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Abstract
Unstructured data are a promising new source of information that insurance companies may use to understand their
risk portfolio better and improve the customer experience. However, these novel data sources are difficult to incor-
porate into existing ratemaking frameworks due to the size and format of the unstructured data. This paper proposes
a framework to use street view imagery within a generalized linear model. To do so, we use representation learning
to extract an embedding vector containing useful information from the image. This embedding is dense and low
dimensional, making it appropriate to use within existing ratemaking models. We find that there is useful informa-
tion included in street view imagery to predict the frequency of claims for certain types of perils. This model can
be used as in a ratemaking framework but also opens the door to future empirical research on attempting to extract
which characteristics within the image leads to increased or decreased predicted claim frequencies. Throughout,
we discuss the practical difficulties (technical and social) of using this type of data for insurance pricing.

1. Introduction
As a novel data source, images can intervene at many places within property and casualty insurance
applications. For instance, they may improve the quoting process by filling in some fields in the quot-
ing questionnaire (number of stories, material type of the facade and presence of garage), either by an
insurance agent or automatically with an artificial intelligence system. Going a step further, one may
also use images directly within a ratemaking model to investigate whether they can predict future claim
counts or severity. In a claims management process, images may accelerate the handling procedure: if a
customer provides an image of the damaged house or vehicle, one may estimate (manually by a claims
adjuster or by an artificial intelligence system) the cost of repair or replacement of the damaged goods;
this will lead to closing claims at a faster rate. If done correctly, the above examples enhance/simplify
the customer experience, improve actuarial fairness or reduce operating expenses.

For an insurance company, ratemaking plays a crucial role. Traditional ratemaking models rely on
structured data such as policyholder demographics, coverage details and loss history. However, the recent
surge in the availability of unstructured data, particularly images, has opened up new possibilities for
enhancing ratemaking models and improving risk assessment. One research question we seek to answer
in this paper is Are there useful information within street view imagery to predict the frequency or the
severity of home insurance claims? Our main methodological contribution is to propose a framework
based on representation learning that will enable us to answer this research question. We use state-of-
the-art image recognition techniques to extract meaningful information from images, which we then
use to predict the frequency and severity of insurance claims. This significantly advances ratemaking,
allowing for more accurate and nuanced risk assessments, resulting in fairer pricing for policyholders.
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Concrete examples of uses of images for risk management include Biffis and Chavez (2017), where
the authors use satellite data to model weather risk using precipitation variability indices. More recently,
in an actuarial context, Zhu (2023) combines economic and weather data to predict a production index
for crop yield. In Brock Porth et al. (2020), the authors use pasture production indices derived from a
satellite-based sensor to predict crop yield. Meanwhile, Wüthrich (2017) illustrate how driving styles
can be summarized in an image through velocity-acceleration heatmaps. These heatmaps were further
used for risk classification; see, for instance, Gao and Wüthrich (2019), Zhu and Wüthrich (2021). From
a claims management perspective, the authors of Doshi et al. (2023) predict the cost of repairing a car
after an accident when provided an image of a damaged vehicle. Street view imagery (SVI) has proven
useful for many applications; see Biljecki and Ito (2021) for a review in urban analytics and geographic
information science. As an example, Fang et al. (2021) use SVI to produce land-use classification and
land-use mapping, critical tools for urban planning and environmental research. In Chen et al. (2022)
and Blanc (2022), the authors use SVI to perform information extraction from images to automate the
data-collection process, improving the quoting process for customers. To the best of our knowledge,
the current work is the first to use images to predict claim frequency or claim severity. Such a study is
now feasible due to recent advances in image models, their performance for practical situations and the
interest of insurance companies to stay ahead of the competition by adopting data-driven strategies in
ratemaking and risk selection.

In this paper, we propose a framework that uses images as inputs to ratemaking models. One problem
we will face is that insurance data has a low signal-to-noise ratio (Wüthrich and Ziegel, 2023), and
insurance datasets typically do not have millions of examples as in image models. Further, the state-of-
the-art image models we will use in this paper contain tens of millions of parameters. For this reason,
we will not be able to use state-of-the-art image models directly since these will almost certainly overfit
the training data. Instead, our framework is based on representation learning, where we will use image
models pre-trained on a large dataset and fine-tune them to a dataset related to household information. A
secondary goal of this paper is to perform an empirical study to determine if there is useful information
within SVI to predict home insurance losses. We will show that every method we propose to incorporate
images in the ratemaking model improves the prediction of claim frequency for the sewer backup and
water damage perils.

This work fits within the machine learning literature in actuarial science; see Richman (2020a,b)
or Blier-Wong et al. (2021b) for early reviews. In particular, we use representation learning to deter-
mine if there is useful information in images for insurance pricing. For an overview of representation
learning from an actuarial perspective, we refer the reader to Blier-Wong et al. (2021a). In particular,
Richman (2020a) have advocated for using entity embeddings to transform categorical data into dense
vectors; this idea was also suggested in Blier-Wong et al. (2021a), Shi and Shi (2022), Embrechts and
Wüthrich (2022), Wüthrich and Merz (2023). In Delong and Kozak (2023), the authors suggest initializ-
ing the parameters associated with the entity embeddings by first training an autoencoder. In Avanzi et al.
(2023), the authors propose a model called GLMMNet to include mixed effects within the embedding
layer.

What sets our approach apart from those proposed in the existing literature is that we train our embed-
dings in an unsupervised way with respect to our prediction task of interest, meaning that we do not use
the insurance loss data to construct the representations. We will adapt the predictive learning framework
proposed in Blier-Wong et al. (2021a) for a ratemaking model that uses image data as input. This frame-
work lets one combine traditional actuarial variables with emerging variables, such as spatial, image
and textual data, within a simple predictive model (such as a GLM) for insurance pricing. In the pro-
posed ratemaking framework, one uses representation learning for each source of emerging variables;
this step has the dual purpose of extracting non-linear transformations and interactions within each
emerging variable and of converting the (potentially unstructured) source of data into a dense vector of
numerical values. Then, one combines each source of emerging data along with the traditional variables
into a vector of features, which will be the input to a regression model. Since, through representation
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learning, most useful non-linear transformations and interactions are already extracted, one may use a
simple model like a GLM to predict the claim frequency or severity. Applications of the unsupervised
representation learning framework in actuarial science include Blier-Wong et al. (2022), which uses
census data organized in a spatial way to construct geographic embeddings of postal codes to predict
homeowners insurance claim frequency and Xu et al. (2022), who use pre-trained BERT models to con-
struct representations of textual descriptions of claim data to predict the expected mean payment for
truck warranty. The advantage of unsupervised representation learning is that we may construct compli-
cated models for training the representations using large datasets of high-dimensional information like
textual, image and spatial data and that these models do not overfit the task of interest, which in our case
refers to predicting the future claim frequency/severity for an insurance contract.

The remainder of this paper is structured as follows. We present the general framework for insurance
ratemaking using unsupervised embeddings in Section 2. In Section 3, we present the SVI data that we
will use to construct the representations in this paper, including the steps we take to prepare and clean the
data. In Section 4, we construct representations of images starting from pre-trained image models. We
start with a construction method that does not involve much effort and gradually increases the flexibility
to determine when the model is useful enough for practical uses. In Section 5, we use the embeddings
constructed in the previous section to construct frequency and severity models using a real insurance
dataset and we conclude in Section 6.

2. Unsupervised representation learning framework
A key step of our framework is to project SVI data into a low-dimensional vectorial format that captures
useful features for insurance applications. In this section, we explain how one may use external data
relevant to insurance to guide a model to capture the useful parts of an image and let go of useless
information. Word embeddings inspire the general approach in natural language processing: instead of
using one-hot encodings of words; it may be more convenient to use word representations that capture
syntactic and semantic word relationships (Turian et al., 2010; Mikolov et al., 2013; Bengio et al., 2014).
The general framework for unsupervised representation-learning in an actuarial context is described in
detail in Blier-Wong et al. (2021a). In particular, it contains a general discussion of the data types, the
intuition behind the representation learning framework and examples of applications in actuarial science.
That framework has been applied to spatial data in Blier-Wong et al. (2022). Also, the authors of Lee
et al. (2020) and Xu et al. (2022) use a framework that can be considered as a special case of the one
described in Blier-Wong et al. (2021a) with textual data.

As explained in Blier-Wong et al. (2021a), we believe that the unsupervised representation learn-
ing approach is well suited for insurance pricing due to the nature of insurance data (limited number
of observations and low signal-to-noise ratio). However, from our experience, it only performs well if
the resulting representation is related to the task of interest: adapting the embeddings to the insurance
domain ensures that the insights generated by the models are meaningful and actionable for risk analysis.
For this reason, we train our unsupervised embeddings on a task similar to our regression task of inter-
est. Selecting appropriate related tasks is a vital step in constructing useful embeddings. Incorporating
relevant information in the modelling process results in more accurate risk assessments and pricing,
ultimately leading to fairer premiums for policyholders and better financial stability for insurers.

