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LARGE SAMPLE JUSTIFICATIONS
FOR THE BAYESIAN EMPIRICAL

LIKELIHOOD

NAOYA SUEISHI

Kobe University

This study investigates the asymptotic properties of the Bayesian empirical
likelihood (BEL), which uses the empirical likelihood as an alternative to
a parametric likelihood for Bayesian inference. We establish two asymptotic
equivalence results based on the Bernstein–von Mises (BvM) theorem by introducing
a new formulation of the moment restriction model. First, the limiting posterior
distribution of the BEL is the same as that of a parametric Bayesian method that uses
the likelihood of a least favorable model of the moment restriction model. Second, the
limiting posterior distribution is also the same as that of a semiparametric Bayesian
method that places priors on both a finite-dimensional parameter of interest and an
infinite-dimensional nuisance parameter. Because parametric and semiparametric
Bayesian methods are legitimate Bayesian procedures, the equivalence results
provide a large sample justification for the BEL as a Bayesian inference method.
Moreover, the BvM theorem provides a frequentist justification for BEL posterior
inference.

1. INTRODUCTION

Specifying a statistical model via a set of moment restrictions of the form
EQ[mθ (X)] = 0 is common in econometrics. The model has the finite-dimensional
parameter of interest θ and the infinite-dimensional nuisance parameter Q, which
is the distribution of the observation X. One advantage of this modeling is that a full
specification of the distribution of the observation is not necessary, thereby mitigat-
ing the risk of model misspecification. However, it is often difficult to estimate θ by
an extremum estimator such as GMM (Hansen, 1982) when the objective function
has some local maxima or minima. Although a Bayesian method is a useful
alternative in such a circumstance (see Fernández-Villaverde, 2010), classical
Bayesian inference is not feasible because a likelihood function is not specified.

Existing Bayesian procedures for the moment restriction model can be
classified into two approaches: the parametric approach and the semiparametric
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approach. The first approach uses a parametric alternative to the likelihood
function (quasi-likelihood function) and places a prior only on the finite-
dimensional parameter. The second approach places priors on the finite-
dimensional parameter and the infinite-dimensional nuisance parameter. The
posterior distribution for the parameter of interest is obtained by integrating out
the nuisance parameter.

Although parametric methods are computationally more tractable than semi-
parametric ones, parametric methods may not have a theoretical base because
a quasi-likelihood function is not a genuine likelihood function. Therefore, the
main issue of the parametric approach is justification for the use of the quasi-
likelihood function. Owen (2001) suggested to use the empirical likelihood (EL)
and pointed out its resemblance with the likelihood of a least favorable model
of a semiparametric model. Lazar (2003) employed the EL and investigated
whether it satisfies the validity condition of Monahan and Boos (1992). Schennach
(2005) provided a theoretical basis for the Bayesian exponentially tilted empirical
likelihood (BETEL) that uses the ETEL as the quasi-likelihood. Chib, Shin, and
Simoni (2018) investigated the asymptotic properties of the BETEL posterior. See
also Kim (2002) and Ragusa (2007) for different approaches.

The main issue of the semiparametric approach is how to place priors on both
finite- and infinite-dimensional parameters without contradiction. If θ and Q are
separately drawn from parametric and nonparametric priors, respectively, then
Q may not satisfy the moment restrictions for the realized value of θ ; that is, it
may be the case that EQ[mθ (X)] �= 0. Chamberlain and Imbens (2003) extended
the Bayesian bootstrap method of Rubin (1981) to the overidentified setting and
introduced a Dirichlet prior on Q, which leads to a Dirichlet posterior. The posterior
for θ is obtained by solving an augmented set of moment restrictions, where the
expectation is taken with respect to the Dirichlet posterior. Thus, they avoided
placing a prior on the finite-dimensional parameter of interest. Kitamura and Otsu
(2011) proposed the exponential tilting projection method, which first draws Q
from a nonparametric prior and then projects it onto the space of probability
measures that satisfy the moment restrictions for a given value of θ . Shin (2015)
considered a similar approach to Kitamura and Otsu (2011). Bornn, Shephard,
and Solgi (2019) and Florens and Simoni (2021) proposed different procedures.
Andrews and Mikusheva (2022) considered a similar issue when the moment
restriction model is weakly identified.

This study reconsiders theoretical justifications for the Bayesian EL (BEL)
that uses the EL function of Qin and Lawless (1994) as an alternative to a
parametric likelihood function. Because of a similarity between the EL and the
parametric likelihood, employing the EL as the quasi-likelihood seems to be a
natural choice, and there have been some studies on the BEL. The examples include
Fang and Mukerjee (2006), Yang and He (2012), Vexler, Tao, and Hutson (2014),
Chaudhuri, Mondal, and Yin (2017), Cheng and Zhao (2019), and Bedoui and
Lazar (2020). We justify the BEL by showing its asymptotic equivalence with
legitimate Bayesian procedures.
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For this purpose, we first introduce a new formulation of the moment restriction
model. The model is specified as a set of probability measures that are indexed by
the finite-dimensional parameter of interest and the infinite-dimensional nuisance
parameter. Then, we establish two versions of the Bernstein–von Mises (BvM)
theorem. The first one shows that the posterior of the BEL is asymptotically
equivalent to that of an infeasible parametric Bayesian method that uses the
likelihood of a least favorable model of the moment restriction model. The
second one shows that the posterior of the BEL is asymptotically equivalent to
that of a semiparametric Bayesian method that introduces priors on both finite-
and infinite-dimensional parameters. Because the parametric and semiparametric
Bayesian methods are legitimate Bayesian procedures based on genuine likelihood
functions, the equivalence results provide a large sample justification for the BEL
as a Bayesian inference method.

The first equivalence result substantiates the idea of Owen (2001), who sug-
gested that the BEL can be justified by the similarity of the EL with the likelihood
of a least favorable model. Our result is one possible way to justify the BEL in
line with his idea. The second equivalence result is similar to Schennach (2005),
who showed that the posterior of the BETEL can be represented as a certain limit
of the posterior of a legitimate Bayesian procedure. Florens and Simoni (2021)
and Andrews and Mikusheva (2022) also discussed asymptotic equivalence results
between quasi-parametric and semiparametric Bayesian methods.

Our formulation of the moment restriction model is also beneficial in clarifying
the relationship between efficient frequentist estimators and Bayesian point esti-
mators. The semiparametric BvM theorem of Bickel and Kleijn (2012) showed
that the mean of the limiting marginal posterior distribution is asymptotically
equivalent to best regular estimators in general semiparametric models. Although
our BvM theorem implies that the mean of the limiting posterior distribution of
the BEL is asymptotically equivalent to the EL estimator, it is not immediate
that the EL estimator is best regular under the formulation of our model. Thus,
we show that the EL estimator is indeed a best regular estimator by establishing
the convolution theorem for the moment restriction model based on the local
asymptotic normality (LAN) of our model. The result also implies that BEL point
estimators are asymptotically efficient in the frequentist sense.

This paper is also closely related to Chernozhukov and Hong (2003). They pro-
posed the Laplace-type estimator (LTE), which is a quasi-Bayesian estimator that
uses a general statistical function in place of a parametric likelihood function. The
BEL can be viewed as a special case of the LTE. However, they only investigated
the frequentist properties of the LTE and emphasized that their approach falls
outside the Bayesian approach. Our new finding is the Bayesian interpretation of
the BEL.

The remainder of the paper proceeds as follows. Section 2 introduces our
formulation of the moment restriction model. Section 3 gives an overview of the
results of the paper. Section 4 shows the convolution theorem. Sections 5 and 6
show the BvM theorems for the BEL and the semiparametric Bayesian method,
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respectively. Section 7 concludes. The Appendix contains some lemmas and their
proofs. Proofs for the main theorems are given in the Supplementary Material.

2. MODEL

Let {X1, . . . ,Xn} be a random sample from a true distribution P, which is defined
on a measurable space (X ,A). The true parameter of interest, θ0 ∈ � ⊂ R

p, is
characterized as a unique vector that satisfies the vector of moment restrictions:

E[mθ0(X)] =
∫

mθ0 dP = 0, (2.1)

where m : X ×� → R
l is a known vector-valued function. We assume l ≥ p and

θ0 is an inner point of �. The moment restriction model is semiparametric in the
sense that P is an infinite-dimensional nuisance parameter.

The moment restriction model can also be represented as a set of probability
measures (see, e.g., Kitamura and Stutzer, 1997; Chen, Hong, and Shum, 2007;
Kitamura, 2007). Let H be a set of probability measures on (X ,A) that is
dominated by a measure ξ . Moreover, let Qθ = {η ∈ H :

∫
mθdη = 0}, which is

a set of probability measures that satisfy the moment restrictions for a given value
of θ . Then, Q = ∪θ∈�Qθ is a set of probability measures that is compatible with
the moment restrictions.

A feature of the moment restriction model is that the distribution of the
observation itself is the nuisance parameter. Therefore, the nuisance parameter
must depend on the parameter of interest. This feature makes it hard to conduct a
semiparametric Bayesian inference. If the finite- and infinite-dimensional param-
eters, say θ̃ and η̃, are separately drawn from parametric and nonparametric priors,
then η̃ may not satisfy the moment restriction for given θ̃ .

The feature of the model is also inconvenient in investigating the semiparametric
efficiency bound for estimating θ0. In the analysis of semiparametric models, it
is often of interest to compare the efficiency bound that can be achieved when
the true nuisance parameter is known and that which can be achieved when the
true nuisance parameter is unknown. However, if the true nuisance parameter of
the moment restriction model is known, then θ0 is determined by (2.1). Thus, no
estimation problem arises.

