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An adaptable estimation technique is presented to reconstruct time-evolving three dimen-
sional (3-D) velocity fields from planar particle image velocimetry measurements. The
methodology builds on the multi-time-delay estimation technique of Hosseini et al. (2015)
by implementing the finite-impulse-response spectral proper orthogonal decomposition
(FIR-SPOD) of Sieber et al. (2016). The candidate flow is the highly modulated turbulent
near wake of a cantilevered square cylinder with a height-to-width ratio h/d = 4, protrud-
ing a thin laminar boundary layer (δ/d = 0.21 with δ being the boundary layer thickness)
at the Reynolds number Re = 10600, based on d. The novelty of the estimation technique
is in using the modal space obtained by FIR-SPOD to better isolate the spatio-temporal
scales for correlating velocity and pressure modes. Using FIR-SPOD, irregular coherent
contributions at frequencies centred at fac1 = (1 ± 0.05) fs and fac2 = (1 ± 0.1) fs (with
fs the fundamental shedding frequency) could be separated, which was not possible using
proper orthogonal decomposition. With the FIR-SPOD bases, the quality of the estimation
improved significantly using only linear terms, and the correct phase relationships between
pressure and velocity modes are retained, as is required for synchronizing coherent
motions along the height of the obstacle. It is shown that a low-dimensional reconstruction
of the flow field successfully captures the cycle-to-cycle variations of the dominant 3-D
vortex shedding process, which give rise to vortex dislocation events. Thus, the present
methodology shows promise in 3-D reconstruction of challenging turbulent flows, which
exhibit non-periodic behaviour or contain multi-scale phenomena.
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1. Introduction
In investigating the unsteady dynamics of turbulent flows, it is desirable to have access
to three-dimensional (3-D) data. Such data enable analysis of the global dynamics
of coherent motions, energy transfer between scales and processes underlying the
Reynolds stress fields. While this information is directly available in computational
studies, obtaining time-evolving 3-D rendering of the flow with simultaneously acceptable
temporal and spatial resolutions remains challenging in experiments due to the limitations
of current instrumentation. To address these limitations, sensor-based estimation methods
have been used to synchronize uncorrelated planar particle image velocimetry (PIV) data.
However, the quality of these estimations depends highly on (i) a suitable choice of
sensor and (ii) the quality of the spatio-temporal separation of different motions through
the implemented decomposition technique. In this study, we propose to use the finite-
impulse-response spectral proper orthogonal decomposition (FIR-SPOD) of Sieber et al.
(2016) to advance the multi-time-delay, pressure sensor-based estimation technique of
Hosseini et al. (2015). The aim is to increase the accuracy of the estimations and phase
synchronization of the different coherent motions, which is essential for dynamically
consistent 3-D flow field reconstructions.

The 3-D flow reconstruction for flows expressing dominant periodic fluctuations are
typically based on a phase-averaging technique (Hussain & Reynolds 1970). For wakes
exhibiting Kármán-like vortex shedding, for example, velocity and a common reference
signal, typically surface pressure, are conditionally averaged on the shedding phase. The
reference signal phase is then used to synchronize the velocity measurements such as
those obtained from uncorrelated PIV planes. Such reconstructions offer insights into the
average or typical evolution of shed structures (Bourgeois et al. 2011; Kindree et al. 2018).
Due to the averaging process, however, interactions with coherent motions at different
scales are smeared out, such that processes underlying vortex deformations resulting in
cycle-to-cycle variations are not captured.

Variants of stochastic estimation exploit the correlations between PIV and time-resolved
surface pressure measurements to estimate the velocity field. Pressure sensors are often
used because of the non-local nature of the pressure field, through the Poisson pressure
equation, which favours remote sensing applications. Linear stochastic estimation (LSE)
(Adrian 1979; Adrian & Moin 1988) is frequently linked to the proper orthogonal
decomposition (POD) to estimate the POD temporal coefficients (modes) rather than
the velocity field itself, as the modes set up an optimum basis to study the evolution of
coherent motions (Taylor & Glauser 2004; Durgesh & Naughton 2010; Tu et al. 2013). As
a variant of LSE, the extended POD, EPOD (Borée 2003), was proposed. The approach
starts with POD of the signals from an array of surface pressure sensors. The temporal
modal coefficients of the pressure are projected onto the velocity field, yielding extended
(EPOD) velocity modes. While using all extended modes recovers LSE, it is observed
that neglecting extended modes from poorly correlated pressure coefficients generally
improves the estimation quality (Discetti et al. 2018).

Including the sensor signal time history has been shown to improve the estimation
accuracy using LSE and EPOD. Durgesh & Naughton (2010) introduced the history of
pressure sensors by adding virtual or time-delayed sensors. In this approach, referred to
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as multi-time-delay estimation, for each physical sensor n, the sensor signal matrix is
augmented by Nvs virtual sensors containing the time series of the nth sensor successively
delayed by a constant �τ . Thus, the sensor matrix elements for the mth virtual sensor for
the physical sensor n, located at Xn , is represented as

pm+n+(n−1)Nvs (t) = p(Xn, t − m�τ) (1.1)

with m = 0 corresponding to the physical sensor. The augmented sensor matrix is
equivalent to the Henkel matrix common in control theory. For Nps physical sensors and
Nvs virtual (time-delayed) sensors for each physical one, the total number of sensors is
M = Nps × (Nvs + 1). As observed in the original study (Durgesh & Naughton 2010),
the estimation quality depends on spacing between physical sensors, M , �τ and an
empirically determined optimal Nvs .

The implementation of multi-time delay with LSE and EPOD has been shown to
improve estimations of weakly modulated quasi-periodic flows (Durgesh & Naughton
2010; Sicot et al. 2012; Hosseini et al. 2015). Discetti et al. (2018, 2019) suggested that
eliminating poorly correlated data from the correlation matrix, using a normal distribution
3σ criterion (with σ the standard deviation), removes the need for different time delays
between modes in 3-D reconstruction. However, in their computational study of channel
flow at a friction Reynolds number of Reτ = 1000, Discetti et al. (2018) emphasized
the need to account for the convective speeds of different coherent motions. They also
reported that velocity probes cannot effectively capture phenomena that do not convect
downstream − an issue that presents significant challenges in studies involving generative
adversarial networks (Cuéllar et al. 2024). The authors recommended placing probes at
various spanwise locations, although this technique is intrusive in experimental studies
and can significantly disrupt the flow. Additionally, not all instabilities are convective,
necessitating the use of time-resolved pressure probes. These challenges highlight that the
phase relationship between the sensor and different coherent motions cannot be captured
with a single delay parameter using conventional decomposition techniques. In flows
with multiple energetic motion scales, the estimation quality deteriorates rapidly when
the sensor is positioned out of plane, which complicates the synchronization of global
coherent motions in reconstructions from uncorrelated PIV planes.

Hosseini et al. (2015) addressed the issue of retaining the phase relationships between
sensor and coherent motions by projecting the multi-time-delay surface pressure POD
modes on the velocity POD modes to obtain orthogonal extended velocity modes. In
contrast to using non-orthogonal representations, e.g. EPOD velocity modes, this approach
enabled optimal delays to be calculated for individual pressure and velocity modes and a
criterion for selecting Nvs . The method was shown to improve the estimation and syn-
chronization of the dynamics for the five most energetic modes. They attributed the poorer
performance for higher-order modes to an increasingly poorer separation of the scales
of motion inherent to POD. This observation emphasizes the importance of selecting a
decomposition technique yielding a suitable subspace for separating scales of motion.

More recently, machine learning and deep learning techniques have been widely applied
in fluid dynamics (Duraisamy et al. 2019). For instance, based on surface pressure of a
cylinder, Manohar et al. (2022) trained artificial neural networks to predict velocity fields.
Machine learning or deep learning techniques still require extracting the intrinsic physical
features embedded in the data (Kutz 2017). For instance, in the study of Deng et al. (2019)
who used long short-term memory neural networks, the dynamics of the estimated velocity
field was poorly rendered for motions other than at the dominant frequency, and a physical
interpretation of the resultant modal basis was challenging. Jin et al. (2020) considered the
in-plane estimation of unsteady wake regions in the mid-span height plane of an infinite
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cylinder for several flow regimes at Reynolds numbers of Re = 200, 500 and 24 000. They
proposed using the spatial functions of the most energetic POD modes and a bidirectional
recurrent neural network for estimating the temporal coefficients from high-frequency
velocity probe reference measurements. For the most energetic modes, associated with the
Kármán vortex shedding frequency, a high estimation accuracy was reported over all Re.
However, for higher-order modes, the estimation accuracy decreased substantially with
increasing Re. This suggests that reliable estimations with machine learning tools still face
challenges in retaining the footprints of coherent motions that do not convect downstream
and also require implementation of decomposition techniques that can efficiently separate
the spatio-temporal scales of coherent motions.

Exploiting resolvent analysis to estimate space–time flow statistics from a limited set
of known data, as opposed to modelling spatial or temporal statistics independently
(Towne et al. 2020; Martini et al. 2020; Amaral et al. 2021) has shown promise. This
approach is based on using the known data to deduce the statistical characteristics of the
nonlinear components that form a driving force in the linearized Navier–Stokes equations.
By applying the resolvent operator, the unknown flow statistics are determined. For
incompressible boundary layers and jets (Sasaki et al. 2017; Beneddine et al. 2017), the
method is suggested to provide a viable means to perform real-time estimations without
requiring the construction of reduced-order models (Martini et al. 2020). However, the
quality deteriorates rapidly with distance from the sensor location. More importantly, the
issue of synchronization of flow patterns (e.g. coherent motions) between different planar
estimations for 3-D flow reconstructions has not been addressed with this method.

Other modal analysis techniques, such as discrete Fourier transform (DFT) or dynamic
mode decomposition (DMD) have also been employed in flow estimation (Gomez et al.
2019; Chen et al. 2022). In DMD (Rowley et al. 2009; Schmid 2010), the focus is on
spanning the mode space based on fixed frequencies to identify coherent structures. In
turbulent flows, however, the coherent structures are naturally broadband phenomena and
often contain inter-modal interactions. This makes a compact representation of coherent
motions within the DMD mode space difficult. Furthermore, the resultant DMD modes
are not orthogonal in the time domain, which raises challenges in flow reconstructions.

The FIR-SPOD (Sieber et al. 2016) technique bridges the gap between the energetically
optimal POD (Sirovich 1987) mode space and spectrally resolved DFT or DMD. In this
approach, a filter operation is applied to the correlation matrix in the form of a convolution.
This allows the possible outcomes to maintain a balance between resolving turbulent
spatio-temporal scales (as in DMD) and capturing significant portions of the turbulent
kinetic energy (TKE) of the flow through a few modes (as in POD). Mohammadi et al.
(2023) considered the cantilevered cylinder wakes and showed that, in comparison with
traditional POD, FIR-SPOD better separates the modal energetic contributions within
narrow spectral bandwidths with a small number of modes. For example, they could
separate frequencies at (1 ± 0.05) fs and (1 ± 0.1) fs and associate them with modulations
of the Kármán vortex shedding (at fs) due to a low-frequency motion, which was not
possible using phase-averaging or traditional POD. This motivates the implementation of
FIR-SPOD in the multi-time-delay estimation technique.

The candidate diagnostic flow considered in this study is the highly modulated near-
wake region of a cantilevered square cylinder with a nominal height-to-width ratio (h/d)
of 4, protruding a laminar boundary layer with a relative thickness-to-height ratio (δ/h)
of 0.21, at Re = U∞d/ν = 10600 (with U∞ and ν the free-stream velocity and kinematic
viscosity, respectively). This flow has been subject of previous studies (Kindree et al. 2018;
Mohammadi et al. 2022, 2023). Briefly, Kindree et al. (2018) identified mean dipole and
descending vortices in the wake region, based on a phase-averaged reconstruction. The
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dipole had previously been introduced as the footprint of vortical connector strands, which
connect two successive Kármán vortices on opposite sides of obstacle’s symmetry plane,
ultimately forming half-loop shedding patterns (Bourgeois et al. 2011, 2013; Hosseini
et al. 2013). The descending vortices capture the loci of initial connections between the
connector strands and the forming Kármán vortex on the opposite sides (Mohammadi et al.
2022). These wakes are characterized by strong modulations, which are believed to result
from interactions between different large-scale vortical structures. The motivation of this
paper is to add to the understanding of these interactions by studying the deformation of
the shed structures for different cycles of the shedding process.