An intuitive interpretation of the framework is that we aim to construct proxies of insurance-related
information from SVI such that these proxies will be useful for ratemaking. These proxies are inter-
mediate representations in a large image model trained on insurance-related tasks. The closer the
insurance-related tasks are to predicting claim frequency or severity, the more useful the proxies should
be. The representations should satisfy every principle related to rating variables; in particular, they
should not rely on any protected attribute, such as the race or gender of people appearing in the SVI.

Our approach is in the view of few-shot learning or unsupervised multitask learning in natural lan-
guage processing (Radford et al., 2019; Brown et al., 2020) or image classification (Tian et al., 2020).
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Figure 1. Framework for the representation-learning framework.

In few-shot learning, one attempts to design machine learning models that can effectively learn valuable
information from a small amount of data and make accurate predictions or classifications. Few-shot
learners sometimes start with task-agnostic or general multi-task methods, which are not tailored to any
specific task. They are designed to capture broad patterns and information across various data types.
Following this initial phase, they may undergo a process of fine-tuning, where they are specifically
adjusted and optimized for more relevant and targeted tasks. This two-step process ensures that the
model is easily adaptable to new tasks and can easily be guided to perform well on new specific tasks
of interest. In an image classification context, the authors of Tian et al. (2020) suggest that finding a
good starting representation, followed by a linear classifier, outperforms other state-of-the-art few-shot
learning models. In our case, we pre-train an initial representation model on auxiliary tasks related to
insurance in a data-rich and high signal-to-noise context using data from municipal evaluations. We then
transfer knowledge from the initial auxiliary tasks to a new, data-scarce and low signal-to-noise ratio
model to predict claim frequency or severity.

We summarize the framework used for our experiments in Figure 1. The black arrows in Figure 1
indicate the flow of information: since there is a path between the related tasks and the image model, the
related task influences the image model. On the other hand, since there is no path from the claims data
to the image model, the claims data does not influence the image model. The representation learning
framework appears in the first row, while the actuarial pricing model appears in the second and third
rows. The arrow in light red corresponds to the knowledge transfer from the representation learning
model to the predictive model. The main task on the first row is to train a model that inputs the SVI
of a house and outputs predictions on insurance-related tasks. One characteristic of this first model is a
bottleneck near the end of the model, called image embedding, such that all the information about the
input image is condensed into a small vector that will eventually yield a prediction for the related tasks.
Because of the bottleneck, the neural network is implicitly regularized such that it is forced to contain
all useful information about the related task and little information about other unrelated tasks. Note that
most arrows flow both ways in the first row. The forward direction is straightforward since this model
takes a house image as input and a prediction of the related tasks as output. The backward direction
means that the parameters of the components (image model, dimension reduction and fully-connected
predictor) depend on the related task data since one optimizes the parameters of these models to perform
well on the related tasks.

Once the representation-learning step in the first row is completed, we no longer change the param-
eters of the image model or the dimension reduction models: within our approach, they are considered
fixed for the remainder of the framework. We use the trained representation learning model to construct
an embedding of the SVI for a potential customer. We then use the customer house image embedding,
as well as other variables (traditional actuarial variables or other sources of novel information such as
geographic embeddings or textual embeddings) to construct a predictive model for claim count or claim
severity. If we construct useful embeddings in the representation-learning step, it is unnecessary to use
flexible models for the claim count or claim severity model since all useful non-linear transformations
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and interactions between parts of the SVI are already captured in the representation-learning step. Note
that there are only two-way arrows between the GLM and the claims data since the representation model
does not depend on the claim data. It follows that the parameters of the representation model do not
contribute to the degrees of freedom in the GLM, so we get the advantages of neural networks (much
flexibility to learn useful non-linear transformations and interactions between variables) while still being
able to rely on the statistical properties of GLMs through maximum likelihood estimation.

One notices from Figure 1 that the house images for training the representation model do not need
to be the same as those for insurance pricing. One could train the representation model using data from
a city/state/country and use that same model to construct customer image embeddings for houses in
another territory. Assuming that there are no significant changes in how the SVI is collected and assum-
ing the training data has seen a wide variety of house styles and years (mix of high- and low-income
neighbourhoods, a mix of houses/condos/apartments), one will be able to generate predictions on new
houses that were not used in constructing the representation model.

3. Image data
Most of the applications of images we have encountered in the actuarial science or risk management
literature have been dedicated to comparing images before and after an event to examine the status
of a property (the occurrence or extent of damages); see the related works in Section 1. What sets our
approach apart is that we only use “before” images, that is, an image of the insured property in its normal
condition. To the best of our knowledge, we are among the first to use images of undamaged houses as
inputs to a ratemaking model. For this reason, we must define the desirable attributes for image data and
determine which data cleaning is necessary for ratemaking. In this section, we discuss the data we will
use to construct embeddings of house images.

If one uses images as input to a ratemaking model, then the images and their content should be
convenient to use and satisfy the properties of rating variables. One place to look for such proper-
ties is the Actuarial Standards of Practice (ASOP) from the Actuarial Standards Board (http://www.
actuarialstandardsboard.org/). Such standards are guidelines on the applications, methods, procedures
and techniques actuaries follow when conducting their professional work in the United States. Relevant
ASOPs are No. 12 (Risk Classification), No. 23 (Data Quality) and No. 56 (Modelling). Below, we list
some considerations that, in our opinion, the image data should have such that they are convenient to
use and respect the ASOPs:

1. Relevance: The image should contain relevant information about the house that could affect
insurance rates (irrelevant images could lead to irrelevant rates).

2. Causality: The image should depict elements that could cause or be impacted by losses,
ensuring that the image model can capture the components that generate risk.

3. Data quality: The images adequately identify risk factors (for instance, high enough
resolution).

4. Representation: The image dataset should contain diverse images and be representative of the
population we intend to insure (different types of houses/buildings, different architectural types
from many historical periods). They should also be photographed under different weather con-
ditions. Further, one should avoid using a dataset that over or under-represents certain regions.
Note that bias could appear in the data if, for instance, the camera quality is higher in wealthier
neighbourhoods.

5. Availability: Images are available or quickly obtainable for every (most) potential customer for
the desired market.

6. Privacy: The model should not use personally identifiable information or sensitive details that
could identify people in the image (for instance, faces of pedestrians, street address and licence
plate number).
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Figure 2. Ideal candidate for facade image.

7. Legal compliance: For example, the images should not contain information that reveals pro-
tected attributes such as the gender or race of policyholders. If permission to use the image
data is required, the insurance company should obtain this permission before beginning the
quoting process.

8. Ground truth data: One has access to a dataset of features describing the images such that we
may fine-tune the model (only if using the representation-learning approach).

Within the context of this paper, the input data will be SVI, and we henceforth use input data, image
data and SVI interchangeably. While many sources of image data were considered to answer our research
question (see the discussion for more details), we decided to use data from Google Street View for a few
reasons. First, images of many houses are available online; hence there is no need for customers to
provide images of their homes during the quoting process. Second, they have an easy-to-use API that
can easily be incorporated within a quoting process. The arguments of this API are the coordinates of
interest and the requested image size, while the response is a unique JPEG file. Therefore, the availability
consideration is satisfied. We note that one can apply the machine learning model, initially trained using
data from one specific geographical area, to assess or make predictions about a different geographical
area as long as the image dataset satisfies the representation consideration across both places.

We present, in Figure 2, an example of the ideal candidate for images that we wish to include within
our study. The house in the image is unobstructed, such that information about, for instance, the roof-
ing quality, the facade material, the number of stories or the presence of a garage. Further, the house is
centred within the image and contains contextual information such as parts of neighbours’ homes, the
presence or absence of trees or electrical lines, etc. Finally, the image does not contain sensitive infor-
mation that an insurance company does not want to consider within the quoting process. This image,
therefore, satisfies the relevance, causality, data quality and privacy attributes.

It is not always true that SVI satisfies most of the desirable properties as in Figure 2. For this reason,
one must arrange the dataset before using it for ratemaking purposes. Further, we do not want to do
this manually (since we would not want to do this manually within a quoting model in production); we
will instead rely on machine learning techniques. We distinguish between two types of cleaning. The
first is unsalvageable data, that is, containing no information about the dwelling; in that case, we will
need to filter out that data and discard that observation since the image does not satisfy the relevance
or causality criteria. We present examples of such scenarios in Figure 3. These situations happen when
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Figure 3. Examples of images requiring filtering.

Figure 4. Examples of images requiring censoring.

Figure 5. Steps in image cleanup.

an object hides the house of interest (for instance, when a truck is parked in front of the house and
completely obstructs the house) or when the house is on a large piece of land (in which case, we may
only see the entrance of the property and not the house itself). Other examples are that there is no house
in the picture, the image is not available in Google Street View, and the homeowner requested Google
to remove the house from Street View (in which case the house will be blurred).