To address these issues, we rewrite the model in a way that it is indexed by the
finite-dimensional parameter of interest θ and the infinite-dimensional nuisance
parameter η. For given θ ∈ � and η ∈ H, let Pθ,η ∈ Qθ satisfy

−
∫

log
dPθ,η

dη
dη = inf

Q∈Qθ

−
∫

log
dQ

dη
dη. (2.2)

Thus, Pθ,η is the projection of η onto Qθ in terms of the Kullback–Leibler (KL)
divergence. We define −∫ log dQ

dη
dη = ∞ if Q is not absolutely continuous with

respect to η. Our moment restriction model is defined as P = {Pθ,η : θ ∈ �,
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η ∈ H}. Because the true nuisance parameter η0 must satisfy P = Pθ0,η0 , η0

coincides with P. We assume that Pθ,η = P if and only if θ = θ0 and η = η0.
We give a sufficient condition that guarantees the existence of the solution

to (2.2). Many studies have investigated the solution to the minimization prob-
lem of the form (2.2). Examples of such studies include Borwein and Lewis
(1991), Csiszár (1995), Kitamura (2007), and Komunjer and Ragusa (2016). Let
(γ ∗

η (θ),λ∗
η(θ)) solve

max
γ∈R,λ∈Rl

[
γ −

∫
φ∗

+(γ +λ′mθ )dη

]
, (2.3)

where

φ∗
+(v) =

{ −1− log(−v), v < 0,
∞, v ≥ 0.

The solution to (2.3) exists under the conditions given below. The conditions
also ensure that the unique solution to (2.2) exists and is obtained by solving the
corresponding dual problem (2.3).

Assumption 2.1.

(i) For each η ∈ H, there exists M < ∞ such that supθ∈� ‖mθ‖ ≤ M a.e. with
respect to η.

(ii) For each θ ∈ � and η ∈ H, there exists Q ∈Qθ and a positive constant C < ∞
such that 1

C ≤ dQ
dη

≤ C a.e. with respect to η.
(iii) For each η ∈ H, there exists ε > 0 such that infθ∈� −γ ∗

η (θ)−λ∗
η(θ)′mθ ≥ ε

a.e. with respect to η.

Conditions (i) and (iii) are similar to condition 1 of Assumption 3 in Chen
et al. (2007), who obtained the projection by using a different method from ours.
Condition (i) guarantees that Pθ,η is an element of Qθ (see Komunjer and Ragusa,
2016). In particular, Pθ0,η0 satisfies (2.1). See also Theorem 1 of Schennach (2007)
about condition (i). Condition (ii) requires that Qθ contains a probability measure
that is mutually absolutely continuous with respect to η. A related issue is also
discussed by Sueishi (2013) and Chib et al. (2018). Condition (ii) implies that
the minimization problem is feasible. Conditions (i) and (ii) guarantee that a
constraint qualification condition is satisfied; that is, the primal problem (2.2) has
the equivalent dual problem (2.3).

Proposition 2.1. Suppose that Assumption 2.1 holds. Then, there exists a
unique solution to (2.2) a.e. with respect to η. Moreover, Pθ,η satisfies

dPθ,η

dη
= 1

1+λη(θ)′mθ

(2.4)

a.e. with respect to η, where λη(θ) = argmaxλ∈Rl

∫
log(1+λ′mθ )dη.
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The proof is given in the Appendix. The existence of λη(θ) is guaranteed by
Assumption 2.1. By construction, Pθ,η satisfies

∫
mθdPθ,η = 0 for all θ and η.

Thus, it is compatible with the moment restrictions. Under Assumption 2.1, we
have infθ∈�(1 +λη(θ)′mθ ) > 0 a.e. with respect to η. Because Pθ,η is absolutely
continuous with respect to η, the density of Pθ,η with respect to ξ exists.

Condition (i) may be restrictive in certain cases. Assuming � is bounded, a
linear instrumental variable model satisfies the condition if X is bounded, but not
if X is unbounded. Although some economic variables have bounded support, it
is generally not innocuous to assume boundedness of X . Note, however, that the
asymptotic properties of the BEL do not depend on the validity of condition (i).
WhenX is unbounded, Komunjer and Ragusa (2016) showed potential approaches
to relax condition (i). For instance, we may modify the tail of the logarithmic
function in (2.2) so that it diverges to infinity sufficiently first (see Section 5 of
Komunjer and Ragusa, 2016). We do not further pursue this approach.

Another way to relax Assumption 2.1(i) is to replace the role of Q and η in (2.2),
that is, we solve

∫
log

dP̃θ,η

dη
dP̃θ,η = inf

Q∈Qθ

∫
log

dQ

dη
dQ.

If
∫

exp(λ′mθ )dη < ∞ for all λ ∈ R
l, then there exists a unique P̃θ,η ∈ Qθ that

satisfies

dP̃θ,η

dη
= exp(λ̃η(θ)′mθ )∫

exp(λ̃η(θ)′mθ )dη
, (2.5)

where λ̃η(θ) = argmaxλ∈Rl

∫
exp(λ′mθ )dη.

The formulation (2.5) is used by Kitamura and Otsu (2011). If a Dirichlet
process is employed for the prior of η in (2.5), then the resulting semiparametric
Bayesian procedure is the exponentially tilted Dirichlet process approach of
Kitamura and Otsu (2011). Moreover, if

∏n
i=1 dP̃θ,Pn(Xi) is used as the alternative

to the parametric likelihood function, where Pn is the empirical distribution
of {X1, . . . ,Xn}, then the resulting quasi-Bayesian procedure is the BETEL of
Schennach (2005) and Chib et al. (2018), although Schennach (2005) and Chib
et al. (2018) did not consider P̃θ,η as their model.

Our formulation of the moment restriction model is useful in the follow-
ing aspects. First, our model facilitates the comparison between the BEL and
the semiparametric Bayesian method because the EL ratio can be written as∏n

i=1 dPθ,Pn/dPn(Xi). Second, the formulation is convenient in deriving the effi-
ciency bound for the moment restriction model. As will be discussed later, the
score function for θ0 is orthogonal to the score function for η0. This implies
that knowing the true distribution η0 does not change the efficiency bound for
estimating θ0.
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3. OVERVIEW

This section gives an informal explanation for the BvM theorem by referring
to Chapter 10 of van der Vaart (1998). Moreover, we explain why the BEL is
asymptotically equivalent to legitimate Bayesian methods. Rigorous arguments are
given in subsequent sections.

First, we consider the parametric Bayesian method. For now, suppose that η0

is known. Then, we obtain a parametric model θ 
→ Pθ,η0 . Let pθ,η be the density
of Pθ,η with respect to ξ . Moreover, let π�(θ) be a prior density for θ . Then, the
posterior density of

√
n(θ − θ0) is obtained by the Bayes rule:

p0√
n(θ−θ0)|X1,...,Xn

(h) =
∏n

i=1 pθn(h),η0(Xi)π�(θn(h))∫ ∏n
i=1 pθn(h),η0(Xi)π�(θn(h))dh

, (3.1)

where θn(h) = θ0 + h/
√

n and h is a vector in R
p. If π�(θ) is continuous at θ0,

π�(θn(h)) converges to π�(θ0) as n → ∞. Thus, the asymptotic behavior of (3.1)
is determined by the likelihood ratio

∏n
i=1 pθn(h),η0/pθ0,η0(Xi). Suppose that the

likelihood ratio has the following LAN expansion:

log
n∏

i=1

pθn(h),η0

pθ0,η0

(Xi) = 1√
n

n∑
i=1

h′�̇θ0,η0(Xi)− 1

2
h′Iθ0,η0 h+oP(1), (3.2)

where �̇θ0,η0 is the score function for θ0 and Iθ0,η0 is the Fisher information matrix
for known η0. Then, the likelihood ratio can be approximated by that of a normal
distribution:

dN(h,I−1
θ0,η0

)

dN(0,I−1
θ0,η0

)
(�n),

where �n = n−1/2∑n
i=1 I−1

θ0,η0
�̇θ0,η0(Xi) and dN(μ,
) denotes the density of the

normal distribution. Hence, the right-hand side of (3.1) can be approximated by

dN(h,I−1
θ0,η0

)(�n)∫
dN(h,I−1

θ0,η0
)(�n)dh

= dN(�n,I
−1
θ0,η0

)(h).

This means that the posterior distribution of
√

n(θ − θ0) is approximated by the
normal distribution with mean �n and variance matrix I−1

θ0,η0
. Moreover, the center

of the posterior distribution is asymptotically equivalent to best regular estimators
for θ0, which include the maximum likelihood estimator because any best regular
estimator θ̂n for θ0 satisfies

√
n(θ̂n − θ0) = �n +oP(1).

Next, we consider the BEL. The BEL posterior density for
√

n(θ − θ0) is
obtained by replacing η0 with Pn in the right-hand side of (3.1). Suppose that
we have
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log
n∏

i=1

dPθn(h),Pn

dPθ0,Pn

(Xi) = 1√
n

n∑
i=1

h′�̇θ0,η0(Xi)− 1

2
h′Iθ0,η0h+oP(1). (3.3)

That is, the EL ratio has the same expansion as (3.2). Then the BEL posterior
is asymptotically equivalent to (3.1). Condition (3.3) requires that the asymptotic
property of the likelihood ratio does not change even if the true nuisance parameter
is replaced with its estimator. This is not true for general semiparametric models.
A key condition for (3.3) is that the score function for θ0 is orthogonal to the score
function for η0. The orthogonality of the score functions is discussed in Section 4.

Finally, we consider our semiparametric Bayesian method. Let �H be a prior
for η defined on H. The marginal posterior density for

√
n(θ − θ0) is obtained by

integrating out the nuisance parameter. The asymptotic behavior of the marginal
posterior is determined by the integrated likelihood ratio:

sn(h) =
∫

H

n∏
i=1

pθn(h),η

pθ0,η0

(Xi)d�H(η). (3.4)

Under the conditions given in Section 6, we obtain

log
sn(h)

sn(0)
= 1√

n

n∑
i=1

h′�̇θ0,η0(Xi)− 1

2
h′Iθ0,η0 h+oP(1).

This property is called the integral LAN property by Bickel and Kleijn (2012).
Again, the score function in the right-hand side is the same as the one of the
parametric model that knows the true η0. The integral LAN property implies
the asymptotic equivalence between parametric and semiparametric Bayesian
methods.