This work advances velocity estimation techniques based on remote sensors, located
outside of the velocity (PIV) measurement planes. It proposes FIR-SPOD as a suitable
decomposition bases for separating the dynamics while retaining properties in the time
domain, which permit low-dimensional representations through which contributions of
coherent motions can be related to physical phenomena. The surface pressure is used to
synchronize the uncorrelated PIV planes. Hence this work addresses synchronizing of the
dynamics of different coherent motions in space. The technique is illustrated by using a
3-D reconstruction from uncorrelated PIV planes to investigate a highly modulated quasi-
periodic wake.

The paper continues in five sections. Section 2 presents the experimental set-up, data
acquisition process and analytical methodology, and § 3 provides some brief background
on the physics of the candidate flow. Results are presented in the following two sections.
Section 4 presents evaluations of the proposed estimation technique, whereas § 5 compares
and discusses the flow physics during a typical and an interrupted shedding cycle.
Section 6 provides conclusive remarks.

2. Data processing and estimation approach
In this section, first the key details of the experimental set-up for PIV and pressure sensor
measurements are provided for completeness. Further details can be found in Kindree
et al. (2018). Then, the analytical background on the decomposition of the flow field and
pressure sensor-based estimation of the velocity field is presented.

2.1. Experimental set-up
The flow around an h/d ≈ 4 square cylinder (h = 51.1 and d = 13.1 mm) protruding a thin
laminar boundary layer is experimentally investigated. Measurements were conducted in
an open-test-section suction wind tunnel.

The velocity fields were acquired using stereoscopic PIV synchronized with surface
pressure measurements. Figure 1 shows schematics of the test model, nomenclature,
coordinate system and location of the PIV planes and pressure taps. The obstacle was
mounted on a machined-flat rigid steel ground plate (the wall) of length, width and
thickness 2500, 600 and 17.5 mm, respectively. The plate leading edge was a 4:1 (half)
ellipse, with the minor axis matching the plate thickness. The intersection of the cylinder
central axis with the plate marked the origin of the Cartesian coordinate system: x , y
and z are streamwise, lateral and spanwise directions, respectively. The corresponding
velocity components are u, v, w for the instantaneous, U , V , W the mean and u′, v′,
w′ the fluctuating components. All coordinate variables and velocity components are
non-dimensionalized by d and U∞, respectively.

The location of the pressure taps was determined based on earlier studies and
preliminary PIV measurements. It has been determined that off-setting the pressure
taps (1–6) on the obstacle sides generally resulted in a better discrimination of the
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Figure 1. Schematics of the experimental set-up in the test section of the wind tunnel with the coordinate
system and related nomenclature. Here, • indicates the location of pressure sensors. The figure is reprinted
from Kindree et al. (2018) with permission.

pressure fluctuation phases. When using either POD or FIR-SPOD, a stronger correlation
between temporal coefficients of the pressure and velocity modes is observed. On the
plate, the pressure taps are concentrated in the obstacle base region, where generally
the magnitude of the spatial modal functions are largest. Taps 17 and 18 are located
downstream of the mean recirculation region. The associated sensor data contributed to
a better synchronization of the estimated modes related to the shed Kármán vortices.

The velocity fields were acquired using a LaVision FlowMaster PIV system on 27
horizontal planes, spanning 0.8 � x � 6 and −2.7 � y � 2.7, with a spacing of 0.11 mm
for z < 0.9 and 3.37 < z � 4.27 and 0.22 mm for 0.9 � z � 3.37. Laskin nozzles, placed at
the tunnel inlet, were used to generate olive oil particles (with a number-mean diameter of
d0 ≈ 1 µm).

The laser sheet was generated with a single cavity 20 mJ Photonics Industries 527 nm
Nd-YLF laser, operated in twin-pulse mode. The laser sheet was approximately 2 mm
thick using a cylindrical spherical lens combination (focal lengths: 800 and −20 mm).
Two FastCam SA4 CMOS cameras (1024 × 1024 pixels) were positioned symmetrically
at ±30◦ about y = 0. The pulse separation between images of a pair was 30 µs. The PIV
images were processed using LaVision’s Davis 8.3 software. Interrogation windows of 32
× 32 pixels with 50 % overlap were used with a straddled arrangement. Where necessary,
interrogation windows with a more refined resolution of 16 × 16 pixels were used without
overlap, which resulted in a spatial resolution of approximately 0.09d. Image pairs were
captured at a rate of fP I V = 1200 Hz, which is at least 10 points per shedding cycle.
Six independent trials of 2700 snapshots were acquired for each plane. In general, four
trials were sufficient for statistical convergence of the first and second statistical moments
as well as the POD/SPOD modes (see Appendix B in Mohammadi et al. (2023)). The

1007 A83-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1093


Journal of Fluid Mechanics

maximum uncertainty of the free-stream mean and instantaneous velocity vectors were
estimated (Wieneke 2015) to be �U/U∞ = ±0.027 and �u/U∞ = ±0.053.

Surface pressure measurements and PIV planes were synchronized with a transistor-
transistor-logic signal from the laser. All Sensors Corporation 5-INCH-D1-4V-MINI
differential pressure transducers acquired pressure data from Nps = 17 pressure taps (with
a 0.3 mm diameter), located on the obstacle faces and ground plate. The high-pressure
side of the transducer was connected to the pressure taps and the low-pressure side was
connected to the static port of the wind tunnel’s Pitot-static tube via a manifold. A National
Instrument NI 9 234 24-bit data acquisition interface was used to sample the pressure
signals at 10.24 kHz. The signals were digitally filtered at 1 kHz using an eighth-order
Butterworth filter applied forwards and backwards to correct for the filter-induced phase
lag. The tapping-tubing-transducer system had a flat frequency response up to ≈ 250 Hz
and the sensor resolution was ±1.3 Pa. Calibration details can be found in Kindree et al.
(2018).

Experiments were run at a nominal free-stream velocity U∞ = 14.3 m/s corresponding
to Re ≈ 10600. The nominal shedding frequency was St = fsd/U∞ = 0.11, such that fs ≈
120 Hz and fP I V ≈ 10 fs . The free-stream turbulence was less than 0.1 %. The boundary
layer developed naturally from the leading edge and was shown to follow the Balsius
profile (Kindree et al. 2018). At the location of the obstacle with the obstacle removed
(i.e. x = 0 corresponds to a distance of 213 mm from the leading edge), the boundary
layer thickness was measured to be δ/h = 0.053 (δ/d = 0.21), which is considered as thin
(Sakamoto & Arie 1983; Sakamoto & Oiwake 1984). With δ∗, θ and H = δ∗/θ being the
displacement thickness, momentum thickness and shape factor, δ∗/δ = 0.35, θ/δ = 0.13
and H = 2.6.

2.2. Decomposition of flow fields
The velocity field, u(x, t), is subject to a triple decomposition into a mean, U(x), coherent
(uc(x, t)) and incoherent contributions (u′′(x, t)) (Hussain 1983)

u(x, t) = U(x) + uc(x, t) + u′′(x, t)︸ ︷︷ ︸
u′(x,t)

, (2.1)

with u′ the total fluctuations. Bold symbols indicate vectors and the arguments x and t
represent location and time, respectively. Wherever clear, these arguments are implied for
brevity.

For the velocity field, the snapshot POD (Sirovich 1987)/SPOD (Sieber et al. 2016) is
used to determine uc. For the pressure field, the classical counterparts of these methods
are used. For completeness, a brief overview of these methods is given below. Details of
the mode selection are discussed in § 3.

2.2.1. Snapshot POD/SPOD
The snapshot POD/SPOD is more efficient for handling the PIV data, where the number
of spatial points is higher than the number of snapshots. The POD reconstruction of the
velocity field is defined as

u′(x, t) =
N∑

i=1

ai (t)φi (x) , (2.2)
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where ai and φi are the temporal and spatial modal functions, respectively. Here, N is the
total number of modes, which in the snapshot POD is equivalent to the total number of
snapshots.

The correlation matrix R is based on the inner product 〈., .〉 of two snapshots, u′(x, ti )
and u′(x, t j )

Ri, j = 1
N

〈u′(x, ti ), u′(x, t j )〉 = 1
N

∫
A

u′(x, ti ) u′(x, t j ) dxdy , (2.3)

where A specifies the PIV domain. As R is an N × N real symmetric positive-definite
matrix, its eigenvectors, ai , are real and orthogonal to each other

1
N

(ai , a j ) = λiδi j . (2.4)

The λi are the eigenvalues of R and show fluctuation energy of the corresponding ai .
(.,.) represents the scalar product. The modes are sorted by λi in a descending order. The
sum of all λi is twice the total kinetic energy of the fluctuations over the domain A

TKE = 1
2

N∑
i=1

λi . (2.5)

Finally, φi are obtained by projecting u′ onto ai

φi (x) = 1
Nλi

N∑
j=1

ai (t j )u′(x, t j ) . (2.6)

The POD spatial modes are orthonormal by construction: 〈φi , φ j 〉 = δi j .
In the FIR-SPOD (Sieber et al. 2016), a low-pass filter is applied along the diagonals of

R. The elements of the resulting correlation matrix, S, are given by

Si, j =
N f∑

k=−N f

gk Ri+k, j+k , (2.7)

where gk is the discrete representation of a Gaussian filter, with bandwidth
(2N f + 1)/ fP I V

gk = 1√
2π N f

e
− 1

2 ( k
N f

)2

. (2.8)

The remainder of the procedure of snapshot SPOD is the same as for snapshot POD.
The temporal modal coefficients remain orthogonal, but the spatial modes are no longer
orthogonal (see Appendix A). The TKE is still represented as in (2.5) and if all modes are
used for reconstruction, the flow field is fully recovered.

2.2.2. Classical POD/SPOD
The classical POD/SPOD approach is computationally more efficient for handling pressure
data, which typically consist of long time series at a few locations. More precisely, the
classical approach is more efficient if (i) M < Ns for POD and (ii) M × (2N f + 1) < Ns
for the FIR-SPOD (M , Ns and N f are the total number of pressure sensors, total number
of snapshots and SPOD filter parameter, respectively).
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The POD of the pressure field, p, can be presented as

p(xi , t) = P(xi ) +
N∑

n=1

bn(t)Ψ n(xi ) , (2.9)

where P is the mean pressure, and bn are the temporal coefficients corresponding to spatial
functions Ψ n . In classical POD, the correlation matrix R is a matrix (Sieber et al. 2016)

Ri, j = 1
N

〈p′(xi , t), p′(x j , t)〉 , (2.10)

where p′ = p − P is the fluctuating pressure. Here, the eigenvectors of R form the spatial
functions Ψ and temporal modes are obtained by projecting p′ on Ψ .

The implementation of the filter operation in the classical FIR-SPOD is more delicate.
The multi-time-shift correlation tensor, Si, j,k,l , is formed

Si, j,k,l =
√

gk gl

M N�t

∫
p′(xi , t − k�t) p′(x j , t − l�t) dt , (2.11)

with i, j = 1, . . . , M and k, l = −N f , . . . , N f . Here, gk and gl are the Gaussian filter
coefficients. Note that in numerical implementation, Si, j,k,l is reshaped into a matrix
format: S̃(i+k M),( j+l M). The correlation tensor is now decomposed, such that

N f∑
l=−N f

M∑
j=1

Si, j,k,l Ψ̃ n(x j , τl) = μnΨ̃ n(xi , τk) , (2.12)

where τk = k�t . The discrete convolution filter, Ψ̃ n , can be interpreted as a data-driven
filter bank which allows for decomposition of time series into temporal coefficients

bn(t) =
N f∑

l=−N f

M∑
i=1

√
gk

M
Ψ̃ n(xi , τk) p′(xi , t − τk) . (2.13)

Note that, while Ψ̃ n , which forms an orthonormal basis, is used to calculate the temporal
coefficients, the spatial modes that are used to reconstruct and recover the original signal
are the central part of Ψ̃ n (i.e., Ψ n = Ψ̃ n(xi , 0)), which in general, are not orthogonal.

