(f ), and so f1 + f2 = 0, and since
f1, f2 ≥ 0, we see f1 = f2 = 0, and finally we see g = 0. This proves condition (3).

Finally, the fact that π(1) is an order unit is also clear from the surjectivity of π .

THEOREM 3.4. Let (X, h) be a zero-dimensional system. Then adopting the nota-
tion of Proposition 3.2, we have (K0(C

∗(Z, X, h)), K0(C
∗(Z, X, h))+, 1) ∼= (K0(X, h),

K0(X, h)+, 1).
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Dynamical classification for fiberwise essentially minimal systems 9

Proof. Since ker(i∗) = im(id − α∗), and since i : C(X) → C∗(Z, X, h) is the natural
inclusion, the map i∗ induces a map ϕ : K0(X, h) → K0(C

∗(Z, X, h)) which is an
isomorphism of groups and satisfies K0(X, h)+ ⊂ K0(C

∗(Z, X, h))+.
Let p ∈ C∗(Z, X, h) be a projection. By applying Corollary 2.6 with a1 = p and

ε = 1/2, p is unitarily equivalent to χU for some compact open U ⊂ X. Let q be the
image of χU under the quotient map C(X) → C(X)/im(id − α). Then [ϕ(q)] = [χU ] =
[p]. Repeating this argument for Mn(C

∗(Z, X, h)), we see that K0(C
∗(Z, X, h))+ ⊂

K0(X, h)+.
Finally, that ϕ(1) = 1 is clear, proving the theorem.

What we have also shown in the previous proof is the following.

COROLLARY 3.5. Let (X, h, Z) be a fiberwise essentially minimal zero-dimensional
system. Let i : C(X) → C∗(Z, X, h) denote the canonical inclusion. Then the induced
map i∗ : K0(C(X)) → K0(C

∗(Z, X, h)) is surjective as a map between ordered groups.

The following definition is from [15, §2], later studied in the minimal case in [17].
These have been referred to as ‘large subalgebras’ in the literature. They are called large
due to Theorem 3.9, as they capture the entire K0 of the larger crossed product. Given a
locally compact Hausdorff space X, we denote the continuous functions on X that ‘vanish
at infinity’ by C0(X). More formally, C0(X) is the C∗-algebraic closure of the continuous
functions on X with compact support.

Definition 3.6. Let (X, h, Z) be a fiberwise essentially minimal zero-dimensional system.
We define AZ to be the C∗-algebra generated by C(X) and uC0(X \ Z).

The following theorem is contained in [15, Theorem 2.3]. We provide a direct proof
in our context for the reader, which helps give an idea of the AF structure of the large
subalgebra.

THEOREM 3.7. Let (X, h, Z) be a fiberwise essentially minimal zero-dimensional system.
Then AZ is an AF-algebra.

Proof. Let (P(n)) be a generating sequence of partitions of X. For each n ∈ Z>0,
we inductively define systems S(n) = (T (n), (X(n)t ), (K(n)

t ), (Y (n)t ,k ), (J
(n)
t ,k )) of finite

first return time maps. First, let S(1) = (T (1), (X(1)t ), (K(1)
t ), (Y (1)t ,k ), (J

(1)
t ,k )) be any

system of finite first return time maps subordinate to P(n) such that P1(S(1))
is finer than P(1) and such that

⊔T (1)

t=1 X
(1)
t ⊃ Z (the former is possible by [11,

Proposition 1.13] and the latter is possible by [11, Lemma 4.12]). Now, let n ∈ Z>0

and suppose we have chosen S(n) = (T (n), (X(n)t ), (K(n)
t ), (Y (n)t ,k ), (J

(n)
t ,k )). Let S(n+1) =

(T (n+1), (X(n+1)
t ), (K(n+1)

t ), (Y (n+1)
t ,k ), (J (n+1)

t ,k )) be any system of finite first return time
maps subordinate to P(n+1) such that P1(S(n+1)) is finer than P(n+1) and finer than
P1(S(n)) and such that

⊔T (n+1)

t=1 X
(n+1)
t ⊃ Z.

Let n ∈ Z>0. Let A(n) be the finite dimensional C∗-subalgebra of C∗(Z, X, h)
spanned by the matrix units ui−jχ

hj (Y
(n)
t ,k )

for t ∈ {1, . . . , T (n)}, k ∈ {1, . . . , K(n)
t }, and i,
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j ∈ {0, . . . , J (n)t ,k − 1}. We see A(n) ∼= ⊕T (n)

t=1
⊕K

(n)
t

k=1 MJ
(n)
t ,k

. Notice that C(P1(S(n))) ⊂
A(n) as the diagonal matrices. Set Z(n) = ⊔T (n+1)

t=1 X
(n)
t and then notice that uC(X \

Z(n)) ⊂ A(n) as the superdiagonal matrices, so A(n) is generated by C(P1(S(n))) and
uC(X \ Z(n)).

Notice that A(n) ⊂ A(n+1), so we get a directed system of finite dimensional
C∗-algebras, whose limit A(∞) contains C(X) since (P1(S(n))) is a generating sequence
of partitions, and since

⋂∞
n=1 Z

(n) = Z, we have uC(X \ Z(n)) → uC0(X \ Z) ⊂ AZ .
It now clear that A(∞) is generated by C(X) and uC0(X \ Z), and is therefore equal
to AZ .

The following is [16, Lemma 4.2].

LEMMA 3.8. Adopt the notation of Theorem 3.7 and its proof. Let p be a projection in
C(X) ∩ A(n) and suppose that p = 0 on Z(n). Then α(p) ∈ C(X) ∩ A(n) and [α(p)] =
[p] in K0(A

(n)).

We finally have the following theorem, which tells us enough about the K0 structure of
the crossed product to be able to prove Theorems 5.2 and 5.3. The proof follows that of
[16, Theorem 4.1].

THEOREM 3.9. Let (X, h, Z) be a fiberwise essentially minimal zero-dimensional system.
Then K0(AZ) ∼= K0(C

∗(Z, X, h)) as ordered groups.

Proof. Let i : AZ → C∗(Z, X, h) denote the inclusion map, and let i∗ : K0(AZ) →
K0(C

∗(Z, X, h)) denote the map induced by i on K0. Let i1 : C(X) → AZ denote the
canonical inclusion, let i2 : C(X) → C∗(Z, X, h) denote the canonical inclusion, and let
(i1)∗ and (i2)∗ denote the induced maps on K0. We then clearly have i ◦ i1 = i2. By
Corollary 3.5, (i2)∗ : K0(C(X)) → K0(C

∗(Z, X, h)) is a surjective map between ordered
groups, and therefore so is i∗.

By Proposition 3.2, ker((i2)∗) = ran(id − α∗). Thus, since (i2)∗ = (i1)∗ ◦ i∗, we have
(i1)∗(ran(id − α∗)) ⊂ ker(i∗). Now suppose that a ∈ ker(i∗). Because (i1)∗ is surjective,
we can find g ∈ C(X, Z) such that (i1)∗(g) = a. Then (i2)∗(g) = i∗(a) = 0, so g ∈
ker((i2)∗) = ran(id − α∗), so a ∈ (i1)∗(ran(id − α∗)). Altogether, we have

(i1)∗(ran(id − α∗)) = ker(i∗). (3.1)

Let (P(n)) be a sequence of partitions, let (S(n)) be a sequence of systems of finite
first return time maps, and let (A(n)) be a sequence of subalgebras of C∗(Z, X, h)
as in the proof of Theorem 3.7. We now claim that (i1)∗(ran(id − α∗)) = 0. Suppose
g1, g2 ∈ C(X, Z) satisfy g1|Z = g2|Z . Since (P(n)) is a generating sequence of partitions
and for each n ∈ Z>0, we have P1(S(n)) is finer than P(n), there is some n ∈ Z>0 such
that g1, g2 ∈ A(n) and such that g1|Z(n) = g2|Z(n) (where Z(n) is defined in the proof of
Theorem 3.7). So g1 − g2 is 0 on Z(n), so we can write g1 − g2 as a linear combination
of projections in C(X) ∩ A(n) each of which is zero on Z(n). So by Lemma 3.8, we have
[α(g1 − g2)] = [g1 − g2] in K0(A

(n)), and so (i1)∗(g1 − α(g1)) = (i1)∗(g2 − α(g2)) in
K0(AZ).
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So let g ∈ C(X, Z). Define f ∈ C(X, Z) by f = g ◦ ψ . Then f |Z = g|Z , and so
by the above paragraph, we have (i1)∗(g − α(g)) = (i1)∗(f − α(f )). However, then
notice that α(f ) = g ◦ ψ ◦ h−1 = g ◦ ψ = f , and so (i1)∗(f − α(f )) = 0. Thus, we
have (i1)∗(ran(id − α∗)) = 0. Combining this with equation (3.1), we see ker(i∗) = 0.
Altogether, we have shown that i∗ is an isomorphism of ordered groups.

