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Abstract

We study the chromatic number of the curve graph of a surface. We show that the chromatic number
grows like k log k for the graph of separating curves on a surface of Euler characteristic−k. We also
show that the graph of curves that represent a fixed nonzero homology class is uniquely t-colorable,
where t denotes its clique number. Together, these results lead to the best known bounds on the
chromatic number of the curve graph. We also study variations for arc graphs and obtain exact
results for surfaces of low complexity. Our investigation leads to connections with Kneser graphs,
the Johnson homomorphism, and hyperbolic geometry.

2010 Mathematics Subject Classification: 57M15 (primary); 05C15 (secondary)

1. Introduction
Curve graphs play a central role in the study of mapping class groups, Teichmüller
spaces, and 3-manifolds. In this setting, their large-scale geometry has grown
into a subject of intensive study [MM99, Bow08, Min10, BCM12, BBF15].
Alongside it, interest has grown in their graph-theoretic properties [Iva97, AL13,
MRT14, BM15, KK13]. Here we explore their chromatic number, one of the
most natural and attractive invariants in graph theory.

We briefly fix some terminology. Let S denote a compact, connected, orientable
surface. The curve graph C(S) is the graph whose vertices are isotopy classes of
essential simple closed curves on S, where two isotopy classes are adjacent if
they have disjoint representatives [Har81]. (A small adjustment is made when S
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is one of a few low complexity examples.) We refer to the vertices of C(S) simply
as curves. The chromatic number χ(G) of a graph G is the fewest number of
colors required to color the vertices of G so that adjacent vertices get different
colors. Thus, our motivating problem is to estimate χ(C(S)), the fewest number
of parts required to partition the curves on S so that any two curves in a given part
intersect.

Bestvina, Bromberg, and Fujiwara were the first to study the quantity χ(C(S)).
They showed that it is finite en route to proving that the mapping class group
Mod(S) has finite asymptotic dimension [BBF15, Lemma 5.6]. Curve graphs
are locally infinite, so the finite colorability is not at all apparent a priori. Their
bound on χ(C(Sg)) for a closed surface of genus g is doubly exponential in g,
which they did not attempt to optimize. By contrast, a simple lower bound on
χ(G) comes from its clique number ω(G), the size of the largest complete
subgraph. Maximum cliques in C(S) correspond to pants decompositions of S,
so ω(C(Sg)) = 3g− 3 for g > 2. Our work was motivated in part to close the gap
between the linear and doubly exponential bounds on χ(C(Sg)).

Another source of motivation comes from the study of topological designs
[JMM96]. An attractive unsolved problem in this area is to determine the size
of a largest 1-system on Sg, that is a collection of simple closed curves that
pairwise intersect at most once. Denote this value by N (g). Malestein, Rivin, and
Theran proved that g2 . N (g) . g · 4g and that the size of a largest collection of
curves that pairwise intersect exactly once is 2g + 1 [MRT14, Theorems 1.1 &
1.4]. Przytycki dramatically improved the upper bound to N (g) . g3 [Prz15,
Theorems 1.2 & 1.4], and Aougab et al. subsequently improved it to N (g) .
g3/(log g)2 [ABG17, Theorem 1.1]. A color class in a proper coloring of the
subgraph of C(Sg) induced on a 1-system is precisely a collection of curves
that pairwise intersect exactly once. It follows that N (g) 6 (2g + 1)χ(C(Sg)).
Therefore, an upper bound χ(C(Sg)) � g2/(log g)2 would improve on the best
current upper bound on N (g); conversely, large constructions of 1-systems would
lead to improved lower bounds on χ(C(Sg)).

1.1. Prelude. We set the stage for our results with a brief, informal account
of the case of the n-holed sphere Σn . See Section 2 for precise definitions of the
graphs KG(n) and CG(n) appearing here. A curve on Σn partitions its holes into
two nonempty parts. Disjoint curves give rise to nested partitions: one part for
one curve is properly contained in one part for the other curve. Recording the
partitions of the holes and the nesting relation gives a graph homomorphism from
C(Σn) to a particular finite graph KG(n). Recall that a graph homomorphism
G → H is a map from the vertex set of G to the vertex set of H that preserves
adjacency. For instance, the special case in which H is a complete graph K t
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corresponds to a t-coloring of G. On the other hand, arranging the holes of
Σn around a circle, we obtain a finite subgraph CG(n) inside C(Σn) of those
curves that surround a cyclic interval of holes. (For convenience, in Section 1.1,
we let CG(n) denote the graph CG(n) r CG(n, 1) defined in Section 2.) We
thereby obtain a sequence of homomorphisms CG(n) → C(Σn) → KG(n), the
first of which is an embedding. Since homomorphisms compose, it follows that
χ(CG(n)) 6 χ(C(Σn)) 6 χ(KG(n)). The graphs KG(n) and CG(n) are natural
unions of the well-studied two-parameter families of Kneser graphs KG(n, k) and
cyclic interval graphs CG(n, k). As we show, their chromatic numbers both grow
like n log n, and in fact are within a factor of ln(2) ≈ 0.69 apart. In this way, we
obtain a very precise estimate on χ(C(Σn)).

The graph CG(n) repeatedly arises as a subgraph of arc and curve graphs,
as does KG(n) as a target for homomorphisms from these graphs. The tight
control we gain over the (fractional) chromatic numbers of CG(n) and KG(n)
underpins many of our results for curve graphs. Other researchers have used the
graph CG(n) as a probe of the large-scale geometry of the curve complex C(Σn).
Embeddings of CG(n) into C(Σn) are rigid in the sense that any two are related
by an automorphism of C(Σn) [AL13]. The induced subcomplex on CG(n) is
homeomorphic to an (n − 4)-dimensional sphere [Lee89], and it represents a
generator of the homology of C(Σn) as a Mod±(Σn)-module [BBM15]. Thus, it
is remarkable—or not?—that it also accounts for the order of growth of χ(C(Σn)).
We note that the maximal clique graph K(CG(n)) (see Section 1.3) is isomorphic
to the associahedron or the flip graph on the triangulations of an n-gon. The
determination of the chromatic number of χ(K(CG(n))) is a fascinating open
problem: it is not even known whether it grows unbounded in n [FMFPH+09,
Sections 4 & 6], [STT88].

1.2. Statement of results. In Section 2, we introduce the total Kneser graph
KG(n) and the total cyclic interval graph CG(n). In spite of how naturally they
arise in the present setting, it appears that KG(n) has not been studied before,
nor has CG(n) from the graph-theoretic perspective. We determine the order of
growth of their (fractional) chromatic numbers:

THEOREM 1.1. The fractional and ordinary chromatic numbers of CG(n) and
KG(n) are all ∼n log n.

(See Section 1.3 for the notation . and ∼ and Section 2 for the definition of
fractional chromatic number.) Moreover, the implied constants in the bounds on
χ(KG(n)) are within a factor of ln(2). The determination of the chromatic number
of the ordinary Kneser graph KG(n, k) was the content of a famous conjecture
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due to Kneser [Kne55] and settled in a celebrated theorem of Lovász [Lov78].
Kneser exhibited a proper coloring of KG(n, k) using n − 2k + 2 colors, and
Lovász proved its optimality by defining the neighborhood complex N (G) of a
graph G, showing that the connectivity of N (G) bounds χ(G)−3 from below, and
applying this bound to KG(n, k). By contrast, the chief difficulty in Theorem 1.1
lies in establishing the upper bound on χ(KG(n)), which we accomplish by a
variation on Kneser’s original coloring of KG(n, k).

In Section 3, we formalize the argument from the Prelude and apply
Theorem 1.1 in order to determine the order of growth of the chromatic number
of the curve graph of the n-holed sphere Σn:

THEOREM 1.2. The fractional and ordinary chromatic numbers of C(Σn) are
∼n log n.

Prior to our work, Radhika Gupta obtained the estimate χ(C(Σn)) . n2 (R.
Gupta, private communication).

In Section 4, we generalize Theorem 1.2 to an estimate on the chromatic
number of Csep(S), the subgraph of C(S) induced on the separating curves:

THEOREM 1.3. If S has Euler characteristic −k < 0, then χ(Csep(S)) ∼ k log k.

As with the case of a planar surface, the bounds come from embedding a
cyclic interval graph into Csep(S) and mapping it to a Kneser graph. However,
the homomorphism to the Kneser graph is subtler in this more general setting.
Drawing inspiration from [BP07], we place a hyperbolic metric on S compatible
with a pants decomposition in which all of the pant cuffs are very short. The
simple closed geodesics on this hyperbolic surface congregate near a 1-complex
whose complement consists of 12k regions. A separating simple closed geodesic
partitions these regions into two parts, and disjoint geodesics yield distinct nested
partitions. In this way, we obtain the required homomorphism to the Kneser graph
KG(12k). Theorem 4.1 contains the precise statement that we require, and we
give a careful argument through a sequence of lemmas in hyperbolic geometry.
Ian Biringer has suggested an alternate description of this homomorphism based
instead on train tracks, thereby eliminating the need for hyperbolic geometry in
proving Theorem 1.3.

In Section 5, we study the subgraph Cv(S) of C(S) induced on the curves that
represent a fixed nonzero, primitive homology class v ∈ H1(S;Z). In this case,
we obtain not only an exact answer but also a uniqueness result:

THEOREM 1.4. For any v 6= 0, Cv(S) is uniquely t-colorable, where t denotes the
clique number of Cv(S).
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See Theorems 5.1, 5.12, and 5.16 for more precise statements. The proof of
Theorem 1.4 relies on a different set of techniques than those appearing up to
this point. The color of a curve in Cv(S) is based on the genus h of an immersed
subsurface that it cobounds with a fixed reference curve in its homology class: for
instance, when S is closed and has genus g, the color is the value h (mod g − 1).
In fact, the coloring coincides with the signed length introduced by Irmer
[Irm15, Section 4.1]. As a byproduct, the coloring permits an interpretation of
signed length in terms of genera of immersed surfaces in the case of a closed
surface; moreover, the use of domains in Section 5.2 makes it easy to calculate.
To prove that the coloring of Cv(S) is unique, we show that it is possible to connect
any two maximal cliques through a sequence in which each consecutive pair
meet in all but one vertex: in other words, the maximal clique graph K(Cv(S))
is connected. We do so by studying the action of a relevant mapping class group
on K(Cv(S)) and applying Putman’s trick [Put08].

On combination of Theorems 1.3 and 1.4, we bound the chromatic number of
the curve graph of a closed surface as follows:

THEOREM 1.5. g · log g . χ(C(Sg)) . g · 4g.

The lower bound comes simply from separating curves. The upper bound
comes from partitioning curves according to their (mod 2) homology classes
and coloring the curves in each class separately. The zero class consists of the
separating curves, and each of the 4g

− 1 nonzero classes v are disjoint unions
of the graphs Cv(Sg), where v reduces to v (mod 2). Theorem 1.4 and a small
maneuver around the axiom of countable choice (Proposition 5.10) lets us color
all the curves representing v by g − 1 colors. The upper bound in Theorem 1.5
then follows.

Thus, the chromatic number of C(Sg) is superlinear and at most exponential
in g. These bounds leave great room for improvement, and we suspect the
truth lies closer to the lower bound. On the other hand, a construction of
1-systems on Sg of size larger than g2

· log g would lead to an improvement on our
lower bound.