4. CONVOLUTION THEOREM

This section derives the efficiency bound by establishing the convolution theorem.
There are some studies on the semiparametric efficiency bound for the moment
restriction model. The seminal work by Chamberlain (1987) derived the local
asymptotic minimax bound. Recently, Dovonon and Atchadé (2020) showed the
convolution theorem as well as the minimax theorem based on the results of
Begun et al. (1983). See also Severini and Tripathi (2001) for the derivation of
the efficiency bound. Although the efficiency bound derived in this section is not
new, our result is useful in understanding the connection between Bayesian point
estimators and semiparametrically efficient frequentist estimators. In particular,
the result is used to show that BEL estimators are asymptotically efficient in the
frequentist sense.

As we will see below, our model satisfies two important properties. First, it
satisfies the LAN property. Second, the score functions for θ0 and η0 are orthogonal
to each other. These properties facilitate the derivation of the efficiency bound.
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Moreover, they are crucial to show that the BEL is asymptotically equivalent to
parametric and semiparametric Bayesian methods.

A general convolution theorem states that if a statistical model satisfies the
LAN property and a parameter of interest is differentiable, then the lower bound
of the asymptotic variance for a class of regular estimators can be derived (see
Theorem 3.11.2 of van der Vaart and Wellner, 1996). Thus, we shall show the LAN
property of the moment restriction model and the differentiability of the parameter
of interest. In addition, we define a class of regular estimators for the moment
restriction model.

To show the LAN property, we consider a set of one-dimensional parametric
models t 
→ Pt, which are defined on [0,tε) for some tε > 0 and satisfy Pt ∈ P and
P0 = P. Specifically, we consider parametric models of the form Pt = Pθ0+th,ηt ,
where h ∈ R

p and a map t 
→ ηt is a perturbation of η0 and coincides with η0 at
t = 0. Because we only need to investigate the limiting property of Pt as t → 0, tε
can be arbitrarily close to 0.

We next define the tangent set of the moment restriction model. Let pt be the
density of Pt with respect to ξ . For given h and ηt, suppose that there exists �̇θ0,η0 :
X → R

p and l̇ : X → R such that

∫ (√
pt −√

p0

t
− 1

2
(h′�̇θ0,η0 + l̇)

√
p0

)2

dξ → 0, (4.1)

as t → 0. Then, we say that the parametric submodel is Hellinger-differentiable
at t = 0 with score function h′�̇θ0,η0 + l̇. A different choice of h and ηt yields a
different score function. A set of possible score functions is called the tangent set
and denoted by ṖP. Moreover, a set of l̇ is called the tangent set for η0 and denoted
by ηṖP.

To specify the tangent set, we find candidates for �̇θ0,η0 and l̇. They are typically
given by

�̇θ0,η0(x) = ∂ logpθ,η0(x)

∂θ

∣∣∣∣
θ=θ0

and l̇(x) = ∂ logpθ0,ηt(x)

∂t

∣∣∣∣
t=0

.

Thus, �̇θ0,η0 is the parametric score function for θ0 when η0 is known, whereas
l̇ is the score function for η0 when θ0 is known. However, the definition of the
Hellinger differentiability does not necessarily require the existence of the above
derivatives.

The derivative of logpθ,η0 can be obtained by a direct calculation. Let λ(θ) =
λη0(θ). Then λ(θ) satisfies λ(θ0) = 0 because Pθ0,η0 = η0. Moreover, because∫

mθdPθ,η0 = 0, for any θ ∈ �, the implicit function theorem yields

∂λ(θ0)

∂θ ′ = E[mθ0(X)mθ0(X)′]−1
E[∇mθ0(X)],
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where ∇mθ = ∂mθ /∂θ ′. Thus, we have

∂ logpθ,η0(x)

∂θ

∣∣∣∣ θ=θ0 = −E[∇mθ0(X)]′E[mθ0(X)mθ0(X)′]−1mθ0(x). (4.2)

The Fisher information is given by

Iθ0,η0 = E[∇mθ0(X)]′E[mθ0(X)mθ0(X)′]−1
E[∇mθ0(X)]. (4.3)

Now, we specify the tangent set for η0. For any semiparametric model, the largest
possible tangent set is the set of all zero-mean L2-functions on X . The tangent set
is determined by the feature of the semiparametric model. We specify ηṖP as the
following linear space of functions:

ηṖP = {l̇ ∈ L2(P) : E[l̇(X)] = 0 and E[l̇(X)mθ0(X)] = 0
}
. (4.4)

The second restriction of (4.4) is implied by the construction of our model. Because
Pθ0,ηt satisfies

∫
mθ0 dPθ0,ηt = 0 for any t ∈ [0,tε), differentiating both sides of

the equation at t = 0 yields the second restriction. That is, if our model satisfies
(4.1) for some ηt, then l̇ must be an element of (4.4) as long as (2.1) is satisfied.
Therefore, the set (4.4) is the largest tangent set for our model. Notice that the
second restriction implies that all score functions in ηṖP must be orthogonal to
the score function for θ0. Therefore, the score function (4.2) coincides with the
efficient score function of the semiparametric model.

We can find a path t 
→ ηt that yields (4.4) as the tangent set. For instance, we
can choose

ηt = (1+ tl̇)P (4.5)

for a given l̇ ∈η ṖP. Then, we have ∂ logdηt/∂t|t=0 = l̇. Moreover, because ηt sat-
isfies ηt ∈ Qθ0 , we have Pθ0,ηt = ηt. Therefore, we also have ∂ logpθ0,ηt/∂t|t=0 = l̇.

We now show the LAN property of the moment restriction model. Let ṗθ,η =
∂pθ,η/∂θ . Moreover, let Nθ0 ⊂ � be a neighborhood of θ0. We impose the
following conditions.

Assumption 4.1.

(i) For any l̇ ∈ ηṖP, there exists a path t 
→ ηt such that∫ (√
pθ0,ηt −√

pθ0,η0

t
− 1

2
l̇
√

pθ0,η0

)2

dξ → 0,

as t → 0.
(ii) pθ0,ηt(x) and ṗθ0,ηt(x) are continuous at t = 0 for all x ∈ X .
(iii)mθ (x) is continuously differentiable in θ ∈ Nθ0 for all x ∈ X .
(iv)

∫
mθm′

θdPθ,ηt is finite positive-definite for all t ∈ [0,tε) and all θ ∈ Nθ0 .

(v)
∫

ṗθ0+th,ηt

pθ0+th,ηt

ṗθ0+th,ηt

pθ0+th,ηt

′
dPθ0+th,ηt is well defined for all t ∈ [0,tε) and all h ∈ R

p

and is continuous at t = 0.
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Condition (i) requires that pθ0,ηt is Hellinger-differentiable at t = 0. This
condition is satisfied for ηt specified by (4.5), although other specifications are also
fine. Conditions (iii) and (iv) imply that ṗθ,ηt exists for all t ∈ [0,tε) and θ ∈ Nθ0 .

Lemma 4.1. Suppose that Assumption 4.1 holds. Then, for any h ∈ R
p and

l̇ ∈ ηṖP, there exists a path t 
→ ηt such that

∫ (√
pθ0+th,ηt −√

pθ0,η0

t
− 1

2
(h′�̇θ0,η0 + l̇)

√
pθ0,η0

)2

dξ → 0,

as t → 0, where �̇θ0,η0 is given by (4.2).

The result of Lemma 4.1 is a sufficient condition for the LAN property of our
model with respect to the tangent set ṖP = lin �̇θ0,η0 + ηṖP, where lin denotes the
linear span (see Lemma 25.14 of van der Vaart, 1998). For g ∈ ṖP, let Pt,g denote
the one-dimensional parametric model whose score function is g. Then, we have

log
n∏

i=1

dP1/
√

n,g

dP
(Xi) = 1√

n

n∑
i=1

g(Xi)− 1

2
E[g(X)2]+oP(1),

for all g ∈ ṖP. If η0 is known, then the expansion is the same as (3.2).
The Hellinger differentiability of Pt is also a sufficient condition for the differ-

entiability of the parameter. Let ψ be a functional on P that satisfies ψ(Pθ,η) = θ .
The functional ψ is differentiable at P relative to the tangent set ṖP if there exists
a linear continuous map ψ̇P : ṖP → R

p such that

ψ(Pt,g)−ψ(P)

t
→ ψ̇Pg,

as t → 0, for all g ∈ ṖP. Here, because ψ̇P is a linear functional in the Hilbert
space L2(P), by the Riesz representation theorem, there exists ψ̃P ∈ L2(P) such that
ψ̇Pg = E[ψ̃P(X)g(X)] (see also equation (2.2) of Newey, 1994). By Lemma 25.25
of van der Vaart (1998), our functional is differentiable with ψ̃P = I−1

θ0,η0
�̇θ0,η0 . The

function ψ̃P is called the efficient influence function, and its variance determines
the efficiency bound.

Finally, we define a class of regular estimators. A sequence of estimators Tn is
regular for estimating θ0 with respect to ṖP if there exists a probability measure L
such that

√
n(Tn −ψ(P1/

√
n,g))

P1/
√

n,g� L, (4.6)

for all g ∈ ṖP, where
P1/

√
n,g� denotes convergence in distribution under P1/

√
n,g. The

bottom line of the definition is that L does not depend on g. Thus, the regularity
requires that a small change in the underlying distribution does not change the
distribution of the estimator too much.
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Theorem 4.1. Let Tn be a regular estimator that satisfies (4.6) for all g ∈ ṖP.
Suppose that Assumption 4.1 holds and Iθ0,η0 is nonsingular. Then, there exists a
probability measure M such that

L = N(0,I−1
θ0,η0

)∗M,

where ∗ denotes the convolution of probability measures.

The result follows immediately from Theorem 25.20 of van der Vaart (1998).
The proof of Theorem 4.1 is given in the Supplementary Material.