Prior to either snapshot or classical POD/SPOD, a symmetric/antisymmetric split is
carried out on the dataset to accelerate the convergence in terms of PIV snapshots needed
(Holmes et al. 2012)

ua(x, y, z, t) = [u′(x, y, z) − u′(x, −y, z)]/2
us(x, y, z, t) = [u′(x, y, z) + u′(x, −y, z)]/2
va(x, y, z, t) = [v′(x, y, z) + v′(x, −y, z)]/2
vs(x, y, z, t) = [v′(x, y, z) − v′(x, −y, z)]/2
wa(x, y, z, t) = [w′(x, y, z) − w′(x, −y, z)]/2
ws(x, y, z, t) = [w′(x, y, z) + w′(x, −y, z)]/2, (2.14)

where the spatial modes of the resulting symmetric and antisymmetric fields are
orthogonal to each other by construction. For convenience, in the remainder of the text,
temporal modes of both velocity and pressure modes associated with the antisymmetric
field will be shown by an and symmetric ones with sn , where n is the mode number.
The velocity temporal modes will be accompanied by the subscript u (e.g. an

u and sn
u ) and

pressure temporal modes by the subscript p (e.g. an
p and sn

p).
1007 A83-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1093


A. Mohammadi, C. Morton and R.J. Martinuzzi

2.3. Sensor-based flow estimation
In selection of the optimal number of virtual sensors (Nvs) for periodic flows, first,
the maximum time delay, τ = Nvs�τ , needs to be identified (with �τ the time delay
between two virtual sensors). Durgesh & Naughton (2010) and Sicot et al. (2012) showed
empirically that an optimal value exists for τ . Hosseini et al. (2015) recommended an
optimal value for τ to be close to the shedding period, 1/ fs . According to Noack et al.
(2005), at least four points per cycle are needed to resolve modes with strong harmonic
contributions. Hosseini et al. (2015) suggested considering additional points to account
for the cycle-to-cycle variations. Hence, to recover the second harmonics (2 fs), at least 10
points per shedding cycle need to be considered (i.e. �τ = 1/10 fs and Nvs = 10).

The velocity field is estimated from the pressure modes, obtained from M =
Nps × (Nvs + 1) = 17 × (10 + 1) = 187 sensors (i.e. the velocity field estimation and
reconstruction use all physical pressure sensors indicated in figure 1 and their
corresponding virtual sensors)

û(x, test ) =
Nu∑

k=1

âk
u(test )φ

k
u(x), (2.15)

âk
u(test ) =

Nmode∑
n=1

an
p(test )

〈an
p(t)a

k
u(t)〉

λn
p

, (2.16)

where Nu represents the number of velocity modes used for estimating the velocity field
û, Nmode the number of pressure modes used for estimating each velocity coefficient âk

u
and 〈. .〉 the correlation function. Here, ak

u and φk
u are the velocity temporal and spatial

POD/SPOD modes at each plane, respectively; an
p(t) are obtained from projecting p′,

obtained concurrently with the velocity measurements, on the pressure spatial modes
(using (2.13)). To ensure convergence of these spatial modes, they are obtained from
performing POD/SPOD on all available trials (i.e. 27 × 6 = 162 trials). The values an

p(test )

can be from any of the 27 sets of pressure POD/SPOD bases. For consistency in a 3-D
reconstruction, an

p(test ) from the same trial is used to estimate the velocity field in all
planes.

Equation (2.16) is in the form of Hosseini et al. (2015), where by the EPOD
approach of Borée (2003) is recast in terms of the orthonormal velocity modes and the
orthogonality condition is enforced. This form is consistent with the proposed linear modal
relationship between pressure and velocity fluctuations described in Noack et al. (2005)
and Noack (2006), who observed that this form is suitable for laminar and transitional
unconditional unstable cylinder wakes and shear layers and more relevant in this study,
for inhomogeneous turbulent wakes in general. In preliminary testing, the influence of
quadratic terms in the pressure–velocity relationship was considered. It was found that
these correlation coefficients were very small compared with the linear terms and below
experimental uncertainty. These observations are consistent with earlier studies and thus
these quadratic terms were not retained.

In the implementation of (2.16), modes for which the 〈an
p an

u 〉 are below the measurement
uncertainty were not retained, following the practice of Discetti et al. (2018). As observed
in Hosseini et al. (2015) and discussed by Discetti et al. (2018), retaining poorly correlated
terms generally results in less accurate estimations. To account for time lags between the
velocity and pressure fields, which can arise as a result of physical separation of the two
fields or convective delays, the optimal time lag is found from the peak of the cross-
correlation (r ) for all velocity and pressure mode combinations. Then, the correct phase
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of estimated signal is recovered from delaying the pressure signal. For instance, assuming
that only the correlation of s�

u and s�
p is non-vanishing in estimation of ŝ�

u , the optimal

time lag (τ�
s ) is found from rs�

u s�
p
(τ ) = (s�

u (t), s�
p (t + τ))/

√
λs�

u
λs�

p
. Thus

ŝ�
u (test ) = s�

p (test − τ�
s )

〈s�
p (t − τ�

s ) s�
u (t)〉

λs�
p

. (2.17)

3. Flow characteristics
The flow over a cantilevered square cross-section cylinder has been characterized in
previous studies (Kindree et al. 2018; Mohammadi et al. 2023). It is dominated by quasi-
periodic vortex shedding. Three energetically dominant frequencies exist in the near-wake
region: fs and 2 fs corresponding to the first and second harmonics of Kármán vortex
shedding, respectively, and fL = 0.1 fs , corresponding to a low-frequency signature,
associated with the flapping of the shear layers originating from the free end of the
obstacle. Weaker peaks in the spectrum of the velocity fluctuations, at fac1 = (1 ± 0.05) fs
and fac2 = (1 ± 0.1) fs , were also reported. These frequencies were attributed to the
interactions between the Kármán vortex shedding and low-frequency signature from the
free end (Mohammadi et al. 2023) and will be referred to as the accompanying frequencies.

Figure 2 illustrates the u and v spatial functions of selected POD (columns 1 and 2)
and SPOD (columns 4 and 5) modes at z = 1.83 (close to the mid-span height of the
cylinder). This plane is chosen as it contains coherent motions associated with most of the
aforementioned frequencies. To the right of each set, the power spectral density function
(PSDF) of the respective coefficients of each mode is shown. Note that with mode pairs
(i.e. with spectral energy concentration at the same frequency), only the first mode is
shown for brevity.

For POD, the orthonormal mode basis for the velocity field is determined following the
procedure of Hosseini et al. (2015). Here, only modes which show correlations with the
pressure field above the uncertainty threshold are considered. Briefly:

(i) From the antisymmetric field, ua , the two most energetic modes (i.e. {φ1
a ,φ2

a}) show
dominant spectral peaks at fs and are taken to represent the fundamental Kármán
vortex shedding. Note that {.,.} indicates two modes that constitute a mode pair.

(ii) The symmetric component, us , is further decomposed into (1) slow- and (2) fast-
varying parts (〈u〉G and uH

s , respectively). Here, 〈u〉G is calculated by applying a
Gaussian filter on us

〈u〉G(t) =
∫ ∞

−∞
us(τ )g(t − τ)dτ . (3.1)

The bandwidth of the Gaussian filter is set to be σ = 0.003. Hosseini et al. (2015)
observed that applying a filtering operation accelerates the convergence of the low-
frequency spatial modes as the slow-varying part has a time scale comparable to
the PIV acquisition window. The first POD mode of 〈u〉G shows a strong spectral
peak at fL and is taken to represent the slow-varying signature (i.e. φ�

s ). Thus,
a�

s = (us, φ�
s ). Now, uH

s is obtained as

uH
s = us − (us, φ�

s )φ�
s . (3.2)

The two most energetic uH
s POD modes (i.e. {φ1

s ,φ2
s }) show dominant spectral peaks

at 2 fs and represent the second harmonics of the Kármán vortex shedding.
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Figure 2. Decomposition of the velocity field at z = 1.83. Spatial modal functions for u and v, and PSDF
from POD (left three columns) and SPOD (N f = 64; filter length of 127/ fP I V ) (right three columns). For
POD: φ1

a , φ�
s , and φ1

s represent the most energetic antisymmetric, slow-varying symmetric, and fast-varying
symmetric modes, respectively. For SPOD: φ1

a , φ3
a and φ5

a are the first modes of the first three most energetic
antisymmetric mode pairs, respectively, and φ1

s and φ3
s are the first modes of the first two most energetic

symmetric mode pairs, respectively.

The outlined procedure accelerates the spatial mode convergence, but does not affect
the spectral characteristics of the temporal coefficients. The separation of frequencies is
not ideal with the POD modes (third column in figure 2). For instance, the accompanying
frequencies at fac1 and fac2 in the spectra of a1

u are mixed with motions at fs . Moreover,
in the spectra of s1

u , which is associated with motions at 2 fs , energetic contributions exist
around fs .

For SPOD, it was verified that the spectral separation of modes makes the pre-filtering
step (as described above for the POD case) unnecessary. However, N f must be chosen
carefully. Here, N f is set to be 64 corresponding to a filter length of 127/ fP I V (≈ 12.7/ fs).
Obtaining a finer resolution and separation of spectral dynamics with higher SPOD filter
length comes at the penalty of representing less TKE. Thus, a balance needs to be
maintained. Readers are referred to Appendix C of Mohammadi et al. (2023) for a more
complete discussion on the selection of the filter parameter N f .
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Figure 3. The PSDF of the temporal functions of the most energetic pressure POD/SPOD modes. For POD,
a1

p , s�
p and s1

p show dominant spectral behaviour around fs , fL and 2 fs , respectively. For SPOD, a1
p , a3

p , a5
p ,

s1
p and s3

p show dominant spectral behaviour around fs , fac1, fac2, fL and 2 fs , respectively. Spectra are offset
for clarity.

In figure 2, {φ1
a,φ

2
a} and {φ3

s ,φ
4
s } mode pairs correspond to the fundamental and second

harmonics of Kármán vortex shedding at fs and 2 fs , respectively; {φ1
s ,φ

2
s } corresponds

to a slow-varying mode with a low-frequency signature at fL ; and {φ3
a,φ

4
a} and {φ5

a ,φ6
a}

correspond to inter-harmonics at fac1 and fac2, respectively. The motions at fL , fs , fac1,
fac2 and 2 fs appear in separate modes.

Figure 3 shows the PSDF of the temporal coefficients of the most energetic pressure
POD/SPOD modes. These modes are obtained from performing classical POD and SPOD
(N f = 64) on all 162 trials of available pressure data. Similar to the velocity field, for POD,
a1

p, s�
p and s1

p show spectral energy concentrations around fs , fL and 2 fs , respectively.
Contributions at fac1 and fac2 are mixed with the spectra of a1

p and a2
p and cannot be

separated. For SPOD, on the other hand, a1
p, a3

p, a5
p, s1

p and s3
p show important spectral

energy contributions around fs , fac1, fac2, fL and 2 fs , respectively. This separation of
dominant frequencies in both velocity and pressure SPOD modes suggests a potential
in improving the quality of the correlation-based estimation procedure of Hosseini et al.
(2015).

4. Results – evaluation of the proposed technique
In this section, a comparative evaluation of the POD- and SPOD-based estimation is
presented. In § 4.1, the actual and estimated modes at z = 1.83 are compared by analysing
temporal coefficients, residual values and reconstructed velocity fields. For all estimations
in § 4.1, the reference pressure modes are naturally synchronized with the corresponding
velocity modes (measured at the same time as the PIV measurements at z = 1.83). In § 4.2,
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POD a1
u a2

u su
� s1

u s2
u

a1
p 2.43 23.61 0.370.150.02

a2
p 25.61 0.280.230.012.20

sp 0.060.22 3.71 0.120.37

s1
p 000.06 2.43 1.38

s2
p 1.3800.050.04 2.19

�

Table 1. Covariance magnitudes between selected velocity and pressure POD modes at z = 1.83. Mode pairs
(mode) identified with the same frequency in both fields are separated with sidelines. The highest covariance
magnitudes between each velocity mode and all pressure modes is bolded. Magnitudes less than 0.005 are
replaced by 0.

SPOD a1
u a2

u a3
u a4

u a5
u a6

u s1
u s2

u s3
u s4

u

a1
p 2.40 22.46 00000.060.020.350.40

a2
p 22.45 00000.020.060.390.352.40

a3
p 0.020.42 1.18 000000.020.49

a4
p 0.490.430.02 1.18 00000.020

a5
p 0.130.020.020.14 0.52 00000.29

a6
p 0.290.020.130.140.03 0.52 0000

s1
p 000000 2.62 000.97

s2
p 0.99000000 1.97 00

s3
p 00000000 1.63 1.39

s4
p 1.3900000000 1.63

Table 2. Covariance magnitudes between selected velocity and pressure SPOD modes at z = 1.83. Mode
pairs identified with the same frequency in both fields are separated with sidelines. The highest covariance
magnitudes between each velocity mode and all pressure modes is bolded. Magnitudes less than 0.005 are
replaced by 0.

the discussion is extended by estimating and analysing the temporal coefficients at other
heights using common reference modes acquired from pressure data concurrently obtained
with PIV measurements at z = 0.92.

4.1. Estimation results using synchronized pressure data
In applying (2.16) and (2.17), it was mentioned that identifying the non-vanishing
correlations and setting the remaining to zero improves the estimation. Here, this statement
is considered more closely. Tables 1 and 2 present the covariance magnitudes between
selected velocity and pressure POD/SPOD modes at z = 1.83, respectively. Mode pairs
associated with the same dominant frequency(ies) in both fields are separated using
sidelines (e.g. {a1

u, a2
u} and {a1

p, a2
p} are associated with fs).