In Section 6, we explore a consequence of Theorem 1.4 for a closed surface
S = Sg. Set H = H1(S,Z) and let I < Mod(S) denote the Torelli group, the
mapping classes that act trivially on H . For each primitive nonzero class v ∈ H ,
the group I acts by automorphisms on Cv(S). By uniqueness of the minimal
coloring, it permutes the color classes in a minimal coloring. In fact, it permutes
them cyclically, and the action determines a homomorphism

χ : I → Hom(H,Z/(g − 1)Z)
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(Lemma 6.2). We explicitly compute the action of generators for I on the color
classes, and we obtain a relationship between the coloring of Cv(S) and the
Johnson homomorphism. The latter is a homomorphism

τ : I → Hom
(

H,
∧2

H
)
/H

that captures the free part of H1(I;Z). Johnson showed that the composition of
τ with the algebraic intersection pairing

∧2 H → Z and reduction (mod g − 1)
gives the Chillingworth homomorphism t : I → Hom(H,Z/(g − 1)Z) [Chi72a,
Chi72b, Joh80]. We show:

THEOREM 1.6. The color permutation homomorphism χ equals the
Chillingworth homomorphism t.

In fact, the identification of the coloring of Cv(S) with Irmer’s signed length
immediately implies that the coloring homomorphism χ is equal to her stable
length homomorphism φ [Irm15, Lemma 5]. Irmer proves Theorem 1.6 with φ in
place of χ [Irm15, Theorem 1], and our proof mimics hers. Thus, the novelty in
Theorem 1.6 compared to Irmer’s work is its interpretation in terms of coloring.
As a result, in Corollary 6.4 we recast the coloring of Cv(S) in terms of t .

In Section 7, we explore analogues of the preceding results for arc graphs. The
vertices of the arc graph A(S) are isotopy classes of essential properly embedded
arcs on S, and two classes are adjacent if they have disjoint representatives. Here
the isotopy is free on the boundary. We specialize to the case of a planar surface.
We show that the chromatic number of the subgraph Asep(Σn) induced on the
separating arcs grows like n log n (Theorem 7.3) and the subgraph of A(Σn)

induced on arcs representing a fixed nonzero homology class is uniquely (n − 2)-
colorable (Theorem 7.4). The analogue to Theorem 1.5 in this setting is:

THEOREM 1.7. n log n . χ(A(Σn)) . n3.

The fact that the upper bound is polynomial and not exponential derives
from the fact that the number of (mod 2) homology classes of arcs on Σn is
quadratic in n, whereas the number of (mod 2) homology classes of curves on
Sg is exponential in g. Doubling Σn along its boundary induces an inclusion
A(Σn) ↪→ C(Sn−1). Thus, an improved lower bound on χ(A(Σn))would result in
a corresponding improvement on χ(C(Sg)), and conversely for the upper bounds.
It seems likely, albeit less direct, that an improvement on the lower bound on
χ(C(Sg)) would inform one on χ(A(Σn)), and conversely for the upper bounds.

In Sections 8 and 9, we obtain exact results for surfaces of low complexity.
In Section 8, we study A(Σ4) and various subgraphs of it. For example, we
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show that the subgraph of A(Σ4) induced on arcs with exactly one endpoint
on a fixed boundary component has chromatic number 4, with color classes
corresponding to the orbits under the action of the level-3 congruence subgroup
Γ (3) < PSL(2,Z) on P1(Z2) (Theorem 8.6). In Section 9, we study C(S2) and
its subgraph N (S2) induced on the nonseparating curves. Using the hyperelliptic
involution, we show:

THEOREM 1.8. χ(N (S2)) = 4 and χ(C(S2)) = 5.

Finally, in Section 10, we collect some questions for further study.

1.3. Conventions and notation. If f and g denote two real-valued functions,
then we write f . g if there exists an absolute constant C > 0 such that f 6 C ·g.
We write f ∼ g if f . g and g . f .

All surfaces appearing in our results are compact, connected, and orientable.
We denote by Sb

g a surface of genus g with b boundary components, or holes. If
b = 0, then we suppress it from the notation, and if g = 0, then we writeΣn = Sn

0 .
The mapping class group of S is the group Mod(S) := π0(Homeo+(S)). For

convenience, we break slightly with the convention of [FM11] by allowing S
to permute boundary components; the subgroup acting trivially on boundary
components is denoted by PMod(S). This difference is relevant in the proofs of
Proposition 5.13 and Theorem 7.4.

A simple closed curve on a surface is separating if its complement is
disconnected; it is peripheral if it is isotopic to a hole; and it is essential if it
neither is peripheral nor bounds a disk. Similarly, a homology class is separating
or peripheral if it is represented by an oriented simple closed curve with the
corresponding property.

We denote the curve (respectively arc) graph by C(S) (respectively A(S)), and
the subgraphs induced by separating and nonseparating curves (respectively arcs)
by Csep(S) and N (S) (respectively Asep(S) and AN (S)). Given a homology
class v (respectively relative to ∂S), we denote the subgraph spanned by curves
(respectively arcs) which can be oriented to be homologous to v by Cv(S)
(respectively Av(S)).

When convenient, we elide the difference between a graph and the flag
simplicial complex with the same 1-skeleton (in which any complete subgraph on
k vertices spans a unique (k − 1)-simplex). For example, C(S) may also denote
the curve complex associated to S.

Given a simplicial complex C, we let K(C) denote the graph whose vertices
consist of the maximal simplices in C, where two maximal simplices are adjacent
if they meet in a codimension-1 face. We refer to K(C) as the maximal clique
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graph of C. The reader is cautioned that K(C(Sg)) is not quite the ‘clique graph’
in the sense of [KK13, p. 3], in which vertices correspond to (not necessarily
maximal) cliques.

2. Kneser graphs and cyclic interval graphs

In this section, we introduce the total Kneser graph KG(n) and its subgraph
the total cyclic interval graph CG(n). These graphs are natural unions of the
well-known Kneser graphs KG(n, k) and cyclic interval graphs CG(n, k). We
determine the fractional chromatic numbers of these graphs and the growth orders
of their chromatic numbers in Theorems 2.3 and 2.5. For more background on
graph theory, including discussion about homomorphisms, (fractional) chromatic
numbers, and the two-parameter Kneser and cyclic interval graphs, see [GR13,
Ch. 7].

We recall and introduce some important notation. Let G denote a graph. A
clique in G is a collection of pairwise adjacent vertices, that is the vertices of
a complete subgraph, and an independent set in G is a collection of pairwise
nonadjacent vertices. The clique number ω(G) is the maximum size of a clique
in G. A proper coloring of G is a partition of its vertex set into independent sets,
which are called the color classes of the coloring. The chromatic number χ(G) is
the fewest number of color classes in a proper coloring of G.

Linear programming offers the following perspective. A clique can be
interpreted as a 0/1 weighting of the vertices of G with the property that
the sum of the weights of the vertices in any independent set is at most one. The
clique number is thus the maximum, over all cliques of G, of the sum of the
weights of the vertices. Similarly, a coloring can be interpreted as a 0/1 weighting
of the independent sets of G with the property that the sum of the weights on
the independent sets containing any fixed vertex is one. The chromatic number
is thus the minimum, over all colorings of G, of the sum of the weights of the
independent sets.

These are integer linear programs, and they admit the following real-valued
relaxations. A fractional clique of G is a weighting of its vertices by nonnegative
real numbers subject to the condition that the sum of the weights on any
independent set is at most one. The fractional clique number ω f (G) is the
supremum, over all fractional cliques of G, of the sum of the weights on the
vertices. A fractional coloring of G is a weighting of its independent sets by
nonnegative real numbers subject to the condition that the sum of the weights on
the independent sets containing any fixed vertex v is at least one. The fractional
chromatic number χ f (G) is the infimum, over all fractional colorings of G, of the
sum of the weights on the independent sets. There are straightforward bounds
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ω(G) 6 ω f (G) 6 χ f (G) 6 χ(G), and linear programming duality has the
corollary that ω f (G) = χ f (G).

Given a pair of positive integers n > 2k, the Kneser graph KG(n, k) is the
graph whose vertices are the k-element subsets of {1, . . . , n} and whose edges
are unordered pairs of disjoint subsets. A cyclic interval is a cyclic shift of the
set {1, . . . , k} modulo n. The cyclic interval graph CG(n, k) is the subgraph of
KG(n, k) induced on the cyclic intervals.

The fractional chromatic numbers of the Kneser graphs and cyclic interval
graphs are well known [GR13, Section 7.7], and the determination of the
chromatic number of the Kneser graph KG(n, k) is a celebrated theorem of
Lovász [Lov78]. We record these values here:

THEOREM 2.1. χ f (CG(n, k)) = χ f (KG(n, k)) = n/k, χ(CG(n, k)) = dn/ke,
and χ(KG(n, k)) = n − 2k + 2.

Given a positive integer n > 2, the total Kneser graph KG(n) is the graph
whose vertices are partitions of {1, . . . , n} into an unordered pair of nonempty
disjoint subsets (A, B). We often express a partition just by one of its parts, since
there is no loss of information. Two such partitions (A, B), (C, D) are nested if
one of A or B is contained in one of C or D; note that the condition is symmetric
in the two pairs. The edges of KG(n) are pairs of distinct nested partitions. The
total cyclic interval graph CG(n) is the subgraph of KG(n) induced on partitions
in which the parts are cyclic intervals. Observe that for k < n/2, KG(n, k) ⊂
KG(n) is induced on the partitions (A, B) with min{|A|, |B|} = k, and
CG(n, k) = CG(n) ∩ KG(n, k).

A cyclic interval contains a minimal element, the shift of 1. We label a vertex
(A, B) ∈ CG(n) by the pair (i, j) that records the minimal elements of A and B,
with the convention that i < j . Two such pairs (i, j) and (i ′, j ′) are linked if
i < i ′ < j < j ′ or i ′ < i < j ′ < j . Under the labeling by pairs, edges in CG(n)
correspond precisely to unlinked pairs.

LEMMA 2.2. If S is an independent set in CG(n), then |S| 6 min{|A| | (A,
B)∈ S}.

Proof. Choose any (A, B) ∈ S. By applying a cyclic shift to CG(n), we may
assume that j − i = |A|, where (A, B) gets labeled (i, j). Since S is an
independent set, the labels in S are pairwise linked. Select any other label
(i ′, j ′) in S. Note that exactly one of i ′ and j ′ lies between i and j . Furthermore,
no two labels in S share a common coordinate. It follows that there are at most
j − i − 1 labels in S that link with (i, j), so |S| 6 j − i = |A|, as desired.
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For a positive integer m, let Hm denote the mth harmonic number
∑m

k=1 (1/k),
and let p(m) ∈ {0, 1}, p(m) ≡ m (mod 2). Recall the bounds log(m) < Hm 6
log(m)+ 1 for the following result.

THEOREM 2.3. χ f (KG(n)) = χ f (CG(n)) = n ·Hb(n−1)/2c+(1− p(n)) ∼ n log(n).

Proof. The fractional chromatic number of KG(n) is bounded above by the sum
of the fractional chromatic numbers of its vertex-disjoint induced subgraphs
KG(n, k), 1 6 k < n/2, and, if n is even, the independent set induced on the
partitions into n/2-subsets. Since χ f (KG(n, k)) = n/k by Theorem 2.1, we
obtain the required upper bound.

Next, define w : V (CG(n))→ R>0 by w((A, B)) = 1/|A|, where |A| 6 |B|.
Let S be an independent set in CG(n). Select (A, B) ∈ S with |A| minimal. The
sum of the weights on the vertices of S isw(S) 6 |S| ·w(A) 6 |A|/|A| = 1, using
Lemma 2.2 in the second inequality. Therefore, w is a fractional clique. Its total
value equals the required lower bound.

REMARK 2.4. The fractional clique defined in the proof of Theorem 2.3 is simply
the sum of the optimal fractional cliques for the subgraphs CG(n, k) that get used
to establish their fractional chromatic numbers (Theorem 2.1).

