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We present a linear analysis of a minimal model of moist convection under a variety
of atmospheric conditions. The stationary solutions that we analyse include both fully
saturated and partially unsaturated atmospheres in both unconditionally and conditionally
unstable cases. We find that all of the solutions we consider are linearly unstable via
exchange of stability when sufficiently driven. The critical Rayleigh numbers vary by
over an order of magnitude between unconditionally unstable and conditionally unstable
atmospheres. The unsaturated atmospheres are notable for the presence of linear gravity
wave-like oscillations even in unstable conditions. We study their eigenfunction structure
and find that the buoyancy and moisture perturbations are anticorrelated in z, such
that regions of negative buoyancy have positive moisture content. We suggest that
these features in unsaturated atmospheres may explain the phenomenon of gravity wave
shedding by moist convective plumes.

Key words: moist convection, atmospheric flows, absolute/convective instability

1. Introduction
Moist convection is extremely important in the Earth’s climate system; it also may
affect the dynamics of Jupiter’s atmosphere and that of Jovian exoplanets. In the Earth’s
atmosphere, this is caused by the latent heat relased by condensation of water. The heat
so released can render stable atmospheric motions unstable, leading to an extremely
complex dynamics. Moist convection represents a serious challenge to climate modelling
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and weather forecasting: the phase change occuring on scales of millimetres can affect
the dynamics on kilometre scales (Emanuel 1994; Stevens 2005). This process leads to
the formation of highly organized structures of clouds, thunderstorms and dry subsiding
motions. In turn, these structures modify the global scale circulation and play a crucial role
in the hydrological cycle: it is thus crucial for accurate prediction that we have a detailed
understanding of the self-organization of moist atmospheres.

Even without moisture, convection is remarkably complex. Significant progress in our
understanding of dry convection has come from detailed study of simplified models,
particularly the celebrated Rayleigh–Bénard model. Because of its simplicity, Rayleigh–
Benard convection can be studied in exquisite theoretical detail via both computational
and analytical techniques. These theoretical predictions can be compared with laboratory
experiment, providing reproducible solutions that provide considerable insight into the
phenomenology of the kinds of highly turbulent convection found in numerous natural
and built environments.

However, moisture is in some sense a ‘singular perturbation’ to that model; without
some explicit treatment of condensation, Rayleigh–Bénard solutions provide a very poor
approximation to the atmospheric dynamics, even on shallow scales where background
density variations can be neglected. In order to better assess the effects of moisture on
convective motions, a number of simplified models have been developed that combine
the key advantages of Rayleigh–Bénard with an explicit (if parameterized) treatment
of moisture. Some of these models include the Bretherton–Pauluis–Schumacher (BPS)
model, detailed in Bretherton (1987), Pauluis & Schumacher (2010) and Schumacher &
Pauluis (2010), and the fast autoconversion and rain evaporation (FARE) model, detailed
in Hernandez-Duenas et al. (2013), Deng et al. (2012) and Hernandez-Duenas et al.
(2015). All of these models isolate the dynamics arising from the coupling of moisture and
convection, dramatically simplifying the complex treatments used in cloud-resolving large
eddy simulations (e.g. Guichard & Couvreux 2017). Because of this, these models allow
detailed analysis and physical interpretation while representing minimal models of the key
physics. Simplified models have been used to study cloud aggregation and dependencies on
domain aspect ratios (e.g. Pauluis & Schumacher 2011), the impacts of radiative transport
(e.g. Pauluis & Schumacher 2013) and how rotation can drive hurricane-like vortices
(e.g. Chien et al. 2022). It is the simplicity of these models that gives them explanatory
power, allowing them to isolate aspects of the full physics present in moist atmospheric
convection.