The second is data which may contain information that should not be used for insurance pricing,
which may fail the privacy and legal compliance attributes. In these cases, we could remove the segments
of the image which cause problems. For instance, items in front of the house temporarily (waste bins,
debris, etc.) should not be considered within the image since they do not cause or are not impacted by
insurance risks. Such examples are provided in Figure 4.

To identify the cases where we must clean or censor the image, we rely on image segmentation
methods. Following Blanc (2022) and Blier-Wong et al. (2021a), we use the pre-trained semantic seg-
mentation models from Zhou et al. (2017) and Zhou et al. (2019) with the ResNet50dilated +
PPM_deepsup models to obtain the categories of objects in the images. We present an example image
in Figure 5 with its semantic segmentation (first and second panes). One may compute the percentage of
the image that is a house, building or edifice from the mask of these categories (third pane of Figure 5).
Within our experiment, if less than 5% of the image is of these categories, we will assume that there is
no information about the house to be useful within our application and discard this image. Doing this
step removes 4.134% of the images in our dataset, which means that in practice, the insurance company
could use this ratemaking framework for over 95% of citizens in the city of Québec.
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To mask humans and potentially temporary objects, we obtain the segmentation from the images,
then construct a mask for the categories corresponding to person/individual and to a list of objects
potentially destined for garbage collection such as seat/desk/lamp/toy/pillow (fourth pane of Figure 5).
We then replace these pixels with the average pixel value to hide the problematic parts of the image
(fifth pane of Figure 5).

4. Representation of related tasks from street view imagery
In this section, we will apply the framework outlined in the first row of Figure 1 to the dataset of SVI
presented in Section 3. We will first present the data we selected for the related tasks, that is, the data used
to construct the representation learning model. We then present the architecture for the representation
models and explain how to extract the embedding vector from the representation learning model. Finally,
we will present the training strategy and some information extraction results.

4.1. Constructing representations
4.1.1. Related task data
Most readily available image models are pre-trained on ImageNet (Deng et al., 2009), a widely used
dataset containing labelled images that serve as the foundation for training deep neural networks in
object recognition, containing over 20,000 classes such as banana, banjo and baseball. Starting with
pre-trained image models to train our image model is useful since the early layers of these models learn
convolutional filters that identify different patterns in the image. However, the feature map they provide
may not be useful for insurance applications. For this reason, we must fine-tune the model to a feature
space which may be more related to houses since this is the insured good we are considering within our
insurance application.

One may use many types of information to construct embeddings. However, choosing a related task
that is close or similar to our eventual task of interest (predicting future claim frequency or severity) will
yield embeddings that are more useful for that task of interest. Another consideration is the availability
of the data for the related task. Ideally, the data will have less irreducible uncertainty than insurance
loss data and have a high number of observations such that the representation model can learn flexible
features. Another aspect of the related task is that there are many of them, such that the intermedi-
ate representation does not overfit on one particular aspect of the image but on the general contents
of the image that may be related to insurance losses. Within the context of our representation-learning
framework, the actuarial priority lies in selecting the appropriate related tasks. One needs a good under-
standing of risk factors and the insured product to select relevant tasks that yield useful transferable
representations.

Within this paper, we use property assessment data, which is public data collected by the city, to deter-
mine the property taxes for a building. These assessments are conducted by an evaluator, whose roles
are to keep an inventory of buildings, establish the value of these buildings and justify their opinions.
Such opinions are based on the territory, the dimensions of the land, the age of the building (adjusted to
account for major renovations or additions), the quality of the construction and the components (mate-
rials) as well as the area of the buildings. As such, they provide information about the house, and
fine-tuning a model on this data may produce a feature space that is more useful for home insurance
pricing.

In our implementation, we use property tax data from the city of Québec in the province of Québec,
Canada. We chose this dataset because it was readily available online and contained information for all
182,419 images within the property assessment dataset, with values corresponding to a market date of
July 1, 2018. Table 1 summarizes the structured data available in this dataset. We only considered a
subset of variables, including the number of floors, construction year, land value, building value, and
total value. The reason behind this subset was the substantial amount of missing values in the other
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Table 1. Variables and summary statistics from the property assessment dataset.

Feature Minimum Average Maximum Standard deviation % missing
Number of floors 1 1.55 33 0.86 3.51
Construction year 1604 1971 2018 30.15 8.52
Land value 1 238,387 175,781,000 1,226,238 0.15
Building value 1 435,890 652,421,000 5,047,336 0
Total value 1 673,896 828,202,000 6,123,145 0
Units 1 3.59 743 19.22 7.14
Non-residential units 1 2.89 416 8.92 92.81
Rental units 1 34.66 611 60.89 99.54
Front measure (m) 0.12 23.47 118,367 566.26 32.72
Area (m2) 0.10 1,800.89 6,759,800 26,199.23 3.05

variables, which hindered precise modelling. We dropped any observations with missing values, which
resulted in a training dataset size of 172,098. However, variables like the number of units and area were
challenging to predict accurately due to the limitations of the data. For example, buildings with many
units may be too tall to capture the entire structure in an image, while land area is difficult to predict
using only a facade image and not a full property image. To limit the impact of outliers, we have applied
several transformations to our dataset. Rather than using the construction year, we use the age of the
building (with respect to the evaluation date of 2018). We have also capped the building age at 100
to ensure consistency and reduce the influence of outliers. Additionally, we have applied a logarithmic
transformation to the land, building and total values to help normalize their distributions. However, we
have removed five observations where the land, building or total value was listed as 1$, as these appeared
to represent empty lots and may have skewed the analysis.

4.1.2. General structure of the representation models for computer vision
Models for computer vision are designed to analyse data such as images. These models typically use con-
volutional neural networks, a neural network suited to processing data with local information (Alzubaidi
et al., 2021). Image models based on deep learning have revolutionized computer vision by achieving
state-of-the-art performance on many image-related tasks, such as image classification, image segmen-
tation and object detection. These models are trained on large datasets of images and can automatically
identify patterns relevant to a certain task. For an introduction to convolutional neural networks in actu-
arial science, see the supplementary materials of Blier-Wong et al. (2022) or Chapter 9 of Wüthrich and
Merz (2023).

The general structure of convolutional neural networks (CNNs) has remained the same since the
earliest CNN models (see, for instance, LeCun et al., 1998). A typical image model contains two parts
with trainable parameters; see Section 14.3 of Murphy (2022) for a review of popular architectures. The
first is a set of convolutional layers which take as input an image and apply convolutional filters along
the images. We call this the Image model in Figure 1. Such convolutional operations identify different
patterns and shapes and, with enough depth, may construct a feature map that captures the information
inside the image. If the image dataset contains diverse objects, then the feature map of the image will
contain very general representations. We will refer to the first part of the image model as the convolu-
tional part and the output of the first part as the feature map from the images. An intermediate part will
flatten or unroll the feature map from the images (typically three-dimensional) into a single vector. The
second part is a fully-connected set of neural network layers (usually only one) that will use the feature
map from the images as input and a predictive task as output. For classification tasks, the output is one
value for each category; for multitask regression, the output is one value for each regression task.
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The fully-connected layer between the last hidden layer and the prediction has the same structure
as a (generalized) linear model. Therefore, we can interpret the final hidden layer as a condensed
representation that contains all of the useful information about the house image to predict the
response variables in the related tasks. For this reason, we will consider the final hidden layer of the
fully-connected set of layers to be the embedding associated with the house image. To recap, the fully-
connected part of the representation framework has a set of layers devoted to simultaneously reducing
the dimension of the feature space and capturing non-linear transformations and interactions between the
feature maps from the images, which we call Dimension reduction in Figure 1. The output of this first part
of fully-connected layers is the last hidden layer, which contains the representation of the house image,
called Image embedding in Figure 1. The final fully-connected layer performs the role of a (generalized)
linear model to predict the related tasks from the embeddings; we call this part the Fully-connected
predictor in Figure 1.

4.1.3. Complete approach: fine-tuned image model
To make sure that the embeddings are useful for our eventual task of interest (predicting claim
frequency/severity), we must “guide” our embeddings toward a feature space that is useful for insurance-
related tasks, which implies that we must adapt the weights of the image model and fully-connected
layers towards an attractive embedding space. To do this, we start with a pre-trained model that contains
representations that are useful for general image classification. That is, the architecture of the set of
convolutional layers remains the same. Then, we remove the original set of fully-connected layers and
replace them with our own to control the size of the feature maps. The architecture of our fully-connected
layers goes from the image model feature space size down to 128, then down to the embedding size and
finally down to the size of the output task. The representation of the image will be the hidden features
in the embedding layer, that is, the last hidden features before the predictions.

Within the complete approach, we allow the weights of the convolutional neural network, the fully-
connected layers in the dimension reduction step and the fully-connected predictor to be trained on the
related task. We apply the backpropagation algorithm to every trainable parameter in the first row of
Figure 1. This model is the most flexible and takes the longest to train.

