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Abstract

Novel methods of data collection and analysis can enhance traditional risk management practices that rely on expert
engineering judgment and established safety records, specifically when key conditions are met: Analysis is linked to
the decisions it is intended to support, standards and competencies remain up to date, and assurance and verification
activities are performed. This article elaborates on these conditions. The reason engineers are required to perform
calculations is to support decision-making. Since humans are famously weak natural statisticians, rather than ask
stakeholders to implicitly assimilate data, and arrive at a decision, we can instead rely on subject matter experts to
explicitly define risk management decision problems. The results of engineering calculation can then also commu-
nicate which interventions (if any) are considered to be risk-optimal. It is also proposed that the next generation of
engineering standards should learn from the success of open source software development in community building.
Interacting with open datasets and code can promote engagement, identification (and resolution) of errors, training
and ultimately competence. Finally, the profession’s tradition of independent verification should also be applied to the
complex models that will increasingly contribute to the safety of the built environment. Model assurance will be
required to keep pace with model development to identify suitable use cases as adequately safe. These are considered
to be increasingly important components in ensuring that methods of data-centric engineering can be safely and
appropriately adopted in industry.

Impact Statement

How should engineers engage with so-called artificial intelligence and data-driven technologies? Is skepticism
warranted? Why intervene with established, safe ways of working? This article intends to highlight why
practicing engineers should give some attention to novel methods of data collection and analysis, while ensuring
that these approaches should be explicitly linked to how they supports decision making.
Emerging new challenges and constraints on our engineering systems will require newmethods. As a profession,
engineering has an established history of solving complex problems by investigating increasingly complex
approaches, and pragmatically adopting them once they are considered trustworthy. In this article, this case is
made, and three key propositions are introduced regarding: decision-making, the next generation of standards
and competency frameworks, and technology assurance.
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1. Introduction

1.1. What is risk?

When a future outcome is uncertain, rather than resign ourselves to an unknowable fate, we use the
information and judgment that is available to us to consider what might happen. We must do this to avoid
so-called decision paralysis and live our lives. This is either done explicitly (using documented
calculations) or implicitly (by arriving at a decision that is consistent with some unspecified model of
the problem).

Risk is sometimes not considered distinct from probability, in the context of an uncertain event
occurring (World Economic Forum, 2023). Some definitions extend this and consider risk to be somehow
related to both the probability and consequences of uncertain events (Health and Safety Executive [HSE],
n.d.), but many engineering standards explicitly define risk as the product of probability and consequence
(American Petroleum Institute, 2016; DNV, 2019), that is, risk is the expected consequences of uncertain
events. This definition provides a rationale to help rank-order decision alternatives, by selecting the option
that is expected to benefit us the most (or cost us the least) (Von Neumann andMorgenstern, 1953). What
is not conveyed in this metric is the workflow of checking diagnostics, performing evaluation, and
verification of the model(s), or the sensitivity analysis required to define a representative utility function
that adequately describes the decision makers subjective judgment. (It is therefore challenging to provide
specific guidance on how to choose among decision alternatives, and trust that if an organization is a least
considering probabilities and outcomes in some capacity, a sensible decisionwill bemade. However, even
attempting to formalize this process encourages us to critically evaluate the justification for decisions, and
provides a framework for proposing specific improvements to models and utility functions. Most
importantly, the decision will be fully documented as a result, so that it can be reevaluated at any time.)

Since we need to act under uncertainty so frequently, there are many examples of personal risk
management. For instance, people choose to pay for insurance because of the possibility of large losses,
and although few of us do any formal calculations to justify making this purchase (though decision-
theorist Howard Raiffa did claim to do full analysis to identify which job offer he should accept; Raiffa,
2002), there would be a certain threshold above which we would not be happy to pay. Similarly, in a
professional context, each time an organization makes a decision to invest (or not) in a safety measure,
they are implicitly assigning utilities to the possible outcomes. These decisions are generally never
interrogated or the subjective judgments back-calculated, except in instances where it is clear that an error
has been made. This point is similarly, but more forcefully, made in the study by Hopkins (2002),
regarding pipeline engineering:

you don’t need anything at all! You don’t need qualified engineers, you don’t need quality systems,
you don’t need risk management, you don’t need safety audits, you don’t need inspections, you
don’t need training. You don’t need anything! Until something happens … then you need
everything.