THEOREM 3.10. Let (X, h, Z) be a fiberwise essentially minimal zero-dimensional
system. Then K1(C

∗(Z, X, h)) ∼= C(Z, Z).

Proof. Adopt the notation of Proposition 3.2. Then K1(C
∗(Z, X, h)) ∼= ker(id − α∗).

Identifying K0(C(X)) with C(X, Z), we may replace α∗ with α.
Let f ∈ ker(id − α) and let z ∈ Z. Suppose f |ψ−1(z) is not constant. Then there is

some x ∈ ψ−1(z) such that f (z) �= f (x). Let U be a compact open subset of ψ−1(z) such
that f (U) = f (z). Since (ψ−1(z), h|ψ−1(z)) is an essentially minimal zero-dimensional
system, by [10, Theorem 1.1], there is an n ∈ Z>0 such that x ∈ h−n(U). Let
x′ = hn(x) ∈ U . Then f (x′) �= f (x) = f (h−n(x′)) = αn(f )(x′), and so f �= αn(f ),
and so f �= α(f ), which is a contradiction to x ∈ ker(id − α). Therefore, f |ψ−1(z) is
constant.

Now suppose f ∈ C(X, Z) and suppose f |ψ−1(z) is constant for each z ∈ Z. Then for
each x ∈ X, we have α(f )(x) = f (h−1(x)) = f (ψ(x)) = f (x), and so f = α(f ), and
so f ∈ ker(id − α).

Thus, we have

ker(id − α) = {f ∈ C(X, Z) | f |ψ−1(z) is constant for each z ∈ Z} ∼= C(Z, Z)

as desired.

COROLLARY 3.11. Let (X1, h1, Z1) and (X2, h2, Z2) be fiberwise essentially minimal
zero-dimensional systems such that C∗(Z, X1, h1) ∼= C∗(Z, X2, h2). Then Z1 ∼= Z2.

A consequence of Corollary 3.11 is that given a zero-dimensional system, all choices of
Z that make it fiberwise essentially minimal are homeomorphic.

4. Bratelli diagrams
In this section, we explore the construction of ordered Bratelli diagrams associated to
fiberwise essentially minimal zero-dimensional systems. This correspondence is used to
prove Theorem 5.2. For work done in the minimal case, see [2, 9]. For work done in the
essentially minimal case, see [1, 10].

Definition 4.1. A Bratteli diagram B is a pair of sets (V , E) such that we have the
following.
(1) The set V is called the set of vertices of B. We can write V = ⊔∞

n=0 Vn, where V0

contains a single point v0 and Vn is finite and non-empty for all n ∈ Z≥0. For each
n ∈ Z≥0, we call Vn the set of vertices of B at level n.

(2) The set E is called the set of edges of B. We can write E = ⊔∞
n=1 En, where En is

finite and non-empty for all n ∈ Z>0. For each n ∈ Z>0, we call En the set of edges
at level n.
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(3) There are maps r , s : E → V such that for n ∈ Z>0 and e ∈ En, s(e) ∈ Vn−1 and
r(e) ∈ Vn. Moreover, r−1(v) is non-empty for all v ∈ V and s−1(v) is non-empty
for all v ∈ V \ V0. The map r is called the range map of B and the map s is called
the source map of B.

Notation 4.2. Let B = (V , E) be a Bratteli diagram. For each v ∈ V , we denote R(v) =
r(s−1(v)), and for each v ∈ V \ V0, we denote S(v) = s(r−1(v)). If v ∈ Vn, then R(v) is
the set of all vertices in Vn+1 that are connected to v by an edge, and S(v) is the set of all
vertices in Vn−1 connected to v by an edge. In a reasonable sense, this gives us range and
source maps for vertices.

For each k, k′ ∈ Z>0 with k < k′, we denote by Pk,k′ the set of all paths from Vk to Vk′ .
Formally, Pk,k′ is the set of (ek+1, . . . , ek′) such that for all j ∈ {k + 1, . . . , k′}, ej ∈ Ej
and for all j ∈ {k + 1, . . . , k′ − 1}, we have r(ej ) = s(ej+1).

Definition 4.3. Let B = (V , E) and B ′ = (V ′, E′) be Bratteli diagrams. We say that B ′ is
a telescoping of B if there is a sequence (kn) such that for all n ∈ Z≥0, setting k0 = 0, we
have kn ∈ Z≥0, k0 = 0, kn > kn−1, V ′

n = Vkn , and E′
n = Pkn−1,kn .

Remark 4.4. We create an equivalence class of Bratteli diagrams from isomorphism
(bijections of vertices and edges at each level respecting range and source maps) and
telescoping. If B1 and B2 are in the same equivalence class, we denote this by B1 ∼ B2.
In [6], K0 (an ordered group) of a Bratteli diagram is defined. Although we will not go
into the detail as it is not important for this paper, the result that is important is that
K0(B1) ∼= K0(B2) if and only if B1 ∼ B2. As described in [9], we also have B1 ∼ B2

if and only if there is a Bratteli diagram B, called the aggregate Bratteli diagram of B1

and B2, such that telescoping B to odd levels yields a telescoping of B1 and telescoping B
to even levels yields a telescoping of B2.

Definition 4.5. An ordered Bratteli diagram B is a Bratteli diagram (V , E) together with
a partial order ≤ on E such that e, e′ ∈ E are comparable if and only if r(e) = r(e′). We
write B = (V , E, ≤).

Let B = (V , E, ≤) be an ordered Bratteli diagram. We define Emin (Emax) to be the set
of all edges that are minimal (maximal, respectively) with respect to ≤. We define Vmin

(Vmax) to be the set of all v ∈ V such that there is an e in Emin (Emax, respectively) with
s(e) = v.

If B = (V , E, ≤), then any telescoping B ′ of B has an order induced by B. In general,
we can put an order on Pi,j by (ei+1, . . . , ej ) ≤ (e′i+1, . . . , e′j ) if ek ≤ e′k for the smallest
k ∈ {i + 1, . . . , j} such that ek /∈ Emax.

Definition 4.6. Let B = (V , E, ≤) be an ordered Bratteli diagram. We define a partial
Vershik transformation h̃B : (XB \XB,max) ∪XB,min → (XB \XB,min) ∪XB,max in the
following way. If x ∈ XB,max ∩XB,min, we define h̃B(x) = x. If x = (x1, x2, . . .) ∈
XB \XB,max, then there is some smallest k ∈ Z>0 such that xk /∈ Emax. Let yk
denote the successor of xk in E and let (y1, y2, . . . , yk−1) be the unique path from

https://doi.org/10.1017/etds.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.104


Dynamical classification for fiberwise essentially minimal systems 13

v0 to s(yk) such that yj ∈ Emin for all j ∈ {1, . . . , k − 1}. We define h̃B(p) =
(y1, y2, . . . , yk , xk+1, xk+2, . . .).

Definition 4.7. Let B = (V , E, ≤) be an ordered Bratteli diagram. We define the infinite
path space XB to be the set of all sequences x = (x1, x2, . . .) where xn ∈ En and
r(xn) = s(xn+1) for all n ∈ Z>0 together with the topology generated by sets of the
form U(e1, . . . , ek), which is the set of all x = (x1, x2, . . .) with xj = ej for all j ∈
{1, . . . , k}.

Let B = (V , E, ≤) be an ordered Bratteli diagram. It is easy to see that the infinite
path space is a zero-dimensional space. We define XB,min (XB,max) to be the set of all
x = (x1, x2, . . .) ∈ XB such that xj is in Emin (Emax, respectively) for all j ∈ Z>0.

The following terminology appears in [2, Definition 2.18], although we restate it to give
more clarity as to when the definition applies.

Definition 4.8. Let B = (V , E, ≤) be an ordered Bratteli diagram and let h̃B be its partial
Vershik transformation. We say that the ordering on B is perfect if for every e ∈ XB,min,
orbh̃B (e) ∩XB,max contains a single element, and if for every e ∈ XB,max, orbh̃B (e) ∩
XB,min contains a single element. In this case, we define the Vershik transformation of
XB , denoted by hB , to be the extension of h̃B which, for each e ∈ XB,min, sends the unique
element of orbh̃B (e) ∩XB,max to e.

Thus, given an ordered Bratteli diagram B = (V , E, ≤) with a perfect ordering, the
system (XB , hB) is a zero-dimensional system. There is a standard way of using systems of
finite first return time maps to associate minimal (and essentially minimal) Cantor systems
to ‘minimal’ (and ‘essentially minimal’) ordered Bratteli diagrams and vice versa; see
[9, §3] (and [10, §2]). We give a couple of brief examples of the Bratteli diagram to
dynamical system direction in Example 4.9. The procedure in the other direction is part of
the proof of Proposition 4.11.