4.1.4. Limited approach: frozen image model
In the second example of unsupervised transfer learning, we use the same framework as the complete
approach but allow less parameter flexibility. We keep the parameters of the convolutional neural net-
work fixed and only train the new fully-connected layers. Within the framework outlined in Figure 1,
this means that when constructing the model for the related task, one does not change the parameters
from the image model (they remain the pre-trained parameters on ImageNet classification tasks). Still,
one may train the parameters from the fully-connected layer in the dimension reduction part and the
fully-connected predictor part. This means that feature maps from the images are kept the same as the
original pre-trained image models.

In machine learning jargon, weights kept fixed are said to be frozen; hence, we call this model the
frozen image representation. The limited approach is equivalent to extracting the flattened feature maps
from each image in our dataset and training a fully-connected neural network according to the structure
specified in the previous section. Therefore, for a fixed dataset, one may compute the feature map from
the image model once, store this feature map and exclusively train the fully-connected neural network.
From a training perspective, this makes training much more efficient since one does not have to pass the
image in the image model (and apply the backpropagation algorithm to the weights of the image model)
for every epoch. Within our implementation (that we will detail in Section 4.2), over 98% of the weights
are in the image model.

We summarize the fine-tuned and frozen model in Figure 6. Within the smaller dotted box lies the
fully-connected layers and the fully-connected predictor, whose weights are trainable with respect to the
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Table 2. Summary of fine-tuned, frozen and PCA construction approaches.

Image model Dimension reduction Fully-connected predictor
Fine-tuned model Flexible Flexible Flexible
Frozen model Frozen Flexible Flexible
PCA with no fine-tuning Frozen PCA NA

Figure 6. Architecture for the complete and limited representation approaches.

Figure 7. Architecture for the basic PCA approach.

related task. Similarly, within the larger dotted box, the weights from the image model are also trainable
with respect to the same tasks.

4.1.5. Basic approach: PCA with no fine-tuning
The final approach to constructing embeddings is one where there is no fine-tuning in related tasks. To
do this, we start with a pre-trained image model and use the feature map from the images. However, this
representation is too large to include within the ratemaking model (512, 1024 or 2048 dimensions), so
we apply principal component analysis to reduce the dimension to a more suitable embedding size. We
present a diagram of the basic approach in Figure 7.

The basic approach, which we call the PCA approach, depends not on the related tasks (notice the
absence of related tasks in Figure 7 compared to Figure 6) but on the representations learned on the
ImageNet dataset. As such, the representations generated from this approach will capture general notions
of shapes and categories but may not be directly appropriate for insurance tasks. However, it requires
no fine-tuning tasks and almost no training time, making it a simple model to investigate whether there
is useful information within images. We present a summary of the dimension reduction approaches in
Table 2; this summary illustrates which parts of Figure 1 can be trained (flexible) and which maintains
their pre-trained weights from ImageNet (frozen).
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4.2. Experiments
4.2.1. Backbone image models
In this section, we will construct representations of image houses. For representation learning, it is the
output of the first part that is of interest to us since this contains general information. We wish to use
the embeddings within the representation pricing framework in Figure 1. We will consider some of
the most popular image models, deep residual neural networks (ResNet, introduced by He et al., 2016)
and densely connected convolutional networks (DenseNet, introduced by Huang et al., 2017). For the
ResNet models, one has pre-trained models for 18, 34, 50, 101 and 152 layers. The 152-layer model
does not fit on our GPU, so we did not consider it. We also did not consider the 34-layer model to limit
the length of the analysis. Pretrained DenseNet models are available as 121-, 169-, 201- and 264-layer
models, but we only consider the 121-layer model since the larger ones did not fit on our GPU. All four
models are pre-trained on the ImageNet dataset (Deng et al., 2009).

4.2.2. Training strategy
We have selected five related tasks to train the representation models: the construction year, the land
value (log), the building value (log) and the total value (log), denoted, respectively by y1, y2, y3 and y4,
and the number of floors. For the number of floors, we cap the values at three since the facade image
for buildings with many floors will only show the first few floors. We consider the number of floors
as a categorical variable (1, 2 or 3+ floors) and use a classification loss for this task; we denote these
variables as y5, y6 and y7. The number of observations for each class is 99,398, 59,915 and 12,785. The
remaining tasks are treated as regression. The loss function is an equally weighted average of the mean
squared error loss for the regression tasks and the cross-entropy loss for the classification task. We do
not regularize the loss function. Therefore, the function to minimize is

3∑
i=1

(yi − ŷi)
2 −

7∑
i=4

yi log ŷi,

where ŷi are the predictions for yi, for i = 1, . . . , 7.
In our conversations with a few insurance companies, we know that typical ratemaking models for

home insurance use between 30 and 100 rating variables. For that reason, we will consider embeddings
of dimensions 8, 16 and 32 throughout this paper since we do not want to consider larger embedding
dimensions such that the SVI features outnumber the traditional features.

To construct representations from unsupervised transfer learning, we follow the same training strategy
for every model considered. We start with some pre-trained image models (ResNet and DenseNet) and
get rid of the last layer (the one going from a feature space to a classification space). Instead, we add
three fully-connected layers after the feature space, which we call the fine-tuning block. The first goes
from the feature space size (depending on the model, 512, 1024 or 2048) to 128. Then, from 128 to the
embedding size (8, 16 or 32; this acts as a hyperparameter), and the last from the embedding size to
the output size (7). Between each layer, we use a LeakyReLU activation with a negative slope of 0.1,
that is, max (0, x) − 0.1 min (0, x). We initialize each fully-connected layer with Xavier initialization,
proposed in Glorot and Bengio (2010), with the standard “gain” parameter of one. The bias for each
fully-connected layer is initialized at zero.

To train the model, we set the batch size as the largest power of two such that the data and model fit
on the GPU (GeForce RTX 20 with 8GB of RAM). We train the model for 25 epochs with an initial
learning rate of 10−4. Every five epochs, we reduce the learning rate by a factor of ten. We summarize
the models in Table 3.

4.2.3. Experimental results
To answer our research question, we only require the intermediate representations to be related to insur-
ance. For this reason, we do not need to (i) regularize the network, (ii) perform out-of-sample model
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Table 3. Summary of parameters for ResNet and DenseNet models.

ResNet18 ResNet50 ResNet101 DenseNet121
Convolution weights 11,176,512 23,508,032 42,500,160 6,953,856
Image model feature space 512 2024 2024 1024
FC weights (8) 65,664 263,304 263,304 132,232
FC weights (16) 67,728 264,336 264,336 133,264
FC weights (32) 69,792 266,400 266,400 135,328
Batch size 128 32 32 32

Table 4. Summary results on training set for Image models.

ResNet-18 ResNet-50 ResNet-101 DenseNet-121
Frozen image model Loss (8) 1.261 1.281 1.252 1.184

Loss (16) 1.267 1.199 1.197 1.162
Loss (32) 1.172 1.161 1.143 1.125

Training time 64 min 171 min 166 min 97 min

Fine-tuned image model Loss (8) 0.078 0.075 0.051 0.098
Loss (16) 0.055 0.069 0.051 0.082
Loss (32) 0.055 0.069 0.050 0.077

Training time 981 min 3779 min 5583 min 5076 min

validation, (iii) calibrate the predictions or (iv) find the best model or the best training strategy possible.
Therefore, we only present results for in-sample training. Readers interested in information extraction
from facade images should refer to Blanc (2022).

In Table 4, we summarize the loss values for the different models considered. Let us offer a few
remarks on the performance of the information extraction models. First, the training time remained
stable no matter the embedding size since they had approximately the same number of parameters (see
Table 3). Training all models takes over 33 days on a GeForce RTX 20 with 8GB of RAM. For both the
frozen image model and the fine-tuned image model, the best architecture is given by the ResNet-101
model with 32 embeddings, corresponding to the model with the most parameters. In general, increasing
the size of the embedding layer leads to a lower loss, which makes sense since the models are more
flexible. The only exception is for the frozen image model with ResNet-18, where the loss for embedding
size 8 is lower than that for embedding size 16, which could be due to different local minima (training
the same models with different initial weights should recover the correct ordering). For the fine-tuned
image model, the difference in loss functions is very small, meaning that 16 embedding dimensions
may be sufficient to learn the predictive tasks and that adding 16 more leads to redundant information.
The DenseNet-121 model performed the best on the Frozen image model but worse on the fine-tuned
image model. One possible explanation is that the DenseNet representations were more useful (which
explains why they perform well on the image model) but that the higher number of parameters in the
ResNet models enabled them to perform better when every parameter in the neural network was allowed
to vary. Also, from Section 4.1, one observes that the percentage of variance captured by the first
principal components of the feature space generated by the image models is larger for ResNet models
compared with the DenseNet models, meaning that the feature space of DenseNet models are more
linearly independent, meaning that DenseNet captures more nonlinear effects for the same embedding
dimension.