Theorem 4.1 states that the lower bound of the asymptotic variance of regular
estimators is I−1

θ0,η0
because convolution never decreases the variance. Of course,

I−1
θ0,η0

is the same as the efficiency bound derived by Chamberlain (1987). Notice
that the efficiency bound is the same as that of the parametric model θ 
→ Pθ,η0 .
Thus, knowing the true nuisance parameter does not change the efficiency bound
in the formulation of our model. This also implies that the parametric model
θ 
→ Pθ,η0 is a least favorable model of the moment restriction model.

The asymptotic variance of the optimally weighted GMM and generalized EL
estimators (Kitamura and Stutzer, 1997; Smith, 1997; Imbens, Spady, and Johnson,
1998) coincides with I−1

θ0,η0
. Therefore, these estimators are best regular if they

satisfy (4.6). Because P and P1/
√

n,g are contiguous by the LAN property, the
asymptotic distribution of a statistic under P1/

√
n,g can be derived from that of the

statistic under P. Let g be given by g = h′�̇θ0,η0 + l̇ for some h ∈ R
p and l̇ ∈ ηṖP.

Because all the above estimators satisfy

√
n(Tn − θ0) = 1√

n

n∑
i=1

I−1
θ0,η0

�̇θ0,η0(Xi)+oP(1), (4.7)

by noting that I−1
θ0,η0

E[�̇θ0,η0(X)g(X)] = h, Le Cam’s third lemma yields

√
n(Tn − θ0)

P1/
√

n,g� N(h,I−1
θ0,η0

).

Moreover, because ψ(P1/
√

n,g) = θ0 +h/
√

n, we see that (4.6) is satisfied. In fact,
every best regular estimator satisfies (4.7). The proof is almost the same as that of
Lemma 8.14 of van der Vaart (1998).

Remark 4.1. Andrews and Mikusheva (2022) also consider a Hellinger-
differentiable model and specify their tangent set. However, their purpose is quite
different from ours. They assume that the true marginal distribution of X1, . . . ,Xn,
denoted by Pn,f , satisfies∫ [√

n
(

dP1/2
n,f −dP1/2

0

)
− 1

2
fdP1/2

0

]2

→ 0

for some P0 and a score f. Then, the process 1√
n

∑n
i=1 mθ (Xi) weakly converges to a

Gaussian process with mean function EP0 [f (X)mθ (X)]. They consider a Bayesian
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decision rule by introducing a nonparametric prior on the mean function rather
than on the distribution of X.

5. BAYESIAN EMPIRICAL LIKELIHOOD

Given X1, . . . ,Xn, the BEL posterior for θ is obtained by

�EL
n (θ ∈ B|X1, . . . ,Xn) =

∫
B

∏n
i=1 dPθ,Pn(Xi)π�(θ)dθ∫

�

∏n
i=1 dPθ,Pn(Xi)π�(θ)dθ

, (5.1)

where Pθ,Pn satisfies

n∏
i=1

dPθ,Pn

dPn
(Xi) =

n∏
i=1

1

1+ λ̂n(θ)′mθ (Xi)

with λ̂n(θ) = argmaxλ∈Rl n−1∑n
i=1 log(1+λ′mθ (Xi)). In what follows, we assume

that π�(θ) is continuous and strictly positive at θ0.
The BEL removes the nuisance parameter by replacing it with the empirical

distribution, whereas a legitimate semiparametric Bayesian procedure removes it
by integration. Or, the BEL uses the profile likelihood function rather than the
marginal likelihood function. A validity of the Bayesian method that uses a profile
likelihood is discussed by Severini (1999) for instance.

Owen (2001) considered a possibility to justify the BEL by its resemblance to a
parametric Bayesian method (Section 9.4 of Owen, 2001). As stated in Section 4, a
least favorable model of the moment restriction model is given by θ 
→ Pθ,η0 . Thus,
the EL approximates the likelihood of the least favorable model (see also DiCiccio
and Romano, 1990; Bertail, 2006; and Sueishi, 2016, for related issues). The
parametric Bayesian inference using the likelihood of the least favorable model
is a valid Bayesian procedure in the sense that it is based on a genuine likelihood
function and the Bayes rule. The resulting posterior is a legitimate conditional
probability. Because the posterior of the BEL is asymptotically equivalent to that
of the parametric Bayesian method, the BEL asymptotically yields a valid posterior
distribution. Now, we substantiate this claim.

Assumption 5.1.

(i) mθ (x) is continuously differentiable with respect to θ ∈ Nθ0 , for all x ∈ X .
(ii) E[supθ∈Nθ0

‖mθ (X)‖3] < ∞.
(iii) E[supθ∈Nθ0

‖∇mθ (X)‖] < ∞.

(iv) E[mθ (X)mθ (X)′] is positive-definite uniformly over θ ∈ Nθ0 .

Under Assumption 5.1, we obtain

sup
h∈K

∣∣∣∣∣log
n∏

i=1

dPθn(h),Pn

dPθ0,Pn

(Xi)− 1√
n

n∑
i=1

h′�̇θ0,η0(Xi)+ 1

2
h′Iθ0,η0h

∣∣∣∣∣= oP(1) (5.2)
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for any compact set K ⊂ R
p. See Lemma A.1 in the Appendix. The result implies

that the EL ratio is asymptotically equivalent to the log likelihood ratio of the least
favorable model.

Let N0 ⊂ R
l be a neighborhood of 0.

Assumption 5.2.

(i) For any δ > 0, there exist ε > 0 such that

Pr

(
sup

θ :‖θ−θ0‖>δ

1

n

n∑
i=1

log
dPθ,Pn

dPθ0,Pn

(Xi) ≤ −ε

)
→ 1.

(ii) E

[
supθ∈Nθ0

supλ∈N0

∥∥∥∥ mθ (X)

1+λ′mθ (X)

∥∥∥∥
2
]

< ∞ and

E

[
supθ∈Nθ0

supλ∈N0

∥∥∥∥ ∇mθ (X)

1+λ′mθ (X)

∥∥∥∥
2
]

< ∞.

(iii) E[∇mθ0(X)] is of full column rank.

Assumption 5.2(i) is essentially the same as (2.4) of Chib et al. (2018) (see
also condition (B.3) on page 489 of Lehmann and Casella, 1998 and Assumption
3 of Chernozhukov and Hong, 2003). It requires that θ0 is asymptotically the
global maximizer of n−1∑n

i=1 logdPθ,Pn(Xi). Under Assumptions 5.1 and 5.2, we
have

�EL
n (

√
n‖θ − θ0‖ > Mn|X1, . . . ,Xn)

P→ 0 (5.3)

for any sequence {Mn} such that Mn → ∞. That is, the BEL posterior converges to
θ0 at n−1/2-rate. See Lemma A.2 in the Appendix. Notice that (5.3) is a necessary
condition for the BvM theorem.

Theorem 5.1. Suppose that Assumptions 5.1 and 5.2 hold. Then, we have

sup
B

∣∣∣∣�EL
n (

√
n(θ − θ0) ∈ B|X1, . . . ,Xn)−N

�n,I
−1
θ0,η0

(B)

∣∣∣∣ P→ 0,

where

�n = 1√
n

n∑
i=1

I−1
θ0,η0

�̇θ0,η0(Xi).

The supremum is taken over all measurable sets in �.

Under conditions (5.2) and (5.3), the result follows from the proof of
Theorem 2.1 of Kleijn and van der Vaart (2012).

Theorem 5.1 shows that the limiting posterior of the BEL is the same as that
of the parametric Bayesian method that uses the likelihood of the least favorable
model, although the parametric Bayesian method is infeasible (see, for instance,
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Theorem 10.1 of van der Vaart, 1998, for the parametric BvM theorem). This result
provides an asymptotic justification for the BEL because the parametric Bayesian
method is a valid Bayesian procedure.

The BEL is also valid as a frequentist inference method. Let θ̂n be a best regular
estimator for θ0. Because θ̂n satisfies

√
n(θ̂n − θ0) = �n + oP(1) by the result of

Section 4, Theorem 5.1 can be alternatively stated as

sup
B

∣∣∣�EL
n (θ ∈ B|X1, . . . ,Xn)−Nθ̂n,(nIθ0,η0 )−1(B)

∣∣∣ P→ 0.

Because the variance matrix of the normal distribution is the same as the
asymptotic variance matrix of θ̂n, a 1 − α credible set B̂n, which satisfies
�EL

n (θ ∈ B̂n|X1, . . . ,Xn) = 1 − α, is asymptotically equivalent to the Wald-type
1 −α confidence set that is constructed on the basis of the asymptotic normality
of θ̂n.

Theorem 5.1 also implies that a center of the BEL posterior is asymptotically
equivalent to best regular estimators of the moment restriction model. For instance,
a point estimator that solves

min
t

∫
‖t − θ‖d�EL

n (θ |X1, . . . ,Xn)

is asymptotically efficient if
∫ ‖θ‖π�(θ)dθ < ∞. In particular, it is asymptotically

equivalent to the EL estimator. Furthermore, if the prior and posterior distributions
satisfy some additional conditions, then the posterior mean is also asymptotically
equivalent to the EL estimator (see Theorem 2.3 of Kleijn and van der Vaart, 2012,
for instance).

Theorem 5.1 looks similar to Theorem 1 of Chib et al. (2018), who investigated
the asymptotic properties of the BETEL posterior. However, the statement of their
theorem is different from ours. Theorem 1 of Chib et al. (2018) states that

sup
B

∣∣∣∣�ETEL
n (

√
n(θ − θ0) ∈ B|X1, . . . ,Xn)−N0,I−1

θ0,η0
(B)

∣∣∣∣ P→ 0,

where �ETEL
n (·|X1, . . . ,Xn) denotes the posterior of the BETEL. Notice that the

center of the normal distribution is 0, not �n. Thus, the asymptotic equiva-
lence between the Bayesian point estimator and the best regular estimator is not
established.