Examples 4.9. We provide a couple of examples illustrating the definitions above.
(1) Consider the ordered Bratteli diagram B in Figure 3. Assume the pattern shown in

the diagram continues forever. As we can see, there is a linear order on the set of
edges that share a range vertex. For example, there are three edges going into v, and
those three edges are ordered 1 to 3. There is exactly one minimal infinite path and
one maximal infinite path; these are the same path, shown in red. It is not too hard to
see that the ordering on B is perfect. The dynamical system (XB , hB) is conjugate
to the shift on the one-point compactification of the integers, where the path in red
on the right corresponds to the point at ∞ and the path on the left (consisting of all
edges labeled ‘2’) corresponds to 0 ∈ Z. This is not the only possible diagram that
yields such a Vershik system, but one that reflects a nice choice of a sequence of
systems of finite first return time maps.

(2) We now show an perfectly ordered Bratteli diagram B such that (XB , hB) is
conjugate to the dynamical system in Example 2.4(2), where we take Y to be
Z ∪ {∞} and h′ to be the shift. See Figure 4. The straight line down the middle is the
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14 P. Herstedt

FIGURE 3. An illustration of Example 4.9(1). This is a Bratteli diagram associated to the shift on the one-point
compactification of the integers.

FIGURE 4. An illustration of Example 4.9(2). This is a Bratteli diagram associated to the fiberwise essentially
minimal zero-dimensional system in Example 4.9(2).

infinite path corresponding to the crushed point in Figure 2. We can see a bunch of
subtrees branching off that look like Figure 3; these correspond to the fibers, which
are conjugate to the shift on the one-point compactification of the integers.

There are many minimal and maximal paths, and we color these with red.
However, since the orbit closures are the fibers, each orbit closure has exactly one
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minimal and maximal path; these paths are the same, like in Figure 3. Therefore, the
order is perfect, and the Vershik system does in fact turn out to be conjugate to the
system in Example 2.4(2).

The purpose of the following lemma is used to build a sequence of systems of finite first
return time maps with desirable properties in the proof of Proposition 4.11.

LEMMA 4.10. Let (X, h) be a fiberwise essentially minimal zero-dimensional system, let
P and P ′ be partitions of X, and let S = (T , (Xt ), (Kt ), (Yt ,k), (Jt ,k)) be a system of
finite first return time maps subordinate to P such that for each t ∈ {1, . . . , T }, we have
ψ(Xt) ⊂ Xt . Then there is a system S0 = (T 0, (X0

t ), (K
0
t ), (Y

0
t ,k), (J

0
t ,k)) of finite first

return time maps subordinate to P and a system S ′ = (T ′, (X′
t ), (K

′
t ), (Y

′
t ,k), (J

′
t ,k)) of

finite first return time maps subordinate to P ′ such that:
(1) the partition P1(S ′) is finer than P ′ and P1(S0);
(2) the partition P1(S0) is finer than P1(S);
(3) we have T 0 = T and for each t ∈ {1, . . . , T }, we have X0

t = Xt ;
(4) for each t ′ ∈ {1, . . . , T ′}, there is a t ∈ {1, . . . , T 0} and k ∈ {1, . . . , K0

t } such that
X′
t ′ ⊂ Y 0

t ,k;
(5) for each t ′ ∈ {1, . . . , T ′}, there is a t ∈ {1, . . . , T 0} and k ∈ {1, . . . , K0

t } such that

X′
t ′ ⊂ h

J 0
t ,k (Y 0

t ,k);
(6) for each t ∈ {1, . . . , T 0} and each k ∈ {1, . . . , K0}, there is a t ′ ∈ {1, . . . , T ′} such

that Y 0
t ,k ⊂ ⋃

j∈Z hj (X′
t ′).

Proof. We first construct S ′ and then use it to modify S to obtain S0. By applying
[11, Lemma 4.13], we may assume that S satisfies its conclusions; in particular, for all
t ∈ {1, . . . , T }, we have ψ(Xt) ⊂ Yt ,1, and the partitions P1(S) and P2(S) are finer
than P . Let P ′′ be a partition finer than P ′, P1(S), and P2(S). Then apply [11, Lemma 3.2]
to obtain a system S ′ = (T ′, (X′

t ), (K
′
t ), (Y

′
t ,k), (J

′
t ,k)) of finite first return time maps

subordinate to P ′′ such that for all t ′ ∈ {1, . . . , T ′}, there is a t ∈ {1, . . . , T } such that
X′
t ′ ⊂ Xt . Since P ′′ is finer than P ′, S ′ is also subordinate to P ′. By applying [11,

Proposition 1.13], we may assume that P1(S ′) is finer than P ′′.
Let t ′ ∈ {1, . . . , T ′} and let t ∈ {1, . . . , T } be such that X′

t ′ ⊂ Xt . Since P ′′ is finer
than P1(S), there is some k ∈ {1, . . . , Kt } such that

X′
t ′ ⊂ Yt ,k . (4.1)

Since P ′′ is finer than P2(S), there is some l ∈ {1, . . . , Kt } such that

X′
t ′ ⊂ hJt ,l (Yt ,l ). (4.2)

Define T 0 = T and for each t ∈ {1, . . . , T }, define X0
t = Xt (note that after finishing

this construction, this verifies conclusion (c) of the lemma). Let t ∈ {1, . . . , T } and
let {s(1), . . . , s(Nt )} be the set of all t ′ ∈ {1, . . . , T ′} such that Xt ′ ⊂ Xt . For each
n ∈ {1, . . . , Nt }, let {a(n, 1), . . . , a(n, Cn)} be the set of all k ∈ {1, . . . , Kt } such
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that Yt ,k ∩ ⋃
j∈Z hj (X′

s(n)) �= ∅. Define K0
t = ∑Nt

n=1 Cn and define C0 = 0. Let
k ∈ {1, . . . , K0

t } and let n ∈ {1, . . . , Nt }, and c ∈ {1, . . . , Cn} be such that k =
Cn−1 + c. Then define

Y 0
t ,k = Yt ,a(n,c) ∩

⋃
j∈Z

hj (X′
s(n)) (4.3)

and define J 0
t ,k = Jt ,a(n,c). It is routine to verify that S0 = (T 0, (X0

t ), (K
0
t ), (Y

0
t ,k), (J

0
t ,k))

is a system of finite first return time maps subordinate to P . By applying [11, Proposition
1.9], we may assume that P1(S0) is finer than P (note that this proves conclusion (2) of
the lemma).

We now verify the conclusions of the lemma. Conclusions (1), (2), and (3) have already
been verified. Conclusion (4) follows from equation (4.1) and from the fact that P1(S0) is
finer than P1(S). Conclusion (5) follows from equation (4.1) and the fact that that P2(S0)

is finer than P2(S). Conclusion (6) is shown by equation (4.3). This proves the lemma.

The following proposition is the key to adapting the proof of [9, Theorem 2.1] to extend
from the minimal case to our case (Theorem 5.2). Using Lemma 4.10, we construct an
ordered Bratteli diagram (called a ‘Bratteli–Vershik–Kakutani model’ in the literature)
using a special sequence of partitions of X (this is a special type of what is referred to in
the literature as a sequence of ‘Kakutani–Rokhlin’ partitions). In the minimal case, you can
construct an ordered Bratteli diagram B = (V , E, ≤) whose Vershik system is conjugate
to a minimal system such that for any vertex v in Vn, there are multiple edges from every
vertex in Vn−1 to v (see [9, §3]).

PROPOSITION 4.11. Let (X, h, Z) be a fiberwise essentially minimal zero-dimensional
system. There is an ordered Bratteli diagram B = (V , E, ≤) with a perfect ordering such
that:
(1) the system (XB , hB , XB,min) is conjugate to (X, h, Z);
(2) for each v in Vmin (or Vmax), there is a v′ in Vmin (Vmax, respectively) and an edge e

in Emin (Emax, respectively) such that s(e) = v and r(e) = v′;
(3) for each v in Vmin (or Vmax) and each e inEmin (Emax, respectively) with r(e) ∈ R(v)

satisfies s(e) = v;
(4) for each v in Vmin (or Vmax) and each m ∈ Z>0, Rm(v) = (Rm ◦ Sm ◦ Rm)(v).

Proof. Let Z and ψ correspond to (X, h) as in Definition 2.2, and let (P(n)) be a
generating sequence of partitions of X. We will construct an ordered Bratteli diagram
B = (V , E, ≤) such that (XB , hB) is conjugate to (X, h) via a map F : X → XB that
satisfies F(Z) = XB,min.

First, we construct a sequence (S(n)) of finite first return time maps subordinate to
(P(n)). First, let S(1)′ be any system of finite first return time maps subordinate to P(1)
such that P1(S(1)′) is finer than P(1) (such a system exists by [11, Proposition 1.13]). We
construct the other systems inductively. For each n ∈ Z>0, we apply Lemma 4.10 with
S(n)′ in place of S, P(n) in place of P , P(n+1) in place of P ′, and get S(n) (that is,
S0 in the lemma) and S(n+1)′ (that is, S ′ in the lemma) satisfying the conclusions of
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the lemma. Thus, to construct the sequence of systems, we only need to define S(0) by
T (0) = 1, X(0)1 = X, K(0)

1 = 1, Y (0)1,1 = 1, and J (0)1,1 = 1.
Now we begin to define B. For each n ∈ Z≥0, define

Vn = {(n, t , k) | t ∈ {1, . . . , T (n)} and k ∈ {1, . . . , K(n)
t }}.