In table 1, the covariance magnitudes are highest between modes in the same mode
subspace. The covariance of higher-ranked pressure and velocity POD modes were
negligible. Furthermore, it was verified that in performing the estimation, contributions
due to correlations between the selected antisymmetric and symmetric modes or between
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the slow-varying and fast-varying symmetric modes were negligible. This is consistent
with the findings of Hosseini et al. (2015). Therefore, for estimation of the first two
antisymmetric modes (âk

u ; k = 1 and 2), only correlations with a1
p and a2

p are considered

âk
u(test ) =

2∑
n=1

an
p(test − τ n

a )
〈an

p(t − τ n
a ) ak

u(t)〉
λan

p

. (4.1)

Similarly, for estimation of the first two modes of the fast-varying symmetric mode
subspace (ŝk

u ; k = 1 and 2), associated with the second harmonics of the Kármán vortex
shedding

ŝk
u(test ) =

2∑
n=1

sn
p(test − τ n

s )
〈sn

p(t − τ n
s ) sk

u(t)〉
λsn

p

. (4.2)

For estimation of the slow-varying symmetric mode ŝ�
u , associated with the low-

frequency dynamics, (2.17) is used.
Table 2 presents covariance magnitudes for the SPOD modes. Here, covariances be-

tween antisymmetric and symmetric modes are negligible. Covariances of higher-ranked
pressure modes with the selected velocity modes were found to be similarly negligible.

For the antisymmetric field, covariances between modes associated with different
frequencies in the velocity and pressure fields (e.g. a3

u and a1
p) are not negligible. This

is more noticeable when considering the covariance magnitudes for a3
u , a4

u , a5
u and a6

u .
Therefore, for estimation of each antisymmetric SPOD modes, six pressure modes are
considered. For âk

u (k = 1, 2, . . . , 6)

âk
u(test ) =

6∑
n=1

an
p(test )

〈an
p(t) ak

u(t)〉
λan

p

. (4.3)

For the symmetric field, covariance magnitudes between modes corresponding to the
low-frequency signature and second harmonics are negligible, which further reflects the
separation of these dynamics using SPOD. Therefore, in estimating each symmetric SPOD
mode, only the pressure modes yielding covariance coefficients above the threshold are
considered. For modes associated with the low-frequency dynamics (ŝk

u ; k = 1 and 2)

ŝk
u(test ) =

2∑
n=1

sn
p(test − τ n

s )
〈sn

p(t − τ n
s ) sk

u(t)〉
λsn

p

. (4.4)

For modes associated with the second harmonics of the Kármán vortex shedding
(ŝk

u ; k = 3 and 4)

ŝk
u(test ) =

4∑
n=3

sn
p(test )

〈sn
p(t) sk

u(t)〉
λsn

p

. (4.5)

It is noted that the time delay τ n
a and τ n

s of (4.3) and (4.5) are smaller than the sampling
interval and are thus omitted.

Figure 4 shows excerpts of time series of selected antisymmetric velocity POD/SPOD
modes at z = 1.83. Actual and estimated temporal coefficients are shown by dashed blue
and solid red lines, respectively. Table 3 presents the TKE contribution of the actual (λai

u
)

and estimated (λâi
u
) modes.
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Figure 4. Comparison of actual (dashed blue, au) and corresponding estimated (solid red, âu) antisymmetric
temporal coefficients at z = 1.83. Mode numbers correspond to the bases introduced in figure 2. Left side
is with POD and right side is with SPOD. The reference pressure signal is naturally synchronized with the
velocity data; �(test ) = 1/ fP I V throughout this study.

SPODPOD

n λanu (%) λânu (%) λanu (%) λânu (%)
18.919.421.524.81
18.919.417.420.32
0.81.33
0.81.34
0.40.65
0.40.66

λ 40.242.639.045.2

Table 3. Represented TKE (λ) with the actual and estimated antisymmetric modes at z = 1.83. Magnitudes
are rounded to the nearest decimal.

In figure 4, the phase of all temporal coefficients are well preserved. However,
comparing figures 4(a) and 4(b), â1

u in SPOD more accurately represents a1
u . The

maximum cross-correlation magnitudes (rmax ), mentioned in the top right corner of each
panel, is used as a coarse measure to assess the similarity between actual and estimated
temporal coefficients. In figure 4(a), rmax is 95.7 %, whereas in figure 4(b), it is near
100 %.

Antisymmetric modes associated with the accompanying frequencies fac1 and fac2 can
only be estimated with SPOD. With POD, the energetic contents around these frequencies
are mixed with that of the primary shedding at fs and therefore, the related dynamics
cannot be estimated separately. With SPOD, however, a separate estimation of higher-
ranked modes (â3

u to â6
u), associated with fac1 and fac2, is feasible. The correlations

between corresponding actual and estimated temporal coefficients of these SPOD modes
are lower than that of the first harmonic (rmax of 90.3 % and 75.8 % for a3

u and a5
u ,

respectively). Moreover, in figures 4(c) and 4(d), there are instances where the amplitude
of a3

u and a5
u is not well captured by the corresponding estimated modes (e.g. 350 < test <

400). However, further investigation (presented later in this section) shows that the critical
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Figure 5. Comparison of actual (dashed blue, su) and corresponding estimated (solid red, ŝu) symmetric
temporal coefficients at z = 1.83. Mode numbers correspond to the bases introduced in figure 2. Left side
is with POD and right side is with SPOD. The reference pressure signal is naturally synchronized with the
velocity data.

SPODPOD

n

�

λsnu (%) λŝnu (%) λsnu (%) λ ŝnu (%)

3.02.6
2.52.21.63.01
2.01.71.42.72
1.51.63
1.51.64

λ 7.57.26.08.4

Table 4. Represented TKE (λ) with the actual and estimated symmetric modes at z = 1.83. Magnitudes are
rounded to the nearest decimal.

flow features (i.e. critical points and velocity gradients) are well preserved between the
actual and estimated fields.

In table 3, the first two antisymmetric POD modes represent more TKE than the six
selected SPOD modes (45.2 % vs. 42.6 %). However, for the estimated fields, more TKE
is recovered with the selected SPOD basis (40.2 % vs. 39.0 % in POD), which is a result
of high correlations between the actual and estimated temporal coefficients. The first two
antisymmetric SPOD modes retain about 37.8 % TKE (out of 38.8 %) while the first two
POD modes only retain 39.0 % TKE (out of 45.2 %). Including the TKE contributions
retained by the other four estimated antisymmetric SPOD modes, associated with the
accompanying frequencies, further favours the selection of SPOD over POD.

Figure 5 and table 4 present similar information to figure 4 and table 3, but for the
symmetric field, at z = 1.83. In comparing the cumulative TKE contribution of symmetric
modes associated with the slow-varying signature, the contribution of s1

u and s2
u of SPOD

is higher than ŝ�
u of POD (3.9 % vs. 2.6 %). This is mainly attributed to a more successful

separation of the low-frequency dynamics. For estimation of these modes, both POD-
and SPOD-based techniques provide similar results, with the magnitude of rmax in figure
5(c) being 4 % higher than in figure 5(a). However, as a result of better separation of
the dynamics with SPOD, the estimation of the two SPOD modes shows much less
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high-frequency jitter (compare the smoothness of ŝ�
u in figure 5(a) and ŝ1

u in figure 5(c) in
the range 1100 < test < 1200).

Estimation of the modes representing the second harmonics of the Kármán vortex
shedding (s1

u and s2
u with POD and s3

u and s4
u with SPOD) is significantly improved with

SPOD. In figure 5(b), neither the pattern nor amplitude of the POD mode s1
u is correctly

captured by ŝ1
u , which results in a relatively poor rmax of 69.1 %. In comparison, in

figure 5(d), the rmax between the SPOD mode s3
u and its estimation ŝ3

u is 96.2 %, which
is significantly higher. In terms of retaining TKE with the estimated modes (table 4), the
POD modes ŝ1

u and ŝ2
u only retain 3.0 % out of 5.7 % TKE, whereas the SPOD modes ŝ3

u
and ŝ4

u retain the same amount (3.0 %), but out of 3.2 % TKE. It should be re-iterated that
the higher TKE contribution of the POD modes s1

u and s2
u compared with that of the SPOD

modes s3
u and s4

u (5.7 % vs. 3.2 %) is mainly due to the low-frequency energy contents that
are not separated from these POD modes (compare PSDFs of the POD mode s1

u and SPOD
mode s3

u in figure 2).
Altogether, considering all five selected POD modes and ten selected SPOD modes,

45.0 % TKE is recovered with the estimated POD modes (out of 53.6 %) and 47.7 % TKE
is recovered with the estimated SPOD modes (out of 49.8 %). Effectively, SPOD recovers
more of the signal energy. Furthermore: (i) flow dynamics of the fundamental mode pair
at fs can be presented with less noise; (ii) weaker dynamics, such as the ones associated
with the accompanying frequencies at fac1 and fac2, can be estimated separately; and
(iii) the modal dynamics associated with both low- and high-frequency energetic contents
in the symmetric field is presented more accurately, especially in the case of the second
harmonics of the Kármán vortex shedding.

Next, the quality of the estimated velocity modes, presented in figures 4 and 5, is further
evaluated based on the residuals. Figure 6 presents the error of the instantaneous estimated
velocity fields from partial reconstructions using POD (top) and SPOD (bottom) modes at
z = 1.83. Similarly to Hosseini et al. (2015), the error is defined as

Ec =
∫

y(uc − ûc).(uc − ûc) dA∫
y uc . uc dA

, (4.6)

where uc and ûc are the partial reconstruction using the actual and estimated modes,
respectively, and the over-line denotes the time-averaging operator. In figure 6(a), Ec is
the error between uc and ûc, reconstructed from the two antisymmetric modes and the
mean field velocity. A lower Ec indicates a more accurate sensor-based estimation. The
horizontal lines in figure 6 show the mean Ec value of the signal (Ec) in the same colour
as the related Ec signal.

The Ec of the SPOD reconstruction of the antisymmetric field (i.e. U + ∑6
n=1 an

uφn
a)

is significantly lower than that of the corresponding POD reconstruction (0.03 vs.
0.11, as shown with horizontal black and red lines in figure 6(c) and figure 6(a),
respectively). Considering contributions of individual antisymmetric SPOD mode pairs in
figure 6(c), the Ec with higher-ranked mode pairs is higher (i.e. with U + ∑2

n=1 an
uφn

a , U +∑4
n=3 an

uφn
a and U + ∑6

n=5 an
uφn

a , Ec ≈ 0.01, 0.07 and 0.12, respectively), which will be
shown in § 5 to reflect momentary intervals of disrupted vortex shedding. However, since
the energetic contribution of the higher-ranked mode pairs are significantly lower than
that of the first harmonic, the higher Rc of the modes associated with the accompanying
frequency modes do not significantly affect the overall residual of U + ∑6

n=1 an
uφn

a .
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Figure 6. Error of the estimated velocity fields reconstructed using different selected POD ((a) and (b)) and
SPOD ((c) and (d)) modes at z = 1.83. The horizontal lines show the average values in the same colour as
the signal data points. The reference pressure data used for estimation are naturally synchronized (acquired
simultaneously) with the velocity measurements. Note the difference between the vertical axes range.

For the symmetric field, reconstructions with slow-varying mode(s) (i.e. U + s�
u φ�

s with
POD and U + ∑2

n=1 sn
u φn

s with SPOD), Ec is low with both approaches (0.04 vs. 0.02,
respectively). However, for the fast-varying modes associated with the second harmonics
(i.e. U + ∑2

n=1 sn
u φn

s with POD and U + ∑4
n=3 sn

u φn
s with SPOD), the performance of

the SPOD-based estimation is significantly better (Ec ≈ 0.25 compared with 0.03). In
figure 6(b), Ec magnitudes of U + ∑2

n=1 sn
u φn

s POD reconstruction are typically close or
higher than 0.75, whereas they remain an order of magnitude smaller with the SPOD
reconstruction U + ∑4

n=3 sn
u φn

s in figure 6(d) (note the difference in the vertical axes
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Figure 7. Iso-contours of the instantaneous lateral velocity component, v, overlaid with sectional streamlines
at z = 1.83: columns 1 and 3 are reconstructions using selected SPOD modes; columns 2 and 4 show similar
information with the estimated SPOD modes. All figures are plotted at the same time instant, corresponding to
test = 500 in figure 6. The same reference pressure data are used for estimation.

range between figures 6(b) and 6(d)). Finally, for reconstructions composed of all selected
modes, Ec for the POD modes is approximately 0.12, and nearly 4 times lower for SPOD.