The union bound leads to the soft estimate

χ(KG(n)) 6
bn/2c∑
k=1

χ(KG(n, k)) =
bn/2c∑
k=1

(n − 2k + 2) ∼ n2,

which grows faster than χ f (KG(n)). The following theorem uses a refined
coloring to show that χ f (KG(n)) and χ(KG(n)) grow at the same rate, and in
fact differ by a factor of no more than ln(2) ≈ 0.69. It is a variation on Kneser’s
original (n − 2k + 2)-coloring of KG(n, k).

THEOREM 2.5. χ(KG(n)) 6 n · dlog2(n/2)e + 1 ∼ n log(n).

Proof. Select a subset A ⊂ {1, . . . , n} with |A| 6 n/2. We can uniquely express
|A| = 2k+1

− l, where k, l ∈ Z, k > 0, and 1 6 l 6 2k . Let a denote the lth
largest element of A. Assign A the color consisting of the pair (k, a). See Figure 1.
Observe that this coloring uses n · dlog2(n/2)e colors, unless n is a power of 2. If
it is, then we alter the coloring on the n/2-element subsets by giving them all the
same color, distinct from those used on the subsets with fewer elements. In this
case, the coloring uses n · dlog2(n/2)e + 1 colors. We claim in either case that
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Figure 1. Vertices Ai ∈ KG(15), |Ai | = i , i = 1, . . . , 7. A1 gets color (0, 9); A2,

A3 get color (1, 9); and A4, A5, A6, A7 get color (2, 9). No two vertices of the
same color are disjoint or nested.

this coloring of KG(n) is proper. Suppose that A and B are different subsets that
receive the same color (k, a). We seek to show that A and B are neither disjoint
nor is one contained in the other. Assume without loss of generality that |A| 6 |B|.
As a ∈ A ∩ B, these subsets are not disjoint. If |A| = |B|, then it is immediate
that neither is contained in the other. If instead |A|< |B|, then l(A)> l(B), so
A contains more elements greater than a than B does, while 2k+1

− 2l(B) >
2k+1
− 2l(A), so B contains more elements less than a than A does. Therefore,

neither of A and B is contained in the other in this case either. It follows that this
coloring of KG(n) is proper and establishes the desired bound.

Proof of Theorem 1.1. Immediate from Theorems 2.3 and 2.5.

3. Curves on planar surfaces

In this section, we obtain a precise estimate on the chromatic number of the
curve graph of a planar surface, and we determine its fractional chromatic number
exactly. The methods of this section serve as a prototype for those appearing later
on.

We assume that n > 5, so that C(Σn) contains edges. (When n = 4, the
definition of C(Σ4) is usually altered so that edges consist of pairs of curves with
minimal intersection number 2; see Section 8.) We establish the following more
precise version of Theorem 1.2:

THEOREM 3.1. χ(C(Σn)) ∼ n log n and χ f (C(Σn)) = χ f (KG(n))− n.

We split the proof of Theorem 3.1 into two easy lemmas.
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LEMMA 3.2. There exists a homomorphism f : C(Σn)→ KG(n)r KG(n, 1).

Proof. A curve c ∈ C(Σn) induces a partition f (c) of the components of ∂Σn

into two nonempty subsets according to which component of Σn r c they belong.
Both subsets have size at least two, since c is essential. If c, d ∈ C(Σn) are
adjacent, then Σn r c ∪ d consists of three components, each of which contains
a component of ∂Σn . It follows that the partitions f (c) and f (d) are distinct and
nested. Identifying the holes ofΣn with the underlying set of KG(n), the mapping
f defines the required homomorphism.

LEMMA 3.3. There exists an embedding c : CG(n)r CG(n, 1) ↪→ C(Σn).

Proof. Embed an n-cycle in the 2-sphere Σ . Label its vertices p1, . . . , pn

cyclically and its edges ei = (pi , pi+1), indices (mod n). Identify Σn with the
complement in Σ of a small neighborhood of {p1, . . . , pn}. For a vertex

v = {i, i + 1, . . . , i + k} ∈ CG(n)r CG(n, 1),

let c(v) ∈ C(Σn) be the boundary of a regular neighborhood of

ei ∪ · · · ∪ ei+k−1 ⊂ Σ.

It is easy to see that the mapping c defines the required embedding.

Proof of Theorem 3.1. The result follows from Theorem 1.1, Lemmas 3.2,
3.3, and the monotonicity of the (fractional) chromatic number under homo-
morphisms. Note in addition that KG(n, 1) ⊂ KG(n) and CG(n, 1) ⊂ CG(n)
are cliques of size n adjacent to all other vertices; removing them from their
supergraphs lowers the (fractional) chromatic numbers by n.

Observe that the exact value χ(C(Σ5)) = 3 follows as well from Lemmas 3.2
and 3.3, since both KG(5)r KG(5, 1) = KG(5, 2) and CG(5, 2) have chromatic
number 3.

The proof of Theorem 3.1 raises the question whether KG(n)rKG(n, 1) itself
embeds in C(Σn). The following result shows that this is not the case for n = 5.

PROPOSITION 3.4. C(Σ5) does not contain a subgraph isomorphic to KG(5, 2).

Proof. Suppose, by way of contradiction, that there were a subgraph of C(Σ5)

isomorphic to KG(5, 2). Restricting f to the subgraph gives an endomorphism
of KG(5, 2) = KG(5) r KG(5, 1). Since any endomorphism of KG(n, k) is an
automorphism [GR13, Theorem 7.9.1], it follows that the subgraph is the image
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of a section s of f . Given a 2-element subset {i, j}, let ai j denote an arc, unique
up to isotopy, with endpoints on the holes ∂i , ∂ j that is disjoint from s({i, j}).
Collapsing each hole to a point gives a drawing of K5 on the sphere such that
each pair of edges with disjoint endpoints do not cross. This contradicts a theorem
of van Kampen and Flores, a strong form of the fact that K5 is nonplanar (see
[Mat03, Theorem 5.1.1]).

If one knew that all endomorphisms of KG(n)r KG(n, 1) are automorphisms,
then the proof of Proposition 3.4 would readily adapt to show that
KG(n) r KG(n, 1) is not a subgraph of C(Σn) for any n > 5. We presume
this is the case, but a proof would take us too far afield.

4. Separating curves

The goal of this section is to prove Theorem 1.3:

THEOREM 1.3. If S has Euler characteristic −k < 0, then χ(Csep(S)) ∼ k log k.

The proof strategy is similar to that of Theorem 3.1. However, we must
replace the holes by a less obvious collection of points. They are provided by
the following result, which draws inspiration from [BP07]:

THEOREM 4.1. If S has Euler characteristic−k < 0, then there exist a hyperbolic
metric on S and a subset Q ⊂ S of 12k points with the following two properties:
(1) S has totally geodesic boundary, and (2) if F ⊂ S is a subsurface with totally
geodesic boundary, then Q ∩ ∂F = ∅ and

−χ(F) =
1

2π
Area(F) =

1
12
|Q ∩ F |.

Thus, the discrete uniform measure concentrated on the point set Q is
proportional to the standard area measure when restricted to subsurfaces with
totally geodesic boundary.

We first derive Theorem 1.3 from Theorem 4.1.

Proof of Theorem 1.3. First, we establish the upper bound. Apply Theorem 4.1.
A curve c ∈ Csep(S) has a unique geodesic representative, which cuts S into a pair
of subsurfaces with totally geodesic boundary. We obtain a partition f (c) of Q
into two parts according to the subsurfaces these points lie in. Identifying Q with
the underlying set of the Kneser graph KG(12k), we obtain a map f : Csep(S)→
KG(12k).
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Figure 2. (a) A right-angled hexagon H and distinguished geodesics in D2.
(b) Two ideal quadrilaterals and three reflections of H .

We claim that f is a homomorphism. If c, d ∈ Csep(S) are adjacent, then
they can be realized by disjoint, simple closed geodesics in S. The complement
S r c ∪ d consists of three components with totally geodesic boundary. Since
the curves are essential and not parallel, each component has negative Euler
characteristic. By Theorem 4.1, each subsurface contains points of Q, and it
follows that f (c) and f (d) are nested. Therefore, f is a homomorphism, as
claimed. Theorem 2.5 and the monotonicity of the chromatic number under
homomorphisms now lead to the stated upper bound.

For the lower bound, embed a planar surface Σ = Σg+b into S so that each
component of ∂Σ either bounds a subsurface S1

1 ⊂ S or is a component of ∂S.
Every essential curve in Σ is essential and separating in S, and distinct curves
in Σ are distinct in S. The embedding Σ ↪→ S therefore induces an embedding
C(Σ) ↪→ Csep(S), and Theorem 3.1 gives the desired lower bound.

We now develop the proof of Theorem 4.1 through a sequence of lemmas in
hyperbolic geometry. Roughly speaking, we apply a geometric limiting argument
in which the curves in a pants decomposition get pinched. For background on
hyperbolic geometry, see [Bus92, Ch. 1 & 3] and [FM11, Sections 10.5–6].

We work in the Poincaré disk model D of the hyperbolic plane. Fix three ideal
points p1, p2, p3 ∈ ∂D. Consider a right-angled geodesic hexagon H ⊂ D that is
invariant under the symmetries of D permuting the points pi . Extend the side of H
closest to pi to a complete geodesic ∂i , and label its side with endpoints on ∂i and
∂ j by gi j . Let ∂ ′i denote the reflection of ∂i across g jk , where {i, j, k} = {1, 2, 3},
and let gi i denote the geodesic arc through the origin and perpendicular to ∂i with
endpoints on ∂i and ∂ ′i . See Figure 2(a).
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By Poincaré’s Polyhedron theorem, the reflections across the sides gi j of H
generate a subgroup Γ < Isom(D), and the images of H under the action by Γ
tesselate a simply connected, convex region P̃ ⊂ D (see [Bea83, Section 9.8]).
For 1 6 i 6 j 6 3, let Qi j ⊂ P̃ denote the interior of the ideal quadrilateral
determined by the boundary components of P̃ containing the endpoints of gi j .
See Figure 2(b).

LEMMA 4.2. The images of H ∩ Qi j under the reflection group Γ cover Qi j .

Proof. Let σ and σ ′ denote the sides of Qi j interior to P̃ , with σ chosen
to intersect H . Moving along σ from the interior of H to the ideal point of
intersection between σ and ∂i , we encounter a sequence of edges s1, s2, . . . in
the tesselation of P̃ . The geodesic triangle ∆ ⊂ Qi j bounded by ∂i , σ , and s1 is
tesselated by quadrilaterals Qn , n > 1, where Qn is bounded by sn, σ, sn+1, and
∂i . Let rn denote the reflection in the side sn . For n > 2, observe that rn(Qn) is
the quadrilateral bounded by sn, rn(σ ), sn−1, and ∂i . The geodesic rn(σ ) passes
through the point of intersection between σ and sn and limits to the ideal point of
intersection between ∂i and σ ′, and the portion of rn(σ ) between these two points
is contained in Qi j by convexity. It follows that rn(Qn) ⊂ Qn−1 for all n > 2.
Furthermore, r1(Q1) is contained in Qi j ∩ H by similar reasoning. It follows that
the images of Qi j ∩ H under the elements rn · · · r1 ∈ Γ , n > 1, cover ∆. Let k
and l denote the unique values so that {i, j} and {k, l} partition the set {1, 2, 3}.
The region Qi j is the union of Qi j ∩ H , its image under the reflection across gi j ,
and the images of ∆ under the four elements generated by the reflections across
the orthogonal sides gi j and gkl . The statement of the Lemma now follows with
the additional observation that gi iΓ gi i = Γ for i ∈ {1, 2, 3}.

Let ` > 0 denote the common length of the sides of H contained in the
∂i . Observe that we obtain a one-parameter family of hexagons H as above by
varying the value ` ∈ R+.