The set of edges from (n, t , k) ∈ Vn to (n+ 1, t ′, k′) ∈ Vn+1 is the set of all (n+ 1,
t ′, k′, j) such that hj (Y (n+1)

t ′,k′ ) ⊂ Y
(n)
t ,k . Note that this is well defined; by assumption,

hj (Y
(n+1)
t ′,k′ ) is a subset of an element of P1(S(n)), so we do not need to include t and

k in the tuple defining this edge. We define an order on the edges r−1((n, t , k)) by
(n, t , k, j1) ≤ (n, t , k, j2) if j1 < j2.

We now construct the orbit map F : X → XB . Let x ∈ X. Then for each n ∈ Z>0, there
is precisely one t ∈ {1, . . . , T (n)}, one k ∈ {1, . . . , K(n)

t }, and one j ∈ {0, . . . , J (n)t ,k } such

that x ∈ hj (Y (n)t ,k ). If x ∈ hj (Y (n)t ,k ) ∩ hj ′
(Y
(n+1)
t ′,k′ ), then j ′ ≥ j , since otherwise we would

have hj−j ′
(Y

(n)
t ,k ) ⊂ X

(n+1)
t (this follows from Lemma 4.10(3) and (4)), which is not possi-

ble since by definition, hi(Y (n)t ,k ) ∩X(n+1)
t = ∅ for i ∈ {1, . . . , J (n)t ,k − 1}. This, combined

with the fact that P1(S(n+1)) is finer than P1(S(n)), tells us that hj
′−j (Y (n+1)

t ′,k′ ) ⊂ Y
(n)
t ,k , and

therefore there is an edge from (n, t , k) to (n+ 1, t ′, k′); namely, (n+ 1, t ′, k′, j ′ − j).
Thus, this gives us an infinite path in XB associated to x. We define F by sending x to this
infinite path.

We now show that F is injective. Suppose x, x′ ∈ X and F(x) = F(x′) = (e1, e2, . . .)
where we write en = (n, tn, kn, jn) for n ∈ Z>0. By definition, it is clear that for each n ∈
Z>0, there are in, i′n ∈ {0, . . . , J (n)tn,kn − 1} such that x ∈ hin(Y (n)tn,kn) and x′ ∈ hi′n(Y (n)tn,kn).
First, notice that i1 = j1 and i′1 = j1 by definition of F . Then, by definition of F , we have
j2 = i2 − j1 and j2 = i′2 − j2; in particular, i2 = i′2. Proceeding like this, we see that in =
i′n for all n ∈ Z>0. Since (P(n)) is a generating sequence of partitions, so is (P1(S(n))), and
therefore

⋂∞
n=0 h

in(Y
(n)
tn,kn) contains at most one element of X. Thus, x = x′, and therefore

F is injective.
Next, we show that F is surjective. Let e = (e1, e2, . . .) ∈ XB and write en =

(n, tn, kn, jn) for n ∈ Z>0. We construct a sequence (in) with in ∈ {0, . . . , J (n)tn,kn − 1}
for all n ∈ Z>0 such that

⋂∞
n=0 h

in(Y
(n)
tn,kn) is non-empty and contains the element of X

that F maps to e. First, let i1 = j1. Then, for all n ∈ Z>1, let in = jn + in−1 (note that this
can be rewritten as in = ∑n

k=1 jk). The claim now follows from the definition of B, and
F is therefore surjective.

So far, we have shown that F is bijective. We now show that F is a homeomorphism. Let
U(e1, . . . , eN) be an element of the basis of the topology ofXB . For each n ∈ {1, . . . , N},
write en = (n, tn, kn, jn). For each n ∈ {1, . . . , N}, write j ′

n = ∑n
k=1 jk . We claim that if

x ∈ hj ′
N (Y

(N)
tN ,kN ), then F(x) ∈ U(e1, . . . , eN). So let x ∈ hj ′

N (Y
(N)
tN ,kN ). First notice that by

definition of eN ,

hjN (Y
(N)
tN ,kN ) ⊂ Y

(N−1)
tN−1,kN−1

.
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Thus,

hj
′
N (Y

(N)
tN ,kN ) ⊂ hj

′
N−1(Y

(N−1)
tN−1,kN−1

),

since jN + j ′
N−1 = j ′

N . Similarly, we have

hjN−1(Y
(N−1)
tN−1,kN−1

) ⊂ Y
(N−2)
tN−2,kN−2

.

Thus, for every n ∈ {1, . . . , N}, we have

x ∈ hj ′
n(Y

(N)
tn,kn),

and so since j ′
n − j ′

n−1 = jn, the nth edge of F(x) is indeed en, and F(x) ∈
U(e1, . . . , eN) as desired. Next, we claim that if x ∈ X satisfies F(x) ∈ U(e1, . . . , eN),
then x ∈ hj ′

N (Y
(N)
tN ,kN ). So let x ∈ X satisfy F(x) ∈ U(e1, . . . , eN). Then for each

n ∈ {1, . . . , N}, x ∈ hin(J (n)tn,kn) for some in ∈ {0, . . . , J (n)tn,kn − 1}. It is clear that i1 = j1.
Then, notice that i2 is such that j2 = i2 − j1, and so i2 = j1 + j2 = j ′

2. Repeating this
process inductively, we see that iN = j ′

N , and so x ∈ hj ′
N (Y

(N)
tN ,kN ) as desired. Altogether,

this shows that F is a homeomorphism.
If x ∈ Z, then there are sequences of integers (tn) and (kn) such that x ∈ ⋂∞

n=0 Y
(n)
tn,kn .

By definition of the order on B, this means that F(x) ∈ XB,min. Conversely, suppose
x ∈ X satisfies F(x) ∈ XB,min. Write F(x) = (e1, e2, . . .) and for n ∈ Z>0, write en =
(n, tn, kn, in). Since en is minimal, in is the minimal element of {0, . . . , J (n)tn,kn − 1} such

that hin(Y (n)tn,kn) ⊂ X
(n−1)
tn−1

. However, since X(n)tn ⊂ X
(n−1)
tn−1

, we have in = 0. Hence, x ∈⋂∞
n=0 Y

(n)
tn,kn . Thus, F(Z) = XB,min. Also notice that if x ∈ h−1(Z), there are sequences

of integers (tn) and (kn) such that x ∈ ⋂∞
n=0 h

J
(n)
tn ,kn−1

(Y
(n)
tn,kn). By definition of the order

on B, this means that F(x) ∈ XB,max. Similarly, the converse holds, and so F(h−1(Z)) =
XB,max.

We now show that (F ◦ h)|X\h−1(Z) = (̃hB ◦ F)|X\h−1(Z). Let x ∈ X \ h−1(Z). For

each n ∈ Z>0, let tn ∈ {1, . . . , T (n)}, let kn ∈ {1, . . . , K(n)
tn

}, and let jn ∈ {0, . . . ,
K
(n)
tn

− 1} satisfy x ∈ hjn(Y (n)tn,kn). Since x /∈ h−1(Z), there is some smallest N ∈ Z>0

such that jN �= J
(N)
tN ,kN − 1. We have

hjN+1(Y
(N)
tN ,kN ) ⊂ J

(N−1)
tN−1,kN−1

(Y
(N−1)
tN−1,kN−1

)

and so by Lemma 4.10(4), there is a k′
N−1 ∈ {1, . . . , K(N−1)

tN−1
} such that

hjN+1(Y
(N)
tN ,kN ) ⊂ Y

(N−1)
tN−1,k′

N−1
. (4.4)

Inductively, we can find for each n ∈ {1, . . . , N − 2} a k′
n ∈ {1, . . . , K(n)

tn
} such

that Y (n+1)
t ′
n+1,k′

n+1
⊂ Y

(n)

t ′n,k′n
. Since jN + 1 < J

(N)
tN ,kN and since for each n ∈ Z>N we have

X
(n)
tn

⊂ X
(N)
tN

, it follows that jn + 1 < J
(N)
tN ,kN as well. So let k′

n = kn and let j ′
n = 0 for

n ∈ {1, . . . , N − 1}, and let j ′
n = jn + 1 for n ∈ Z≥N . Then for each n ∈ Z>0, h(x) ∈

hj
′
n(Y

(n)

tn,k′n
).
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Now write F(x) = (e1, e2, . . .) and h̃B(F (x)) = (e′1, e′2, . . .) and for each n ∈ Z>0,
write en = (n, sn, ln, in) and e′n = (n, s′n, l′n, i′n). By definition of F , for all n ∈ Z>0, we
have sn = tn, ln = kn, and in = jn − jn−1 where j0 = 0. We also see thatN is the smallest
element of Z>0 such that eN /∈ Emax, so e′N is the successor of eN , (e′1, . . . , e′N−1) is the
minimal path such that r(e′N−1) = s(e′N), and e′n = en for all n ∈ Z>N . In particular, we
see that s′n = tn for all n ∈ Z>0, l′n = kn for all n ∈ Z≥N , i′n = 0 for n ∈ {1, . . . , N − 1},
and i′n = in = jn − jn−1 for all n ∈ Z>N . Observe that i′N is the smallest integer greater
than iN such that hi

′
N (Y

(N)
tN ,kN ) ⊂ Y

(N−1)
tN−1,l′

N−1
. Thus, this combined with

hiN (Y
(N)
tN ,kN ) ⊂ Y

(N−1)
tN−1,kN−1

(4.5)

tells us

i′N = iN + J
(N−1)
tN−1,kN−1

= jN − jN−1 + J
(N−1)
tN−1,kN−1

= jN − (J
(N−1)
tN−1,kN−1

− 1)+ J
(N−1)
tN−1,kN−1

= jN + 1

= j ′
N .