We now provide prediction results for the ResNet-101 model with 32 embedding dimensions since
it has the lowest loss value. In Figure 8, we present the confusion matrix for the number of stories in the
frozen and fine-tuned image models. The root mean squared error (RMSE) for the regression tasks is in
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Table 5. Root mean squared error of regression tasks for frozen and fine-tuned models with
ResNet-101 and 32 embedding dimensions.

Age Total value (log) Building value (log) Land value (log)
Frozen 25.91 0.5732 0.5422 0.7343
Fine-tuned 31.22 0.6580 0.3929 0.7703

Figure 8. Confusion matrices of the number of stories for frozen (left) and fine-tuned (right) models
with ResNet-101 and 32 embedding dimensions on training set.

Table 5. Recall that these values are for training datasets; we do not perform out-of-sample prediction
since our primary goal is to construct useful representations. One notices from the confusion matrix that
both models identify the correct class for most cases. Further, if a model misclassifies the number of
floors, it is more likely to over/underestimate by one floor rather than by two floors. From Table 5, one
observes that the RMSE for the regression tasks is quite high. One reason may be that age is a difficult
category to predict since an old house could be renovated to look like new; hence, it is reasonable for
a predictive model to predict a low age for a centenarian renovated house, yielding high RMSE values.
Further, land value is highly dependent on the land size and the land location. While the image may
contain information about the frontal measure of the land, it does not have access to information about
the location. It may be this reason that land value is the worst regression task out of the three monetary
variables. The building value is a proxy of the size and quality of the home, which is more useful for
insurance contexts. For that variable, the fine-tuned model had a better predictive performance.

Let us finally look at the performance of PCA on the feature space from the images. In Figure 9,
we present the ranked cumulative percentage of variance explained. While the curve of the cumulative
percentage of variance explained has a similar shape for all models, the first principle components of
the ResNet models capture more variance than the DenseNet model.

5. Actuarial application
Let us now summarize what we have accomplished and what is yet to come. We have collected an SVI
dataset and a municipal evaluation dataset and cleaned out protected or temporary attributes from the
images. Through three training strategies (PCA, frozen and fine-tuned), we have constructed embeddings
of image houses. For the frozen and fine-tuned models, we trained these embeddings with the hope that
they will be useful for insurance-related tasks such as predicting the number of stories in the house,
the construction year and the building/land/total value of the property. As such, the representations will
focus on the house and ignore other information which might not be related. The embeddings, therefore,
act as proxies for the notion of the size of the house, the age or quality of the house and the value of
the house. In this section, we will use embeddings as inputs to a ratemaking model. It is important to
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Figure 9. Cumulative percentage of variance explained for the first principal components from the
feature spaces.

mention that for the entire actuarial application, the embeddings remain fixed and cannot be changed.
Moreover, this marks our initial use of the insurance dataset, which implies that the claims data did not
influence the construction of the embeddings. We perform the extrinsic evaluation of our embeddings
on the insurance dataset. To do so, we follow the framework from Blier-Wong et al. (2021a, 2022) and
train a GLM using only the embeddings.

5.1. Insurance data
We use a home insurance dataset from a large insurance company operating in Canada. We round the
summary statistics such that they do not reveal customer information. The dataset contains information
about individual perils, including fire, other, water, wind, hail, sewer backup (SBU) and theft.
We do not know what type of coverages are included in the other peril. Finally, we create a category
corresponding to the total perils. For each observation and each peril, we have the total frequency and
total loss amounts. We consider the portion of the insurance portfolio located in Québec City, Québec,
Canada, since this corresponds to the area where we have SVI. We have about 420,000 observations
from 2009 to 2020, where the exposures for single observations vary from one day to one year (the
mean and median exposures are, respectively, 0.44 and 0.42 years, meaning that most exposure periods
are computed on a half-year basis). During this period, we possess SVI embeddings for around 40,000
distinct households.

Due to intellectual property constraints, we can only share relative data regarding the frequency and
severity of various perils in our dataset. For each peril, the percentage of zeros is over 99%, indicating
that we are dealing with infrequent events. In terms of frequency, water perils are the most common,
occurring approximately two to three times more frequently than theft, other and SBU perils. The
wind and fire perils are less common, with their frequency being 6–20 times lower than that of water
perils. The least frequent peril is hail, which occurs 100 times less frequently than water. To analyse
severity, we combine the wind and hail perils since there were too few observations to build a separate
severity model for each. The median total severity is about 40% smaller than the average total sever-
ity, indicating positive skewness. The theft, other and wind & hail perils exhibit similar median
severities. However, the median severities for water, SBU and fire perils are more than twice as high.
The severity of fire risks is much more skewed towards higher values: even though the median severity
for fire is similar to that of water and SBU, the average severity of fire is six times higher. This
indicates that fire incidents may have many small damages but also very severe, for instance, in the case
of the total destruction of the home. To limit the impact of outliers in the forthcoming gamma regres-
sion, we cap the severity at 100,000$ in our severity models. We split the dataset into two parts: one for
training the ratemaking models and the other for evaluating the model on out-of-sample observations.
The training/testing split is done on a 90%/10% basis.
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To demonstrate the seamless integration of our ratemaking framework with existing actuarial pricing
systems, we also include conventional actuarial variables in our ratemaking models. In our case, we use
four variables: the client’s age (cage), the number of years since the roofing was updated (roof), the
age of the building (bage) and the limit amount of building coverage (limit). In the dataset provided,
the client’s age is in fifteen buckets of five-year intervals; therefore, we use dummy coding to construct
features in the models. Building age was also a fine-tuning task (although this regression task had a high
RMSE).

5.2. Frequency model
We now perform the extrinsic evaluation of the embedding models, that is, evaluate if the image embed-
dings accomplish the task of capturing useful information for insurance pricing. We start with a GLM
for frequency modelling, using a Poisson response with the canonical link function

ln (E[Y]) = β0 + ln ω +
p∑

j=1

xjαj

︸ ︷︷ ︸
traditional component

+
�∑

k=1

γkβk,

︸ ︷︷ ︸
embedding component

(5.1)

where ω is the exposure based on annual exposure base, p is the number of traditional features, � is
the embedding size for the image model, xj, j ∈ {1, . . . , p} are the traditional features and γk is the kth
embedding dimension, k ∈ {1, . . . , �}. In (5.1), the embedding component (the scalar product between
the embedding dimensions and their respective regression coefficients) corresponds to the contribu-
tion of the embeddings to the prediction. One can interpret the impact of the embeddings on the GLM
prediction: the exponential of the embedding component has a multiplicative impact on the predicted
frequency. If the exponential of the embedding component is larger (smaller) than one, then the impact
of the SVI is to increase (decrease) the predicted frequency.

We compare each image model architecture (DenseNet121 and ResNet 18, 50 and 101) along with a
baseline model with no embedding component. For each image model, we compare using an embedding
size of 8, 16 and 32. In Tables 6, 7 and 8, we present the deviance on the test set for the PCA, frozen
and fine-tuned method of constructing embeddings. Recall that a smaller deviance means a higher like-
lihood, meaning the model fit is better. In parenthesis, we include the number of GLM parameters from
the embedding component significantly different than zero at a 0.05 significance level. If embeddings
learned feature spaces that were linearly independent of the canonical function of the response variable,
one would expect the number of significant GLM parameters from the embedding component at a 0.05
significance level to be 0.4, 0.8 and 1.6 for embedding sizes 8, 16 and 32. We highlight in bold the
number of significant GLM parameters at a 0.05 significance level above the expected number of sig-
nificant parameters under the assumption of independence. In every case, adding embeddings decreases
the training deviance, which is unsurprising since there are more degrees of freedom in the models with
embeddings. To limit the length of this paper, we do not show the training deviance.

What is immediately noticeable from Tables 6, 7 and 8 is that the embeddings greatly reduce the
deviance for SBU and water claim frequency models. Increasing the embedding size provides better
performance, meaning that the higher embedding dimensions do not learn redundant information (this
point is even more valid for the frozen and fine-tuned models). For SBU and water perils, increasing
the flexibility of the representation model leads to a better quality of representations to model claim fre-
quency: for a fixed embedding size and model, going from PCA to frozen to fine-tuned models generally
leads to better results, meaning that adapting the weights of the image models to focus on characteristics
of the house leads to better representations of SBU and water damage claim frequency.

For the remaining perils, the results are more disputable. In most cases, we observe a slight increase
or decrease in the deviance, so it is not clear if the embeddings capture a true effect within the SVI or
if this is due to randomness. For instance, looking at the theft peril in the PCA approach, increasing
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Table 6. Testing deviance for frequency prediction with fine-tuned models.