Risk analysis has an inherent link between probabilities (uncertainty quantification) and outcomes (causal
inference, optimization, and decision analysis). The fundamental risk management problem can be
represented graphically, as shown in Figure 1, which is sometimes referred to as an influence diagram.
Here, the decision of what, if any, investment is required is shown as a square, the associated implemen-
tation costs are diamond-shaped, and the results of a relevant analysis are a circle. The arrow from the
decision to the implementation costs indicates that these costs directly depend on the risk management
plan. To facilitate quantitative riskmanagement, wewould need an understanding of what is at stake if any
aspects of our system stop functioning (the arrow from the system modeling to outcome costs) and the
effect of our actions on the probability of these outcomes occurring (the arrow from the decision to the
modeling), so that we can coherently manage this trade-off. However, the relationship between engin-
eering calculations and decisions is not always evident. Given that the need to support a decision is
generally the reason the analysis is commissioned, the results should have clear implications for which
actions we should then take.
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There are various benefits to tying analysis and decisions, such as maintaining consistent objectives,
improved transparency in outcomes, providing a framework for collecting (structural) subject matter
expertise, and finding risk-optimal strategies in a quantitative and replicable way. This principle is also
advocated for in Professor Jordaan’s engineering textbook (Jordaan, 2005):

It is important that all problems of inference be visualized as problems of decision.

In the UK, the Health & Safety Executive (HSE) regulate many engineering industries but tend not to
provide prescriptive guidance. Rather, they require risk to be kept as low as reasonably practicable
(ALARP; HSE, 2001). This term was introduced in the ruling of a 1949 court case, when, after an
individual died after the collapse of a coalmine road, it was concluded that a risk assessment could be used
to identify which roads required strengthening and which did not. This outcome continues to imply that
there are risks we should be willing to tolerate and that some calculations are required to demonstrate that
risk mitigation is being implemented where and when it is worthwhile. The lack of a coherent connection
between these calculations and interventions (as proposed in Figure 1) makes it more challenging for
courts, regulators, and internal audits to evaluate and feedback.

Proposition 1. Connecting engineering analysis and decisions can allow for more coherent, transparent,
and auditable risk management.

1.2. What is data-centric engineering?

In principle, the idea of using data to support engineering decisions is nothing new. Engineers have
historically had to rely on pragmatism to design, build, and manage physical assets long before the
development of detailed simulation or digital twins. (The historical willingness of (in particular British)
engineers to bypass what they considered to be overly theoretic approaches to characterizing stress and
strain is discussed in Professor James E. Gordon’s popular books (Gordon, 1991a, 1991b).) Rather,
domain knowledge has always been (suboptimally) integrated with data from experiments to prevent
failures.

However, in practice, DCE is the term used to describe the novel methods of collecting and analyzing
data that are now available to engineers and organizations. Analysis of big data is perhaps themost widely
publicized example of this. The successes of machine learning (ML) and artificial intelligence
(AI) algorithms in analyzing (generally unstructured) data is rightly considered a breakthrough in

Figure 1. Influence diagram representation of risk management challenge: these components need to be
connected.
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computational statistics and machine learning (CSML), but engineering can benefit from various new
approaches:

1.2.1. Predictive modeling
Intended to identify relationships between quantities for the purposes of understanding plausible
outcomes. Models based on deep neural networks (neural networks are models with large numbers of
[nonlinearly] interacting parameters, organized in layers) have been shown to be capable at learning
nonlinear relationships from large amounts of historical data and generalize well to unseen data from the
same data generating process (interpolation rather than extrapolation; Prince, 2022). They are seemingly
uniquely effective in unstructured data settings, such as images, audio or text, for which traditional
regression analysis appears to be of limited use. Another application is as surrogate models. For instance,
neural operators (a type of neural network that works with functions as inputs/outputs, rather than
traditional fixed-length data) can be used to solve partial differential equations, once adequately trained,
orders of magnitude quicker than conventional numerical methods (Kovachki et al., 2022). Typical neural
network approaches do not provide much insight on why a specific outcome was predicted, and without
sophisticated verification and assurance methods, alternative modeling approaches may be more appro-
priate in settings where subsequent decisions must be clearly explained or justified.