Recently, the Rainy–Bénard convection (RnBC) model was introduced by Vallis et al.
2019, (and hereafter VPT19) as a very simple model of moist convection in the limit
that precipitation occurs immediately upon condensation. This model offers a highly
idealized system that can be studied carefully while retaining the most important element
of moisture: a rapid phase transition that releases latent heat. These three simple models
(BPS, FARE and RnBC) all capture the crucial latent heat release due to condensation
and thus allow moisture to drive convective motions. They differ in their treatments of
precipitation: BPS assumes no precipitation, FARE treats both rain and evaporation, while
RnBC assumes all condensed water immediately rains out and leaves the system. Here,
we use the RnBC model to study the linear stability and dynamics of moist convective
atmospheres. We extend the analysis of the stationary ‘drizzle’ solution presented
in VPT19 by conducting a comprehensive linear stability analysis; we also use the
computation of ‘drizzle’ solutions to explore the effects of our numerical approximations
in the model itself.

The linear analyses of Bretherton (1987) and Hernandez-Duenas et al. (2015) are
perhaps closest to our study. However, the former considers the limit in which no
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precipitation occurs, and the latter assumes an inviscid dynamics in the absence of
diffusive heat transport.

We explore the Rainy–Bénard system in some detail. All of our work considers both
atmospheres that are fully saturated and atmospheres where the lower portion of the
atmosphere is unsaturated. In § 2, we summarize the essential aspects of the Rainy–
Bénard model and the modelling choices adopted here. In § 3 we consider aspects
of the static ‘drizzle’ solutions to this system, defining three essential regimes of
atmospheric parameter space: stable atmospheres, conditionally unstable atmospheres and
unconditionally unstable atmospheres. In § 4, we determine the linear stability of solutions
in these different regimes of parameter space using generalized eigenvalue problems,
finding that the instability occurs directly via exchange of stability and finding that
oscillatory waves exist for some atmospheres even in the presence of instability. Finally, in
§ 5, we draw conclusions and make suggestions for future work.

2. The Rainy–Bénard model
The RnBC model takes standard Rayleigh–Bénard convection for an ideal gas
(e.g. Spiegel & Veronis 1960) and adds an equation describing the mixing ratio of water
vapour q, which we will refer to throughout as the humidity. Humidity is dynamically
coupled to the buoyancy by a term proportional to the condensation rate, the rate at which
liquid water departs the system. The Rainy–Benard model assumes that this condensation
happens faster than any relevant dynamical timescale. We follow VPT19 in denoting the
temperature difference from the mean temperature δT = T − Tm as T . While doing so is
commonplace when working with Rayleigh–Bénard, it is much more important to note
here as this temperature difference is what goes into the simplified Clausius–Clapyron
relationship.

The condensation rate is given by

C = (q − qs)H(q − qs)

τ
, (2.1)

where τ is a model parameter and H is the Heaviside function. Under this condensation
model, as soon as the humidity reaches its saturation value, any amount of supersaturated
water is removed on a timescale τ . In order that the model be consistent with its
assumptions, τ must be the smallest timescale in the system.

VPT19 gave three different non-dimensionalizations for the system but used the
diffusive scaling for calculations. We instead choose the buoyancy time (Hθ0/g�T )1/2,
the layer depth d, the temperature difference �T across the layer and the saturation
specific humidity at T = 0. For the linear calculations at low Ra presented here, this is
not an important choice. However, in anticipation of future high-Ra simulation work, we
justify this choice as follows. Convection features two natural timescales by which a non-
dimensionalization can be performed, the diffusion time τd and the buoyancy time τb. For
high-Rayleigh-number RnBC, the ordering of these timescales is τ � τb � τd . Using τd
as the non-dimensionalization, one arrives at

τ

τd
� τb

τd
� 1. (2.2)

Referring to the dimensionless τ as τ ′, for the diffusion non-dimensionalization τ ′ = τ/τd .
The ratio of buoyancy to diffusion time scales is given by τb/τd = (RaPr)−1/2, and thus
we see that, if Ra increases but τ ′ is held fixed, the model assumption will eventually
become invalid: τ ′ will eventually exceed τb/τd .
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Instead, if we choose the bouyancy non-dimensionalization with τb as the timescale, we
have

τ

τb
� 1 � τb

τd
; (2.3)

here, as long as τ ′ = τ/τb is chosen to be less than one, the model assumptions
remain valid as Ra is increased, so long as the Rayleigh number is large enough that
1 � (RaPr)1/2 to begin with. Thus, the buoyancy non-dimensionalization provides a key
simplification and we adopt it here.