Chernozhukov and Hong (2003) proposed the LTE, which is a quasi-Bayesian
estimator that uses a general statistical criterion function in place of the parametric
likelihood function. The BEL is obtained as a special case of the LTE if the EL
is used as the criterion function. In fact, our theorem is similar to Theorem 1
and Proposition 2 of Chernozhukov and Hong (2003). However, they did not
investigate the connection between the LTE and a genuine Bayesian estimator.
Our finding gives a new insight into the LTE.
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6. SEMIPARAMETRIC BAYESIAN METHOD

This section considers the semiparametric Bayesian method that obtains the
marginal posterior of θ by

�n(θ ∈ B|X1, . . . ,Xn) =
∫

B

∫
H

∏n
i=1 pθ,η(Xi)d�H(η)π�(θ)dθ∫

�

∫
H

∏n
i=1 pθ,η(Xi)d�H(η)π�(θ)dθ

,

where �H is a prior of η. The semiparametric Bayesian method is a valid Bayesian
procedure in that it obtains the marginal posterior based on the Bayes rule. We show
that the posterior of the semiparametric Bayesian method converges to the same
limit as that of the BEL. Thus, our goal is similar to that of Schennach (2005),
who showed the existence of a Bayesian method whose limit is equivalent to the
BETEL.

Schennach (2005) considered a model ξN 
→ PξN that has an N-dimensional
nuisance parameter ξN and satisfies

∫
mθdPξN = 0 for all θ ∈ � and ξN ∈ �N . Given

a conditional prior density π�N |�(ξN |θ), the posterior density of θ is proportional to

∫
�N

n∏
i=1

pξN (Xi)π�N |�(ξN |θ)π�(θ)dξN . (6.1)

Notice that the likelihood function is not an explicit function of θ . The parameter
θ appears only in the priors. Schennach (2005) showed that the posterior obtained
by (6.1) converges to that of the BETEL as N → ∞ for a special choice of pξN and
π�N |�.

There are two main differences between our approach and her approach. First,
we take the limit with respect to the sample size n for fixed prior �H , whereas she
takes the limit with respect to the dimension of the nuisance parameter N for fixed
sample size n. Second, our result does not depend on the choice of priors, whereas
the choice of conditional prior is the key to her result.

The proof of our result is based on Bickel and Kleijn (2012) and Chae (2015).
Bickel and Kleijn (2012) showed the BvM theorem for general semiparametric
models, whereas Chae (2015) considered the case where an adaptive estimation is
possible. By virtue of our formulation of the model, the moment restriction model
can be viewed as a special case of generic semiparametric models.

Let dH(P,P′) denote the Hellinger distance between probability measures P
and P′, and let dθ (Q1,Q2) = dH(

pθ0,η0
pθ,η0

Q1,
pθ0,η0
pθ,η0

Q2) for any Q1,Q2 ∈ Qθ ; that is,

dθ is a weighted Hellinger distance between Q1 and Q2. Let N(ε,Qθ,dθ ) denote
the ε-covering number of Qθ with respect to the metric dθ . Because Qθ is convex,
N(ε,Qθ,dθ ) gives a bound for Nt(ε,Qθ,dH;P,Pθ,η0), which is the covering number
for testing under misspecification (Kleijn and van der Vaart, 2006). We define

B(ε,Pθ,η0;P) =
{

η ∈ H : −
∫

log
dPθ,η

dPθ,η0

dP ≤ ε2,

∫ (
log

dPθ,η

dPθ,η0

)2

dP ≤ ε2

}
.
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Assumption 6.1. For any ε > 0, we have (i) infθ∈Nθ0
�H(B(ε,Pθ,η0;P)) > 0 and

(ii) supθ∈Nθ0
N(ε,Qθ,dθ ) < ∞.

Assumption 6.1 is imposed for the convergence of the nonparametric posterior.
Condition (i) requires that the prior �H put a mass on a neighborhood of η0,
whereas condition (ii) requires that the parameter space H is not too large.

It is known that the conditional posterior of η given θ concentrates on the point
η∗(θ) that minimizes the KL divergence between Pθ,η and P. Here, because η0 = P,
our model satisfies

−
∫

log
dPθ,η0

dP
dP = inf

η∈H
−
∫

log
dPθ,η

dP
dP.

That is, we have η∗(θ) = η0 for any θ . Thus, for any given θ , the conditional
posterior of Pθ,η converges to Pθ,η0 . Assumption 6.1 implies that there exists a
set Hn ⊂ H such that

sup
θ∈Nθ0

�n(H
C
n |θ,X1, . . . ,Xn)

P→ 0 (6.2)

and supθ∈Nθ0
supη∈Hn

dH(Pθ,η,Pθ,η0) = o(1), where �n(·|θ,X1, . . . ,Xn) denotes the
conditional posterior of η given θ . See Corollary 2.1 of Kleijn and van der Vaart
(2006). We do not need to specify the convergence rate of the nonparametric
posterior.

Remark 6.1. Under certain conditions, some existing nonparametric priors sat-
isfy Assumption 6.1(i). Let K(P,η) = −∫ log dη

dP dP and V(P,η) = ∫ (log dη

dP )2dP.
Consider the following four sets:

A1(ε) = {η ∈ H : K(P,η) < ε},
A2(ε) = {η ∈ H : V(P,η) < ε},
A3(ε) =

{
η ∈ H : −

∫
log

1+λ(θ)′mθ

1+λη(θ)′mθ

dP < ε

}
,

A4(ε) =
{

η ∈ H :
∫ (

log
1+λ(θ)′mθ

1+λη(θ)′mθ

)2

dP < ε

}
.

If a prior �H satisfies �H(Aj(ε)) > 0 for any ε > 0 and j = 1, . . . ,4, then
�H(B(ε,Pθ,η0;P)) > 0 for any ε > 0.

A nonparametric prior that satisfies �H(A1(ε)) > 0 for any ε > 0 is called a KL
prior. Some kernel mixture priors satisfy this condition when H is dominated by the
Lebesgue measure (Wu and Ghosal, 2008). For instance, we may use a Dirichlet
process mixture, which is employed by Shin (2015). An appropriate choice of the
kernel depends on the support of X.

A prior that satisfies �H(A2(ε)) > 0 is not known well. However, if dP
dη

is

bounded for all η ∈ H, then we have V(P,η) ≤ 2K(P,η)

∥∥∥ dP
dη

∥∥∥∞
(see Lemmas B.1
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and B.2 of Ghosal and van der Vaart, 2017, for instance). Thus, the KL prior also
satisfies �H(A2(ε)) > 0, for any ε > 0.

By a Taylor expansion, the set A3(ε) can be rewritten as

A3(ε) =
{
η ∈ H : −1

2
(λη(θ)−λ(θ))′

(∫
mθ m′

θ

(1+ λ̄η(θ)′mθ )2
dP

)
(λη(θ)−λ(θ)) < ε

}
,

where λ̄η(θ) is located between λη(θ) and λ(θ). Thus, �H(A3(ε)) > 0 is clearly
satisfied. Moreover, under certain conditions, we have ‖λη(θ) − λ(θ)‖ → 0 as
dH(η,P) → 0. Thus, by using a similar expansion as in the case of A3(ε), we see
that the set A4(ε) contains a set of probability measures that is close to P in terms
of the Hellinger distance. Because the KL prior puts a mass on any Hellinger ball
centered at P, we obtain �H(A4(ε)) > 0.

Let M ⊂ P be a neighborhood of P with respect to the Hellinger distance.
Moreover, let mj,θ denote the jth element of mθ .

Assumption 6.2.

(i) mθ (x) is twice continuously differentiable with respect to θ ∈ Nθ0 , for all
x ∈ X .

(ii)
∫

mθm′
θ

(1+λη(θ)′mθ )2
dη is positive-definite uniformly over θ ∈Nθ0 and η ∈ Hn.

(iii) supθ∈� supλ∈N0

∫ ∥∥∥∥ m

1+λ′mθ

∥∥∥∥
4

dQ <∞ and supθ∈Nθ0
supλ∈N0

∫ ∥∥∥∥ ∇mθ

1+λ′mθ

∥∥∥∥
4

dQ < ∞ for all Q ∈ M.

(iv) E

[
supθ∈Nθ0

supλ∈N0

∥∥∥∥ mθ (X)

1+λ′mθ (X)

∥∥∥∥
4
]

< ∞, E

[
supθ∈Nθ0

supλ∈N0∥∥∥∥ ∇mθ (X)

1+λ′mθ (X)

∥∥∥∥
4
]

<∞, andE

[
supθ∈Nθ0

supλ∈N0

∥∥∥∥∂2mj,θ (X)/∂θ∂θ ′

1+λ′mθ (X)

∥∥∥∥
]

<∞
for j = 1, . . . ,l.

Assumption 6.2 implies that

sup
h∈K

sup
η∈Hn

∣∣∣∣∣log
n∏

i=1

pθn(h),η

pθ0,η

(Xi)− 1√
n

n∑
i=1

h′�̇θ0,η0(Xi)+ 1

2
h′Iθ0,η0 h

∣∣∣∣∣= oP(1) (6.3)

for any compact set K ⊂ R
p. See Lemma A.4 in the Appendix. Combining (6.2)

and (6.3), we can show the integral LAN property of our model. That is, for any
bounded stochastic sequence {hn}, we obtain

log
sn(hn)

sn(0)
= 1√

n

n∑
i=1

h′
n�̇θ0,η0(Xi)− 1

2
h′

nIθ0,η0hn +oP(1), (6.4)

where sn(h) is defined by (3.4). See Lemma A.5 in the Appendix.
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As stated in Section 5, a necessary condition for the BvM theorem is

�n(
√

n‖θ − θ0|| > Mn|X1, . . . ,Xn)
P→ 0, (6.5)

for any Mn → ∞. A difficulty to establish (6.5) in the semiparametric case is that
the global behavior of the likelihood function must be restricted in a certain way
because the integral with respect to η is taken over the whole parameter space H
to obtain the marginal distribution.

Assumption 6.3.

(i) For any δ > 0, there exists ε > 0 such that

Pr

(
sup

θ :‖θ−θ0‖>δ

sup
η∈H

1

n

n∑
i=1

log
pθ,η

pθ0,η

(Xi) ≤ −ε

)
→ 1.