LEMMA 4.3. As `→ 0, the complement of the Qi j in H consists of six pairwise
disjoint geodesic triangles whose angles limit to (π/2, π/3, 0).

Proof. The endpoints of ∂i are continuous functions of `, and they converge to pi

as `→ 0. Therefore, as `→ 0, the Qi j converge to complete geodesics G i j and
H converges to the ideal triangle ∆ with vertices p1, p2, p3, where convergence
is in the Hausdorff metric with respect to the Euclidean metric on D. Observe that
the complement of the G i j in ∆ is the union of six (π/2, π/3, 0)-triangles.
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Let C = Hr ∪ Qi j . From the preceding paragraph, it follows that C has six
connected components for small values of `. Notice that the gi i partition H into
six regions that each intersects exactly three of the Qi j and that each region
contains a component of C . It follows that each component of C is a geodesic
triangle, and as `→ 0, its angles converge to those of its limiting triangle.

The subgroup Γ0 = Γ ∩ Isom+(D) has index two in Γ . The quotient P = P̃/Γ0

is homeomorphic to a pair of pants S3
0 , and the quotient map f : P̃ → P is its

universal covering. The map f endows P with a hyperbolic structure in which
each boundary component f (∂i) is totally geodesic and has length 2`.

LEMMA 4.4. Every properly embedded, simple geodesic arc in P is contained in
the image under f of the Qi j .

Proof. Let ai j ⊂ P denote a properly embedded, simple geodesic arc that has
one endpoint on f (∂i) and the other on f (∂ j). The projection f (gi j) is a properly
embedded, simple geodesic arc isotopic rel. f (∂i), f (∂ j) to ai j . The isotopy from
f (gi j) to ai j lifts to an isotopy from gi j to a lift ãi j ⊂ P̃ . In particular, ãi j is a
geodesic arc with endpoints on the same boundary components of P̃ as gi j . It
follows that ãi j ⊂ Qi j . Therefore, ai j = f (ãi j) ⊂ p(Qi j), as required.

PROPOSITION 4.5. As `→ 0, the complement of the properly embedded, simple
geodesic arcs in P contains 12 pairwise disjoint geodesic triangles whose angles
limit to (π/2, π/3, 0).

Proof. Any reflection in Γ r Γ0 descends to the same order-two, orientation-
reversing isometry r : P → P . The covering map f is a homeomorphism from
H onto its image, and f (H) and r( f (H)) tesselate P . The image of the Qi j under
f is the image of the Qi j ∩ H under p and its reflection under r , by Lemma 4.2.
The 12 triangles are then the images under f , and their reflections under r , of the
6 triangles in Lemma 4.3. They lie in the complement of the properly embedded,
simple geodesic arcs in P by Lemma 4.4.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Choose a pants decomposition S = P1∪· · ·∪Pk . Fix ` > 0
and place a hyperbolic structure on S so that each boundary component of each
Pi has length `. Every simple closed geodesic in S intersects each Pi in a union
of disjoint simple proper arcs or in a boundary component. By Proposition 4.5,
as ` → 0, the set of simple closed geodesics in S is disjoint from a set of 12k
pairwise disjoint geodesic triangles ∆1, . . . , ∆12k , 12 in each Pi , with the area of
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each ∆i limiting to π/6, the area of a (π/2, π/3, 0)-triangle. It follows in turn
that the complement of the ∆i has area limiting to 0 as Area(S) = 2πk. Thus,
for ` chosen suitably small, the area of a subsurface F ⊂ S with totally geodesic
boundary must equal to within 0.5, say, of π/6 times the number of the ∆i that it
contains. On the other hand, Area(F) = −2πχ(F) by the Gauss–Bonnet formula,
which is an integral multiple of π/6. It follows that Area(F) equals to exactly π/6
times the number of the ∆i that it contains. To finish the proof, let Q consist of a
single point from each ∆i .

5. The graph of homologous curves

The goal of this section is to study the chromatic number of the subgraph
of C(S) induced on curves that can be oriented to represent a fixed nonzero
homology class. The main theme is that this subgraph has a unique minimal
coloring, which can be expressed in terms of genera of immersed surfaces.
Section 5.1 treats the case of coloring a closed surface. Section 5.2 recasts this
coloring in terms of domains, which is critical for the material of Section 6.
Section 5.3 applies the coloring to establish the upper bound on χ(C(Sg)) stated
in Theorem 1.5. Section 5.4 establishes the uniqueness of the minimal coloring in
the case of a closed surface. Finally, Section 5.5 treats the case of a surface with
boundary.

5.1. The chromatic number of Cv(Sg). Let v ∈ H1(Sg;Z) denote a nonzero
primitive element, and let Cv(S) denote the subgraph of C(S) induced on the
curves that can be oriented to represent v. The main result of this subsection is:

THEOREM 5.1. χ(Cv(Sg)) = ω(Cv(Sg)) = g − 1.

REMARK 5.2. Although its clique number and chromatic number are equal, the
graph Cv(Sg) is typically not perfect: not all of its induced subgraphs have this
property. Figure 3(a) displays an induced five-cycle in Cv(Sg) for g > 6.

The idea behind the proof of Theorem 5.1 is simple, but it takes some work to
establish, which we bundle into a few Lemmas in covering space theory. Suppose
that c and d are homologous, oriented, simple closed curves in Sg. Define an
immersion (of genus h) from c to d to be an orientation-preserving immersion i
from an oriented surface S2

h to Sg that maps one boundary component, oriented as
∂S2

h , injectively to −c and the other to d .
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Figure 3. Subgraphs of Cv(S6).

LEMMA 5.3. There exists an immersion between any pair of homologous,
oriented, nonseparating simple closed curves on Sg.

The proof of Lemma 5.3 relies on a construction of the infinite cyclic cover
(S, pv) corresponding to the epimorphism ι(v,−) : H1(Sg;Z) → Z, where
v ∈ H1(Sg;Z) denotes a nonzero primitive class. It is reminiscent of, but simpler
than, the construction of the infinite cyclic cover of a knot exterior. Let c be an
oriented simple closed curve representing v. Cut open Sg along an open regular
neighborhood of c to form the surface SrN (c) ≈ S2

g−1, whose oriented boundary
consists of two components, labeled c+ and c−. Form (SrN (c))×Z, and identify
c+ × {n} with c− × {n + 1} by an orientation-reversing homeomorphism for all
n ∈ Z. The resulting quotient space is S∞, and it comes equipped with a covering
map pc.

LEMMA 5.4. The covering spaces (S∞, pc) and (S, pv) are isomorphic.

Proof. By construction, (S∞, pc) is a regular cover of Sg with deck transformation
group Z. Consequently, it corresponds to some epimorphism ϕ : H1(Sg;Z)→ Z.
To identify ϕ, complete c to a geometric symplectic basis c = a1, b1, . . . , ag, bg

for Sg, that is a collection of simple closed curves such that the only pairwise
intersections between these curves are a single transverse point of intersection
between ai and bi for each i = 1, . . . , g. By construction, each of these basis
curves lifts to a simple closed curve in S∞ with the exception of b1. Therefore, ϕ
vanishes precisely on the subspace of H1(Sg;Z) spanned by [a1], [a2], [b2], . . . ,

[ag], [bg]. This subspace is ker ι(v,−), so ϕ = ι(v,−), and the statement of the
lemma follows.
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Proof of Lemma 5.3. Suppose that c and d are simple closed curves that represent
the class v ∈ H1(Sg;Z), v 6= 0. Let (S∞, pv) denote the corresponding infinite
cyclic cover. Fix a lift c̃ to S∞ by Lemma 5.4, and let t denote a generator
of the deck transformation group. By the construction of (S∞, pv) justified in
Lemma 5.4, the lift c̃ separates S∞ into two components S±

∞
(̃c), labeled so that

t · S+
∞
(̃c) ⊂ S+

∞
(̃c). Since [d] = v, the same remarks apply to d as well. In

particular, we can choose a lift of d to a simple closed curve d̃ contained in S+
∞
(̃c);

in particular, c̃ ∩ d̃ = ∅. The curve d̃ separates S∞ into two components S±
∞
(d̃),

labeled so that t · S+
∞
(d̃) ⊂ S+

∞
(d̃). The lifts −c̃ and d̃ cobound the compact

subsurface T = S+
∞
(̃c) ∩ S−

∞
(d̃), and T ≈ S2

h for some h > 0. The desired
immersion i is the restriction of the covering map pv to T .

LEMMA 5.5. Any two immersions between a pair of nonseparating simple closed
curves on Sg have the same genus (mod g − 1), and this value depends only on
the isotopy classes of the curves.

Proof. Suppose that c and d are homologous simple closed curves on Sg and
we have an immersion i1 : S2

h1
→ Sg from c to d . There exists an immersion

i2 : S2
h2
→ Sg from d to c as well by Lemma 5.3. Select an orientation-reversing

diffeomorphism ϕ : ∂S2
h1
→ ∂S2

h2
so that i2 = i1◦ϕ on ∂S2

h2
. Glue the two surfaces

using ϕ to obtain an immersion i : Sh1+h2+1→ Sg. As the immersion is a covering
map, the Euler characteristic of the base divides that of the cover, leading to the
congruence h1 + h2 ≡ 0 (mod g − 1). In particular, the genus of any immersion
from c to d is congruent to the fixed value −h2 (mod g − 1). The fact that this
value depends only on the isotopy classes of c and d follows by an easy argument
using the isotopy extension principle.

Proof of Theorem 5.1. We build a clique of size g − 1 in Cv(Sg) by cyclically
gluing together g − 1 copies of the surface S2

1 along their boundaries and taking
the images of the boundary curves. See Figure 3(b).

We obtain an optimal coloring f : Cv(Sg) → Z/(g − 1)Z as follows. Fix an
oriented simple closed curve c ⊂ S representing the class v. Given an oriented
simple closed curve d ⊂ S that also represents v, there exists an immersion from
c to d , by Lemma 5.3. Its genus h (mod g − 1) depends only on the isotopy
type of d , by Lemma 5.5. We may therefore unambiguously define f (d) ≡ h
(mod g − 1).

To show that the coloring f is proper, suppose that d1 and d2 are disjoint simple
closed curves that represent the class v. Thus, there exists a subsurface T ⊂ S
with oriented boundary d2 − d1 and genus 0 < t < g − 1. Stacking T onto an
immersion i : S2

h → S from c to d1 gives an immersion from c to d2 of genus
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h + t 6≡ h (mod g − 1). It follows that f (d1) 6= f (d2), so the coloring is proper,
as desired.

5.2. Domains. The coloring f described in the proof of Theorem 5.1 admits
an alternate description in terms of domains on S that we will make use of in
Section 6 (see Lemmas 6.1 and 6.2). Domains and their combinatorial Euler
measures recur throughout Heegaard Floer homology; see [Sar11, Section 2] for
a quick, thorough treatment. In our setting, this description allows us to compute
f directly on S, without passing to the cover S∞.

As in the proof of Theorem 5.1, fix an oriented simple closed curve c that
represents v, and choose another oriented simple closed curve d that also
represents v. Position c and d to meet transversely. The complement S − c − d
consists of a number of connected components whose closures are called regions.
The classes of the regions form a basis for H2(S, c ∪ d;Z). An element of this
group is called a domain on (S, c ∪ d). The neighborhood of each intersection
point in c ∩ d contains four corners. For each region R, let e(R) denote the
Euler characteristic of its interior and c(R) its number of corners. We define
the combinatorial Euler measure of a region R by m(R) = e(R) − c(R)/4.
Its definition extends to domains by linearity. Since c and d are homologous,
there exists a domain D with ∂D = d − c. The domain is well defined up to
multiples of [S] =

∑
R[R]. It follows that the value m(D) is well-defined modulo

m([S]) = e(S) = −2(g − 1). Define f ′(d) = − 1
2 m(D) (mod g − 1).