Model � Theft Other SBU Water Hail Wind Fire Total
Baseline 0 1468.91 2028.72 2697.17 3831.07 163.47 884.08 479.96 8661.44

ResNet18 8 1468.06 (1) 2029.27 (0) 2670.60 (3) 3825.91 (1) 166.78 (0) 881.25 (1) 481.42 (3) 8665.47 (2)
16 1468.12 (8) 2028.05 (3) 2667.97 (7) 3817.73 (2) 165.56 (0) 884.93 (0) 477.01 (0) 8657.23 (7)
32 1460.68 (2) 2035.17 (3) 2662.17 (9) 3816.33 (5) 182.68 (4) 880.27 (0) 477.92 (2) 8656.09 (2)

ResNet50 8 1459.36 (3) 2030.22 (0) 2692.66 (3) 3825.50 (1) 163.87 (0) 885.85 (1) 477.11 (3) 8670.48 (3)
16 1463.73 (2) 2028.17 (2) 2661.89 (9) 3820.33 (7) 170.42 (0) 884.61 (0) 475.02 (0) 8658.43 (4)
32 1462.73 (7) 2029.40 (3) 2661.36 (8) 3816.36 (2) 177.95 (0) 878.15 (2) 481.98 (1) 8657.40 (2)

ResNet101 8 1460.39 (4) 2026.99 (5) 2671.30 (5) 3821.99 (0) 168.80 (0) 878.75 (3) 477.50 (1) 8659.38 (3)
16 1464.28 (7) 2028.09 (0) 2663.49 (6) 3820.84 (3) 169.21 (0) 883.01 (1) 474.28 (0) 8659.49 (6)
32 1468.98 (3) 2030.89 (2) 2665.01 (8) 3819.22 (4) 173.32 (2) 893.89 (1) 478.95 (1) 8664.47 (10)

DenseNet121 8 1473.56 (5) 2028.77 (2) 2672.94 (5) 3823.37 (1) 166.79 (1) 879.85 (1) 477.91 (0) 8664.57 (2)
16 1467.33 (2) 2031.46 (4) 2665.68 (6) 3826.43 (0) 174.70 (0) 878.79 (1) 477.26 (0) 8661.09 (4)
32 1477.16 (6) 2024.60 (3) 2668.62 (7) 3823.74 (7) 173.28 (0) 885.86 (0) 479.82 (0) 8660.95 (5)
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Table 7. Testing deviance for frequency prediction with frozen models.

Model � Theft Other SBU Water Hail Wind Fire Total
Baseline 0 1468.91 2028.72 2697.17 3831.07 163.47 884.08 479.96 8661.44

ResNet18 8 1469.18 (1) 2031.90 (0) 2683.62 (2) 3828.06 (0) 161.78 (1) 882.82 (0) 472.73 (1) 8662.96 (1)
16 1472.32 (1) 2027.60 (0) 2682.79 (1) 3824.34 (4) 162.67 (1) 885.53 (1) 475.82 (0) 8660.15 (4)
32 1476.20 (1) 2032.81 (0) 2674.39 (5) 3830.33 (3) 175.35 (2) 883.74 (2) 466.54 (3) 8660.23 (4)

ResNet50 8 1469.59 (1) 2031.52 (0) 2681.21 (4) 3824.65 (1) 165.43 (0) 885.21 (0) 474.84 (0) 8661.91 (2)
16 1472.47 (3) 2030.93 (1) 2677.99 (2) 3824.71 (1) 171.37 (0) 886.23 (2) 478.07 (2) 8659.54 (1)
32 1477.54 (1) 2038.33 (3) 2679.71 (0) 3829.98 (1) 176.22 (2) 886.11 (2) 475.72 (0) 8665.00 (0)

ResNet101 8 1471.24 (2) 2031.64 (0) 2686.02 (1) 3823.83 (0) 169.96 (3) 883.29 (0) 477.17 (0) 8665.15 (0)
16 1472.27 (4) 2031.03 (2) 2682.60 (1) 3823.30 (1) 169.02 (0) 881.50 (0) 475.97 (1) 8661.69 (3)
32 1472.38 (0) 2028.80 (0) 2677.00 (3) 3828.52 (5) 177.78 (3) 890.98 (2) 480.66 (4) 8658.90 (1)

DenseNet121 8 1466.73 (1) 2030.89 (0) 2686.41 (2) 3826.29 (0) 164.15 (0) 883.90 (0) 477.74 (1) 8663.47 (1)
16 1467.48 (1) 2034.43 (0) 2680.16 (3) 3825.57 (3) 160.94 (2) 887.59 (0) 480.37 (0) 8660.13 (2)
32 1466.29 (2) 2038.45 (1) 2678.05 (4) 3829.30 (1) 164.56 (2) 889.04 (0) 484.92 (1) 8664.46 (5)
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Table 8. Testing deviance for frequency prediction with principal components.

Model � Theft Other SBU Water Hail Wind Fire Total
Baseline 0 1468.91 2028.72 2697.17 3831.07 163.47 884.08 479.96 8661.44

ResNet18 8 1467.13 (0) 2029.41 (1) 2687.35 (6) 3824.90 (2) 162.36 (1) 882.65 (2) 470.51 (1) 8659.98 (3)
16 1470.41 (0) 2028.73 (1) 2680.71 (9) 3823.31 (2) 163.68 (2) 881.86 (3) 468.21 (1) 8658.23 (3)
32 1477.80 (5) 2030.89 (3) 2680.65 (12) 3827.10 (2) 172.65 (4) 879.11 (4) 466.83 (2) 8663.76 (4)

ResNet50 8 1465.87 (1) 2029.84 (0) 2684.10 (5) 3827.18 (0) 169.44 (2) 882.71 (2) 472.90 (1) 8659.97 (2)
16 1467.17 (2) 2029.90 (0) 2678.30 (8) 3830.13 (2) 171.98 (3) 881.84 (3) 471.76 (1) 8663.14 (4)
32 1471.53 (4) 2037.13 (2) 2677.54 (12) 3826.82 (2) 177.48 (5) 883.00 (4) 473.82 (3) 8662.24 (6)

ResNet101 8 1466.68 (0) 2028.41 (1) 2691.01 (3) 3828.88 (2) 163.32 (1) 883.10 (1) 472.99 (1) 8662.80 (0)
16 1473.02 (3) 2029.71 (1) 2686.43 (8) 3828.70 (3) 171.36 (3) 884.29 (2) 475.40 (1) 8661.85 (1)
32 1478.86 (5) 2033.07 (1) 2678.64 (13) 3824.33 (5) 168.79 (4) 880.54 (3) 473.26 (1) 8654.87 (4)

DenseNet121 8 1468.00 (1) 2031.26 (0) 2693.71 (5) 3827.15 (1) 164.41 (1) 883.80 (1) 479.15 (2) 8665.43 (2)
16 1467.77 (1) 2037.79 (0) 2688.06 (6) 3824.19 (1) 162.47 (1) 884.06 (1) 477.76 (1) 8657.18 (2)
32 1474.54 (5) 2041.15 (1) 2687.36 (9) 3826.71 (3) 165.85 (1) 881.89 (1) 476.55 (2) 8658.33 (5)
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the embedding dimensions generally leads to an increase in deviance, meaning that the GLM may have
overfit on the higher embedding dimensions. The best model for the fire peril is the PCA with the
ResNet18 model. The fine-tuned models to predict the frequency of fire perils do not appear to increase
or decrease the deviance systematically. Therefore, the auxiliary tasks we selected from the property tax
data may not be related to the occurrence of fires. Most ResNet models from the fine-tuned approach
for the theft and wind peril lead to decreased deviance compared to the baseline model. However,
there is no clear-cut relationship between the embedding dimension and the deviance. This ambiguity
makes understanding the role of the embeddings in the model harder, so someone might choose not to
use them.

For every model, the other and total perils, there is no single model that is either better or worse
than the baseline, implying that the embeddings are not useful within the GLM model. We find this
surprising: the embeddings unquestionably improved the SBU and water perils, which are the most
common ones in the dataset. However, it seems that combining the remaining perils into one regression
task eliminates that improvement. We, therefore, stress that embeddings have different effects on each
peril because the embeddings are not useful for the “catch-all” perils other and total.

The only peril for which embeddings usually increase the deviance is hail. This peril occurs when
a hailstorm causes damage to a house, say, if a large hailstone falls on a roof or shatters a window. The
increase in deviance may be due to a lack of causal effect (there may be no link between the picture of
a house and the probability of filing a claim due to hail). Another explanation is that the hail peril is the
rarest in the dataset: hailstorms are infrequent in Québec city (see, for instance, Etkin, 2018 for some
frequency statistics). When they do occur, the size of hailstones is typically too small to cause a loss
larger than the deductible amount.

When looking at the number of significant parameters at the 0.05 level for the embedding compo-
nent, one observes that this number, for most models, is higher than the expected number under the
independence assumption. For instance, for the fine-tuned models, almost all of the models for theft,
SBU, water and total perils had a high number of significant GLM parameters for the embedding
component, even if we could only conclude that the SBU and the water claims had clear improve-
ments in the models. Further, for the SBU peril, one usually has more significant parameters for the PCA
approach compared with the fine-tuned approach, even though the fine-tuned yields smaller deviance
values. Therefore, the statistical significance of the embedding parameters may not be a good extrinsic
evaluation measure for embeddings. However, it would be cause for alarm if a model with embed-
dings yielded a much smaller deviance value if none of the parameters associated with the embedding
components were statistically significant.