1.2.2. Probabilistic inference (uncertainty quantification)
Quantifying uncertainty using probability allows us to describe the information content of data more
accurately and understand where and when a model may be less informed/confident in prediction. As
noted to in Section 1.1, this is an important component of risk management. Engineering data, in
particular, often consist of an indirect measurement of a complex physical phenomena, in challenging
conditions. Similarly, deviations of real systems from idealized models can also be modeled using this
approach. A key aspect in probabilistic modeling is inference (sometimes referred to as inverse prob-
ability) where models can be updated so that unknown quantities can be estimated consistently with
measurements. Describing the probabilistic relationship between quantities, so that it can inform
predictive models, is readily achievable using probabilistic programming languages (Ghahramani,
2015), which have helped democratize scalable uncertainty quantification (Walia et al., 2019). Note that
some methods of quantifying uncertainty are also available to neural networks (Abdar et al., 2021;
Murphy, 2022).

1.2.3. Optimizing decisions
Concerned with finding the best sequence of actions/interventions within a dynamic environment to
achieve a specific goal. Many decision problems subject to uncertainty can be naturally represented as
Markov decision processes, including their various associated operational and financial constraints, so
that expected optimal strategies can be identified. Reinforcement learning (Sutton and Barto, 2020)
methods seek to learn a strategy or policy that maximizes the cumulative reward over time. Extensions
which optimize decisions under partial information provide a powerful framework for reasoning under
uncertainty (Kochenderfer, 2015).

1.2.4. Generative AI
Typically comprising large-scale neural networks, these models are able to generate highly sophisti-
cated image, text, or other outputs based on prompts (inputs as instructions in natural language). These
have been made available to the public in recent years, and several use cases have emerged. For
instance, GitHub copilot provides suggested code as software developers are working, and can be
interacted with, via a chatbot. An initial report (admittedly from GitHub) indicated that users of this
generative model assistance saw increases in productivity and satisfaction (GitHub, 2022). It is
conceivable that similar assistance could be utilized by engineers when working on calculations,
checking compliance with standards, or report writing, provided they were aware of the limitations
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of such a tool. Generative AI forms part of an emerging trend of foundationmodels which are trained on
a large corpus of text or image data and which can then be fine-tuned for a wide range of different tasks.
Unlike models trained for a single purpose, foundational models learn a broad representation of
knowledge from their training data, which allows them to adapt to various applications with additional,
task-specific training.

Proposition 2. The adoption of novel methods of data collection and analysis will benefit from a new
generation of engineering standards and training materials.

At their core, these methods typically require the calculation of gradients of highly complex functions
(algorithmically; Baydin et al., 2018) and the adjustment of probability distributions or parameter
estimates in a direction that is increasingly consistent with the evidence provided. Modern computer
software and hardware has allowed these approaches to be applied at new scales, meaning that the
corresponding matrix and vector operations become too large to track conceptually, and ML models are
therefore often considered to be black box (for the purposes of this article, a black boxmodel is considered
to mean the specifics of the internal operations, which transform inputs to outputs, are too complex
(or otherwise obfuscated) to be interpreted and understood by humans) in nature. Understanding where
such complexmodels can safely adopted in industry therefore requires careful thought, but thismay not be
an entirely new challenge for engineers.

1.3. Comparison with finite element analysis

Engineers routinely use complex computational methods that were once considered novel approaches but
ultimately demonstrated value and became standard practice. The finite element method is one such
example (of many) that has become an established method with multiple software packages available for
running analysis. Much of the below discussion may be equally valid for alternative existing complex
methods and tools.

Finite element analysis discretizes complex geometries so that problems can be represented as systems
of linear equations. This has many parallels with the way that large numbers of interacting neurons in a
neural network are also essentially related by linear algebra operations. In finite element analysis,
displacements at nodes are calculated by (finding an approximate solution, (often using gradient-based
methods) to inverting a stiffness matrix, and then performing some matrix–vector multiplication. In a
neural network gradient-based methods are also iteratively used to find a solution, and at any stage the
outputs are found by performing some matrix–vector multiplications.

Although finite element models are applying physical laws, and neural networks are applying
statistical functions, the inner workings of both methods can be considered as black boxes, particularly
for large problems. Both typically produce interpretable results, but their reliability should be critically
considered. One (of many) example of a round-robin trial, in which an identical stress analysis is posed to
multiple organizations is documented in the study by Kluess et al. (2019). Here, seven independent
analyses of a human femur bone subject to a point load were found to differ greatly from each other, and
from experimental data. The largest average (across 10 different strain gauge locations) deviation in
predicted strain from the test data was 354%. The magnitude of these errors did not necessarily reduce
with more elements, or longer computation in this trial.