PROPOSITION 5.6. The maps f and f ′ are equal.

Proof. Choose a curve d representing the class v. Choose disjoint lifts c̃ of c and
d̃ of d to S∞, and let Σ ⊂ S∞ be the compact subsurface with ∂Σ = d̃ − c̃, as in
the proof of Lemma 5.3. The projection pv(Σ) gives a domain in (S, c ∪ d) with
boundary d − c. We have f (d) ≡ g(Σ) = − 1

2 m(Σ) = − 1
2 m(pv(Σ)) ≡ f ′(d)

(mod g − 1), using the additivity of m in the third equality.

As a corollary to Proposition 5.6, the definition of f ′ descends to isotopy
classes of curves. We could instead establish this fact directly from the definition
of f ′ and an application of the bigon criterion. We could also base a proof of
Theorem 5.1 on the definition of f ′ instead of f . In particular, f ′ is a proper
coloring, although it is less immediate from its definition that it only takes integer
values and not just half-integer values, which is required to see that it is a proper
(g − 1)-coloring and not just a proper 2(g − 1)-coloring.

REMARK 5.7. Domains and their combinatorial Euler measures behave well
under refinement, an observation we shall require in the proof of Lemma 6.1.
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Figure 4. The sum of the shaded regions, weighted according to labels, form a
domain whose boundary is d − c. As its combinatorial Euler measure is −6 ≡ 0
(mod 2), c and d have the same color.

Suppose that Γ ⊂ S is a union of simple closed curves that contains c and d , meet
transversely, and only have double points of intersection. We can define domains
on (S, Γ ) and their combinatorial Euler measures just as above. Suppose that
D′ =

∑
n′i [R

′

i ] is a domain on (S, Γ )with ∂D = d−c. Each region R j of S−c∪ d
is a union of regions R′i of S − Γ for i in some index set I j , and the coefficients
n′i , i ∈ I j , are equal to some constant value n j . We thereby obtain a domain
D =

∑
n j [R j ] on (S, c ∪ d) with ∂D = d − c. Linearity of the combinatorial

Euler measure under taking unions ensures that m(D) = m(D′). For this reason,
given homologous curves c and d belonging to Γ ⊂ S, we get a single well-
defined value m(D) (mod g− 1) for a domain D from c to d , independent of the
other curves in Γ . Furthermore, we may add domains corresponding to different
sets of curves Γ1 and Γ2 on S by passing to the union Γ1 ∪ Γ2.

REMARK 5.8. In a slightly different guise, the map f ′ was considered by Irmer: it
is twice the signed length from the chosen basepoint c ∈ Cv(S) [Irm15, Lemma 3].
We note that Irmer’s description of the computation of f ′(d) requires a path from
c to d in a certain subgraph of Cv(Sg), whereas ours requires only a realization of c
and d and the domain they cobound. For instance, for the curves c and d pictured
in Figure 4, f ′(d) ≡ 0. In particular, c and d are curves of the same color.

REMARK 5.9. Given the difference between the orders of growth of the
chromatic numbers of Csep(S) and Cv(S), v 6= 0, the reader may wonder how the
(g − 1)-coloring of Cv(S) fails for v = 0. For example, even when g = 3, we
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have ω(Csep(S3)) = 3 > 2 = χ(Cv(S3)), v 6= 0. The issue is explained in part by
the fact that Lemma 5.3 fails in this setting: there does not exist a consistent way
to orient the separating curves so that there exists an immersion between any two,
as the reader may check on a maximum clique in Csep(S3). Moreover, there exist
domains of Euler measure 0 cobounded by disjoint oriented separating curves:
take the image of an injective immersion S1

1 t S1
1 → Sg, g > 3, that reverses

orientation on one component.

5.3. The upper bound χ(C(Sg)) . g · 4g . In this subsection, we use
Theorem 5.1 to obtain the upper bound in Theorem 1.5. First, we extend
Theorem 5.1 to the graph Cv(Sg) induced on curves that can be oriented to
represent a fixed nonzero primitive homology class v ∈ H1(Sg;Z/mZ), where
m > 1 is a positive integer.

PROPOSITION 5.10. χ(Cv(Sg)) = g − 1.

Proof. Let V ⊂ H1(Sg;Z) denote the set of elements that reduce to v (mod m).
If c and d are disjoint representatives of v, then they cobound a subsurface
of Sg, so they represent the same element v ∈ V . (Recall that an unoriented
curve represents v if some orientation of it does.) It follows that Cv(Sg) is the
disjoint union of the induced subgraphs Cv(Sg), v ∈ V . The (g − 1)-coloring
Cv(Sg)→ Z/(g−1)Z described in the proof of Theorem 5.1 depends on a choice
of representative cv ∈ Cv(Sg) for each v ∈ V . A priori, the simultaneous existence
of these representatives depends on the axiom of (countable) choice. However,
we can remove this dependence as follows. Meeks and Patrusky establish an
algorithm to produce a curve cv representing the class v [MP78, Section 1]
(see also [FM11, Proposition 6.2]). The algorithm depends on a fixed choice of
geometric symplectic basis for Sg and finitely many paths in Sg, and these choices
are independent of v. Taking the representative cv of v output by the algorithm
for all v ∈ V produces the desired explicit set of representatives. Their existence
produces a simultaneous proper (g−1)-coloring of all Cv(Sg), v ∈ V , whence the
desired proper (g − 1)-coloring of Cv(Sg).

Recall the subgraph N (Sg) of C(Sg) induced on the nonseparating curves.

COROLLARY 5.11. χ(N (Sg)) 6 (g − 1) · (22g
− 1).

Proof. Give each subcomplex Cv(Sg), v ∈ H1(Sg;Z/2Z)r {0}, a proper (g − 1)-
coloring by Proposition 5.10, using a different color pallette for each. As there are
22g
− 1 elements in H1(Sg;Z/2Z)r {0}, the stated bound follows.
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Recall Theorem 1.5:

THEOREM 1.5. g · log g . χ(C(Sg)) . g · 4g.

Proof of Theorem 1.5. Immediate from Theorem 1.3 and Corollary 5.11.

5.4. Unique colorability of Cv(S). A graph is uniquely k-colorable if it
admits a proper k-coloring and any two proper k-colorings are related by a
bijection between the color sets. In other words, the graph admits a unique
partition into k independent sets. We establish the following complement to
Theorem 5.1:

THEOREM 5.12. Cv(Sg) is uniquely (g − 1)-colorable.

Let S = Sb
g , g > 1, b ∈ {0, 2}. If b = 0, let v ∈ H1(S;Z) denote a primitive,

nonzero class, and if b = 2, let v denote the peripheral class. Recall the maximal
clique graph K(C) of an arbitrary finite-dimensional simplicial complex C, whose
vertices consist of the maximal simplices in C, and where two maximal simplices
are adjacent if they meet in a codimension-1 face.

PROPOSITION 5.13. K(Cv(S)) is connected.

Proof. First, suppose that b = 2. We show that K(Cv(S)) is connected in this
case using Putman’s technique [Put08, Lemma 2.1]. Since v is the peripheral
class, the mapping class group PMod(S) acts on K(Cv(S)), and by the change
of coordinates principle (see [FM11, Section 1.3]), it does so transitively. Next,
consider Figure 5. The Dehn twists about the red curves shown there constitute the
Humphries generating set for PMod(S2

g−1) [FM11, Figure 4.10]. The blue curves
shown there constitute a maximal simplex K in Cv(S). Observe that each red curve
meets at most one blue curve, and the algebraic intersection number between any
red and blue curve is 0. It follows that a Humphries generator either preserves K
or moves it to another maximal simplex that meets K in a codimension-1 face.
Therefore, [Put08, Lemma 2.1] applies to show that K(Cv(S)) is connected.

Next, suppose that b = 0. If g = 1, then Cv(S) is a single vertex. If g = 2, then
Cv(S) has no edges, so the maximal simplices are its vertices. Any two vertices
meet in a codimension-1 (empty) face, so K(Cv(S)) is an infinite complete graph
on Cv(S). The desired result is trivial in either case. Suppose then that g > 3.
Choose a pair of maximal simplices K and K ′ in Cv(S), a curve c in K , and a curve
c′ in K ′. As Cv(S) is connected [Put08, Theorem 1.9], there exists a path c = a1,

a2, . . . , an = c′ in Cv(S) connecting c and c′. Thus, there exists a maximal simplex
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Figure 5. The surface S2
g . The Dehn twists about the solid red curves are

Humphries generators for PMod(S2
g). The dashed blue curves comprise a maximal

simplex in Cv(S2
g), where v denotes the peripheral homology class.

Ki containing ai and ai+1 for all i = 1, . . . , n − 1. Additionally, set K0 = K and
Kn = K ′. For all i , the link Lk(ai) is isomorphic to Cv′(S2

g−1), where v′ denotes the
peripheral class. Therefore, there exists a sequence of maximal cliques in Lk(ai),
beginning with Ki−1 ∩ Lk(ai) and ending with Ki ∩ Lk(ai), such that any two in
sequence meet in a codimension-1 face. Taking the joins of these simplices with
{ai} results in a path from Ki−1 to Ki in K(Cv(S)). The concatenation of these
paths is a path from K to K ′ in K(Cv(S)). Therefore, K(Cv(S)) is connected.

A simplicial complex is pure of dimension l if every simplex is contained in an
l-simplex. The proof of the following result is straightforward.

LEMMA 5.14. If a simplicial complex C is pure of dimension k − 1 and properly
k-colorable, and K(C) is connected, then C is uniquely k-colorable.

Proof of Theorem 5.12. Theorem 5.1 shows that χ(Cv(Sg)) = g − 1.
Proposition 5.13 shows that K(Cv(S)) is connected. Lemma 5.14 now gives
the desired result.

5.5. Surfaces with boundary. We now turn to the case of a surface with
boundary S = Sb

g , b > 1. We now permit v = 0 in defining Cv(S). More cases arise
due to the distinction of whether a separating homology class is null-homologous,
peripheral, or not. As with a closed surface, we find a qualitative difference
between v = 0 and v 6= 0. However, for each type of v, the growth of χ(Cv(S))
is governed solely by g and not by b (and hence not the Euler characteristic, in
contrast with Theorem 1.3).

THEOREM 5.15. χ(C0(Sb
g)) ∼ g · log g.
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Proof. Given c ∈ C0(S), let F(c) denote the component of S r c containing ∂S.
Let G0(S) denote the subgraph induced on the curves c for which F(c) has genus
0, and let G+(S) denote the subgraph on curves for which F(c) has positive genus.
Note that G0(S) is an independent set in C0(S), and it consists of precisely the
curves in C0(S) whose images are inessential under the inclusion i : S ↪→ Sg

obtained by capping off each component of ∂S by a disk. It follows that i induces
a map f : G+(S)→ Csep(Sg). If c and d span an edge in G+(S), then S r c ∪ d
consists of three components of positive genus, and the same is true of Sg r
f (c) ∪ f (d). It follows that f is a homomorphism. (However, f is typically not
injective: distinct curves in G+(S) related by a Dehn twist about a curve in G0(S)
will have the same image under f .) Since the chromatic number is monotone
under homomorphisms, it follows that χ(G+(S)) 6 χ(Csep(Sg)) ∼ g · log g, and
using one more color on G0(S) gives the required upper bound on χ(C0(S)).

For the lower bound, embed a planar surfaceΣg+1 ↪→ S so that one component
of ∂Σg+1 is in G0(S) and all of the others bound disjoint subsurfaces S1

1 ⊂ S. The
inclusion induces an embedding C(Σg+1) ↪→ C0(S), and Theorem 3.1 supplies
the lower bound.