Figure 7 shows iso-contours of v-component velocity, overlaid with sectional
streamlines, from the measured (columns 1 and 3) and reconstructed (columns 2 and 4)
flow fields at z = 1.83 for a randomly selected PIV snapshot (POD reconstructions are not
shown for brevity). The panels correspond to test = 500 in figure 6. Supplementary video
files no. 1 and no. 2 provide reconstructions corresponding to the data shown in figure 7.

In figure 7(k,l), the low-order reconstructions with all considered actual and estimated
SPOD modes show very good similarity, both in terms of recovering the v-velocity
contour patterns as well as type and location of streamline critical points. Similarly, a good
agreement exists between the partial reconstructions with individual mode pairs. It is only
in the case of the second pair of accompanying frequency mode pairs, figure 7(i,j), that
discrepancies are easily observable between the reconstructions with actual and estimated
modes, which is consistent with the results in figure 6(b). However, this has little effect
when considering the reconstructions with all selected modes.

Figure 8 shows an example of the instantaneous relative reconstruction error map,
corresponding to the instantaneous v-component velocity in figure 7, where the error
parameter, Ev , is defined as

Ev =
√

(vc − v̂c)2

uc · uc
. (4.7)
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Figure 8. Error, Ev , between actual and estimated instantaneous v-component velocity, corresponding to the
time instant shown in figure 7 (i.e. test = 500 in figure 6). Panels (a), (b), (c), (d), (e) and (f ) correspond to the
Ev computed from figure 7(a)-(b), (c)-(d), (e)-(f ), (g)-(h), (i)-(j) and (k)-(l), respectively.

For each panel of figure 8(a) to (e), the difference between partial reconstructions of
the v-component velocity field using actual and estimated modes is shown. For example,
figure 8(a) is obtained as the difference of vc in figure 7(a) and v̂c in figure 7(b). Figure 8(f )
shows the difference for the fields using the 10-mode reconstruction. For all panels, uc is
the velocity field reconstructed from 10 actual modes.

In figure 8, high reconstruction errors occur in one of two scenarios: (i) when there is
even a small difference between actual and estimated partial reconstructions of the most
energetic coherent motion, such as the Kármán vortex shedding in figure 7(a) and (b)
resulting in figure 8(a); and (ii) when there is a relatively large difference between the
actual and estimated coefficients, even if the identified coherent motion is weak, such
as (a5

u, a6
u) in figure 7(i) and (j) resulting in figure 8(e). It should be re-iterated that these
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POD (z = 1.83) SPOD (z = 1.83)

n λanu λ �λ �λ �λ �λ

�λ �λ �λ �λ

ânu (1) a(1) λânu (2) a(2) λanu λânu (1) a(1) λânu (2) a(2)

20.20.419.019.42.322.63.321.624.91 −0.8
20.20.419.019.42.018.32.917.420.32 −0.8

0.60.70.50.81.33
0.60.70.50.81.34
0.20.40.20.40.65
0.20.40.20.40.66

λsnu λŝnu (1) s(1) λŝnu (2) s(2) λsnu λŝnu (1) s(1) λŝnu (2) s(2)

3.12.6 0.71.9−0.5
2.92.20.92.11.41.63.01

�
0.31.9−0.7

2.01.70.81.91.31.42.72 0.21.5−0.3
0.01.60.11.51.63
0.01.60.11.51.64

Σ 49.048.349.846.945.153.6

Table 5. Relative TKE contribution (%) of temporal modes and their estimated counterparts at z = 1.83.
Subscript (1) corresponds to the estimated coefficients obtained with synchronized pressure data (collected
concurrently with the PIV measurements at z = 1.83) and subscript (2) corresponds to the estimated
coefficients obtained with asynchronous pressure data (collected concurrently with the PIV measurements
at z = 0.92).

panels are spatial distributions of the reconstruction error at a particular instant (test = 500
in figure 6), which was chosen to represent a high error level case of the full reconstruction.
As can be seen from the sample time interval in figure 6, the error in the full reconstruction
is generally significantly smaller than at these extreme instants. Notwithstanding, the error
levels are generally less compared with the ones reported in other studies, for example by
Deng et al. (2019).

In this section, the performance of the SPOD-based sensor estimation technique was
compared with the POD-based counterpart. The reference pressure data were naturally
synchronized (acquired concurrently) with the PIV measurements. However, in cases
where a 3-D velocity field is to be reconstructed from individual uncorrelated (acquired at
different times) planar velocity measurements, a common reference pressure signal needs
to be used to synchronize the 3-D estimation. Therefore, the next section will focus on
evaluating the performance of the proposed methodology when reconstructing the flow
using data from uncorrelated planes.

4.2. Estimation results using asynchronous pressure data
This section starts with a comparison between estimated temporal coefficients at z = 1.83,
obtained using synchronized and un-synchronized reference pressure data. Then, the
estimated signals with asynchronous data are analysed at other heights. For all estimations
with the asynchronous pressure data, the reference pressure acquired concurrently with
the PIV measurements at z = 0.92 is used to estimate the velocity at all other planes.

Table 5 presents relative TKE contribution (%) of selected POD/SPOD modes at
z = 1.83 and their estimated counterparts obtained using (i) synchronized pressure data
(similar to the data presented in table 3) and (ii) asynchronous pressure data (collected
concurrently with the PIV measurements at z = 0.92). The difference between the TKE of
the estimated and actual modes are presented by �λa/s(1) and �λa/s(2). The focus is on
evaluating the estimator performance in retaining TKE when asynchronous pressure data
are used for estimation.
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From table 5, in general, the SPOD-based technique retains more TKE of the original
signal. For the fundamental harmonic coefficient â1

u , �λa(1) and �λa(2) are approximately
3.3 % and 2.3 % with POD, whereas they are 0.4 % and (-0.8) % with SPOD, respectively.
The higher magnitudes of λâ1

u(2) compared with that of λâ1
u(1) with both POD and SPOD

reflect a more energetic reference pressure signal in group (2), which is obtained with
PIV measurements at z = 0.92, compared with that of group (1). Differences between
different realizations (trials) of the pressure sequences are within the statistical uncertainty
as discussed in Appendix B. A similar pattern is seen for â2

u . For the accompanying
frequency modes, the quality of the SPOD estimator does not change significantly using
asynchronous reference pressure data (i.e. for â3

u to â6
u , �λa(1) ≈ �λa(2)).

For symmetric modes, the performance of the POD and SPOD-based estimators do
not change significantly using the asynchronous reference pressure signal. For the low-
frequency modes, the performance is similar between both estimators. For the estimation
of the second harmonics of the Kármán vortex shedding, however, the performance of
the SPOD-based estimator remains significantly better than the POD-based estimator,
using the asynchronous reference pressure signal. Appendix B presents a complementary
discussion on the effect of using different sensor data on retaining modal TKE.

To further explore the quality of estimation with POD and SPOD-based techniques, the
dynamical (phase) relationship is considered. Figure 9 depicts phase portraits of selected
actual (rows 1 and 3) and estimated (rows 2 and 4) coefficients. The phase portraits in
the first three columns show data over approximately 250 shedding cycles. The x-axis
corresponds to a1

u (rows 1 and 3) and â1
u (rows 2 and 4). The temporal coefficients for the

y-axis were selected illustrating relationships with a1
u . Similar patterns are observed with

both POD and SPOD temporal coefficients: in (a) and (i), the cyclical relationship between
the two modes of a harmonic pair is resolved; in (b) and (j), the parabolic relationship
between the shedding strength and the slow-varying component is rendered (Noack et al.
2003; Bourgeois et al. 2011); and in (c) and (k), Lissajou portraits are seen, which indicate
that the phase dynamics of the 2 fs harmonic is enslaved to the fundamental harmonic
(Bourgeois et al. 2013). The trajectories are clearer in the SPOD case, especially with
retaining the Lissajou patterns, figure 9(o), which is a result of improved separation of the
flow dynamics.

The last column of figure 9 presents the phase relationship for a short excerpt of the
time series (covering about four shedding cycles) of temporal coefficients associated
with the second harmonics of Kármán vortex shedding ({s1

u ,s2
u} with POD and {s3

u ,s4
u}

with SPOD). Ideally, the modes corresponding to the second harmonics should exhibit
a cyclical relationship, similar to that of the first (fundamental) mode pair. However, the
expected cyclical pattern is not resolved in the POD case. In contrast, the cyclical pattern is
very well preserved with SPOD (figure 9(l) and figure 9(p)) by using only the linear terms,
as in (4.5). Furthermore, with SPOD, the estimated coefficients of the second harmonics
are already in phase with those of the first, such that the delay τ n

s = 0, unlike with POD
where the delay is needed. Therefore, the SPOD-based estimation is more successful in
preserving the phase-relations between modes.

The performance of the SPOD-based estimator in capturing the modal energy content
when using asynchronous reference pressure signals is discussed next. Figure 10(a) shows
variation of the TKE contribution of the five most energetic actual SPOD mode pairs
relative to the TKE of all modes in each plane. Briefly, λ1

a + λ2
a relates to fs , λ3

a + λ4
a to

fac1, λ5
a + λ6

a to fac2, λ1
s + λ2

s to fL and λ3
s + λ4

s to 2 fs . The contribution of λ1
a + λ2

a is
dominant for z � 2.05. Above z > 2.05, λ1

s + λ2
s notably increases and λ1

a + λ2
a notably

decreases, such that for z > 3, the low-frequency fL motion, originating at the obstacle’s
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Figure 9. Phase portraits of selected actual (rows 1 and 3) and estimated (rows 2 and 4) temporal coefficients:
rows 1 and 2 are with POD and rows 3 and 4 are with SPOD. Mode numbers correspond to the bases introduced
in figure 2. For the last column, only a short excerpt of the time series (covering about four shedding cycles) are
shown for better visualization. Note that with POD, {s1

u ,s2
u } and {ŝ1

u ,ŝ2
u }, and with SPOD, {s3

u ,s4
u } and {ŝ3

u ,ŝ4
u }

are related to the second harmonics of Kármán vortex shedding.

free end, dominates the vortex shedding signature. The variations of λ3
a + λ4

a and λ5
a +

λ6
a closely follow each other. For z � 2.05, the relative TKE contributions of both mode

pairs stay nearly constant; for 2.05 < z � 2.75, they increase with strengthening of the
low-frequency instability; and for z > 2.75, they decrease following the weakening of the
Kármán vortex shedding. Lastly, λ3

s + λ4
s is strongest in the 1.25 < z < 3 region, which

coincides with the loci of streamwise vortical connector strands (Mohammadi et al. 2022).
These flow patterns will be explained in greater details in § 5.

Figure 10(b) shows the absolute magnitudes of TKE contribution of the converged
SPOD modes (from six trials). Figure 10(c) shows similar information for the estimated
coefficients using the asynchronous pressure data, measured concurrently with the PIV
measurements at z = 0.92 based on a single trial. The two plots are not overlaid for clarity.
It can be seen that the TKE distributions are similar for the estimated and converged set of
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â+λ6

â
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Figure 10. (a) Actual (measured) energy content of SPOD modes relative to TKE (%); (b) TKE of actual
SPOD modes; and (c) TKE recovered of SPOD modes. Here, λ1

a + λ2
a corresponds to fs , λ3

a + λ4
a to fac1,

λ5
a + λ6

a to fac2, λ1
s + λ2

s to fL and λ3
s + λ4

s to 2 fs .

actual SPOD modes along the cylinder height. However, due to the stochastic nature of the
flow during separate measurements, differences exist between the two sets. In Appendix B,
TKE contributions from a converged dataset and from single trials are further compared.

Figure 11 presents estimated temporal coefficients at z = 0.46 (left side) and 2.75 (right
side). The root mean square (r.m.s.) of each signal is shown at the top right corner of
each panel. It can be seen that the amplitude (strength) and r.m.s. of the â1

u coefficient are
significantly smaller at z = 2.75 compared with z = 0.46. In contrast, the amplitude and
r.m.s. of ŝ1

u are significantly larger at z = 2.75 compared with z = 0.46. In comparison,
those of â3

u , â5
u and ŝ3

u do not show significant changes between the two planes. These
observations are consistent with the TKE magnitudes presented in figure 10(c).

It should be clarified that for estimations using asynchronous pressure data, any other
reference pressure data (acquired concurrently with PIV measurements at any other
heights) could be used. Several tests with other reference pressure data verified that
the estimated signals capture the patterns of actual temporal coefficients and correctly
retain the TKE of SPOD modes at every other plane. The choice of using the pressure
data acquired concurrently with PIV measurements at z = 0.92 (among some others),
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Figure 11. Estimated SPOD temporal coefficients at z = 0.46 (left side) and 2.75 (right side), calculated using
a reference pressure, synchronized with the PIV measurements at z = 0.92. Mode numbers correspond to the
bases introduced in figure 2.

however, made it possible to capture unique 3-D physical phenomena which will be further
discussed in § 5.