With the buoyancy non-dimensionalization, the Rainy–Bénard equations are

∂u
∂t

+ ∇ p − b ẑ −R∇2u = −u · ∇u, (2.4)

∂b

∂t
−P∇2b = −u · ∇b + γ C, (2.5)

∂q

∂t
− S∇2q = −u · ∇q − C, (2.6)

∇ · u = 0. (2.7)

The condensation rate C remains as in (2.1), although we drop the prime on the
dimensionless τ in what follows.

We replace the Heaviside function in C with a smooth approximation

H(A) = 1
2

(1 + erf(k A)) , (2.8)

where k controls the slope of the transition (and hence the width of the transition region).
We note in passing that this choice is motivated by the fact that erf provides better
convergence properties than tanh for a given slope parameter k.

As in VPT19, the simplified Clausius–Clapeyron relation is

qs = exp (αT ), (2.9)

and the temperature is related to the buoyancy via

T = b − βz, (2.10)

where β = dg/�T cp is the ratio of the adiabatic gradient to the overall temperature
gradient across the layer. This parameter formally exists in Rayleigh–Bénard convection
when it is derived from an ideal gas in a shallow layer (Spiegel & Veronis 1960), however, it
has no dynamical effect, as the background buoyancy gradient is absorbed into the pressure
gradient term. However, in this system, the temperature differential T appears in (2.9). We
will discuss the implications of this in § 3.

Finally, the dimensionless parameters are

R=
(

Pr
Ra

)1/2

, P = 1
(RaPr)1/2 , S = 1

(RaPm)1/2 , (2.11)

where Pr = ν/κ and Ra = g�T d3/Tmνκ are the Prandtl and Rayleigh numbers,
respectively.

For all eigenvalue and nonlinear boundary value problems presented here, we use the
Dedalus framework (Burns et al. 2020). We use Legendre polynomials for discretization
in z, typically using nz = 32–128 spectral modes, and a generalized tau formulation for the
boundary conditions (Burns et al. 2024). We use the eigentools package (Oishi et al. 2021)
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to ensure that our eigenvalue solutions are well resolved using mode rejection performed
using two different basis functions at the same resolution, effecting a speedup by a factor
of approximately 2.2 over the traditional comparison of a solution with 3N/2 modes.

3. Drizzle solutions
VPT19 refer to the equilibrium state for this system as the ‘drizzle’ solution. For
convenience, we briefly restate some results from that work to provide context for the
novel results in subsequent sections; we also provide a library of reference states that
we will refer to throughout our exploration of the linear dynamics. The drizzle state
is a hydrostatic solution with constant precipitation and moisture replaced via diffusion
across the lower boundary. Exact solutions can be obtained in terms of the principal
branch of the Lambert-W function. In the case with a saturated lower boundary, this is
a straightforward procedure; for cases with an unsaturated lower boundary the process is
slightly more involved. We expand on the details in the latter case from those provided
in Vallis et al. (2019) in the appendix. We note that all the states we consider have
saturated conditions in the upper part of the domain, which is uncommon in Earth’s
atmosphere. However, the stability and linear dynamics of these states provide a simple and
interpretable framework for understanding the differences between moist convection and
its dry counterparts. The RnBC model itself is capable of more realistic fully unsaturated
initial conditions, though we defer detailed investiagions of such states to future work.