Looking forward, more can be done to understand and quantify the sources of variation, so finite
element analysis can more directly inform risk management, and condition onmeasurement data, and this
work has begun (Girolami et al., 2021). One such application would be to understand the information
content simulated data from such a model, to better understand where supplementary physical testing is
required in the design or certification of a new component. Decision-theoretic approaches have been
demonstrated for quantifying the expected value of engineering data (Di Francesco et al., 2021), which
represents the formal statistical solution to a challenge, about which discussion remains vague in industry.
For instance, as stated in the study by Johnston (2017):
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There is often a balance to be struck between the number of tests that would give the result with
highest level of statistical confidence and the cost implications of producing many full-scale test
specimens.

Despite an appreciation the potential challenges and uncertainties associated with this computational
modeling technique, finite element analysis remains commonplace in engineering projects. Quality
assurance procedures, model verification, and subject matter knowledge are used to ensure it is used
safely (DNV, 2021), and a similar approach can be adopted for the safe adoption of methods of data-centric
engineering. Recently, the first independent verification of a digital twin in the maritime industry was
completed (Lloyds Regsiter, n.d.), and the evidence from this analysis was sufficient to gain regulatory
approval. As standardized guidance on the assurance of such models is developed (existing (early)
guidance in this area is encouraging; DNV, 2023, but is generally confined to higher-level recommenda-
tions, rather than methods to quantify and evaluate model reliability in the context of functional safety),
such projects will become more acceptable. There may be an opportunity for initially only permitting the
use of complex models in lower consequence domains, where learning and testing will be more tolerable.
However, these may not be the applications that are hoped to benefit the most in safety and economically.

Adopting a complex modeling approach introduces a risk (model risk) to a business, namely the
expected consequences of an incorrect or otherwise unhelpful output. To demonstrate that this model risk
is ALARP, it needs to be weighed against the expected benefit(s) of using the model, accounting for the
non-zero risks associated with current ways of working.

Proposition 3. There is some (valid) skepticism of new approaches in established engineering discip-
lines. Methods of verification and assurance should be developed (and eventually standardized) to help
ensure complex models are adopted safely.

2. In practice: a duty to do better versus if it is not broken …

Thankfully, buildings very rarely collapse, planes very rarely crash, pressure vessels very rarely explode
(Melchers and Beck, 2018). However, these same standards of safety will increasingly be subject to new
constraints and pressures, for instance automation and climate change are anticipated to shape the future
of maritime trade in the coming decades (Economist, 2023). It is nevertheless reasonable to ask why we
should consider changing existing practices that generally keep us safe. In fact, more complex analysis
may be even worse than not required, it may actually introduce new risks.

Some skepticism is helpful when evaluating new solutions, and this should drive the requirements to
demonstrate safety. However, excessive resistance to change can prevent progress, and data-centric
engineering offers the promise of improved risk management. Our current reliance on heuristics does not
require engineers to quantify risk, as noted in a review paper (Hadley and Wu, 2018) on a widely used
standard for assessing damage (BSI, 2019):

the principle behind the (BS 7910) procedure has long been avoidance, not prediction, of failure.

Without consistent quantification of risk and reliability, we are unable to justify investments in resource
allocation (safety!) in a principled way, and this leaves both private and public spending open to being
influenced by undesirable factors. For instance, spending on safety measures in air travel following the
attacks in New York on 11 September 2001 is evaluated in the study by Stewart and Mueller (2018). The
enormous increase in spending could not be justified by any of the quantitative evaluation methods that
the authors considered, suggesting that much of this policy was introduced for political benefit.

Even in such cases where a failure to quantify risk has resulted in an overspend on safety, this is still
considered suboptimal. Investment in safetymeasures that do not improve safety ismoney that could have
been better spent. In such cases, a utility function may describe the various negative outcomes (financial
costs, risks to personnel associated with the activity, greenhouse gas emissions associated with new
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construction) which outweigh subsequent safety benefits in a formal analysis. Of course, conversely,
political distortions that tend towards underspending in safety measures are more directly problematic.

If an expert disagreeswith an output from such a tool, this could indicate that the underlyingmodelmay be
failing to account for some important factor, or domain knowledge. This should lead to a review and possible
targeted improvements to the influence diagram, since there is a baseline structure to amend, as opposed to a
less structured discussion. Alternatively, disagreement with a result may instead indicate that a new strategy
has been correctly identified, which may have previously been considered somehow counter-intuitive.