From equations (4.4) and (4.5), we see l′N−1 = k′
N−1. Similarly, for n ∈ {2, . . . , N − 1},

since i′n = j ′
n = 0, we have l′n−1 = k′

n−1. Write F(h(x)) = (e′′1 , e′′2 , . . .) and for each
n ∈ Z>0, write e′′n = (n, s′′n , l′′n , i′′n). For each n ∈ Z>0, we have s′′n = t ′n = tn and l′′n = k′

n.
For n ∈ {1, . . . , N − 1}, we have i′′n = i′n = 0. We also have i′′N = j ′

N − j ′
N−1 = j ′

N −
0 = i′N . For n ∈ Z>N , we have

i′′n = j ′
n − j ′

n−1 = jn + 1 − (jn−1 − 1)

= jn − jn−1

= in

= i′n.

Altogether, we see F(h(x)) = h̃B(F (x)), and so

(F ◦ h)|X\h−1(Z) = (̃hB ◦ F)|X\h−1(Z). (4.6)

We now show that the order on B is perfect. For each x ∈ X, z is in the minimal set
of the essentially minimal zero-dimensional system (ψ−1(Z), h|ψ−1(Z)), orb(x) contains
exactly one element of Z and exactly one element of h−1(Z). Now, equation (4.6)
combined with F(Z) = XB,min and F(h−1(Z)) = XB,max tells us that the ordering onB is
perfect. It is now clear that F ◦ h = hB ◦ F . This proves conclusion (1) of the proposition.

Before we prove the rest, we first prove two claims that will be used a few times in the
proof.

Claim (∗): let n ∈ Z>0, tn ∈ {1, . . . , T (n)}, kn ∈ {1, . . . , K(n)
tn

}, and tn+1 ∈ {1, . . . ,

T (n+1)}. If X(n+1)
tn+1

⊂ h
J
(n)
tn ,kn (Y

(n)
tn,kn), then for any kn+1 ∈ {1, . . . , K(n+1)

tn+1
}, there is an
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in+1 ∈ {1, . . . , J (n+1)
tn+1,kn+1

} such that e = (n+ 1, tn+1, kn+1, in+1) is a maximal edge with
s(e) = (n, tn, kn).

We now prove claim (∗). Let kn+1 ∈ {1, . . . , K(n+1)
tn+1

}. Then

h
J
(n+1)
tn+1,kn+1 (Ytn+1,kn+1) ⊂ X

t
(n+1)
n+1

⊂ h
J
(n)
tn ,kn (Y

(n)
tn,kn),

so we have

h
J
(n+1)
tn+1,kn+1

−J (n)tn ,kn (Ytn+1,kn+1) ⊂ Y
(n)
tn,kn .

Set in+1 = J
(n+1)
tn+1,kn+1

− J
(n)
tn,kn . Let j ∈ {1, . . . , J (n)tn,kn − 1}. Then

hin+1+j (Y (n+1)
tn+1,kn+1

) ⊂ hj (Y
(n)
tn,kn),

and since hj (Y
(n)
tn,kn) ∩ (⊔T (n)

t=1 X
(n)
t ) = ∅, we indeed see that e = (n+ 1, tn+1, kn+1,

in+1) ∈ Emax. This proves claim (∗).
Claim (∗∗): if there is a kn+1 ∈ {1, . . . , K(n+1)

tn+1
} and a i ∈ {1, . . . , J (n+1)

tn+1,kn+1
} such that

e = (n+ 1, tn+1, kn+1, in+1) is a maximal edge with s(e) = (n, tn, kn), then X(n+1)
tn+1

⊂
h
J
(n)
tn ,kn (Y

(n)
tn,kn).

We now prove claim (∗∗). Since s(e) = (n, tn, kn), we have

hin+1(Y
(n+1)
tn+1,kn+1

) ⊂ Y
(n)
tn,kn .

Since e is maximal, there is no j ∈ {in+1 + 1, . . . , J (n+1)
tn+1,kn+1

− 1} with hj (Y (n+1)
tn+1,kn+1

) ⊂
X
(n)
tn,kn . However, notice that

h
in+1+J (n)tn ,kn (Y

(n+1)
tn+1,kn+1

) ⊂ h
J
(n)
tn ,kn (Y

(n)
tn,kn) ⊂ X

(n)
tn,kn .

Thus, we must have in+1 + J
(n)
tn,kn = J

(n+1)
tn+1,kn+1

. Thus, X(n+1)
tn+1

∩ hJ (n)tn ,kn (Y
(n)
tn,kn) �= ∅, and so

by Lemma 4.10(5), we actually have X(n+1)
tn+1

⊂ h
J
(n)
tn ,kn (Y

(n)
tn,kn). This proves claim (∗∗).

We now prove conclusion (2) of the proposition. Let v ∈ Vmin. Write v = (n, tn, kn).
Since v ∈ Vmin, there is some v′′ ∈ Vn+1 and some e′ ∈ Emin with s(e′) = v and
r(e′) = v′′. Write v′′ = (n+ 1, tn+1, kn+1) and then e′ = (n+ 1, tn+1, kn+1, in+1). By
Lemma 4.10(4), since e′ ∈ Emin, we have in+1 = 0, so Y

(n+1)
tn+1,kn+1

⊂ Y
(n)
tn,kn . Again by

Lemma 4.10(4), we have

X
(n+1)
tn+1

⊂ Y
(n)
tn,kn . (4.7)

Now, let tn+2 ∈ {1, . . . , T (n+2)} satisfy

X
(n+2)
tn+2

∩
( ⋃
j∈Z

hj (X
(n+1)
tn+1

)

)
�= ∅.

By Lemma 4.10(4), there is actually a k′
n+1 ∈ {1, . . . , K(n+1)

tn+1
} such that

X
(n+2)
tn+2

⊂ Y
(n+1)
tn+1,k′

n+1
.
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So for any kn+2 ∈ {1, . . . , K(n+2)
tn+2

}, we have a minimal edge e′′ = (n+ 2, tn+2, kn+2, 0)

with s(e′′) = v′ = (n+ 1, tn+1, k′
n+1). Thus, v′ ∈ Vmin. By equation (4.7), Y (n+1)

tn+1,k′
n+1

⊂
Y
(n)
tn,kn , and so there is a minimal edge e = (n+ 1, tn+1, k′

n+1, 0) with s(e) = v and
r(e) = v′.

Now let v ∈ Vmax and write v = (n, tn, kn). Since v ∈ Vmax, there is some v′′ ∈ Vn+1

and some e′ ∈ Emax with s(e′) = V and r(e′) = v′′. Write v′′ = (n+ 1, tn+1, kn+1) and
then e′ = (n+ 1, tn+1, kn+1, in+1). By claim (∗∗), we have

X
(n+1)
tn+1

⊂ h
J
(n)
tn ,kn (Y

(n)
tn,kn).

Now, let tn+2 ∈ {1, . . . , T (n+2)} satisfy

X
(n+2)
tn+2

∩
( ⋃
j∈Z

hj (X
(n+1)
tn+1

)

)
�= ∅.

By Lemma 4.10(5), there is actually a k′
n+1 ∈ {1, . . . , K(n+1)

tn+1
} such that

X
(n+2)
tn+2

⊂ h
J
(n+1)
tn+1,k′

n+1 (Y
(n+1)
tn+1,k′

n+1
).