THEOREM 5.16. For v 6= 0, b > 1, Cv(Sb
g) is uniquely t-colorable, where

t =


g − 1 if v is peripheral and b = 2;
g if v is nonseparating, or if v is peripheral and b > 2;
g + 1 if v is nonperipheral and separating.

Moreover, t = χ(Cv(Sb
g)) = ω(Cv(Sb

g)).

Proof. First, we describe the optimal coloring. For the case of a separating class v,
fix a boundary component ∂0 ⊂ ∂S, and color a curve c ∈ Cv(S) by the genus of
the subsurface of S r c containing ∂0. For the case of a nonseparating class v,
we adapt the coloring described in Theorem 5.1. Now the lifts c̃ and d̃ cobound
a compact subsurface T̃ ⊂ S∞ with some components of ∂S∞. We color d by
adding the genus of T̃ to the number of preimages of ∂0 in ∂ T̃ and reducing
(mod g). In each case, it is straightforward to check that the coloring so described
is proper, uses the stated number of colors, and that there exists a clique of the
stated size. Figure 6 displays a maximal clique in the last case. The proof of
unique colorability proceeds along the lines of Section 5.4 with minor changes,
using the generating set for PMod(Sb

g) displayed in [FM11, Figure 4.10].
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Figure 6. A (g + 1)-clique in Cv(Sb
g), v a nonperipheral separating class.

6. Permuting the colors and the Johnson homomorphism

Throughout this section, we restrict to the case of a closed surface S = Sg.
Because Cv(S) is uniquely (g − 1)-colorable, any automorphism of it must
permute the colors in a (g − 1)-coloring. We therefore obtain a homomorphism
from the automorphism group Aut(Cv(S)) to the symmetry group of the colors.
In this section, we investigate the restriction of this homomorphism to the Torelli
group, which arises as a subgroup of Aut(Cv(S)). As a result, we find a precise
relationship between the permutation of the colors and the well-studied Johnson
homomorphism. For background and references on the Torelli group and the
Johnson homomorphism, see [FM11, Sections 6.5–6.6] and [Put18].

6.1. The action of the Torelli group on the color classes. Set H = H1(S;Z),
let v ∈ H denote a primitive, nonzero class, and let I < Mod(S) denote the
Torelli group, the mapping classes that act trivially on H . Because I acts by graph
automorphisms of Cv(S), Theorem 5.12 implies that we obtain a homomorphism
χv : I → Sym(g − 1) that records the permutation of the colors in a (g − 1)-
coloring of Cv(S). Fix an orientation-preserving homeomorphism φ representing
a mapping class in I . Note that the coloring f : Cv(S)→ Z/(g − 1)Z produced
in Theorem 5.1 required the choice of a fixed oriented curve c ∈ Cv(S). The
following result shows that the permutation induced by φ does not depend on this
choice, and that it permutes the colors cyclically:

LEMMA 6.1. Let d be any oriented simple closed curve representing v ∈ H, and
let C(d, φ·d) be a domain satisfying ∂C(d, φ·d)= φ·d−d. Then the permutation
χv(φ) shifts every color by − 1

2 m(C(d, φ · d)) (mod g − 1).

Recall that m(C) denotes the combinatorial Euler measure of the domain C ,
introduced in Section 5.2. In the following proof, we rely on the discussion in
Remark 5.7 in order to treat domains in the presence of many curves on a surface.
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Proof. Fix an oriented curve c ∈ Cv(S). By Proposition 5.6, the coloring f :
Cv(S)→ Z/(g − 1)Z is given by

f (γ ) = − 1
2 m(C(c, γ )) (mod g − 1),

for any curve γ representing v and any domain C(c, γ ) satisfying ∂C(c, γ ) =
γ − c. Let C(γ, φ · γ ) be a domain with boundary φ · γ − γ , and note that
C(c, γ )+ C(γ, φ · γ ) is a domain with boundary φ · γ − c. Since m is additive,
it follows that

f (φ · γ )− f (γ ) = − 1
2 m(C(γ, φ · γ )) (mod g − 1). (6.1)

We wish to see that the right side equals − 1
2 m(C(d, φ · d)) (mod g − 1),

independent of γ . Choose a domain C(d, γ ) with boundary γ − d . Because φ
preserves Euler measure, the domain C(d, γ ) + C(γ, φ · γ ) − φ · C(d, γ ) has
Euler measure m(C(γ, φ · γ )). In addition, its boundary is φ · d − d . Therefore,
we have a domain C(d, φ · d) with boundary φ · d − d . Applying (6.1) with d in
place of γ gives

f (φ · d)− f (d) = − 1
2 m(C(d, φ · d)) (mod g − 1),

while m(C(d, φ · d)) = m(C(γ, φ · γ )) by construction. Therefore, we obtain the
desired identity, and φ acts as claimed on color classes.

By Lemma 6.1, we may record the homomorphism induced by the color
permutation by the value χv(φ) = 1

2 m(C(d, φ · d)) ∈ Z/(g− 1)Z, where [d] = v.
We thereby obtain a map χ(φ) : v 7→ χv(φ) defined on the primitive nonzero
classes v ∈ H .

LEMMA 6.2. The map χ(φ) extends to a homomorphism χ(φ) : H → Z/
(g − 1)Z.

Proof. The material of Section 5.2 concerning domains and their Euler measures
readily generalizes from oriented simple closed curves to multicurves, which need
not be simple. In particular, for a multicurve γ representing a 1-cycle in Z1(S;Z)
and an element φ ∈ I , there exists a domain C such that ∂C = γ − φ · γ . It is
well defined up to adding a multiple of [S], so we obtain a well-defined value
χ(φ)(γ ) = 1

2 m(C) (mod g − 1) as before. It is clear that χ(φ) is linear on
1-cycles, so it defines a homomorphism Z1(S;Z) → Z/(g − 1)Z. If γ is null-
homologous, then there exists a domain D such that ∂D = γ , so D − φ · D is a
domain with boundary γ − φ · γ , and we obtain

χ(φ)(γ ) = m(D − φ · D) = m(D)− m(φ · D) = 0.
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It follows that χ(φ) descends to a homomorphism H → Z/(g− 1)Z that extends
its definition on primitive classes, as desired.

Note that χ(φ) depends only on the mapping class of φ and that χ(φ ◦ ψ) =
χ(φ)+χ(ψ). Thus, we obtain a homomorphism χ : I → Hom(H,Z/(g− 1)Z)
that records the simultaneous permutation of the (g − 1)-colorings of all of the
graphs Cv(S). Since χ has abelian image, the knowledgeable reader may rightly
suspect that it factors through the Johnson homomorphism τ for g > 3. Indeed,
the kernel of τ is generated by Dehn twists about separating curves for g > 3
[Joh85], so it suffices to check that χ vanishes on these. Given a Dehn twist φ
about a separating curve c, choose a geometric symplectic basis for S disjoint from
c (see Lemma 5.4 for a reminder of the meaning of this term). Lemmas 6.1 and 6.2
demonstrate that χ(φ) is trivial by checking its action on this basis, certifying that
χ factors through τ . In the next subsection, we identify χ with a precursor to τ
(Theorem 1.6). We could conclude this result at once on the basis of Remark 5.8
and Irmer’s work on the relationship of signed stable length with τ [Irm15], but
we include more detail for completeness.

6.2. The coloring permutation and the Chillingworth homomorphism.
Chillingworth introduced the winding number of a regular closed curve around
a nonvanishing vector field and applied its study to Mod(S) [Chi72a, Chi72b].
Johnson broadened and clarified Chillingworth’s work, reworking the former’s
construction into the Chillingworth homomorphism t and showing that it
specializes the Johnson homomorphism τ [Joh80]. In the case of a closed
surface S, these maps take the forms

t : I → Hom(H,Z/(g − 1)Z) and τ : I → Hom(H,∧2 H)/j (H),

where j denotes a particular inclusion map. Basic properties of j and the algebraic
intersection pairing ι on H produce a map

ι : Hom(H,∧2 H)/j (H)→ Hom(H,Z/(g − 1)Z).

The Chillingworth and Johnson homomorphisms for a closed surface are then
related by the composition t = ι ◦ τ [Joh80, Theorem 2]. Johnson also computed
the image under t of the bounding pair maps [Joh80, Sections 5 & 6], which
generate I for g > 3. A bounding pair consists of a pair of disjoint, homologous
curves α and β, and a bounding pair map φα,β is the composition of a Dehn twist
about β and the inverse of a Dehn twist about α. Johnson’s result reads:
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Figure 7. The bounding pair α, β cuts off the subsurface Σ1, the domain C has
boundary φα,β ·δ−δ, and the curve δ satisfies χ[δ](φα,β) ≡ genus(Σ1) (mod g−1).

LEMMA 6.3. Suppose that α and β form a bounding pair and Sr(α∪β) consists
of components Σ1 and Σ2. The image under t of the bounding pair map φα,β is
given by t (φα,β)(v) = genus(Σ1) · ι(v, [α]) (mod g − 1).

Recall Theorem 1.6:

THEOREM 1.6. The color permutation homomorphism χ equals the
Chillingworth homomorphism t.

Proof. We follow Irmer’s line of argument [Irm15, Theorem 1]. The assertion
holds vacuously when g 6 2. Since I is generated by bounding pair maps for
g > 3 [Joh83], it suffices to check the assertion in this case on a bounding pair
map φα,β . Choose a geometric symplectic basis for S consisting of α, a curve δ
meeting α and β both once apiece, and all other curves disjoint from both α and β.
The fact that χ(φα,β) = t (φα,β) is immediate from Lemmas 6.1, 6.2, and 6.3.
Figure 7 displays the single nontrivial case.

As a corollary, we can recast the coloring of Cv(S) in terms of the Torelli
group and the Chillingworth homomorphism. Fix c ∈ Cv(S) and choose any
d ∈ Cv(S). Because I acts transitively on Cv(S), there exists some φd ∈ I so that
φd · c = d .

COROLLARY 6.4. The map d 7→ t (φd)(v) coincides with the (g − 1)-coloring
f : Cv(Sg)→ Z/(g − 1)Z.
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7. Arcs on planar surfaces

In this section, we obtain analogues of our results on curve graphs for arc
graphs. We specialize to the case of a planar surface Σ = Σn .

Let v ∈ H1(Σ, ∂Σ;Z/2Z) denote a nonzero relative homology class, and let
Av(Σ) denote the subgraph of A(Σ) induced on arcs that represent v. Note that v
is determined by the pair of (distinct) components of ∂Σ containing the endpoints
of any arc that represents it. Let AN (Σ) consist of the nonseparating arcs. Every
arc in AN (Σ) belongs to one of the

(n
2

)
isomorphic subgraphs Av(Σ). Similarly,

for a hole ∂ in Σ , let A∂(Σ) denote the subgraph of A(Σ) induced on arcs with
both endpoints on ∂ . Let Asep(Σ) consist of the separating arcs. Every arc in
Asep(Σ) belongs to one of the n isomorphic subgraphs A∂(Σ).

By analogy to Lemma 3.2 and with a slight adjustment to its proof, we have:

LEMMA 7.1. There exists a homomorphism f : Asep(Σn)→ KG(n).

Proof. Given an arc a ∈Asep(Σn), let ∂ denote the hole that contains its endpoints.
The surface Σn r a consists of two components, each of which contains at least
one hole of Σn . We obtain an induced partition of ∂Σn r ∂ into two nontrivial
parts, and we let f (a) be the partition of ∂Σn obtained by adding ∂ to the larger
part, breaking ties arbitrarily. If (a, b) ∈ Asep(Σn), then there are two cases to
check that f (a, b) ∈ KG(n), depending on whether a and b have endpoints on
the same hole or not. We leave the routine verification to the reader. It follows that
f defines the desired homomorphism.