Would UK water companies recent (BBC News, 2017) (and continued!; NewScientist, 2023) use of
divining rods (dowsing) to locate buried water pipelines stand up to the scrutiny of a formal decision
analysis? Certainly, the factors driving their perceived utility would have to bemade explicit and, therefore,
be more straightforward to challenge. This is not be considered a particularly consequential example of the
absence of DCE. Much greater costs are involved in the HS2 rail project, which has been suggested to have
lacked (among other things) transparency, sufficient analysis at early stages, and consideration of alternative
transport plans (Tetlow and Shearer, 2021). Current projects do not only suffer from outdated or absent
methods, but also from the software that is used. Too much engineering still takes place in spreadsheets.
Earlier this year, a miss-typed date in a spreadsheet resulted in Norway’s sovereign wealth fund losing
approximately £ 70,000,000 (Financial Times, 2024). Tens of thousands of Covid-19 cases were not
reported in the UK because an outdated file format was selected, which did not make it clear that the total
number of rows of data had been exceeded. Following this investigation, Professor JonCrowcroft suggested
that spreadsheets were not suitable for analysis with high-contour applications (BBC News, 2020):

Excel was alwaysmeant for people mucking aroundwith a bunch of data for their small company to
see what it looked like …

… and then when you need to do something more serious, you build something bespoke that works
—there’s dozens of other things you could do.

Perhaps most famously, economics professors from Harvard University were found to have not selected
all relevant cells in their calculation of average GDP growth. This was only identified when a PhD student
was attempting to reproduce the analysis, and yet this influential paper supported austerity policies being
introduced in the US and Europe (BBC News, 2013). There are many more examples on the Horror
Stories page on the website of the European Spreadsheet Risk Interests Group (EuSpRiG) (EuSpRiG, n.
d.), and Monash University (Caprani, n.d.), which promotes useful practices from modern software
development, recorded a discussion on the risks of using spreadsheets in an engineering context. TheAlan
Turing Institute has developed a best-practice guide for performing research and analysis and is freely
available (The Turing Way Community, 2022).

Engineering remains a profession trusted by the public (The Royal Academy of Engineering, 2022), in
part due to the focus on ethics in our institutions (The Engineering Council, 2017). These principles
include a commitment to keep skills and knowledge up-to-date. This will require engineers to engagewith
topics of computational statistics and ML, to identify where the associated methods and tools can
contribute to improved risk management in our organizations.

3. In summary

The following key propositions detail how some anticipated industrial challenges could be addressed.

• Connecting analysis and decisions
If a stress analysis is being completed because a design decision needs to be made, then the optimal
decision (conditional on the model) should be identified, and explained as part of the result. More
generally, our calculations should not be disconnected from the reasonswe have been asked to do them.
Furthermore, risk management decisions should be documented so that during future evaluations or
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audits, it is clear why a decision was arrived at. This can be achieved by using methods of CSML to
transition from implicit data assimilation (that effectively happens when we ask stakeholders to arrive
at a decision based on various reports and calculations) to explicit, reproducible analysis.

• DCE standards and competencies
Engineers are generally willing to maintain their technical competencies, and this is reflected in
societies continued trust in the profession. The development of specific industry guidance and new
standards in the topic of DCE, such as is underway at the AI standards hub (The Alan Turing Institute,
n.d.) may need to be accompanied by accessible training content. Such standardsmay also benefit from
adopting ideas from open-source software development, so that any datasets and underlying analysis is
made public. Building communities with access to the calculations that justify the guidance may help
identify any errors more quickly and improve the competence of the users.

• Model assurance and verification needs to keep up
Many engineering industries have long histories of independent verification of mechanical/structural
design documents and calculations. As the safety of our assets becomes tied to increasingly complex
models, these too should be subject to same practices. Regulation could initially direct the use (and
assurance/verification) of complex models such as digital twins towards lower consequence applica-
tions. This may counteract the understandable resistance to methods of DCE in various fields of
engineering.
Transition to methods of DCE can have a transformative, (net) positive impact on risk management.
This could allow us to make quantitative business cases for infrastructure investment which may be
less susceptible tomisinterpretation and organizational/political corruption. The historic achievements
of engineers are self-evident, but they were operating with what will soon be considered to be great
limitations. As new methods of data collection and analysis become increasingly available, we will be
capable of quantifying uncertainty over large engineering systems to coherently support risk man-
agement decisions. Performing this analysis using well-documented and reproducible workflows can
help direct further innovation. As we progress along this path, reliance on outdated tools (such as
spreadsheets) andmethods (such as simplified rules and heuristics) will become increasingly indefens-
ible in cases where alternative approaches are risk-optimal.
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