5.3. Effect of including variables in both relevant tasks and traditional variables
Let us next look at the perils for which the SVI embeddings provided the best improvements and their
effect on the age of the building. Recall that the age of the building was a fine-tuning task from the tax
assessments; hence the image representations with the frozen and fine-tuned approaches capture rep-
resentations of the age (even if the RMSE of these models was high). Therefore, the model containing
embeddings constructed with the frozen and fine-tuned approaches uses both the bage variable and a
proxy to the bage variable through the unsupervised transfer learning. Note, however, that the variable
in the insurance dataset is dynamic (age changes every year since we have observations between 2009
and 2020), while the proxy in the embeddings is static (since it depends on the age of the building at the
tax assessment date). In Table 9, we present the p-value associated with the variable bage for the base-
line model and the three embedding construction approaches. Note that the bage variable is significant
in both models (assuming a 0.05 significance level). We consider only ResNet18 and ResNet101 models
with an embedding dimension of 32 to limit space, but one obtains similar results for other embedding
sizes and image model architectures. Further, we only consider the SBU and water perils since they are
the ones for which SVI embeddings improved the deviance for every set of embedding. For the SBU
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Table 9. Comparison of p-values for the variable bage with and without embeddings.

PCA frozen fine-tuned

Baseline ResNet18 ResNet32 ResNet18 ResNet32 ResNet18 ResNet32
SBU < 10−10 < 10−10 < 10−10 < 10−10 < 10−10 0.0005912 0.000018
water 0.006181 0.312924 0.280731 0.390484 0.943965 0.445789 0.704342

peril, including the embeddings, does not deem the bage variable insignificant since they remain under
the 0.05 threshold for every embedding construction method, image model architecture and embedding
size. For the water peril, including any embedding makes the bage variable insignificant, meaning that
the embeddings may be a better proxy to any risk-generating process than the age of the building. We
remark that the p-values for the frozen and fine-tuned model are higher than for the PCA models, but
one should not confuse this with the notion of having “less significance” but that no effect was observed.
From this experiment, we cannot conclude if the image model or the unsupervised transfer learn-
ing component of the representation learning framework yielded the bage insignificant for the water
peril.

Another diagnostic that will help us interpret the results of the regression is the variance inflation
factors (VIF), more specifically, their generalized version introduced in Fox and Monette (1992) since
the cage attribute contains 14 degrees of freedom. In Table 10, we present the VIF for the baseline
model and different embedding construction methods for the ResNet18 model with eight embedding
dimensions. We also present results for models trained with the embedding component only, that is,
without the traditional component.

Recall that a VIF over ten is considered problematic and that a cut-off of 5 is often recommended.
The VIFs in the baseline model are all around one, indicating low collinearity. The VIF for each variable
in the traditional component usually increases when adding the embedding component and vice versa.
Let us now use VIFs to examine the effect of including a variable in the regression model and the related
tasks. The VIF for bage increases as the embedding model increases. For the most flexible embedding
construction method, the VIF is about four times as large as the baseline, indicating moderate collinearity
and hinting that the bage variable may become duplicated within the embedding dimensions. Note that
the VIF for the embedding components is very high: we will examine the reasons and propose a solution
in the following subsection.

5.4. Impact of correlated embeddings
One aspect to consider for applications of embeddings is the correlation of embedding dimensions.
If the correlation is too high, there may be collinearity in the features, which could cause the vari-
ance of regression coefficients to be inflated (as observed in Table 10). Note that, by construction, PCA
embeddings are orthogonal to each other (hence linearly uncorrelated), so we must only diagnose the
correlation of the embeddings generated by unsupervised transfer learning. In Figure 10, we present the
correlation matrix for the ResNet18 embeddings with eight embedding dimensions for the frozen and
fine-tuned approaches of embedding construction. One observes a linear correlation (between −0.75
and 0.91) between the embedding dimensions. One way to remove this linear correlation is to use all of
the principal components of the embeddings instead of the embeddings themselves. While this approach
does not make much sense in typical GLM modelling (since one would lose the ability to interpret the
model and perform variable selection), doing so on image embeddings does not hurt the model since
the image embeddings are already uninterpretable.

In Table 11, we present the VIFs for the GLM trained on decorrelated embedding dimensions.
One observes that the VIF for the traditional component stays the same if one uses the frozen/fined-
tuned embeddings or their principal components. The VIFs in Table 10 for the frozen and fine-tuned
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Table 10. Variance inflation factors for different embedding construction approaches.

offset cage roof bage limit γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

Baseline 1.006 1.080 1.018 1.116 1.043

PCA 1.000 1.274 1.172 1.031 1.019 1.034 1.155 1.003 1.043
1.007 1.098 1.018 1.273 1.097 1.302 1.263 1.045 1.057 1.055 1.158 1.008 1.050

Frozen 1.000 7.215 38.938 14.329 13.733 26.833 54.160 5.109 16.064
1.007 1.101 1.017 1.610 1.153 7.323 40.793 14.467 13.846 27.622 55.760 5.996 16.296

Fine-tuned 1.000 57.250 23.677 60.947 6.662 7.675 104.657 55.757 34.132
1.011 1.120 1.017 4.410 2.084 58.914 31.823 63.224 6.887 8.100 106.449 62.353 52.510
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Figure 10. Correlation matrix of embedding dimensions for ResNet-18 with eight embeddings for frozen
(left) and fine-tuned (right) approaches.

embedding models are high, always over the cut-off of 5 and sometimes reaching over 100. However,
when using the principal components of the frozen and fine-tuned embeddings, the VIFs are no longer
considered high. It follows that the variance of the predictors is lower, implying that more variables
become statistically significant. Note that this step does not impact the predictive variance but provides
a more useful way to diagnose the statistical significance of embedding parameters and the effect of the
collinearity of the embeddings on the GLM.

5.5. Severity model
We next extrinsically evaluate the quality of severity models. In this case, we use a gamma response
with the canonical link function:

E[Y]−1 = β0 +
p∑

j=1

xjαj +
�∑

k=1

γkβk. (5.2)

In (5.2), the embedding component (the scalar product between the embedding dimensions and their
respective regression coefficients) corresponds to the contribution of the embeddings to the score func-
tion E[Y]−1. In Tables 12, 13 and 14, we present deviant results on the test dataset with the PCA, frozen
and fine-tuned approaches, respectively. Recall that since the number of wind and hail perils was too
small, we trained a combined model for these two perils. Further, some GLM models did not converge for
the fire peril with the PCA approach to construct embeddings; we denote these by NA in the deviance
result tables.

Overall, the results for the severity models are much less impressive than those for the frequency
models. The only exception is for the SBU peril, where one mostly observes a slight reduction in deviance
and where unsupervised transfer learning improves the results compared with PCA. In general, one could
conclude that the embeddings do not contribute much to the baseline severity model. One reason may
be the limited dataset size (some perils have under 100 observations) or the embeddings do not capture
useful features for severity modelling.

6. Discussion
We have proposed a simple model to use images within a ratemaking model. This approach does not
drastically increase the number of parameters within the predictive model. We find that images improve
the predictive ability of ratemaking models, meaning that there are observable characteristics within
images that affect the risk of insurance contracts.
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Table 11. Variance inflation factors after decorrelating embeddings.

offset cage roof bage limit γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

Frozen + PCA 1.000 1.848 2.186 1.080 1.345 2.400 1.835 1.185 1.320
1.007 1.101 1.017 1.610 1.153 1.912 2.344 1.129 1.708 2.441 1.828 1.186 1.312

Fine-tuned + PCA 1.000 1.717 1.963 2.493 2.276 1.280 1.448 3.096 1.302
1.011 1.120 1.017 4.410 2.084 1.943 2.109 5.053 3.094 2.448 1.535 3.219 1.313
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Table 12. Testing deviance for severity prediction with fine-tuned models.

Model � Theft Other SBU Water Wind & Hail Fire Total
Baseline 0 95.24 225.71 298.61 521.48 46.74 47.28 1220.89

ResNet18 8 106.03 (0) 231.51 (0) 296.43 (0) 520.11 (0) 46.97 (0) 75.23 (1) 1225.91 (0)
16 107.42 (2) 230.90 (2) 297.50 (2) 520.24 (0) 49.71 (1) 194.07 (1) 1216.52 (0)
32 105.78 (2) 240.60 (2) 296.68 (2) 523.33 (0) 60.16 (5) 120.04 (2) 1226.94 (4)

ResNet50 8 107.29 (0) 226.51 (0) 293.31 (0) 521.60 (0) 47.01 (0) 56.13 (2) 1223.54 (0)
16 103.91 (1) 223.79 (3) 295.71 (1) 517.79 (1) 50.13 (0) 67.36 (1) 1230.12 (5)
32 104.82 (1) 227.82 (8) 294.36 (1) 534.31 (2) 51.13 (0) 64.48 (0) 1224.14 (2)

ResNet101 8 99.50 (0) 225.43 (0) 293.50 (0) 519.70 (0) 48.59 (0) 102.99 (1) 1227.88 (0)
16 98.92 (1) 228.82 (1) 291.73 (1) 523.08 (2) 48.75 (2) 77.04 (4) 1227.89 (1)
32 108.00 (1) 222.63 (0) 293.31 (6) 526.59 (2) 45.69 (1) 307.10 (5) 1240.69 (1)

DenseNet121 8 98.31 (2) 230.58 (1) 293.14 (0) 518.43 (0) 47.85 (0) 55.11 (0) 1217.55 (2)
16 102.45 (1) 228.88 (0) 291.90 (2) 519.27 (0) 46.95 (1) 63.48 (1) 1228.68 (2)
32 92.31 (0) 244.53 (8) 293.50 (3) 525.44 (2) 53.29 (0) 112.33 (2) 1228.05 (0)
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Table 13. Testing deviance for severity prediction with frozen models.