We will also use the analytic drizzle solutions to benchmark numerical approximations.
This is particularly important when interpreting results from nonlinear simulations in
which numerical approximations to the Heaviside function must be made. Furthermore,
the requirement that τ must be the smallest timescale leads to stringent constraints on
the timestep, which is usually set by Courant–Friedrichs–Lewy (CFL) conditions applied
to the smallest scales of the flow. By studying the convergence of nonlinear boundary
value problems (NLBVP) to the analytic solution while varying the numerical model
parameters k and τ , we provide guidelines for the computational resources required for
accurate simulations.

The drizzle solution can be expressed rather simply by making use of the moist static
energy m = b + γ q. In the static limit (u = 0), the moist static energy equation can be
derived from adding (2.5) to γ times (2.6) to arrive at

∇2m = ∇2(b + γ q) = 0. (3.1)

This has a simple solution in z

m(z) = P + Qz, (3.2)

with

P = b1 + γ q1, (3.3)

Q = (b2 − b1) + γ (q2 − q1), (3.4)

where b1,2 and q1,2 are the values at the boundaries.

3.1. Saturated atmospheres
The profile of T in the saturated portion of the atmosphere is given by

T = C(z) − W (αγ exp (αC(z)))

α
, (3.5)
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β = 1 1.1 1.175 1.2

0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0 0.2–0.2 0 1–1

T,b, ∇b,m q,γq, γ∇q, ∇m, rh

Z

(a)
(b) (c)

Figure 1. Saturated atmospheres with α = 3 and γ = 0.19, with varying values of β (labelled above
corresponding b, m (a)). Shown at left are profiles of buoyancy b, scaled moisture γ q and moist static energy
m. The profiles of b and m change with β, gradually increasing the value of the gradient from negative
(convectively unstable) to positive (convectively stable, grey region of panel). These gradients are shown
in (b). The profile of q is independent of β, as it follows qs which depends on T , which is itself independent
of β (c). The temperature profile is given by a Lambert-W function and is not linear. The relative humidity is
rh = 1 everywhere in the saturated atmosphere.

with

C(z) = P + (Q − β)z; (3.6)

where W is the Lambert-W function.
A saturated atmosphere has q = qs at the bottom and hence rh = 1 everywhere. We take

boundary values b1 = 0, b2 = β + �T , q1 = 1, q2 = exp (α�T ) and �T = −1. These lead
to the simplifications

P = γ, (3.7)

Q = β − 1 + γ ( exp (−α) − 1), (3.8)

C(z) = γ (1 + (( exp (−α) − 1) − 1)z) . (3.9)

To obtain a static solution, one solves for m(z) and T (z), sets q(z) = qs = exp(αT (z))
(e.g. relative humidity rh = 1) and then obtains b(z) = m(z) − γ q(z). From equations
(3.7)–(3.9), it is clear that m and b will depend on β, while T (and hence q) will not,
while all will vary with γ . Indeed, this is what we find.

A selection of different saturated atmospheres, all at α = 3 and γ = 0.19 (Earth-
appropriate values) are shown in figure 1. The profiles of b and m change as β varies,
but T is independent of β and consequently so are both the saturation humidity qs and
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0.15

1.15

1.10
β

1.25

1.20

1.05

1.00

0.20 0.25

Unstable

Dry stable, moist unstable

∇m = 0

∇bmin = 0

Stable

0.30 0.35
γ

Figure 2. Ideal stability of saturated Rainy–Bénard atmospheres. Shown are the boundaries to moist instability
(∇m = 0) and to dry instability (∇bmin = 0, with this the smallest or most negative value of ∇b). At fixed γ , as
β increases, the atmosphere goes from fully unstable to dry stable but moist unstable (light grey wedge) before
becoming fully stable (dark grey region). Squares show points from figure 1, and the triangle shows the scaled
atmosphere from § 6 of Vallis et al. (2019), and see Appendix B.

humidity q. The profile of T is not linear with height, in contrast to regular
Rayleigh–Bénard equilbria, though the profile of m is. The importance of β is related
directly to that fact. When Rayleigh–Bénard convection occurs in thin layers of
compressible ideal gas, the only function β has is to delinate the ideal stability (that is,
in the absence of diffusive effects): any β � 1 is stable. However, this is because the
background gradient ∂zT0 = −1 due to the fact that the steady state solution is one in
which ∇2T = 0, and buoyancy and temperature are equivalent in Rayleigh–Bénard. The
case is different for RnBC, where buoyancy is coupled to both temperature and moisture.
With an additional physical quantity comes an additional dimensionless parameter: β. As
a direct result, RnBC drizzle solutions have ideal stability limits somewhat different from
β = 1; this will be made clear in the following discussion.