(ii) E[∇mθ0(X)] is of full column rank.

Assumption 6.3(i) is similar to the assumption for Lemma 6.1 of Bickel
and Kleijn (2012). It can also be viewed as a stronger version of Assumption
5.2(i). The assumption restricts the behavior of the likelihood over the whole
parameter space H. Lemma A.6 in the Appendix shows that (6.5) is satisfied under
Assumptions 6.1–6.3.

Once (6.4) and (6.5) are established, the following theorem follows immediately
from Theorem 5.1 of Bickel and Kleijn (2012).

Theorem 6.1. Suppose that Assumptions 6.1–6.3 hold. Then, for any measur-
able set B ⊂ �, we have

sup
B

∣∣∣∣�n(
√

n(θ − θ0) ∈ B|X1, . . . ,Xn)−N
�n,I

−1
θ0,η0

(B)

∣∣∣∣ P→ 0,

where

�n = 1√
n

n∑
i=1

I−1
θ0,η0

�̇θ0,η0(Xi).

The supremum is taken over all measurable sets in �.

Comparing Theorems 5.1 and 6.1, we see that the limiting posterior distribution
of the semiparametric Bayesian method is the same as that of the BEL regardless
of the choice of parametric and nonparametric priors. Moreover, a center of the
posterior of the semiparametric Bayesian method is also asymptotically efficient
in the frequentist sense. Because the computational burden of the semiparametric
method is much heavier than that of the BEL, if one only cares about asymptotic
properties, the BEL will be more attractive than the semiparametric Bayesian
method.

Florens and Simoni (2021) obtained a similar asymptotic result for their semi-
parametric method. They used a Gaussian process as a conditional prior for the
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nuisance parameter and showed that their posterior for θ converges to the same
limiting distribution as ours. Moreover, they showed that the limiting distribution is
the same as the one obtained from the quasi-Bayesian method based on the limited
information likelihood of Kim (2002). However, Florens and Simoni (2021)
avoided obtaining the marginal posterior by integrating out the nuisance parameter.
In fact, they did not specify the likelihood function of the semiparametric model.
The posterior distribution for θ is obtained by conditioning on a statistic rn, rather
than by conditioning on the sample X1, . . . ,Xn. Thus, our method to obtain the
posterior distribution for θ is quite different from theirs.

7. CONCLUSION

This paper investigated large sample properties of the posterior of the BEL. We
showed that the BEL posterior is asymptotically equivalent to the posterior of
the parametric Bayesian method that uses the likelihood of the least favorable
model. Moreover, the BEL posterior is asymptotically equivalent to the marginal
posterior of the semiparametric Bayesian method that places both finite- and
infinite dimensional priors.

This paper also showed the convolution theorem for the moment restriction
model. It is commonly said that the EL estimator is asymptotically efficient
because its asymptotic variance attains the efficiency bound of Chamberlain
(1987). To the best of my knowledge, however, the regularity of the EL estimator
has not been considered in the literature because a class of regular estimators
depends on the tangent set of the semiparametric model. Our derivation of the
efficiency bound is useful to understand the asymptotic efficiency of the EL
estimator.

The novelty of this study is in the formulation of our model. Once the moment
restriction model is expressed as a set of probability measures that are indexed by
the finite-dimensional parameter of interest and the infinite-dimensional nuisance
parameter, we can apply existing theories of semiparametric estimation. The
orthogonality of the score functions for θ0 and η0 further simplifies the asymptotic
analysis.

The BEL also provides a valid inference procedure in the frequentist sense. The
BvM theorem reveals that the BEL 1−α credible set is asymptotically equivalent
to the Wald-type 1 − α confidence set based on the EL. Moreover, some point
estimators of the BEL are asymptotically efficient. The BEL point estimator may
be computationally more tractable than the EL estimator because it can be obtained
rather easily by MCMC, whereas finding the maximum or minimum is often
difficult when the objective function has many local maxima or minima.

APPENDIX

Throughout the Appendix, C denotes a generic positive constant which may vary according
to context.
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Proof of Proposition 2.1. We have infQ∈Qθ
−∫ log dQ

dη
dη < ∞ by Assumption 2.1(ii).

Thus, it follows from Corollary 2.6 of Borwein and Lewis (1991) that

inf
Q∈Qθ

−
∫

log
dQ

dη
dη = γ ∗

η (θ)−
∫

φ∗+(γ ∗
η (θ)+λ∗

η(θ)′mθ )dη.

Because limu→∞ − logu/u = 0, Theorem 4.8 of Borwein and Lewis (1991) implies that
the unique solution Pθ,η satisfies

dPθ,η

dη
= − 1

γ ∗
η (θ)+λ∗

η(θ)mθ
.

Here, because Pθ,η satisfies
∫

mθ dPθ,η = 0, we have
∫ γ ∗

η (θ)

γ ∗
η (θ)+λ∗

η(θ)′mθ
dη = 1. Thus, we

have γ ∗
η (θ) = −1 and hence

dPθ,η

dη
= 1

1+λη(θ)′mθ
,

where λη(θ) = argmaxλ∈Rl
∫

log(1+λ′mθ )dη. �

Proof of Lemma 4.1. The proof is based on Pollard (2010) although his definition of
Hellinger differentiability is slightly different from ours.

The implicit function theorem implies that ληt (θ) is continuously differentiable in θ for
all t. Thus, ṗθ,ηt is well defined and is continuous in θ . Let θt = θ0 + th and sθt,ηt = √

pθt,ηt .
Moreover, we define

ṡθt,ηt = 1

2

ṗθt,ηt

pθt,ηt

sθt,ηt,

where ṗθt,ηt/pθt,ηt is defined arbitrarily if pθt,ηt = 0. Thus, ṡθt,ηt = 0 when sθt,ηt = 0.
For any δ > 0, pθt,ηt + δ is bounded away from zero. Therefore,

√
pθt,ηt + δ satisfies

√
pθt,ηt + δ −

√
pθ0,ηt + δ = 1

2

∫ t

0
h′ ṗθu,ηt√

pθu,ηt + δ
du.

If pθu,ηt > 0, the integrand of the right-hand side converges to ṗθu,ηt/
√

pθu,ηt as δ → 0. On
the other hand, if pθu,ηt = 0, we have ṗθu,ηt = 0 because pθ,ηt is nonnegative for all θ . Thus,
the integrand is also zero, and we obtain

sθt,ηt − sθ0,ηt =
∫ t

0
h′ṡθu,ηt du.

for all x ∈X . Moreover, by applying Jensen’s inequality to the uniform distribution on [0,t],
we have

∫ (
sθt,ηt − sθ0,ηt

t

)2
dξ ≤ 1

t

∫ t

0

∫
(h′ṡθu,ηt )

2dξdu → 1

4
h′Iθ0,η0 h, (A.1)

as t → 0.
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Let rt = (sθt,ηt − sθ0,ηt )/t −h′ṡθ0,η0 , and let

gt = 2

(
sθt,ηt − sθ0,ηt

t

)2
+2(h′ṡθ0,η0)

2 − r2
t .

For x such that sθ0,η0(x) > 0, sθt,η0 is differentiable at t = 0. Therefore, we have rt → 0
and gt → 4h′ṡθ0,η0 ṡ′θ0,η0

h as t → 0. On the other hand, for x such that sθ0,η0(x) = 0, we

have rt = (sθt,ηt −sθ0,ηt )/t and gt ≥ 0. Thus, liminft→0 gt ≥ 4h′ṡθ0,η0 ṡ′θ0,η0
h for all x ∈X .

Then, by Fatou’s lemma and (A.1), we obtain

h′Iθ0,η0 h ≤ lim inf
t→0

∫
gtdξ ≤ h′Iθ0,η0 h− lim sup

t→0

∫
r2
t dξ,

and hence
∫

r2
t dξ → 0. Because �̇θ0,η0 = ṗθ0,η0/pθ0,η0 for x such that sθ0,η0(x) > 0, we

obtain the desired result. �

Lemma A.1. Suppose that Assumption 5.1 holds. Then, we have

sup
h∈K

∣∣∣∣∣∣log
n∏

i=1

dPθn(h),Pn

dPθ0,Pn

(Xi)− 1√
n

n∑
i=1

h′�̇θ0,η0 (Xi)+ 1

2
h′Iθ0,η0 h

∣∣∣∣∣∣= oP(1)

for any compact K ⊂ R
p.

Proof. We denote mθ,i = mθ (Xi), m̄θ = n−1∑n
i=1 mθ,i, and ∇m̄θ = n−1∑n

i=1 ∇mθ (Xi).
Because suph∈K ‖m̄θn(h)‖ = OP(n−1/2), by modifying the proof of Lemma A.2 of Newey

and Smith (2004), we have suph∈K ‖λ̂n(θn(h))‖ = OP(n−1/2). Thus, it follows that

max
1≤i≤n

sup
h∈K

|λ̂n(θn(h))′mθn(h),i| = OP(n−1/2)oP(n1/2) = oP(1)

by Assumption 5.1(ii). Moreover, following Owen (1990) and the proof of Lemma 1 of Qin
and Lawless (1994), we obtain

sup
h∈K

∣∣∣∣∣∣∣λ̂n(θn(h))−
⎛
⎝1

n

n∑
i=1

mθn(h),im
′
θn(h),i

⎞
⎠

−1

m̄θn(h)

∣∣∣∣∣∣∣= oP(n−1/2).

Therefore, a Taylor expansion yields

n∑
i=1

log(1+ λ̂n(θn(h))′mθn(h),i)

= λ̂n(θn(h))′
n∑

i=1

mθn(h),i − 1

2
λ̂n(θn(h))′

n∑
i=1

mθn(h),im
′
θn(h),iλ̂n(θn(h))+oP(1)

= n

2

{
m̄θ0 + 1√

n
∇m̄θ̄n

h

}′
⎛
⎝1

n

n∑
i=1

mθn(h),im
′
θn(h),i

⎞
⎠

−1{
m̄θ0 + 1√

n
∇m̄θ̄n

h

}
+oP(1),
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where θ̄n is located between θ0 and θn(h). The small order term is uniform over h ∈ K.
Similarly, we have

n∑
i=1

log(1+ λ̂n(θ0)′mθ0,i) = n

2
m̄′

θ0

⎛
⎝1

n

n∑
i=1

mθ0,im
′
θ0,i

⎞
⎠

−1

m̄θ0 +oP(1).