Model � Theft Other SBU Water Wind & Hail Fire Total
Baseline 0 95.24 225.71 298.61 521.48 46.74 47.28 1220.89

ResNet18 8 97.34 (0) 221.27 (1) 292.41 (1) 521.37 (0) 46.10 (0) 45.38 (6) 1220.12 (1)
16 102.85 (1) 223.97 (2) 288.03 (4) 519.49 (0) 49.28 (0) 40.67 (1) 1216.13 (1)
32 94.56 (2) 225.00 (0) 295.39 (2) 519.08 (0) 60.51 (9) 69.46 (1) 1215.95 (0)

ResNet50 8 92.96 (0) 233.08 (1) 297.06 (1) 516.06 (0) 50.16 (0) 53.33 (0) 1221.52 (2)
16 96.56 (0) 229.65 (0) 297.46 (2) 516.49 (0) 52.40 (0) 61.37 (4) 1221.67 (1)
32 105.37 (3) 242.79 (5) 296.65 (2) 525.25 (1) 54.33 (3) 87.14 (4) 1221.94 (0)

ResNet101 8 95.73 (0) 230.53 (0) 298.55 (0) 519.11 (0) 53.48 (0) 50.11 (0) 1218.42 (0)
16 97.68 (0) 224.30 (1) 299.70 (2) 514.68 (0) 53.72 (2) 42.55 (0) 1222.20 (1)
32 96.85 (4) 238.12 (6) 299.13 (0) 520.12 (2) 55.85 (2) 43.36 (2) 1214.32 (1)

DenseNet121 8 96.85 (0) 232.33 (2) 298.37 (1) 518.93 (0) 49.26 (0) 49.92 (0) 1226.32 (0)
16 97.15 (0) 238.72 (3) 297.81 (1) 520.40 (0) 51.92 (0) 64.97 (3) 1220.43 (1)
32 101.36 (1) 234.20 (3) 295.07 (2) 510.46 (2) 61.74 (0) 58.86 (4) 1229.52 (2)
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Table 14. Testing deviance for severity prediction with principal components.

Model � Theft Other SBU Water Wind & Hail Fire Total
Baseline 0 95.24 225.71 298.61 521.48 46.74 47.28 1220.89

ResNet18 8 90.89 (0) 234.88 (1) 295.44 (4) 521.16 (0) 46.86 (1) 53.01 (2) 1227.32 (2)
16 95.16 (0) 226.80 (1) 295.27 (5) 522.05 (2) 51.90 (2) 55.51 (2) 1227.56 (3)
32 103.94 (1) 229.50 (2) 292.98 (5) 529.70 (3) 59.47 (3) NA 1236.52 (6)

ResNet50 8 90.07 (0) 234.23 (1) 299.18 (4) 523.22 (0) 46.38 (1) 44.54 (2) 1224.86 (2)
16 89.60 (1) 235.49 (1) 297.73 (5) 521.87 (1) 52.65 (2) 81.20 (5) 1224.32 (3)
32 96.21 (4) 233.98 (2) 298.03 (5) 530.90 (2) 67.74 (5) 75.43 (4) 1224.57 (6)

ResNet101 8 92.97 (1) 226.25 (0) 300.94 (3) 525.15 (1) 46.60 (1) 57.26 (1) 1230.82 (2)
16 94.56 (1) 227.19 (0) 300.49 (3) 522.54 (0) 56.20 (2) NA 1229.13 (2)
32 97.35 (1) 224.73 (3) 300.31 (5) 521.75 (1) 69.21 (5) 76.24 (2) 1227.08 (4)

DenseNet121 8 94.61 (3) 231.82 (1) 298.49 (2) 520.42 (0) 47.21 (1) 50.15 (1) 1229.60 (2)
16 98.96 (2) 231.40 (2) 298.98 (2) 518.73 (1) 51.02 (2) NA 1233.66 (1)
32 101.26 (4) 224.64 (4) 306.69 (2) 518.62 (1) 58.70 (5) 68.30 (6) 1233.37 (2)
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We find statistically significant evidence for a relationship between image data and claim counts for
certain perils. This is not the case for claim severity models. Our approach relies on embeddings, so
we cannot conclude that there is a causal relationship between the image data and the claims count
data. Our work, however, finds predictive power in the images, which means that there could be some
phenomena in the images which have a causal impact on losses. Future work could investigate which
parts of the image have causal impacts on premiums, such that insurance companies could start collecting
this information to use within pricing models.

We also note that we considered other sources of images to attempt to answer our research question.
First, we tried to use images from real estate websites. The advantages of such images are that they are of
high quality, the pictures of facades are well framed in the image, and we have access to much-structured
information that one could use for fine-tuning the image models to related tasks. A disadvantage of this
approach is that a limited number of houses have a real-estate listing. If an insurance company attempts
to use images to provide a quote to a potential customer, the image of that customer’s home could not
be available from one of the real-estate websites. Therefore, we needed to use a data source available
for most of the potential customers in a region. Then, we considered using aerial imagery (for instance,
Google Satellite). Note that most of these images for residential areas are not taken by satellites but by
planes flying at low altitudes with high-resolution cameras. The advantage of this approach is that aerial
imagery is available for most cities on Google Satellite. Otherwise, an insurance company can access a
data provider for higher-quality data imagery. See, for instance, Liu et al. (2023) for a review of CNNs to
aerial imagery, including applications such as object detection, classification and semantic segmentation.
We decided not to use aerial imagery since we have not found useful, structured information related to
insurance such that we may fine-tune the image representations to insurance-related tasks. However, we
believe that aerial imagery will become an essential tool for risk assessment and insurance pricing since
one could extract useful information such as land area, house area, presence or not of additions such as
garages or pools or the presence or not of objects that could cause claims such as trees or electric poles.

Our goal in this research was to provide empirical evidence of useful information in SVI for insurance
pricing. Therefore, this exploratory work serves as a proof-of-concept for this ratemaking framework.
For this reason, we construct the embeddings using data freely available online for anybody to access.
With the demonstrated usefulness of image data for insurance ratemaking, insurance companies might
consider investing additional time and money in collecting and using this data source. For instance,
one could attempt to obtain better quality images by building their dataset of SVI by taking individual
pictures of houses that are all high quality and centered on the house of interest. Also, we fine-tuned
our image models on tax assessment datasets, but insurance companies already have access to features
of interest for homes they insure since they collect data about the house during the quoting process.
Therefore, one could construct representations of images using more insurance-related tasks.

As a secondary objective of our project, we showed that one could use SVI to extract useful infor-
mation about houses using online data automatically. Since our fine-tuning data were limited, we could
only extract information like the construction year, the number of stories and the land/building/total
value. However, insurance companies have access to internal data collected during the quoting process,
such as the roofing material, the facade material and the presence or not of garages, sheds or pools.
Therefore, another use of our framework is automatically extracting features from online images. In that
case, insurance companies could attempt to predict some characteristics of the insured house without
asking the customer to fill out the information manually. For instance, if the image model is confident
that the facade type is made of a specific material, that field in the quoting form could be pre-filled with
that material, improving the customer experience.

The representation learning framework is beneficial since it lets us empirically verify that SVI con-
tains valuable information to predict the claim frequency of home insurance contracts. However, since
image models include so many parameters (even the smallest model we consider has over 6 million
parameters in the convolutional weights alone), they are prone to overfit on the predictive task. For
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this reason, we train the model on related tasks such that the associated representations are adapted to
insurance-related tasks and avoid overfitting on frequency or severity prediction.

The objective of these experiments was not necessarily to encourage insurance companies to use
images within their ratemaking process but to show empirical evidence that useful information within
images leads to better actuarial fairness. For example, we have shown that SVI is useful for predicting
claim frequency for specific perils and works especially well for sewer backup claims. In future work, one
should seek to identify the most informative parts of the image, providing insights into the underlying
mechanisms that drive risk in home insurance. In that case, one would retain the increased actuarial
fairness but could also interpret and communicate these results convincingly to management, regulators
and customers, opening the door to more informed decision-making.
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