Similarly, by analogy to Lemma 3.3, we have:

LEMMA 7.2. There exist embeddings a0 : CG(n − 1) ↪→ A∂(Σn) and a1 :

CG(n)r CG(n, 1) ↪→ AN (Σn).

Proof. For the first part, realize Σn as a round disk D with n − 1 evenly spaced
small holes ∂1, . . . , ∂n−1 near ∂D. For 1 6 i < j 6 n − 1, let a0(i, j) denote
a chord of D disjoint from these holes and that partitions them into two parts,
one of which consists of ∂i , . . . , ∂ j−1. See Figure 8. Note that the isotopy type of
a0(i, j) is well defined. Furthermore, a0(i, j) and a0(i ′, j ′) can be made disjoint
if and only if (i, j) and (i ′, j ′) are unlinked. It follows that a0 defines the desired
embedding.

For the second part, realize Σn as a sphere R2
∪ {∞} with n evenly spaced

small holes ∂1, . . . , ∂n around a circle. For 1 6 i < j 6 n, let a1(i, j) denote a
line segment with endpoints on ∂i and ∂ j . As in the first part, it follows that a1

defines the desired embedding.
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Figure 8. Four arcs in the image of a0. The pairs (1, j) and (2, 4) are linked for
j ∈ {2, 3}.

THEOREM 7.3. χ(Asep(Σn)) ∼ n log n.

Proof. The result follows from the sequence of homomorphisms

CG(n − 1)
a0
↪→ A∂(Σn) ↪→ Asep(Σn)

f
→ KG(n)

provided by Lemmas 7.1 and 7.2, as well as one more application of Theorem 1.1
and the monotonicity of chromatic numbers.

Doubling the surface Σn along its boundary results in a closed surface Sn−1.
Every arc a ∈ A(Σn) gets doubled to a curve d(a) ∈ C(Sn−1). If a′ is another
arc that represents the same (mod 2) relative homology class as a, then a and a′

can be simultaneously oriented so that they represent the same integral relative
homology class. A 2-chain with boundary a − a′ doubles to a 2-chain with
boundary d(a) − d(a′), where these curves inherit orientations from the arcs.
It follows that a (mod 2) relative class v represented by an arc a doubles to
a nonzero class w ∈ H1(Sn−1;Z), which is well defined up to sign. The map
d : A(Σn) → C(Sn−1) defines an embedding, and it restricts to an embedding
Av(Σn) ↪→ Cw(Sn−1).

THEOREM 7.4. χ(Av(Σn)) = ω(Av(Σn)) = n − 2, and Av(Σn) is uniquely
(n − 2)-colorable.

Proof. The embedding Av(Σn) ↪→ Cw(Sn−1) and Theorem 5.12 show that
Av(Σn) is (n − 2)-colorable. The proof of uniqueness follows the paradigm of
Section 5.4 once more. We realize Σn as an annulus with n − 2 equally spaced
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Figure 9. Half Dehn twists about the red curves on the left together with a rotation
by angle 2π/(n − 2) generate the annular braid group.

small holes. Let ∂i and ∂ j denote the boundary components of the annulus and let
v denote the class of arc with one endpoint on each of ∂i and ∂ j . The subgroup
Pi j < Mod(Σn) that fixes each of ∂i and ∂ j setwise is the annular braid group on
n−2 strands. It is generated by the n−2 swaps of consecutive holes by half Dehn
twists and the homeomorphism of Σn induced by rotation of the annulus through
the angle 2π/(n − 2) [KP02, Theorem 1]. Choosing the clique c0 ∈ K(Av(Σn))

given by n − 2 radial segments, we see that the image of c0 under each generator
lies in the same connected component of K(Av(Σn)) as c0. See Figure 9. As
Pi j acts transitively on vertices of K(Av(Σn)), Putman’s technique shows that
K(Av(Σn)) is connected. Finally, the complex Av(Σn) is pure of dimension n−3,
which also implies that ω(Σn) = n − 2. Lemma 5.14 closes the proof.

Recall Theorem 1.7:

THEOREM 1.7. n log n . χ(A(Σn)) . n3.

Proof of Theorem 1.7. The arc graph A(Σn) is the vertex-disjoint union of
Asep(Σn) and the

(n
2

)
subgraphs Av(Σn). The result now follows from the union

bound and Theorems 7.3 and 7.4.

REMARK 7.5. The order of growth of the upper bound in Theorem 1.7 is
dominated by the nonseparating arcs, so it is tempting to explore more
judicious colorings of nonseparating arcs of different types. Proposition 8.3
and Theorem 8.6 in the next Section take first steps in this direction.
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Figure 10. A schematic of the arcs V ⊂ A(Σ4).

8. The four-holed sphere

In this section, we study the arc graph of the four-holed sphere Σ4 and obtain
some exact results. Although we cannot pin down the exact value of χ(A(Σ4))

(Theorem 8.4), we determine the chromatic number of the subgraphs of A(Σ4)

induced on separating arcs (Proposition 8.2), nonseparating arcs (Proposition 8.3),
and nonseparating arcs with one endpoint on a fixed hole (Theorem 8.6).

LEMMA 8.1. χ f (A(Σ4)) > 22/3.

Proof. Identify Σ4 with the 2-skeleton of a regular tetrahedron in R3 with holes
placed at its vertices. Let V1 denote the arcs of Σ4 determined by the edges of
the tetrahedron. There are six reflections of Σ4, and each has a fixed point set
consisting of two arcs of Σ4. From this pair, one arc is in V1; let V2 consist
of the six other arcs of Σ4 determined by these six reflections. Let V3 consist
of the twelve (isotopy classes of) arcs of Σ4 determined by the intersection of
Σ4 with a plane passing through exactly one vertex of the tetrahedron. Finally,
consider the subgraph G induced on the vertex set V = V1 ∪ V2 ∪ V3. See
Figure 10.

Let I be a maximal independent set of G, and let ai = |I ∩ Vi | for i = 1, 2,
3. It is straightforward to check that (a1, a2, a3) ∈ {(1, 1, 0), (1, 0, 2), (0, 1, 2),
(0, 1, 4), (0, 2, 2), (0, 2, 3), (0, 3, 1), (0, 3, 3)}. A function f : V → R>0

satisfying f |Vi = ci , for i = 1, 2, 3, is a fractional clique if (c1, c2, c3) · (a1, a2,

a3) 6 1 for all (a1, a2, a3) as above. Thus, taking c1 = 7/9, c2 = 2/9, c3 = 1/9
yields a fractional clique of total value

∑
ci |Vi | = 6c1 + 6c2 + 12c3 = 22/3, and

the lemma follows.

PROPOSITION 8.2. χ(Asep(Σ4)) = ω(Asep(Σ4)) = 3.
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Proof. Mark one of the holes. One of the components in the complement of
a separating arc a contains a single hole of Σ4. If it is not marked, let c(a)
denote this hole; if it is, let c(a) denote the hole containing the endpoints of a.
This function c defines a proper 3-coloring, and it is easy to locate a clique of
size 3.

PROPOSITION 8.3. χ(AN (Σ4)) = ω(AN (Σ4)) = 6.

Proof. Write ∂Σ4 = ∂1 ∪ ∂2 ∪ ∂3 ∪ ∂4. Let Ai j(Σ4) denote the subgraph induced
on arcs with one endpoint on ∂i and the other on ∂ j . Note that an arc in
A12(Σ4) is disjoint from a unique arc in A34(Σ4). Fix such a pair (a12, a34).
Using Theorem 7.4, 2-color both of A12(Σ4) and A34(Σ4) so that a12 and a34

get opposite colors. One checks that any arc in A12(Σ4) gets the opposite color
from the unique arc that it is disjoint from in A34(Σ4). Thus, we obtain a proper
2-coloring of the subgraph induced on A12(Σ4) ∪ A34(Σ4). Copy this coloring
onto the other two subgraphs corresponding to the partitions of the holes into two
pairs, using a different palette for each. The result is the desired 6-coloring. The
arcs in V1 described in the proof of Lemma 8.1 form a clique of size 6.

THEOREM 8.4. 8 6 χ(A(Σ4)) 6 9.

Proof. Immediate from Lemma 8.1 and Propositions 8.2 and 8.3.

As a first step toward improving the upper bound in Theorem 1.7, it is possible
to color a subcomplex of the nonseparating arcs with fewer colors than those used
above. Let A′ ⊂ A(Σ4) denote the subcomplex induced on arcs with exactly one
endpoint on a fixed hole ∂i , and note that six colors are used to color A′ in the
coloring of Proposition 8.3. We demonstrate in Theorem 8.6 that four suffice.

We begin by relating A′ to C(Σ4). By definition, a simplex in C(Σ4) consists of
curves with pairwise minimal intersection number 2. There exists a well-known
isomorphism between the complex C(Σ4) and the Farey complex F [FM11,
pp. 94–95]. The vertex set of F is P1(Z2), the set of lines in Z2. Given a pair
of lines L1, L2 ∈ P1(Z2), let d(L1, L2) denote the index in Z2 of the subgroup
generated by their elements. The edge set of F consists of all pairs (L1, L2)

satisfying d(L1, L2) = 1. It is a flag complex, and it is pure of dimension 2. The
group PSL(2,Z) acts on P1(Z2) and by extension on F .

Form the pure, 3-dimensional supercomplex F ′ ⊃ F whose 3-simplices are the
unions of the 2-simplices in F that share a common edge. Given (L1, L2) ∈ E(F),
with L i generated by xi ∈ Z2, there exist two maximal simplices in F containing
(L1, L2), and they take the form (L1, L2, L±), where L± is generated by x1 ± x2.
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It follows that d(L+, L−) = 2. Thus, for every edge (L , L ′) ∈ E(F ′), we have
d(L , L ′) ∈ {1, 2}. Observe that PSL(2,Z) extends to an action on F ′.

PROPOSITION 8.5. A′ ≈ F ′.

Proof. An arc in A′ is disjoint from a unique curve in C(Σ4), and vice versa. In
this way, we obtain a natural bijection between the vertex sets of these complexes.
Moreover, disjoint arcs in A′ on different endpoint pairs correspond to curves in
C(Σ4) with minimal geometric intersection number 2, and vice versa. It follows
that F ≈ C(Σ4) naturally embeds as a subcomplex of A′. The 2-simplices of A′
contained in F are spanned by triples of pairwise disjoint arcs in A′ on different
pairs of endpoints. Given two such 2-simplices that share a common edge, the pair
of vertices in these simplices not on the shared edge are disjoint arcs in A′ with
the same pair of endpoints. Therefore, the four vertices in the union of these 2-
simplices span a 3-simplex in A′. It follows that F ′ ⊂ A′. Conversely, a maximal
simplex σ ⊂ A′ consists of four pairwise disjoint arcs, precisely two of which
have the same endpoint pair. Thus, it contains two 2-simplices in F that meet
along an edge, so σ ⊂ F ′. It follows that A′ ⊂ F ′, and the proof is complete.

Recall that for a positive integer n, the congruence subgroup Γ (n) ⊂ PSL(2,Z)
is the kernel of the natural epimorphism PSL(2,Z)→ PSL(2,Z/nZ) obtained by
reducing (mod n).

THEOREM 8.6. χ(A′) = χ(F ′) = 4. Moreover, the Γ (3)-orbits under the action
by PSL(2,Z) on P1(Z2) comprise the color classes in a proper 4-coloring of F ′.

Proof. Since F ′ is 3-dimensional, χ(F ′) > 4 follows at once. Next, map a line
in P1(Z2) to its (mod 3) reduction in P1((Z/3Z)2). Observe that P1((Z/3Z)2)
consists of four lines. Given an edge (L1, L2) ∈ E(F ′), d(L1, L2) is relatively
prime to 3, so the subgroup generated by the elements of L1 and L2, reduced
(mod 3), is all of (Z/3Z)2. In particular, L1 and L2 reduce to distinct lines
(mod 3). Therefore, the (mod 3) reduction map defines a proper 4-coloring of F ′,
and χ(F ′) = 4, as desired.