5. Results – 3-D reconstruction of the estimated instantaneous velocity field
This section starts with a summary of the mean and phase-averaged flow fields from
Mohammadi et al. (2022) to introduce the characteristic features of the near wake of the
cantilevered square cylinder to provide a context for this study. Then, a 3-D reconstruction
of the instantaneous velocity field, based on the estimated planar velocity fields, is
presented and analysed. The flow field is estimated using a common reference pressure
signal measured concurrently with the PIV measurements at z = 0.92.

5.1. Mean and phase-averaged 3-D velocity fields
Figure 12 shows educed mean vortex structures as rendered by Q = 0 criterion (Q � 0
identifies vortex core following Hunt et al. (1978)), coloured by streamwise vorticity, Ωx .
Two pairs of streamwise vortices, dipole (D+/−) (Wang et al. 2006; Bourgeois et al. 2011;
Hosseini et al. 2013) and descending vortices (DV +/−) (Kindree et al. 2018), extend from
the mean lee-ward recirculation region. These vortex pairs have the same sense of rotation
on each side of the symmetry plane (y = 0), and were shown to be separate structures
(Kindree et al. 2018; Mohammadi et al. 2022).

The dipole and descending vortices are the mean signature of half-loop vortex shedding
pattern downstream of the vortex formation region (Bourgeois et al. 2011; Mohammadi
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Figure 12. Educed mean vortex structures identified by the Q = 0 criterion and coloured by streamwise
vorticity, Ωx : black and purple dashed lines correspond to the dipole (D+/−) and descending vortices
(DV +/−), respectively. Dashed arrows indicate an additional pair of post attachment vortices (P AV ), which
were related to interactions of the horse-shoe vortex system and Kármán vortices (Mohammadi et al. 2023).
Figure is reprinted with permission from Mohammadi et al. (2022).

et al. 2022). Mohammadi et al. (2022) elucidated the vortex topology from the 3-D phase-
averaged reconstruction of the flow field. Figure 13(left side) shows phased-averaged iso-
surfaces of Q = 0 at three shedding phases, φ1, φ3 and φ10, covering half of the shedding
cycle. Figure 13(right side) shows the vortex skeleton schematics inspired by these educed
vortex structures. The phase-averaged shedding cycle is rendered in the supplementary
video file no. 3.

In figure 13(a) and figure 13(b), phase φ1, the top of recently shed vortex A bends
upstream, forming a strand connecting to the incipient forming vortex A+ at the obstacle
base. This strand induces a downwash along y = 0. On the opposing side, vortex B is
developing in the base region. Vortex B− has shed from the previous half-cycle and its
associated strand has already rotated inward and connected with vortex A, in the region
indicated with a blue dashed circle. By phase φ3, figure 13(c) and figure 13(d), the half-
loop pattern connecting vortices A and B− is more clearly defined. The connector strand
of vortex A is still connected to vortex A+, but at a lower elevation. Its axis has rotated
towards vortex B, which has grown considerably. As vortex B begins to shed (≈ φ5),
vortex A completely detaches from vortex A+ and forms a half-loop with vortex B. Note
that during this process (φ1 to φ10), the strand remains located within the bounds of
the mean dipole (indicated by the black dashed lines) and the connection site remains
within the bounds of the descending vortices (indicated by the purple dashed lines). This
supports the interpretation that the dipole and descending vortices of figure 12 are the
mean signature of the instantaneous half-loop shedding pattern in figure 13.

The phase-averaged reconstruction provides cycle-resolved representation of the
coherent motions occurring at a certain frequency, in this case the average shedding
frequency, fs , and its harmonics. Consequently, contributions of coherent motions at
other frequencies are smeared in the averaging process and their influence is not captured.
Hence, the phase average represents the vortex topology during a typical shedding cycle,
as can be seen in the reconstructions using the present estimation (see supplementary
video file no. 3). In the present flow, however, the vortex shedding process is highly
modulated and contributions of coherent motions occurring at other frequencies are
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Figure 13. Left side: educed phased-averaged vortex structures identified by the Q = 0 criterion and coloured
by streamwise vorticity, 〈Ωx 〉, at phases (a) φ1, (c) φ3 and (e) φ10, where φn = φ0 + nπ/10 (with an arbitrary
φ0). The dashed lines are the bounds of the dipole and descending vortices as shown in figure 12. Right side:
vortex skeleton schematics, inspired by the educed vortex structures on the left.

expected to be important. In the following section, it will be shown that estimator-based
3-D reconstruction of the flow field makes it possible to study the cycle-to-cycle variations.

5.2. Instantaneous 3-D reconstruction of the flow field
Figure 14 shows the temporal coefficients of velocity modes in the z = 1.83 plane
estimated using reference pressure data collected concurrently with the PIV measurements
at z = 0.92. The temporal coefficients are ordered based on increasing TKE contribution
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Figure 14. Time series of estimated temporal coefficients at z = 1.83 using asynchronous pressure data
(collected concurrently with PIV measurements at z = 0.92). Estimated temporal coefficients are ordered from
bottom to top based on their TKE contribution. Antisymmetric and symmetric modes are coloured in blue and
red, respectively. Four intervals are coloured in grey, reflecting regions where the Kármán vortex shedding is
modulated: for 70 < test < 130, ŝ1

u and {â3
u ,â4

u} are strong; for 320 < test < 400, {ŝ1
u ,ŝ2

u } is strong, but {â3
u ,â4

u}
is weak; for 780 < test < 840, {â3

u ,â4
u} is strong, but {ŝ1

u ,ŝ2
u } is weak; and for 1550 < test < 1650, both {ŝ1

u , ŝ2
u }

and {â3
u ,â4

u} are strong. Intervals between the two sets of dashed lines (437 < test < 446 and 1594 < test < 1605)
indicate a typical and an atypical vortex shedding period, respectively.

from bottom to top. For clarity, temporal coefficients of the antisymmetric and symmetric
SPOD modes are coloured in blue and red, respectively.

In figure 14, the amplitude of the temporal coefficients show significant cycle-to-cycle
variation. Closer inspection suggests amplitude changes for different coefficients coincide.
For instance, the variations of the signal amplitude envelope of the second harmonics of
the Kármán vortex shedding, {ŝ3

u ,ŝ4
u}, generally follow those of the fundamental harmonics

{â1
u ,â2

u} (e.g. amplitudes in regions coloured in grey). Also, generally, the first pair of the
accompanying frequency modes, {â3

u ,â4
u}, seems to be more active (amplitudes increase)

when the low-frequency modes {ŝ1
u ,ŝ2

u} are stronger. Note that ŝ2
u lags ŝ1

u for approximately
2/ fL or 1/5 fs (see Appendix C for a discussion on the difference between s1

u and s2
u ).

The variations of the strength (amplitude) of the fundamental harmonic of Kármán
vortex shedding, {â1

u ,â2
u}, seem related to the strength of low-frequency modes, {ŝ1

u ,ŝ2
u},

and the first pair of the accompanying frequency modes, {â3
u ,â4

u}. Generally, three main
patterns can be identified in figure 14:

(i) The Kármán vortex shedding is similar to a typical cycle when neither {â3
u ,â4

u}
nor {ŝ1

u ,ŝ2
u} is strong, such as the shedding period between the dashed lines about

test ≈ 440.
(ii) The Kármán vortex shedding is weakly modulated under three circumstances:

(a) {â3
u ,â4

u} and one of the ŝ1
u or ŝ2

u modes are strong (e.g. the grey interval about
test ≈ 100); (b) {ŝ1

u ,ŝ2
u} is strong, but {â3

u ,â4
u} is weak (e.g. the grey interval about

test ≈ 360); and (c) {ŝ1
u ,ŝ2

u} is weak, but {â3
u ,â4

u} is strong (e.g. the grey interval about
test ≈ 810).
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Figure 15. Phase plots of selected estimated temporal coefficients and envelopes of the amplitudes of selected
mode pairs, all against the envelope of the first harmonic temporal coefficients, at z = 1.83. Estimated
coefficients are obtained using asynchronous reference pressure signal (i.e. collected concurrently with PIV
measurements at z = 0.92). Green and red data points correspond to the first (70 < test < 130) and last
(1550 < test < 1650) grey regions in figure 14, respectively. Green dashed boxes and green arrows are added to
help visualizing the bounds of the data points in the first interval. Every second point is plotted for clarity.

(iii) The Kármán vortex shedding is strongly modulated (nearly suppressed) when both
{ŝ1

u ,ŝ2
u} and {â3

u ,â4
u} are strong, such as the interval within the dashed lines about

test ≈ 1600.

Figure 15 shows phase plots of temporal coefficients corresponding to the low-
frequency signature {ŝ1

u ,ŝ2
u}, first pair of accompanying frequency modes {â3

u ,â4
u}, and the

corresponding amplitude envelope for each pair (i.e.
√

(ŝ1
u)2 + (ŝ2

u)2 and
√

(â3
u)2 + (â4

u)2,
respectively), all against the envelope for the first harmonics of Kármán vortex shedding
(i.e.

√
(â1

u)2 + (â2
u)2). Most data points fall in a dense cluster.

Data points lying on trajectories outside the cluster can typically be related to changes
in modulation or the dynamics of the vortex shedding. In figure 15, two groups of data
points are distinguished: (i) the green-coloured data points are related to the weakly
modulated motions in the first grey interval (70 < test < 130) in figure 14, and (ii) the red-
coloured data points are related to the nearly suppressed cycles in the last grey interval
(1550 < test < 1650) in figure 14. To help identifying the bounds of the first group data
points, green dashed boxes and green arrows are added. The second group data points
are generally on the left side of the green dashed boxes. For the first group, although
the magnitude of

√
(ŝ1

u)2 + (ŝ2
u)2 can go as high as approximately 0.70 in figure 15(a),

the magnitude of
√

(â1
u)2 + (â2

u)2 remains above 1, indicating only a weak modulation to
the Kármán vortex shedding. In this interval, most of the contributions to

√
(ŝ1

u)2 + (ŝ2
u)2

come from ŝ1
u while ŝ2

u remains about zero (see figure 15(b) and figure 15(c) and the
time series of figure 14). For the second group, on the other hand, while

√
(ŝ1

u)2 + (ŝ2
u)2
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Figure 16. Educed vortex structures, using Q = 0 criterion, from reconstruction of the flow field with all 10
SPOD velocity modes. Iso-surfaces are coloured with streamwise vorticity, Ωx . Both time intervals shown on
the left and right sides cover approximately half of the shedding cycles, indicated with dashed lines in figure 14.
The beginning of these cycles are selected such that they correspond to the phase-averaged reconstruction of
phase φ1 in figure 13. For (a)–(c), added annotations are similar to those of figure 13(left side). For (d)–(e), the
enclosed regions with yellow dashed-lines indicate loci of un-conventional re-attachments of connector strands.
Regions indicated with green and red dashed lines indicate patched of isolated vortices, originating from near
the free end.

hovers around 0.5 in figure 15(a),
√

(â1
u)2 + (â2

u)2 reach very low magnitudes, indicating
a significant modulation of the the Kármán vortex shedding. During this interval, both
ŝ1

u and ŝ2
u contribute similarly to

√
(ŝ1

u)2 + (ŝ2
u)2, which indicates that for the Kármán

vortex shedding to be suppressed, both low-frequency modes must be strong. Additionally,
during the suppressed cycles, the amplitude envelope of â3

u and â4
u (i.e.

√
(â3

u)2 + (â4
u)2 in

figure 15(d)) is larger when compared with the weakly modulated cycles.
Typical and very strongly modulated (atypical) vortex shedding cycles are compared

next. Figure 16 shows educed vortex structures, using the Q = 0 criterion, from a
reconstruction of the flow field using the 10 estimated SPOD velocity modes. Three
instances of two time intervals indicated with dashed lines in figure 14 are shown: 437 �
test � 442 (typical) and 1594 � test � 1599 (atypical). In general, the typical shedding
cycles last between 9 and 10 time units to complete, whereas the atypical shedding cycles
during the 1550 < test < 1650 interval take between 10 and 12 time units. The cycles
shown in figure 16 take 10 and 11 time units, respectively. Thus, the shown time intervals
in both cases cover approximately half of a shedding cycle. For the first interval (typical
cycle), the low frequency and first accompanying frequency mode pairs are weak, whereas
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Figure 17. Educed vortex structures, using Q = 0 criterion, from reconstruction of the flow field with all 10
SPOD velocity modes. Iso-surfaces are coloured with streamwise vorticity, Ωx . For the plots on left, the time
instance is the same as in the figure 16(a) and for the plots on right, the time instance is the same as in the
figure 16(d). Annotations in black colour indicate the connection sites between Kármán vortices, and the green
arrow indicate the structure associated with post attachment vortices (P AV ) in figure 12.

for the second interval (atypical cycle), both these mode pairs are strong. Supplementary
video files no. 4 to no. 7 show the flow field reconstruction for 0 < test < 2000 (over
200 shedding cycles); each file covers 500 time units. Additionally, figure 17 shows the
educed vortex structures of figure 16(a) and figure 16(d) from two other angles; figure 18
shows iso-contours of reconstructed v̂- and ŵ-velocity components from reconstructions
of figure 16, overlaid by sectional pseudo-streamlines, at the symmetry plane (y = 0);
and figure 19 shows similar information to figure 18 at two horizontal planes, z = 1 and
z = 2.