By claim (∗), v′ = (n+ 1, tn+1, k′
n+1) ∈ Vmax. By claim (∗), there is e ∈ Emax with

s(e) = v and r(e) = v′. This completes the proof of conclusion (2).
We now prove conclusion (3) of the proposition. Let v ∈ Vmin and e ∈ Emin

satisfy r(e) ∈ R(v). Write v = (n, tn, kn) and e = (n+ 1, tn+1, kn+1, in+1). Since
r(e) ∈ R(v), there is an edge e′ = (n+ 1, tn+1, kn+1, i′n+1) with s(e′) = v, which

tells us there is jn+1 ∈ {0, . . . , J (n+1)
tn+1,kn+1

− 1} such that hjn+1(Ytn+1,kn+1) ⊂ Y
(n)
tn,kn .

By Lemma 4.10(6), Y (n)tn,kn ⊂ ⋃
j∈Z hj (X

(n+1)
tn+1

). Since v ∈ Vmin, there is some edge
e′′ = (n+ 1, tn+1, k′′

n+1, i′′n+1) ∈ Emin with s(e) = v. By Lemma 4.10(4), since e′′ ∈ Emin,

we have i′′n+1 = 0, so Y (n+1)
tn+1,k′′

n+1
⊂ Y

(n)
tn,kn . Again by Lemma 4.10(4), we actually have

X
(n+1)
tn+1

⊂ Y
(n)
tn,kn . (4.8)

Now, since e ∈ Emin, by Lemma 4.10(4), we have in+1 = 0. But by (4.8), we must have
Y
(n+1)
tn+1,kn+1

⊂ Y
(n)
tn,kn , which means that s(e) = v.

Let v ∈ Vmax and e ∈ Emax satisfy r(e) ∈ R(v). Write v = (n, tn, kn) and e = (n+ 1,
tn+1, kn+1, in+1). Since r(e) ∈ R(v), there is an edge e′ = (n+ 1, tn+1, kn+1, i′n+1)

with s(e′) = v, which tells us there is jn+1 ∈ {0, . . . , J (n+1)
tn+1,kn+1

− 1} such that

hjn+1(Y
(n+1)
tn+1,kn+1

) ⊂ Y
(n)
tn,kn . By Lemma 4.10(6), Y (n)tn,kn ⊂ ⋃

j∈Z hj (X
(n+1)
tn+1

). Since v ∈ Vmax,
there is some edge e′′ = (n+ 1, tn+1, k′′

n+1, i′′n+1) ∈ Emax with s(e) = v. By claim (∗∗),
we have

X
(n+1)
tn+1

⊂ h
J
(n)
tn ,kn (Y

(n)
tn,kn).

By claim (∗), s(e) = v. This completes the proof of conclusion (3).

https://doi.org/10.1017/etds.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.104


22 P. Herstedt

Now we prove conclusion (4) of this lemma. Let v ∈ Vmin, let m ∈ Z>0, and write
v = (n, tn, kn). It is clear that v ∈ (Sm ◦ Rm)(v), and so

Rm(v) ⊂ (Rm ◦ Sm ◦ Rm)(v).
Now, let w = (n+m, tn+m, kn+m) ∈ Rm(v). By Lemma 4.10(4) (applied m times), we
have ⋃

j∈Z
hj (X

(n+m)
tn+m ) ⊂

⋃
j∈Z

hj (X
(n)
tn
).

So every element of (Sm ◦ Rm)(v) has the form (n, tn, k′
n) for some k′

n ∈ {1, . . . , K(n)
tn

}.
Let w′ = (n+m, t ′n+m, k′

n+m) ∈ (Rm ◦ Sm ◦ Rm)(v), meaning there is an path
(e1, . . . , em) with s(e1) = (n, tn, k′

n) for some k′
n ∈ {1, . . . , K(n)

tn
} and r(em) = w′. Write

em = (n+m, t ′n+m, k′
n+m, i′n+m). This means that hi

′
n+m(Y (n+m)

t ′n+m,k′n+m
) ⊂ Y

(n)

tn,k′n
. However,

then by Lemma 4.10(4) (applied m times), we must have Y (n+m)
t ′n+m,k′n+m

⊂ Y
(n)
tn,kn . Therefore,

w′ ∈ Rm(v) (by a minimal path), as desired. An identical argument using Lemma 4.10(5)
in place of conclusion (4) shows that this equation also holds when v ∈ Vmax. This proves
conclusion (4) of this proposition and therefore finishes the proof of the proposition.

Remark 4.12. We describe and illustrate what it means for a Bratteli diagram to satisfy
the conclusions of Proposition 4.11. As you read the proof of Theorem 5.2, keep these
descriptions and illustrations in mind as Proposition 4.11 gets cited many times. We adopt
the notation of the proposition. For simplicity, we discuss the minimal vertex/edge case as
the maximal case is analogous.
(1) Conclusion (1), which says that that the system (XB , hB , XB,min) is conjugate

to (X, h, Z), just means that the Bratteli diagram’s dynamics agrees with
the dynamics of the original system. This tells us that we have created a
‘Bratteli–Vershik–Kakutani’ model of the system.

(2) What it means for v ∈ Vmin is that there is some minimal edge e′ with s(e′) = v.
What conclusion (2) guarantees is that at least one of those minimal edges, e, comes
from another minimal vertex, v′. See Figure 5 for an illustration of a situation that
violates this. This property tells us that given any v ∈ Vmin, there is an infinite
minimal path containing v.

(3) What conclusion (3) tells us is that for every minimal vertex v, everything in its range
R(v) has the property that the source of its minimal edge is v. See Figure 6 for an
illustration of a situation that violates this. One of the consequences of this is that no
two minimal vertices share anything in their range.

(4) Form = 1, what conclusion (4) tells us is that the range of a vertex is either contained
in the range of a minimal vertex or disjoint from it. See Figure 7 for an illustration of
a situation that violates this. For larger values of m, this tells us that telescopings of
the Bratteli diagram still have this property (see Proposition 4.13).

We show in the following proposition that the class of Bratteli diagrams satisfying the
conclusions of Proposition 4.11 is closed under telescoping. This is important, as we will
require some amount of telescoping of diagrams.
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FIGURE 5. A partial ordered Bratteli diagram illustrating an example of a situation that violates conclusion (2)
of Proposition 4.11. In this picture, v ∈ Vmin since there is a minimal edge with a range of w′

3 and a source of v.
However, there is no minimal edge with a source of v and a range that is a minimal vertex (the possibilities are

w′
1 and w′

2).

FIGURE 6. A partial ordered Bratteli diagram illustrating an example of a situation that violates conclusion (3)
of Proposition 4.11. In this picture, v ∈ Vmin since there is a minimal edge with a range of w′

3 and a source of v
(also one with a range of w′

2). However, even though w′
1 is in R(v), the minimal edge with a range of w′

1 has a
source of w1, not v.

FIGURE 7. A partial ordered Bratteli diagram illustrating an example of a situation that violates conclusion (4) of
Proposition 4.11. In this picture, v ∈ Vmin since there is a minimal edge with a range of w′

1 and a source of v (also
one with a range of w′

2 and one with a range of w′
3). However, w′

4 is not in R(v), but since w2 is in (S ◦ R)(v),
w′

4 is in (R ◦ S ◦ R)(v).
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PROPOSITION 4.13. Let (X, h) be a fiberwise essentially minimal zero-dimensional
system and let B = (V , E, ≤) be an ordered Bratteli diagram that satisfies the conclusions
of Proposition 4.11. If B ′ = (V ′, E′, ≤′) is a telescoping of B, then B ′ also satisfies the
conclusions of Proposition 4.11.

Proof. Let (kn) be the telescoping sequence corresponding to B ′, so that V ′
n = Vkn and

E′
n = Pkn+1,kn+1 for all n ∈ Z>0 (where k0 = 0). This identification induces a map ϕ :

XB → XB ′ by sending e = (e1, e2, . . .) to ϕ(e) = ((e1, . . . , ek1), (ek1+1, . . . , ek2), . . .).
By definition of the induced order on a telescoped Bratteli diagram, ϕ is a conjugation,
and therefore B ′ satisfies conclusion (1) of Proposition 4.11.

We now show that conclusion (2) holds. Let v ∈ V ′
n,min. What we are looking for is

a v′ ∈ V ′
n+1,min and e ∈ E′

n+1,min such that s(e) = v and r(e) = v′. We can regard all of
this as happening in B instead of B ′, so that we have v ∈ Vkn,min, and we are looking
for v′ ∈ Vkn+1,min and a minimal path (ekn+1, . . . , ekn+1) ∈ Pkn+1,kn+1 . By Proposition
4.11(2), there is a ekn+1 ∈ Ekn+1,min and a vkn+1 ∈ Vkn+1,min with s(e) = v and r(e) =
vkn+1. Proceeding inductively, we construct the desired result, with v′ = vkn+1 . The same
argument works for V ′

max in place of V ′
min. This proves that conclusion (2) holds.