Because �̇θ0,η0 and Iθ0,η0 are given by (4.2) and (4.3), respectively, the uniform law of large
numbers yields the desired result. �

Lemma A.2. Suppose that Assumptions 5.1 and 5.2 hold. Then, we have

�EL
n (

√
n‖θ − θ0‖ > Mn|X1, . . . ,Xn)

P→ 0

for any sequence {Mn} such that Mn → ∞.

Proof. We define two sequences of events

An =
⎧⎨
⎩ sup

θ :‖θ−θ0‖>δ

1

n

n∑
i=1

log
dPθ,Pn

dPθ0,Pn

(Xi) ≤ −ε

⎫⎬
⎭

and

Bn =
⎧⎨
⎩
∫
�

n∏
i=1

dPθ,Pn

dPθ0,Pn

(Xi)π�(θ)dθ ≥ e−nε/2

⎫⎬
⎭ .

Because of Lemma A.1, by modifying Lemma E.3 of Chib et al. (2018), we can show that
Pr(Bn) → 1 for any ε > 0. Therefore, by Assumption 5.2(i), we obtain

E

[
�EL

n (‖θ − θ0‖ > δ|X1, . . . ,Xn)
]

≤ E

[
�EL

n (‖θ − θ0‖ > δ|X1, . . . ,Xn)1An∩Bn

]
+o(1)

≤ enε/2
E

⎡
⎣∫

θ :‖θ−θ0‖>δ

n∏
i=1

dPθ,Pn

dPθ0,Pn

(Xi)1Anπ�(θ)dθ

⎤
⎦+o(1)

= o(1), (A.2)

for any δ > 0.
Let �n = {θ ∈ � : Mn/

√
n < ‖θ −θ0‖ ≤ δ} with Mn such that Mn → ∞ and Mn/

√
n → 0.

Now, we show that there exists C > 0 such that

Pr

⎛
⎝ sup

θ∈�n

1

n

n∑
i=1

log
dPθ,Pn

dPθ0,Pn

(Xi) ≤ −C
M2

n
n

⎞
⎠→ 1. (A.3)

Here, by Assumption 5.2(i), there exists C > 0 such that

Pr

⎛
⎝1

n

n∑
i=1

log
dPθ,Pn

dPθ0,Pn

(Xi) ≤ −C
M2

n
n

⎞
⎠→ 1

for any fixed θ . Thus, it is enough to consider the case where ‖θ −θ0‖ ≤ δn with δn = o(1).
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By the implicit function theorem, λ̂n(θ) is continuously differentiable and its derivative
is given by

∂λ̂n(θ)

∂θ ′ =
(

1

n

n∑
i=1

mθ,im′
θ,i

(1+ λ̂n(θ)′mθ,i)2

)−1(
1

n

n∑
i=1

∇mθ,i

1+ λ̂n(θ)′mθ,i
+ 1

n

n∑
i=1

λ̂n(θ)m′
θ,i∇mθ,i

(1+ λ̂n(θ)′mθ,i)2

)
.

Moreover, we have supθ :‖θ−θ0‖≤δn
‖λ̂n(θ)‖ = o(1). Hence, by the uniform law of large

numbers, we have

sup
θ :‖θ−θn‖≤δn

∥∥∥∥∥∂λ̂n(θ)

∂θ ′ −E
[
mθ0 (X)mθ0(X)′

]−1
E[∇mθ0 (X)]

∥∥∥∥∥= oP(1).

Because λ̂n(θ0) = OP(n−1/2) and n−1∑n
i=1 log(1+ λ̂n(θ0)′mθ0,i) = OP(n−1), there exists

C > 0 such that

1

n

n∑
i=1

log(1+ λ̂n(θ)′mθ,i)− 1

n

n∑
i=1

log(1+ λ̂n(θ0)′mθ0,i)

= λ̂n(θ)′m̄θ − 1

2
λ̂n(θ)′ 1

n

n∑
i=1

mθ,im
′
θ,i

(1+ λ̄′mθ,i)
2
λ̂n(θ)+OP(n−1)

=
(

λ̂n(θ0)+ ∂λ̂n(θ̄)

∂θ ′ (θ − θ0)

)′ (
m̄θ0 +∇m̄

θ̃
(θ − θ0)

)

− 1

2

(
λ̂n(θ0)+ ∂λ̂n(θ̄)

∂θ ′ (θ − θ0)

)′
1

n

n∑
i=1

mθ,im
′
θ,i

(1+ λ̄′mθ,i)
2

(
λ̂n(θ0)+ ∂λ̂n(θ̄)

∂θ ′ (θ − θ0)

)

+OP(n−1)

≥ C‖θ − θ0‖2 +OP(n−1/2‖θ − θ0‖)+OP(n−1)

with probability approaching one, where λ̄ is located between 0 and λ̂n(θ), and θ̄ and θ̃

satisfy ‖θ̄ − θ0‖ = o(1) and ‖θ̃ − θ0‖ = o(1), respectively. Therefore, we obtain (A.3).
Finally, using Lemma E.3 of Chib et al. (2018) again, we have

Pr

⎛
⎝∫

�

n∏
i=1

dPθ,Pn

dPθ0,Pn

(Xi)π�(θ)dθ ≥ e−CM2
n/2

⎞
⎠→ 1, (A.4)

for any Mn → ∞. Therefore, combining (A.3) and (A.4) and doing a similar calculation as

in (A.2), we obtain �EL
n (θ ∈ �n|X1, . . . ,Xn)

P→ 0. �

Lemma A.3. Suppose that Assumption 6.2 holds. Then, we have supθ∈�n
supη∈Hn

‖λη(θ)‖ = o(1) and supθ∈�n
supη∈Hn

∥∥∥∥∂λη(θ)

∂θ ′ −E[mθ0 (X)mθ0(X)′]−1
E[∇mθ0 (X)]

∥∥∥∥ =
o(1) for any set �n such that supθ∈�n

‖θ − θ0‖ = o(1).
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Proof. Because dPθ,η/dη = 1/(1+λη(θ)′mθ ), it follows that

∫
|pθ,η −pθ0,η|dξ =

∫ ∣∣∣∣∣∣∣
dη

dξ

m′
θ̃

∂λη(θ̃)

∂θ ′ +λη(θ̃)′∇m
θ̃

(1+λη(θ̃)′m
θ̃
)2

(θ − θ0)

∣∣∣∣∣∣∣dξ

≤ C

(∫ ∥∥∥∥∥ m
θ̃

1+λη(θ̃)′m
θ̃

∥∥∥∥∥dP
θ̃,η

+
∫ ∥∥∥∥∥ ∇m

θ̃

1+λη(θ̃)′m
θ̃

∥∥∥∥∥dP
θ̃,η

)
‖θ − θ0‖,

where θ̃ is located between θ and θ0. Because L1 convergence of the density implies
convergence in the Hellinger distance, we obtain supθ∈�n

supη∈Hn
dH(Pθ,η,Pθ0,η) = o(1).

Thus, by the definition of Hn, we also have

sup
θ∈�n

sup
η∈Hn

dH(Pθ,η,P) = sup
θ∈�n

sup
η∈Hn

dH

(
η

1+λη(θ)′mθ
,P

)
= o(1).

Because Pθ,η = P if and only if θ = θ0 and η = P, it must be the case that
supθ∈�n

supη∈Hn
‖λη(θ)‖ = o(1).

Next, because
∫

mθ dPθ,η = 0 for any θ ∈ � and η ∈ H, we have

∂λη(θ)

∂θ ′ =
(∫

mθ m′
θ

1+λη(θ)′mθ
dPθ,η

)−1(∫
∇mθ dPθ,η +λη(θ)

∫
m′

θ∇mθ

1+λη(θ)′mθ
dPθ,η

)
,

where the inverse matrix exists by Assumption 6.2(ii). By the Cauchy–Schwarz inequality,
we have∥∥∥∥
∫

∇mθ dPθ,η −
∫

∇mθ dP

∥∥∥∥≤
∫

‖∇mθ‖(
√

dPθ,η +√
dP)(

√
dPθ,η −√

dP)

≤ C

(∫
‖∇mθ‖2 dPθ,η +

∫
‖∇mθ‖2 dP

)
dH(Pθ,η,P).

Similarly, we have∥∥∥∥∥
∫

mθ m′
θ

1+λη(θ)′mθ
dPθ,η −

∫
mθ m′

θ

1+λη(θ)′mθ
dP

∥∥∥∥∥
≤ C

⎛
⎝∫

∥∥∥∥∥ mθ m′
θ

1+λη(θ)′mθ

∥∥∥∥∥
2

dPθ,η +
∫ ∥∥∥∥∥ mθ m′

θ

1+λη(θ)′mθ

∥∥∥∥∥
2

dP

⎞
⎠dH(Pθ,η,P).

Therefore, we obtain the second result. �

Lemma A.4. Suppose that Assumption 6.2 holds. Then, we have

sup
h∈K

sup
η∈Hn

∣∣∣∣∣∣
n∏

i=1

log
pθn(h),η

pθ0,η
(Xi)− 1√

n

n∑
i=1

h′�̇θ0,η0 (Xi)+ 1

2
h′Iθ0,η0 h

∣∣∣∣∣∣= oP(1)

for any compact set K ⊂ R
p.
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Proof. Let Gnf = √
n(Pnf −Ef ) denote the empirical process evaluated at a function f.

Moreover, let �θ,η = logpθ,η and �̇θ,η = ∂ logpθ,η/∂θ . Then, we have

�̇θ,η = − ∇m′
θ λη(θ)

1+λη(θ)′mθ
− (

∂λη(θ)

∂θ ′ )′mθ

1+λη(θ)′mθ
.