The iso-surfaces in figure 16(a–c) capture the educed vortex structures during 437 �
test � 442. During this typical cycle, the educed Kármán vortex shedding patterns are
very similar to the phase-averaged reconstructions of figure 13. In the half-loop shedding
pattern shown in figure 16(a–c), the top of a newly shed Kármán vortex A detaches from
A+, re-orients towards the symmetry plane and connects with the back side of a newly
formed Kármán vortex B on the opposite side. This connection to the opposite side vortex
can be better seen in figure 17(left side), which shows the half-loop pattern formed between
vortices B− and A at test = 437 (same as in figure 16(a)).

In figure 18, the pseudo-saddle points, indicated by green arrows, show the loci of
intersection between two positive bifurcation surfaces: one originating from the top
of the cylinder and the other originating from the base plate. For the first interval,
figure 18(left side), the position of this saddle point moves between z = 0.75 and 1.75,
which is consistent with its mean location during a phase-averaged cycle, at approximately
z ≈ 1.25. Furthermore, the iso-contour patterns of v̂-velocity component in figure 18(a1)
and (b1) are similar to the ones obtained from the phase-averaged field (Mohammadi et al.
2022).

The educed vortical structures for the atypical shedding cycle during 1594 � test �
1605, figure 16(d–f ), are significantly different from either the phase-averaged or typical
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Figure 18. Iso-contours of v̂- and ŵ-velocity components from reconstructions shown in figure 16, overlaid
with sectional pseudo-streamlines at the symmetry plane (y = 0). Green arrows indicate pseudo-saddle points.
For better correspondence between two figures, letter (c) is not used in addressing the panels.

cycle reconstructions. This is associated with (i) an increase in the amplitudes of {ŝ1
u ,ŝ2

u},
which are related to the low-frequency ( fL ) motion from the obstacle’s free end, and (ii) an
increase in the strength of interactions between the fL motion and Kármán vortex shedding
( fs), which is reflected in the amplitude of coefficients of the first pair of accompanying
frequencies {â3

u ,â4
u}. As a result, the first and second harmonics of the Kármán vortex

shedding become weak (see associated times series in figure 14), the connector strands
form at a lower spanwise location (i.e. top of vortex A in figure 16(d) is at z = 2.7 compared
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ŵ ŵ
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Figure 19. Iso-contours of reconstructed velocity components using all 10 selected SPOD modes. Quadrant
one (top left) shows v̂-component at z = 1, quadrant two (top right) v̂-component at z = 2, quadrant three
(bottom left) ŵ-component at z = 1, and quadrant four (bottom right) ŵ-component at z = 2. The iso-contours
are overlaid with sectional pseudo-streamlines and iso-contours of Q = 0.01 (solid green lines). Additionally, at
z = 2, the bounds of connector strands intersections with the plane are indicated using dashed and dotted lines,
where the line colours indicate the sense of rotation of streamwise vorticity, Ωx , of the strand. Time stamps are
the same as in figure 16.

with that in figure 16(a) at z = 3.2), and the associated shedding process (i.e. half-loop
shedding pattern) is strongly disrupted, giving rise to regions of vortex dislocation. Here,
the backward-tilted top of vortex A remains connected to the newly forming Kármán
vortex on the same side, vortex A+ (see regions enclosed by yellow dashed lines in
figure 16(e) and 16(f )). While this connection moves to lower heights as the shedding cycle
continues, it does not re-orient towards the symmetry plane to connect with vortex B. As
a result, the so-called half-loop shedding pattern does not form. This vortex connection
pattern is further visualized in figure 17(right side), which shows the connection formed
between vortices B− and B at test = 1594 (same as in figure 16(d)).
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This disrupted vortex formation pattern is accompanied by another pair of streamwise
vortices, originating from close to the free end of the obstacle. In figure 16(e), the vortex
core, enclosed with a green dashed line, has an opposite sense of rotation to the primary
vortex and associated connector strand below it. As the shedding process goes on, this
vortex core grows (see figure 16(f )), without connecting with the vortical strands below
it. Similarly, on the opposite side of figures 16(d) and 16(e), growing vortex cores with
an opposite sign of streamwise vortices to the connector strands below them, are enclosed
with red dashed lines.

The difference in the orientation of the connector strands between the typical and
atypical cycles becomes more clear in comparing figure 19(a2)-(c2) with figure 19(d2)-(e2),
where the connectors strands intersections with the horizontal plane at z = 2 are indicated
with red (dashed) and blue (dotted) lines. The line colours reflect the sign of streamwise
vorticity of the vortical strand (red, positive and blue, negative). It can be seen that during
437 � test � 442, only one vortical strand intersects with the z = 2 plane. For instance,
at test = 437, only the red-coloured connector strand (originating from positive y values)
crosses the mid-span height, which connects with the opposite Kármán vortex at lower
heights. At this time instance, another blue-coloured connector strand is forming, but is
still at higher elevations (see figure 16(a)). During 1594 � test � 1599, on the other hand,
although the newer connector strand (the one closer to the obstacle in each time instance)
is located at slightly higher z position compared with the older one, the difference in
their spanwise location is small, such that both intersect with the z = 2 plane at all time
instances. The simultaneous presence of these vortical strands around the mid-height of the
obstacle induces a strong downwash about the symmetry plane, as evident in figure 19(d4)-
(f4), which further dislocates the Kármán vortex structures in the lower half of the wake.
These observations are consistent with the differences in iso-contours of v̂- and ŵ-velocity
components in figure 18.

Finally, the stronger negative ŵ-component velocity in the lower half of the obstacle
during the atypical cycle alters the topology of streamlines in the symmetry plane. The
pseudo-saddle point mentioned earlier in the discussion of figures 18(a1) and 18(a2),
is not detected in figures 18(d1) and 18(d2). Instead, the positive bifurcation line from
the free end extends all the way to the base plate. Additionally, in comparison with
figures 18(b1) and 18(b2), the saddle point in figures 18(d1) and 18(d2) is at a significantly
lower location (z ≈ 0.35 compared with 0.75) and a more advanced streamwise position
(x ≈ 3.4 compared with 2.6), which indicates a longer recirculation region in the atypical
case. The location of this saddle point downstream of the mean recirculation length
coincides with the beginning of a Λ-shaped mean structure observed over the base
plate (x > 4, −1 < y < 1) in figure 12. This structure was associated with intermittent
interactions between Kármán vortices and the horse-shoe vortex system (Mohammadi
et al. 2023), which is partly captured in figure 17(right side).

6. Concluding remarks
In this study, the FIR-SPOD of Sieber et al. (2016) was implemented in the sensor-based
multi-time-delay estimation technique of Hosseini et al. (2013). This approach simplifies
the process of obtaining reliable correlations between pressure and velocity modes. It is
found that the dynamic relationships between coherent motions in different PIV planes are
better retained, resulting in improved estimation and reconstruction of the 3-D dynamics.
The diagnostic case used for implementation of this technique was the highly modulated,
quasi-periodic turbulent wake of a cantilevered square cylinder with h/d = 4, immersed
in a thin laminar boundary layer (δ/d = 0.21) at Re = 10600. It was shown that, through
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a precise rendering of the estimated 3-D velocity field, intervals of vortex shedding
interruption and vortex dislocations events were captured, thus allowing investigations of
cycle-to-cycle variations.

The estimation methodology of Hosseini et al. (2015) heavily relied on a careful
selection and construction of orthonormal velocity and pressure fields. While the POD-
based multi-time-delay estimation is successful in rendering the most energetic coherent
dynamics, such as the first harmonic of the Kármán vortex shedding and low-frequency
signature from the obstacle’s free end using linear terms, it performs poorly in estimating
higher-ranked modes. Hosseini et al. (2015) suggested that the mode pair containing
second harmonics could be better estimated using a quadratic relation with the pressure
modes. While this approach did slightly improve the estimation of the second harmonic
modes, benefits to the estimation of other modes are less evident.

Here, the ability of FIR-SPOD in yielding modes with better spectral separation is
leveraged to simplify and generalize the process of finding reliable correlations between
velocity and pressure modes, without the need to implement additional filtering to distil
a particular motion, or to involve nonlinear relationships between different modes. The
accuracy of estimations were assessed using both synchronous and asynchronous reference
pressure data, where significant improvements were achieved over the POD space. In
particular, some important motions or modes could be explicitly estimated, which was
not possible with POD. These modes are very important for describing the interactions
and distortions of the shedding cycle. Furthermore, with the FIR-SPOD technique, the
behaviour of the original signal, phase relationships between different coefficients, and
the TKE contribution of individual modes, were better retained, and the instantaneous
estimation error was reduced significantly. The planar reconstruction of the flow fields
using estimated signals verified that both the velocity patterns and critical points of the
flow compare well with the ones obtained from actual PIV measurements.

The benefits of this approach are highlighted through the 3-D instantaneous
reconstruction of the estimated flow field using the selected FIR-SPOD modes. Through
this presentation, the cycle-to-cycle variations can be investigated. For example, intervals
of interrupted vortex shedding were rendered in the near wake of the candidate flow. It
was shown that the half-loop shedding pattern (Bourgeois et al. 2011, 2013; Hosseini et al.
2015; Mohammadi et al. 2022) was interrupted and no longer formed, mainly as a result of
strong downwash from the free end and modulations of the vortex strand interactions with
the Kármán vortices. During these intervals, as a result of the imposed vortex dislocations,
connector strands between the Kármán vortices on the opposite sides do not reconnect
with the opposing vortex. Instead, the primary body of a suppressed Kármán vortex tilts
backwards and connects with the successive Kármán vortex on the same side. Additional
investigations between a typical and an interrupted shedding cycle through the time series
analysis confirmed that complete suppression of Kármán vortex shedding can occur during
such intervals.

The proposed methodology is a significant step towards a relatively straightforward
but powerful and reliable estimation of planar velocity fields and correcting phase
relationships between uncorrelated PIV planes, which leads to reconstruction of the global
dynamics. Through such visualizations, instantaneous patterns would emerge which are
not possible using a phase-averaging process, where the cycle-to-cycle variations of the
dominant dynamics is masked. Through a reliable interpretation of the weaker dynamics
(higher-ranked modes), instantaneous variations of the dominant motions could be more
easily and confidently studied. Furthermore, the technique makes it possible to further
explore the contributions of individual modes in the development of the flow physics and
investigate the global relationships between different coherent motions.
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Appendix A. Orthogonality of SPOD spatial modes
The ability of SPOD to deliver a more refined dynamics and separate frequencies within
narrow spectral bandwidth comes at the expense of spatial orthogonality. SPOD spatial
modes, Ψ̃ , are only orthonormal if they are considered with all of the temporally shifted
instances

1
M

N f∑
l=−N f

Ψ̃i (xk, τl) Ψ̃ j (xk, τl) = δi j . (A1)

In the snapshot SPOD for the velocity field, however, the modal decomposition is only
feasible for time-independent spatial modes (i.e. τ = 0). Therefore, the resulting modes
are neither normal nor orthogonal

1
M

M∑
k=1

Ψi (xk) Ψ j (xk) 
= δi j . (A2)

Sieber et al. (2016) argued that the most energetic modes are almost orthogonal. Table 6
presents the magnitude of inner products of the selected SPOD modes in this study (i.e.
six antisymmetric and four symmetric modes) with the selected modes of their respective
subspace. Note that since the data in each part of the table are symmetric, the data
points above the diagonals are replaced with a hyphen (-). It can be seen that for the
first four antisymmetric and the first four symmetric modes, the inner product magnitudes
are small. It is only with the φ5

a and φ6
a that the inner product magnitude increases,

indicating a decrease in the angle between two spatial modes, which result in an incomplete
representation of the original data in flow reconstructions.

Nevertheless, Sieber et al. (2016) further argued that the missing part of each SPOD
mode in reconstruction (due to non-orthogonality) is completed by considering its mode
pair, which in most cases (i.e. depending on the selected filter length), has a similar energy
content to the first mode. Therefore, a suitable selection of the filter length and considering
both modes of each considered mode pair compensates for the non-orthogonality effects,
at least for the dominant coherent structures. Readers are referred to the original work of
Sieber et al. (2016) for a more complete discussion and illustrative examples.