Next, the transitive action by PSL(2,Z) on F ′ permutes the color classes under
the 4-coloring f just described. Let g ∈ PSL(2,Z) and select a line L ∈ P1(Z2).
We have f (g ·L) = g · f (L), where g ∈ P SL(2,Z/3Z) denotes the reduction of g
(mod 3). It follows that the subgroup of PSL(2,Z) that preserves the color classes
consists of those group elements g for which g fixes all lines in (Z/3Z)2. Such
an element g is represented by a diagonal matrix in SL(2,Z/3Z), which forces
g = ±I . Therefore, the color-preserving subgroup of PSL(2,Z) is precisely Γ (3),
which completes the proof.
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Figure 11. The octahedron and four bisecting circles, colored solely for visual aid.

In the language of this proof, the unique 3-coloring of F comes by mapping
each line to its (mod 2) reduction; the color classes are the Γ (2)-orbits.

9. The genus two surface

In this section, we study the chromatic number of the curve graph of the closed
surface of genus two and prove Theorem 1.8:

THEOREM 1.8. χ(N (S2)) = 4 and χ(C(S2)) = 5.

We first consider a pair of finite graphs that we use to obtain the required
lower bounds. We then apply a homomorphism out of N (S2) defined using
hyperbolic geometry in order to obtain the required upper bounds. This
homomorphism admits an alternative description in terms of homology, as
we show in Proposition 9.2.

Consider the octahedron O and the four circles appearing in Figure 11. The
four circles separate the four pairs of antipodal faces in O . Let E denote the set
of edges of O and C the set of circles. Let C denote the graph with vertex set
E ∪ C , where adjacency connotes disjointness; edges with a common endpoint
are not disjoint. Let N denote the subgraph of C induced on E . Thus, N is the
complement of the line graph of O .

PROPOSITION 9.1. χ(N ) = 4 and χ(C) = 5.

Proof. The fact that χ(N ) = 4 is well known. We obtain χ(C) 6 5 by properly
4-coloring N and giving every circle a common fifth color. It is straightforward to
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check that an independent set in C contains at most four elements, with equality if
and only if they are four edges meeting at a vertex or four circles. As |E∪C | = 16,
if there were a 4-coloring of C, then each color class must contain four elements.
Thus, one color class must consist of four circles, so the remaining ones induce a
3-coloring of N , a contradiction. Thus, χ(C) > 5, completing the proof.

Proof of Theorem 1.8. Place a hyperbolic structure on S2. It admits a unique
hyperelliptic involution J with six fixed points (see the discussions following
[FM11, Theorem 3.10 & Proposition 7.15]). Every nonseparating geodesic α⊂ S2

meets Fix(J ) in precisely two points [MRT14, Proposition 2.3]. This result
follows at once from [HS89, Theorem 1], according to which J (α) = α and J
reverses the orientation on α: it follows that J |α is a reflection, so it has two fixed
points. Clearly, disjoint nonseparating geodesics must meet Fix(J ) in distinct
pairs of points. Therefore, the assignment of a nonseparating geodesic to the pair
of points it meets in Fix(J ) defines a homomorphism h : N (S2) → KG(6, 2).
Since χ(KG(6, 2)) = 4, h induces a proper 4-coloring of N (S2). Any two curves
in Csep(S2) intersect, so giving them a common fifth color leads to a proper 5-
coloring of C(S2). Thus, we obtain the required upper bounds χ(N (S2)) 6 4 and
χ(C(S2)) 6 5.

Next, form the double cover of the two-sphere branched along the six vertices
of O . The result is a surface homeomorphic to S2. The edges in E lift to
nonseparating curves, and the circles in C lift to separating curves. The subgraph
of C(S2) induced on their lifts is isomorphic to C, while the subgraph induced
on the lifts of E is isomorphic to N , leading to the required lower bounds
χ(N (S2)) > 4 and χ(C(S2)) > 5.

We now turn to a nongeometric description of the map h. The (mod 2)
intersection pairing ι̂ equips H1(Sg;F2) with the structure of a symplectic
vector space. Let G2g denote the graph with vertex set the nonzero elements of
H1(Sg;F2), where two distinct elements span an edge if they are orthogonal with
respect to ι̂. There exists a natural map f : N (Sg)→ G2g assigning a curve to its
(mod 2) homology class. This map is a relative of the natural homomorphism
C(Σn) → KG(n) studied in the case of a planar surface. The map f is a
homomorphism when g = 2, since distinct homologous curves intersect, but it
is not for any value g > 3.

PROPOSITION 9.2. The homomorphisms f :N (S2)→G4 and h :N (S2)→

KG(6, 2) coincide in the sense that there exists an isomorphism ϕ : KG(6, 2)→
G4 such that ϕ ◦ h = f . In particular, up to automorphism of KG(6, 2), h does
not depend on the choice of hyperbolic structure on S2.
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The existence of an isomorphism G4 ≈ KG(6, 2) follows from the fact that
both are strongly regular graphs with parameters (15, 6, 1, 3), of which there
exists a unique isomorphism type [CvL91, Theorems (2.3) and (4.14)], [vLW01,
remark after Theorem 21.5]. Stripping the proof of Proposition 9.2 to its algebraic
core establishes this isomorphism directly. The fact that h does not depend
on the choice of hyperbolic structure follows as well from the connectivity of
Teichmüller space.

For context, we begin in somewhat greater generality. Fix g > 0 and let P =
{p1, . . . , p2(g+1)} denote a set of marked points on a sphere S. Define a bilinear
pairing b on H0(P;F2) by the rule b([pi ], [p j ]) = δi j . The pairing b restricts to
[P]⊥, on which its annihilator is generated by [P] =

∑
i [pi ]. Thus, b descends

to a nondegenerate bilinear pairing b on [P]⊥/([P]), a (2g)-dimensional vector
space.

LEMMA 9.3. There exists an isomorphism ([P]⊥/([P]), b) ≈ (H1(Σ(S, P);F2),

ι̂), where Σ(S, P) ≈ Sg denotes the double cover of S branched along P.

Proof. We will construct the required isomorphism as the composition of a
boundary map and a transfer map.

The inclusion-induced map H0(P;F2) → H0(S;F2) has kernel [P]⊥. Thus,
the long exact sequence in homology of the pair (S, P) leads to the identification
∂∗ : H1(S, P;F2)

∼

→ [P]⊥. We use the identification by ∂∗ to endow H1(S, P;F2)

with a bilinear pairing b′. Thus, ∂∗ determines an isomorphism of inner product
spaces

∂∗ : (H1(S, P;F2), b′)
∼

→ ([P]⊥, b).

On the level of relative 1-cycles, b′ takes a pair of relative 1-cycles and returns the
(mod 2) count of the number of points in which their boundaries meet.

There is a transfer map on chains C1(S, P;F2) → C1(Σ(S, P);F2) obtained
by mapping a relative 1-chain on (S, P) to the sum of its two lifts to Σ(S, P).
The transfer map on chains descends to a transfer homomorphism on homology
τ : H1(S, P;F2)→ H1(Σ(S, P);F2). Observe that a pair of transverse relative 1-
cycles on (S, P) whose boundaries meet in k points of P lifts to a pair of 1-cycles
on Σ(S, P) that meet in k (mod 2) transverse points of intersection. Therefore,
τ determines a map of inner product spaces

τ : (H1(S, P;F2), b′)→ (H1(Σ(S, P);F2), ι̂).

We claim that the map

τ ◦ (∂∗)
−1
: ([P]⊥, b)→ (H1(Σ(S, P);F2), ι̂)
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surjects with kernel generated by [P], which gives the desired result. Choose a
collection of arcs γ1, . . . , γ2(g+1) ⊂ (S, P) such that ∂∗[γi ] = [pi ]+[pi+1] for all i ,
indices (mod 2(g + 1)), and for which any pair meets solely in their endpoints.
Their classes form a basis for H1(S, P;F2) subject to the single relation∑

i [γi ] = 0. The classes τ [γ1], . . . , τ [γ2(g+1)] span H1(Σ(S, P);F2), and they
obey the two relations

∑
i τ [γi ] = 0 and

∑
i≡0 (mod 2) τ [γi ] = 0. Thus, τ surjects

and has kernel generated by
∑

i≡0 (mod 2)[γi ]. Since ∂∗
∑

i≡0 (mod 2)[γi ] = [P], the
stated property of τ ◦ (∂∗)−1 now follows and completes the proof.

Proof of Proposition 9.2. Apply Lemma 9.3 to the case g = 2. Each nonzero class
in [P]⊥/([P]) is uniquely represented by an element of the form [pi ] + [p j ] for
distinct i, j ∈ {1, . . . , 6}, and two such elements are b-orthogonal if and only if
they are equal or correspond to disjoint 2-element subsets. Let ϕ : KG(6, 2)→ G4

denote the map assigning the subset {i, j} to τ([pi ] + [p j ]). Lemma 9.3 shows
that ϕ is an isomorphism.

Next, select a nonseparating, simple, closed geodesic α ⊂ S2. It meets Fix(J )
in two points. Let P denote the points covered by Fix(J ). The image of α in the
quotient S2/J is a simple arc a that meets P precisely in its endpoints pi and p j .
Thus, h(α) = {i, j}, and ϕ(h(α)) = [α] = f (α). Therefore, ϕ ◦ h = f .

10. Problems for further study

Here we collect some problems of varying difficulty for further study. The first
one is the most prominent:

PROBLEM 10.1. Improve the estimates on the (fractional) chromatic numbers of
C(Sg) and A(Σn) in Theorems 1.5 and 1.7. We believe that both are closer to the
stated lower bounds.

PROBLEM 10.2. For n > 2k, let C(n, k) 6 C(Σn) denote the subgraph induced
on the curves that cut off exactly k holes to one side. The natural homomorphism
C(n, k) → KG(n, k) leads to the bound χ(C(n, k)) 6 n − 2k + 2. Does
equality hold? This is an analogue to Kneser’s conjecture for curve graphs. We
do not expect C(n, k) to contain a subgraph isomorphic to KG(n, k) (compare
Proposition 3.4).

PROBLEM 10.3. Determine the exact value of χ(KG(n)). Does it equal the upper
bound given in Theorem 2.5?

PROBLEM 10.4. What is χ(A(Σ4))? It is 8 or 9 by Theorem 8.4.
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PROBLEM 10.5. Generalize the results on unique colorability. For instance, does
there exist a unique homomorphism C(Σn)→ KG(n)rKG(n, 1)? Compare this
question with the rigidity of embeddings CG(n) r CG(n, 1) ↪→ C(Σn) [AL13].
Does there exist a unique homomorphism N (S2) → KG(6, 2)? Proposition 9.2
provides evidence for this possibility.

PROBLEM 10.6. Explore other graph-theoretic properties of the curve graphs
related to the chromatic number, such as the Shannon capacity and spectra.

PROBLEM 10.7. Identify Aut(Cv(S)) with a subgroup of Mod(S) (see [Iva97]).
Is it isomorphic to the stabilizer of v in Mod(S)? Does there exist a simple
generating set for this stabilizer analogous to the Humphries generating set? In
that way, it might be possible to recover the closed case of Proposition 5.13
without passage to the case of nonempty boundary.

PROBLEM 10.8. Describe a generating set for the kernel of the Chillingworth
homomorphism. Is it generated by the Johnson kernel and (g − 1)th powers of
bounding pair maps? (It is finitely generated because it is a finite-index subgroup
of the Torelli group, itself finitely generated by [Joh83].)
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