Next, we prove that conclusion (3) holds. Let v ∈ V ′
n,min and let e ∈ E′

n+1,min satisfy
r(e) ∈ R(v). We want to show that s(e) = v. We once again regard all of this as
happening in B instead of B ′. What this means is that we have v ∈ V ′

kn,min and a minimal
path (ekn+1, . . . , ekn+1) ∈ Pkn+1,kn+1 such that there is some path (e′kn+1, . . . , e′kn+1

) ∈
Pkn+1,kn+1 such that s(e′kn+1) = v and r(e′kn+1

) = r(ekn+1), and we want to show that
s(ekn+1) = v. Suppose not. Then by Proposition 4.11(3), we have r(ekn+1) /∈ R(v);
in particular, we have r(ekn+1) �= r(e′kn+1). Proceeding like this, we eventually see
r(ekn+1) �= r(e′kn+1

), which is a contradiction. Thus, s(ekn+1) = v. The proof for V ′
max

in place of V ′
min is analogous. This proves that conclusion (3) holds.

That conclusion (4) holds is immediate; replace m with kn+m − kn. This completes the
proof of the proposition.

5. The dynamical classification theorem
We now prove our main theorems, Theorems 5.2 and 5.3.

LEMMA 5.1. Let B = (V , E, ≤) be an ordered Bratteli diagram with a perfect ordering.
Let e, f ∈ XB and suppose e and f pass through the same vertex v at level k. Then there
is some N ∈ Z such that hNB (e) = f .

Proof. Write e = (e1, e2, . . .) and write f = (f1, f2, . . .). Let n1 be the largest element
of {1, . . . , k} such that en1 �= fn1 .

Suppose en1 < fn1 . Then there is an N1 ∈ Z>0 such that

h
N1
B (e) = (e′1, . . . , e′n1−1, fn1 , en1+1, en1+2, . . .),

where (e′1, . . . , e′n1−1) is the minimal path from v0 ∈ V0 to s(fn1). Now, hMB (e) and f pass
through the same vertex at level n1 − 1. So let n2 be the largest element of {1, . . . , n1 − 1}
such that e′n2

�= fn2 . Clearly, e′n2
< fn2 . So repeating the above process, we find an integer
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N2 ∈ Z>0 such that hN1+N2
B (e) = (e′′1 , . . . , e′′n2−1, fn2 , . . . , fn1 , en1+1, . . .). Repeating

this process inductively, we arrive at an integer N such that hNB (e) = f .

THEOREM 5.2. Let (X1, h1, Z1) and (X2, h2, Z2) be fiberwise essentially minimal
zero-dimensional systems. Then (X1, h1, Z1) and (X2, h2, Z2) are strong orbit equivalent
if and only if

(K0(C
∗(Z, X1, h1)), K0(C

∗(Z, X1, h1))
+, 1)

∼= (K0(C
∗(Z, X2, h2)), K0(C

∗(Z, X2, h2))
+, 1)

and

K1(C
∗(Z, X1, h1)) ∼= K1(C

∗(Z, X2, h2)).

Proof. (⇐). Let B1 and B2 be the Bratteli diagrams satisfying the conclusions of
Proposition 4.11 for (X1, h1, Z1) and (X2, h2, Z2), respectively. By Theorem 3.4, we
have K0(X1, h1) ∼= K0(X2, h2). By Proposition 4.11(1), we have K0(XB1 , hB1)

∼=
K0(XB2 , hB2). By a slight but trivial extension of [10, Theorem 5.4], we have K0(B1) ∼=
K0(B2). By [6], we have B1 ∼ B2 (in the equivalence class of Bratteli diagrams generated
by telescoping and isomorphism), which tells us that there is a (non-ordered) Bratteli
diagram B such that telescoping B to odd levels yields a telescoping of B1 and telescoping
B to even levels yields a telescoping of B2. By replacing B1 and B2 with their telescopings
(which can be done without changing the above due to Proposition 4.13), we may assume
that telescoping B to odd levels yields B1 and telescoping B to even levels yields B2.
Let B ′ be the telescoping of B by the sequence (3n− 2), so that telescoping B to odd
levels yields a telescoping of B1 by (3n− 2) and telescoping B to even levels yields a
telescoping of B2 by (3n− 1). Note that by Proposition 4.13, these telescopings of B1 and
B2 also satisfy the conclusions of Proposition 4.11.

We denote by V ′
min (V ′

max) the minimal (respectively maximal) vertices as inherited by
B1 and B2. We claim that B ′ has the following property:
(*) let v ∈ V ′

min. There is precisely one v′ ∈ V ′
min with v′ ∈ S(v).

We now prove property (∗). Let v ∈ V ′
min,n and, without loss of generality, suppose that

n is odd. The case n = 1 is trivial so suppose n > 1. View v as a vertex in Vmin,3n−2,
so that the statement we are trying to prove is that S3(v) contains precisely one element.
Let w ∈ S(v) and let (e1, e2) be a minimal path with r(e2) = w. Since s(e1) ∈ Vmin, we
have S3(v) ∩ Vmin �= ∅. Now, suppose S3(v) ∩ Vmin contains two elements, v1 and v2.
By Proposition 4.11(3), we have R2(v1) ∩ R2(v2) = ∅. By Proposition 4.11(2), R2(v1) ∩
Vmin �= ∅ and R2(v2) ∩ Vmin �= ∅. By Proposition 4.11(3) again,

R2(R2(v1) ∩ Vmin) ∩ R2(R2(v2) ∩ Vmin) = ∅. (5.1)

Since v ∈ R3(v1) and v ∈ R3(v2), we have

R4(v1) ∩ R4(v2) �= ∅. (5.2)

However, now notice that by Proposition 4.11(4), we have R4(v1) = R2(R2(v1) ∩ Vmin)

and R4(v2) = R2(R2(v2) ∩ Vmin). Thus, we see that equations (5.1) and (5.2) yield a
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contradiction. Therefore, S3(v) ∩ Vmin contains precisely one element. The proof for
v ∈ V ′

max is analogous. This proves property (∗).
For convenience, replace B(1) with its telescoping by (3n− 2) and replace B(2) with

its telescoping by (3n− 1). Now, let e = (e1, e2, . . .) ∈ XB(1),min and let (v1, v2, . . .) be
its associated vertices. Let n ∈ Z>1. We view vn as a vertex in V ′

2n−1. By property (∗),
there is a unique vertex v′

n−1 ∈ V ′
min,2n−2 such that v′

n−1 ∈ S(vn). We claim that vn−1 ∈
S(v′

n−1). If not, then by property (∗), there is some w ∈ S(v′
n−1) such that w �= vn−1.

However, then R2(w) ∩ R2(vn−1) �= ∅, which is a contradiction again by Proposition
4.11(3). Thus, for each n ∈ Z>1, v′

n−1 is connected by a path to v′
n, and there is an

e′n ∈ E(2)min,n with s(e′n) = v′
n−1 and r(e′n) = v′

n by Proposition 4.11(3). Thus, this gives
us e′ = (e′1, e′2, . . .) ∈ XB(2),min such that for each n ∈ Z>0, we have s(e′n) = v′

n−1 and
r(e′n) = v′

n.
Let f = (f1, f2, . . .) ∈ XB ′ be any path with r(fn) = s(fn+1) = v2n−1 for all odd

n ∈ Z>0 and r(fn) = s(fn+1) = v′
2n for all even n ∈ Z>0. Since this respects the vertices

and the range and source maps, we are free to define F1(e) = f and F2(e
′) = f .

We now show that the above pairing is a bijection between X(1)B,min and X(2)B,min. Let
e′ = (e′1, e′2, . . .) ∈ XB(2),min and (v′

n) be as above. By property (∗), for each n ∈ Z>0,
there is precisely one wn ∈ V ′

min with wn ∈ S(v′
n). Since vn ∈ S(v′

n), we must have
wn = vn. Thus, the bijection is established, and so F1(XB(1),min) = F2(XB(2),min). We
now repeat the process for maximal vertices, choosing edges which are not minimal if
the number of edges between the vertices is more than one. This extends F1 and F2 so that
F1(XB(1),max) = F2(XB(2),max).

We now extend F1 and F2 by any bijection between E
(1)
n and E′

2n−1, and any

bijection between E(2)n and E2n that respect the range and source maps. In this way, we
get homeomorphisms F1 : XB(1) → XB ′ and F2 : XB(2) → XB ′ . Define F = F−1

2 ◦ F1 :
XB(1) → XB(2) .

Let β, γ : XB(1) → Z be the orbit cocyles of F . We will show that β and γ are
continuous on XB(1) \XB(1),max. So let e = (e1, e2, . . .) ∈ XB(1) \XB(1),max. Let k be the
smallest element of Z>0 such that ek /∈ E(1)max. Then e and hB(1) (e) are confinal from level k.
This means that F1(e) and F1(hB(1) (e)) are cofinal from level 2k − 1, and so F(e) and
F(hB(1) (e)) are cofinal from level k. In particular, F(e) and F(hB(1) (e)) pass through the
same vertex v at level k. By Lemma 5.1, there is an integer N such that

hN
B(1)

(e) = F(hB(1) (e)).