Appendix B. Effect of using different sensor data on TKE of estimated coefficients
In § 4.2, it was mentioned that using either synchronous or asynchronous pressure data
provide satisfactory results in terms of retaining TKE of the actual modes, where the
performance was improved with the SPOD technique. The difference between �λa/s(1)

and �λa/s(2) was mainly related to the difference between the fluctuating energy of
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(φi
a, φ

j
a) φ1

a φ2
a φ3

a φ4
a φ5

a φ6
a (φi

s , φ
j
s ) φ1

s φ2
s φ3

s φ4
s

φ1
a 1.0 - - - - - φ1

s 1.0 - - –
φ2

a 0.01 1.0 - - - - φ2
s −0.03 1.0 - -

φ3
a 0.09 0.04 1.0 - - - φ3

s 0.01 −0.04 1.0 –
φ4

a 0.15 0.23 0.27 1.0 - - φ4
s −0.11 0.17 −0.01 1.0

φ5
a 0.66 0.34 0.15 0.41 1.0 -

φ6
a 0.28 −0.67 −0.23 −0.06 0.01 1.0

Table 6. Inner products of SPOD spatial modes at z = 1.83. Repetitive data are replaced with a hyphen (-) for
visualization purposes.

All Trials Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6
n λan

p
λan

p
�λan

p
λan

p
�λan

p
λan

p
�λan

p
λan

p
�λan

p
λan

p
�λan

p
λan

p
�λan

p

1 24.7 25.5 −0.8 22.9 1.8 25.9 −1.3 23.6 1.1 24.2 0.5 26.5 −1.8
2 24.7 25.5 −0.8 22.9 1.8 25.9 −1.3 23.6 1.1 24.2 0.5 26.5 −1.8
3 1.9 1.6 0.3 2.4 −0.5 1.7 0.2 2.3 −0.3 1.7 0.2 1.5 0.4
4 1.9 1.6 0.3 2.4 −0.5 1.7 0.2 2.3 −0.3 1.7 0.2 1.5 0.4
5 0.8 0.8 0.1 1.0 −0.2 0.9 0.0 0.9 0.0 0.8 0.0 0.6 0.2
6 0.8 0.8 0.1 1.0 −0.2 0.9 0.0 0.9 0.0 0.8 0.0 0.6 0.2

λsn
p

λsn
p

�λsn
p
λsn

p
�λsn

p
λsn

p
�λsn

p
λsn

p
�λsn

p
λsn

p
�λsn

p
λsn

p
�λsn

p

1 3.3 2.6 0.7 4.1 −0.8 2.8 0.5 3.5 −0.2 3.8 −0.6 3.1 0.1
2 2.4 2.0 0.4 2.6 −0.2 2.1 0.3 2.6 −0.2 2.9 −0.5 2.2 0.2
3 2.9 3.0 −0.2 2.5 0.4 2.7 0.1 2.7 0.1 3.0 −0.2 3.2 −0.3
4 2.9 3.0 −0.2 2.5 0.4 2.7 0.1 2.7 0.1 3.0 −0.2 3.2 −0.3

Table 7. Comparison of TKE contribution (%) of different pressure modes, obtained from performing SPOD
on individual trials and all six trials. Data are obtained concurrently with PIV measurements at z = 0.92.

reference pressure data, used for estimation. Here, this statement is considered more
closely.

Table 7 presents the TKE contributions of pressure modes from performing SPOD on
individual trials and complete set of trials of pressure data, obtained concurrently with
PIV measurements at z = 0.92. The difference between the TKE contribution of each
mode, obtained from each individual trial and the complete set is shown by �λ. It can
be seen that the TKE contribution of modes differ from that of the converged set (i.e.
all trials). This observation reflects the stochastic nature of the flow, where for each trial
or realization, the TKE and relative modal contributions to the TKE differ. However,
the differences are within the statistical uncertainty estimate for random error and as
mentioned in the text, when four or more trials are used for obtaining the SPOD modes, the
results converge (see Appendix B of Mohammadi et al. (2023)). This clarification should
help in better understanding the difference between �λa/s(1) and �λa/s(2), presented in
table 5. A similar discussion can be made for the velocity modes, but is not presented for
brevity.
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Figure 20. Velocity modes associated with the low-frequency signature at z = 1.83: left side (φ�
s ) is with POD

and right side (φ1
s and φ2

s ) are with SPOD (N f = 64).

Appendix C. Relationship between the low-frequency symmetric SPOD modes
In § 5.2, it was mentioned that although both SPOD modes s1

u and s2
u present a low-

frequency nature, they are not quite the same. Here, this statement will be investigated
more closely. Note that a similar discussion can be presented for the pressure modes s1

p

and s2
p, but is not done for brevity.

Figure 20 illustrates the u and v spatial functions of the POD (left side: φ�
s ) and SPOD

(right side: φ1
s and φ2

s ) modes associated with the low-frequency signature at z = 1.83. To
the right of each set, the PSDF of each mode is shown. It can be seen that the spatial
distribution of the φ�

s and φ1
s are very similar, but their modal TKE (defined as the

TKE of each respective mode) is different (i.e. 3.6 % vs. 2.2 %). Despite this difference,
the TKE portion of different components are relatively similar. For both modes, the u
component constitutes approximately 81 % of the modal TKE (i.e. 2.9 % with φ�

s and
1.8 % with SPOD), whereas the v and w components (the latter is not shown for brevity)
constitute approximately 14 % and 5 % of the modal TKE, respectively. Therefore, it can
be concluded that φ�

s and φ1
s represent the same dynamics.

The SPOD φ2
s , however, exhibits different behaviour than SPOD φ1

s (and POD φ�
s ) in

three respects: (i) distribution of different spatial components, (ii) TKE ratio of different
components, where u and v components constitute approximately 30 % of the modal
TKE and w component constitutes approximately 40 % of the modal TKE and, most
importantly, (iii) distribution of PSDF. Comparing the PSDF of SPOD modes φ1

s and φ2
s ,

it can be seen that spectral contents with frequencies less than fL are much more energetic
in φ1

s . This region is indicated with a red dashed oval in the PSDF of φ1
s .

To investigate the difference between φ1
s and φ2

s , figure 21 illustrates the scatter plots of
time series (a) s2

u vs. s1
u , (b) s1

u vs. a1
u and (c) s2

u vs. a1
u . In figure 21(a), a clear cyclical

pattern exists between s1
u and s2

u , which suggests that they constitute a mode pair at a
frequency fL . However, due to the lower-frequency (< fL ) energetic contents present in
φ1

s , there are some off-cycle behaviour as well. Therefore, mode φ1
s can be considered

as a mixture of a slow-varying motion (Bourgeois et al. 2013; Hosseini et al. 2016) with
frequencies less than < fL and a cyclical motion centred at fL , which is also present in φ2

s .
Consistently, the scatter plot of s1

u vs. a1
u forms a parabolic shape in figure 21(b), similar
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Figure 21. Scatter plots of selected SPOD temporal coefficients: (a) the second low-frequency mode (s2
u ) vs.

the first low-frequency mode (s1
u ); (b) s1

u vs. the first antisymmetric mode (a1
u ), associated with the Kármán

vortex shedding; and (c) s2
u vs. a1

u .

to the ones reported for a slow-varying signature making modulations to the fundamental
harmonics in highly modulated wake regions (Bourgeois et al. 2013; Hosseini et al. 2016).
This pattern is not seen between s2

u and a1
u in figure 21(c), which is attributed to the less

energetic presence of the slow-varying components (with frequencies below fL ) in s2
u .

Appendix D. Lobe patterns
In implementing the multi-time-delay technique to the pressure data, a lobe pattern is
observed in the spectra of the pressure POD modes. Since the reconstruction of the
velocity modes is based directly on the pressure modes, the dynamics of the estimated
field will contain artefacts (the lobes). With SPOD, regardless of the number of virtual
sensors or the sampling frequency, the lobe patterns are not observed. Figure 22 depicts
the PSDF of POD modes obtained from the pressure matrix composed of only physical
sensor data (Nps = 17; Nvs = 0) on the left side, and from the matrix composed of both
physical sensors and their time histories (Nps = 17; Nvs = 17 × 10) on the right side. For
the multi-time case, where 10 virtual sensors are considered for each physical sensor, a
lobe pattern is identified, mostly at the end of the PSDF, as indicated with green dashed
circles. Analysis of other cases show that this lobe pattern appears when more than one
virtual sensor is used: the pattern depends on the sampling frequency and is independent
of the number of physical sensors. To further investigate the root cause of appearance of
this lobe pattern, two analytical cases are considered: (i) with one physical sensor and one
time-delayed (virtual) sensor, and (ii) with one physical and two virtual sensors.

For the first case, let g(t) and h(t) = g(t + �τ) represent a physical sensor and its time-
delayed signal, respectively (Nps = Nvs = 1). f (t) = g(t) + h(t). The Fourier transform
of f (t) reads

F(ω) = G(ω) + H(ω), (D1)

and

F2 = F F∗ = GG∗ + G H∗ + H G∗ + H H∗, (D2)

1007 A83-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1093


Journal of Fluid Mechanics

POD (Single-Time) POD (Multi-Time)

fs fs

fLfL

2fs2fs

ap
1

ap
2

ap
2

sp
� sp

�

sp
1

sp
1

sp
2

sp
2

ap
1

PS
D

F

fd/U∞ fd/U∞

10−2 10−1 100 10−2 10−1 100

Figure 22. The PSDF of the temporal functions of the most energetic pressure POD modes. Left side
obtained from the pressure matrix composed of only physical sensors (Nps = 17; Nvs = 0) and right side from
the pressure matrix composed of both physical and virtual sensors (Nps = 17; Nvs = 17 × 10 = 170). For a
comparison with the SPOD multi-time pressure temporal coefficients, readers are referred to figure 3.

where F∗ is the conjugate function of F and the argument (ω) is implied for brevity. By
definition

H(ω) =
∫ ∞

−∞
h(t)e−iωt dt

=
∫ ∞

−∞
g(t + �τ)e−iωt dt. (D3)

Now, let ξ = t + �τ and dξ = dt . Then

H(ω) =
∫ ∞

−∞
g(ξ) e−iω(ξ−�τ) dξ =

∫ ∞

−∞
g(ξ) e−iωξ dξ eiω�τ = G(ω) eiω�τ . (D4)

Therefore

G H∗ + H G∗ = GG∗e−iω�τ + GG∗eiω�τ

= 2GG∗ cos(ω�τ), (D5)

and

H H∗ = GG∗. (D6)

Therefore, F2 can be expressed as

F2 = 2GG∗(1 + cos(ω�τ)). (D7)

The minimum of F2 happens at ωmin�τ = π or ωmin = π/�τ . As discussed in § 2.3,
�τ = 1/10 fs . Therefore, ωmin = 10π fs = 5(2π fs), which is approximately 2.5 times
larger than the Nyquist frequency related to the shedding frequency (ωN ( fs) = 2π(2 fs) =
2(2π fs) and approximately 1.25 larger than the Nyquist frequency related to the second
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harmonics (ωN (2 fs) = 2π(4 fs) = 4(2π fs). Therefore, the frequency corresponding to the
ωmin will not be detected within the PSDF spectra in this case.

For the second case, let g(t) represent the physical sensor and h(t) = g(t + �τ) and
k(t) = g(t + 2�τ ) represent its two consecutive time-delayed signals (Nps = 1 and Nvs =
2). Following the process outlined above

f (t) = g(t) + h(t) + k(t), (D8)
F(ω) = G(ω) + H(ω) + K (ω), (D9)

F2 = GG∗ + G H∗ + G K ∗ + H G∗ + H H∗+
+ H K ∗ + K G∗ + K H∗ + K K ∗. (D10)

Similar to (D4)

K = G e2iω�τ . (D11)

Substituting (D11) and all other terms into (D10), F2 can be expressed as

F2 = 3GG∗ + 4GG∗ cos(ω�τ) + 2GG∗ cos(2ω�τ)

= GG∗(1 + 2 cos(ω�τ))2. (D12)

Here, F2 has a minimum at ωmin = 2π/(3�τ) = 10(2π fs)/3, which is less than ωN (2 fs),
and therefore will be detected in the PSDF of F2.

Adding more virtual sensors further decreases ωmin and results in observing more lobes
within the spectra, as is the case on the right side of figure 22. It should be re-iterated that
the lobe pattern is not observed with the SPOD modes, regardless of the number of virtual
sensors or the sampling frequency, due to the convolution-filter operation.
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