Thus, for any θ1,θ2 ∈ Nθ0 , we have |�θ1,η −�θ2,η| ≤ �̇1‖θ1 − θ2‖, where

�̇1 = C

⎛
⎝ sup

θ∈Nθ0

sup
η∈Hn

∥∥∥∥ ∇mθ

1+λη(θ)′mθ

∥∥∥∥+ sup
θ∈Nθ0

sup
η∈Hn

∥∥∥∥ mθ

1+λη(θ)′mθ

∥∥∥∥
⎞
⎠,

which satisfies E[�̇1(X)2] < ∞. Thus, by applying Lemma 19.31 of van der Vaart (1998),
we obtain

sup
h∈K

sup
η∈Hn

Gn(
√

n(�θn(h),η −�θ0,η)−h′�̇θ0,η)
P→ 0.

Moreover, for η1,η2 ∈ Hn, we obtain

∥∥∥∥ ∇mθ0

1+λη1 (θ0)′mθ0

− ∇mθ0

1+λη2 (θ0)′mθ0

∥∥∥∥≤ �̇2‖λη1 (θ0)−λη2(θ0)‖ (A.5)

and

∥∥∥∥ mθ0

1+λη1 (θ0)′mθ0

− mθ0

1+λη2 (θ0)′mθ0

∥∥∥∥≤ �̇3‖λη1 (θ0)−λη2(θ0)‖, (A.6)

where

�̇2 = sup
η∈Hn

∥∥∥∥∥
∇m′

θ0
mθ0

(1+λη(θ0)′mθ0)
2

∥∥∥∥∥ and �̇3 = sup
η∈Hn

∥∥∥∥∥
mθ0 m′

θ0

(1+λη(θ0)′mθ0)
2

∥∥∥∥∥ .

Furthermore, we have E[�̇2(X)2] < ∞ and E[�̇3(X)2] < ∞. The right-hand sides of (A.5)
and (A.6) depend on η1 and η2 only through λη1(θ0) − λη2(θ0), which is a difference of
finite-dimensional vectors. Thus, it is straightforward to show that the classes of functions{ ∇mθ0

1+λη(θ0)
′mθ0

: η ∈ Hn

}
and

{
mθ0

1+λη(θ0)
′mθ0

: η ∈ Hn

}
are Donsker. Thus, by Lemma A.3,

we obtain supη∈Hn
Gn(h′�̇θ0,η −h′�̇θ0,η0 )

P→ 0.
The Taylor expansion yields

nE

[
log

pθn(h),η

pθ0,η
(X)

]
= √

nh′
E
[
�̇θ0,η(X)

]+ 1

2
h′
E

[
�̈
θ̃n(h),η

(X)
]

h,

where θ̃n(h) is located between θn(h) and θ0. Moreover, �̈θ,η is given by
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�̈θ,η =−
∑l

j=1

(
∂2mj,θ
∂θ ′∂θ

)
λη,j(θ)

(1+λη(θ)′mθ )
−2

∇m′
θ

∂λη(θ)

∂θ ′
(1+λη(θ)′mθ )2

+2
∇m′

θ λη(θ)λη(θ)′∇mθ

(1+λη(θ)′mθ )2

−
∑l

j=1 mj,θ
∂2λj,η(θ)

∂θ ′∂θ

(1+λη(θ)′mθ )
+ (

∂λη(θ)

∂θ ′ )′mθ m′
θ (

∂λη(θ)

∂θ ′ )

(1+λη(θ)′mθ )2
+ (

∂λη(θ)

∂θ ′ )′mθ λη(θ)′∇mθ

(1+λη(θ)′mθ )2
,

where mj,θ and λj,η(θ) are the jth element of mθ and λη(θ), respectively. Assumption

6.2 is sufficient for the existence of ∂2λj,η(θ)/∂θ∂θ ′. Therefore, by Lemma A.3, we have

suph∈K supη∈Hn

∥∥∥−E[�̈
θ̃n(h),η

(X)]− Iθ0,η0

∥∥∥= o(1) and the desired result follows. �

Lemma A.5. Suppose that Assumptions 6.1 and 6.2 hold. Then, we have

log
sn(hn)

sn(0)
= 1√

n

n∑
i=1

h′
n�̇θ0,η0 (Xi)− 1

2
h′

nIθ0,η0 hn +oP(1)

for any bounded random sequence {hn}.

Proof. Let Gn(h) = 1√
n

∑n
i=1 h′�̇θ0,η0(Xi)− 1

2 h′Iθ0,η0 h. Then, it follows from (6.2) and

Lemma A.4 that, for ε > 0, we have∫
H

n∏
i=1

log
pθn(hn),η

pθ0,η0

(Xi)d�H(η) ≤ eε/2
∫

Hn

n∏
i=1

log
pθn(hn),η

pθ0,η0

(Xi)d�H(η)

≤ eε+Gn(hn)

∫
Hn

log
n∏

i=1

pθ0,η

pθ0,η0

(Xi)d�H(η)

≤ eε+Gn(hn)

∫
H

log
n∏

i=1

pθ0,η

pθ0,η0

(Xi)d�H(η)

with probability approaching one. Similarly, we have∫
H

n∏
i=1

log
pθn(hn),η

pθ0,η0

(Xi)d�H(η) ≥
∫

Hn

n∏
i=1

log
pθn(hn),η

pθ0,η0

(Xi)d�H(η)

≥ e−ε/2+Gn(hn)

∫
Hn

n∏
i=1

log
pθ0,η

pθ0,η0

(Xi)d�H(η)

≥ e−ε+Gn(hn)

∫
H

n∏
i=1

log
pθ0,η

pθ0,η0

(Xi)d�H(η)

with probability approaching one. Because ε > 0 is arbitrary, we obtain the desired
result. �

Lemma A.6. Suppose that Assumptions 6.1–6.3 hold. Then, we have

�n(
√

n‖θ − θ0‖ > Mn|X1, . . . ,Xn)
P→ 0

for any sequence {Mn} such that Mn → ∞.
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Proof. We define two sequences of events

An =
⎧⎨
⎩ sup

θ :‖θ−θ0‖>δ

sup
η∈H

1

n

n∑
i=1

log
pθ,η

pθ0,η
(Xi) ≤ −ε

⎫⎬
⎭

and

Bn =
{∫

�
Sn(θ)π�(θ)dθ ≥ e−nε/2Sn(θ0)

}
,

where

Sn(θ) =
∫

H

n∏
i=1

pθ,η

pθ0,η0

(Xi)d�H(η).

Lemma A.5 and Lemma 6.3 of Bickel and Kleijn (2012) imply that Pr(Bn) → 1 for any
ε > 0. Therefore, by Assumption 6.3(i), we obtain

E
[
�n(‖θ − θ0‖ > δ|X1, . . . ,Xn)

]
≤ E

[
�n(‖θ − θ0‖ > δ|X1, . . . ,Xn)1An∩Bn

]+o(1)

≤ enε/2
E

⎡
⎣Sn(θ0)−1

∫
H

∫
θ :‖θ−θ0‖>δ

n∏
i=1

pθ,η

pθ0,η
(Xi)

n∏
i=1

pθ0,η

pθ0,η0

(Xi)1Anπ�(θ)dθd�H(η)

⎤
⎦

+o(1)

= o(1), (A.7)

for any δ > 0. Moreover, (A.7) implies �n(Hn|X1, . . . ,Xn)
P→ 1 because �n(Hn|θ,

X1, . . . ,Xn)
P→ 1, for any θ ∈ Nθ0 .

Let �n = {θ ∈ � : Mn/
√

n < ‖θ −θ0‖ ≤ δ} for Mn such that Mn → ∞ and Mn/
√

n → 0.
Now, we show that there exists C > 0 such that

Pr

⎛
⎝ sup

θ∈�n

sup
η∈Hn

1

n

n∑
i=1

log
pθ,η

pθ0,η
(Xi) ≤ −C

M2
n

n

⎞
⎠→ 1. (A.8)

Because of Assumption 6.3(i), for any fixed θ , we can find C > 0 such that

Pr

⎛
⎝ sup

η∈Hn

1

n

n∑
i=1

log
pθ,η

pθ0,η
(Xi) ≤ −C

M2
n

n

⎞
⎠→ 1.

Thus, we only need to consider the case where ‖θ − θ0‖ ≤ δn with δn = o(1). Moreover, a
similar argument as in the proof of Lemma A.4 yields

sup
θ :‖θ−θ0‖≤δn

sup
η∈Hn

Gn(�θ,η −�θ0,η − �̇′
θ0,η

(θ − θ0))
P→ 0

and supη∈Hn
Gn(�̇θ0,η − �̇θ0,η0 )

P→ 0. Thus, we have

https://doi.org/10.1017/S0266466622000603 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000603


954 NAOYA SUEISHI

1

n

n∑
i=1

log
pθ,η

pθ0,η

(Xi) = 1

n

n∑
i=1

�̇θ0,η0 (Xi)
′(θ − θ0)+ 1

2
(θ − θ0)

′
E[�̈θ̃,η(X)](θ − θ0)+OP(n−1)

= 1

2
(θ − θ0)

′
E[�̈θ̃,η(X)](θ − θ0)+OP(n−1/2‖θ − θ0‖)+OP(n−1)

uniformly over ‖θ − θ0‖ ≤ δn and η ∈ Hn, where θ̃ is located between θ and θ0. Because
‖−E[�̈

θ̃,η
(X)]− Iθ0,η0‖ = o(1) by Lemma A.3, we obtain (A.8).

Finally, using Lemma 6.3 of Bickel and Kleijn (2012) again, we have

Pr

(∫
�

Sn(θ)π�(θ)dθ ≥ e−CM2
n/2Sn(θ0)

)
→ 1, (A.9)

for any C > 0 and Mn → ∞. Thus, combining (A.8) and (A.9) and doing a similar calcu-

lation as in (A.7), we obtain �n(�n,Hn|X1, . . . ,Xn)
P→ 0, which also implies �n(�n|X1,

. . . ,Xn)
P→ 0. �
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