Let f ∈ U(e1, . . . , ek+1). Then y and hB(1) (f ) are confinal from level k. This means that
F1(f ) and F1(hB(1) (f )) are cofinal from level 2k − 1, and so F(y) and F(hB(1) (f )) are
cofinal from level k. Since e, f ∈ U(e1, . . . , ek+1), hB(1) (x) and hB(1) (f ) have the same
initial segment from level 0 to level k + 1, and so F(hB(1) (e)) and F(hB(1) (f )) have the
same initial segment from level 0 to level k. Similarly, F(e) and F(f ) have the same initial
segment from level 0 to level k. Thus, the integer N from above satisfies

hN
B(1)

(f ) = F(hB(1) (f )).

Since f ∈ U(e1, . . . , ek+1) was arbitrary, this shows that β is continuous at e.
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The argument for γ is analogous to β. Thus, (XB(1) , hB(1) , XB(1),max) and (XB(2) , hB(2) ,
XB(2),max) are strong orbit equivalent. By replacing F with h−1

B(1)
◦ F , we see that

(XB(1) , hB(1) , XB(1),min) and (XB(2) , hB(2) , XB(2),min) are strong orbit equivalent. Therefore,
by Proposition 4.11(1), (X1, h1.Z1) and (X2, h2, Z2) are strong orbit equivalent.

(⇒). Assume (X1, h1, Z1) and (X2, h2, Z2) are strong orbit equivalent. By the
definition of strong orbit equivalence, we have Z1 ∼= Z2 and so by Theorem 3.10, we have
K1(C

∗(Z, X1, h1)) ∼= K1(C
∗(X2, h2, Z2)).

Let β, γ : X1 → Z be the associated orbit cocyles defined by F ◦ h1 = h
β

2 ◦ F and
F ◦ hγ1 = h2 ◦ F . Recall that strong orbit equivalence tells us that β and γ are continuous
on X1 \ Z1 and F(Z1) = Z2.

Let h̃2 = F−1 ◦ h2 ◦ F : X1 → X1. Then h̃2 is conjugate to h2, has the same orbits as
h1, and

h1 = h̃
β

2 , h̃2 = h
γ

1 .

We also see that (X1, h̃2, Z1) is a fiberwise essentially minimal zero-dimensional system
that is conjugate to (X2, h2, Z2), so we work with the former for the remainder of the
proof.

Let α1 be the automorphism of C(X1) induced by h1 and let α2 be the automorphism
of C(X1) induced by h̃2. We now show that ran(id − (α1)∗) ⊂ ran(id − (α2)∗). It is
enough to show that for any compact open set E ⊂ X1, we have (id − (α1)∗)(χE) ∈
ran(id − (α2)∗).

Given f ∈ C(X1, Z), we denote the image of f in K0(C
∗(Z, X1, hi)) by [f ]1 and

denote the image of f inK0(C
∗(Z, X1, h̃2)) by [f ]2. Since h1 and h̃2 have the same orbits,

there is a probability measure μ that is both h1- and h̃2-invariant. Note that C∗(Z, X1, h1)

is the C∗-subalgebra of L(L2(X1, μ)) generated by C(X) and the unitary u1 : g → g ◦
h−1

1 . Also note that C∗(Z, X1, h̃2) is the C∗-subalgebra of L(L2(X1, μ)) generated by
C(X) and the unitary u2 : g → g ◦ h̃−1

2 . For the remainder of the proof, we identify these
crossed products with these corresponding subalgebras of L(L2(X1, μ)).

We claim that map ϕ : K0(C
∗(Z, X1, h1)) → K0(C

∗(Z, X1, h̃2)) defined by
ϕ([χU ]1) = [χU ]2 is an isomorphism of ordered groups. Since the positive cone
and distinguished order units agree via this map, the only thing to check is that
im(id − (α1)∗) = im(id − (α2)∗).

Let E be a compact open subset of X1 such that E ∩ Z1 = ∅. Then since β is
continuous on E, ran(β|E) = {k1, . . . , kN }. Then

u1χE =
N∑
n=1

u
kn
2 χE∩β−1(kn)

.

Thus, u1χE ∈ C∗(Z, X1, h̃2), and, letting A
(1)
Z1

correspond to C∗(Z, X1, h1) as in

Definition 3.6, we have A(1)Z1
⊂ C∗(Z, X1, h̃2). Since E ∩ Z1 = ∅, there is a unitary

v ∈ A(1)Z1
such that vχEv∗ = χh1(E). Since we also have v ∈ C∗(Z, X1, h̃2), we have

[χE]2 = [χh1(E)]2, so χE − χh1(E) ∈ im(id − (α2)∗). Theorem 3.9 (and the proof) tells
us that K0(AZ1)

(1) ∼= K0(Z, X1, h1) by the injection map. Thus, im(id − (α1)∗) ⊂
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im(id − (α2)∗). By repeating the above process with γ instead of β, we can similarly
show that im(id − (α2)∗) ⊂ im(id − (α1)∗). This completes the proof.

THEOREM 5.3. Let (X1, h1, Z1) and (X2, h2, Z2) be fiberwise essentially minimal
zero-dimensional systems with no periodic points. The following are equivalent:
(1) C∗(Z, X1, h1) ∼= C∗(Z, X2, h2);
(2) (K0(C

∗(Z, X1, h1)), K0(C
∗(Z, X1, h1))

+, 1) ∼= (K0(C
∗(Z, X2, h2)), K0(C

∗(Z,
X2, h2))

+, 1) and K1(C
∗(Z, X1, h1)) ∼= K1(C

∗(Z, X2, h2));
(3) (X1, h1, Z1) and (X2, h2, Z2) are strong orbit equivalent.

Proof. (1) ⇐⇒ (2). By [11, Theorems 2.2 and 2.3], C∗(Z, X1, h1) and C∗(Z, X2, h2) are
AT-algebras of real rank zero, so this result follows from [5].

(2) ⇐⇒ (3). This is implied by Theorem 5.2.

Acknowledgement. This research was supported by the Israel Science Foundation grant
no. 476/16.

REFERENCES

[1] M. Amini, G. Elliott and N. Golestani. The category of ordered Bratteli diagrams. Canad. J. Math. 73(1)
(2021), 1–28.

[2] S. Bezuglyi, J. Kwiatkowski and R. Yassawi. Perfect orderings on finite rank Bratteli diagrams. Canad.
J. Math. 66(1) (2014), 57–101.

[3] S. Bezuglyi, Z. Niu and W. Sun. C∗-algebras of a Cantor system with finitely many minimal subset:
structures, K-theories, and the index map. Ergod. Th. & Dynam. Sys. 41(5) (2021), 1296–1341.

[4] B. Blackadar.K-Theory for Operator Algebras (Mathematical Sciences Research Institute Publications, 5).
Springer, New York, 1986.

[5] M. Dadarlat and G. Gong. A classification result for approximately homogeneous C∗-algebras of real rank
zero. Geom. Funct. Anal. 7 (1997), 646–711.

[6] G. Elliott. On the classification of inductive limits of sequence of semisimple finite-dimensional algebras.
J. Algebra 38 (1976), 29–44.

[7] G. Elliott. On the classification ofC∗-algebras of real rank zero. J. Reine Angew. Math. 443 (1993), 179–219.
[8] H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University

Press, Princeton, 1981.
[9] T. Giordano, I. Putnam and C. Skau. Topological orbit equivalence and C∗-crossed products. J. Reine

Angew. Math. 469 (1995), 51–111.
[10] R. H. Herman, I. Putnam and C. Skau. Ordered Bratteli diagrams, dimension groups, and topological

dynamics. Int. J. Math. 3 (1992), 827–864.
[11] P. Herstedt. AT-algebras from fiberwise essentially minimal zero-dimensional dynamical systems. Int.

J. Math. 33(5) (2022), 2250035.
[12] W. Krieger. On non-singular transformations of a measure space, I. Z. Wahrsh. Th. 11 (1969), 83–97; II,

98–119.
[13] W. Krieger. On ergodic flows and isomorphism of factors. Math. Ann. 223 (1976), 19–70.
[14] M. Pimsner and D. Voiculescu. Exact sequences for K-groups and Ext-groups of certain cross-product

C∗-algebras. J. Operator Theory 4 (1980), 93–118.
[15] Y. T. Poon. AF subalgebras of certain crossed products. Rocky Mountain J. Math. 20(2) (1990), 527–537.
[16] I. Putnam. The C∗-algebras associated to minimal homeomorphisms of the Cantor set. Pacific J. Math.

136(2) (1989), 329–353.
[17] I. Putnam. On the topological stable rank of certain transformation group C∗-algebras. Ergod. Th. &

Dynam. Sys. 10 (1990), 197–207.

https://doi.org/10.1017/etds.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.104

	1 Introduction
	2 Preliminaries
	3 K-theory
	4 Bratelli diagrams
	5 The dynamical classification theorem
	Acknowledgements
	References