The ideal stability of the atmosphere can be deduced from the gradients ∇m, ∇b and
∇q. The gradient ∇m is singlevalued and when negative the atmosphere is unstable to
moist convection (‘moist unstable’). The buoyancy gradient ∇b changes with height,
typically being smallest (or most negative) near the top of the atmosphere. In all
atmospheres shown in figure 1, ∇b is positive in the lower portion of the atmosphere,
and in some it is negative in the upper portion; atmospheres with ∇b < 0 somewhere
are unconditionally unstable. For some values of β (e.g. β = 1.175), ∇b is positive
everywhere, these are conditionally unstable atmospheres.

The results shown in figure 1 for γ = 0.19 hold more broadly as γ varies, though the
details for which β are stable, conditionally unstable, or unconditionally unstable depend
on γ . The ideal stability boundaries for saturated atmospheres at many γ are shown
in figure 2. The region of conditional instability, where the atmosphere is unstable to
moist instability (∇m < 0), but stable to dry stability (∇b > 0 at all z), defines a limited
wedge in parameter space. The range of β where this occurs is γ -dependent, as shown
in figure 2 with a light grey wedge. This wedge converges at γ = 0 to β = 1 (as expected
for Rayleigh–Bénard convection) and widens as γ increases. This wedge of conditional
instability is an interesting region where the dynamics is likely to be distinctly different
from classic thermal Rayleigh–Bénard convection. Here, for fullysaturated atmospheres,
we choose γ = 0.19, β = 1.175 as our representative conditionally unstable atmosphere,
and γ = 0.19, β = 1.1 as our representative unconditionally unstable atmosphere.
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Figure 3. (a) Critical height zc at which an atmosphere with an unsaturated lower boundary becomes saturated
and the temperature Tc at that height, both as functions of γ . These solutions are at q0 = 0.6. Note that zc
varies with γ while Tc is independent of γ . (b) Critical height zc and temperature Tc at which an atmosphere
with an unsaturated lower boundary becomes saturated as a function of relative humidity at the lower boundary
q0 = q(z = 0). Here γ = 0.19, and both zc and Tc depend on q0. We find no dependence of zc or Tc on β.

3.2. Unsaturated atmospheres
In unsaturated atmospheres, the lower boundary is at a moisture value below the saturation
point of the atmosphere at that height. The humidity, buoyancy and moist static energy m
profiles are all linear in the unsaturated portion of the atmosphere (Vallis et al. 2019).
While the humidity q generally declines (linearly) with height, the saturation humidity
qs declines exponentially with decreasing temperature. At a critical height z = zc and a
critical temperature T (zc) = Tc the atmosphere becomes saturated. From this height and
above, the solution follows the saturated solutions from § 3.1, but using the values at z = zc
as the basal values for the solution.

The dependence of zc and Tc on atmospheric parameters for α = 3 is shown in figure 3.
We find that zc depends on γ , while Tc is independent of γ . Both zc and Tc depend on
q0 = q(z = 0), the relative humidity at the lower boundary, and these behave sensibly in
the limit of a saturated atmosphere (q0 = 1). The variations in γ , though significant, are
much smaller than the variations in q0; when γ increases, so does zc, while Tc remains
unchanged. Neither zc nor Tc shows any dependence on β in the ranges we have tested
β = [1, 1.2] (not shown). Below a critical q0 ≈ 0.2 there are no solutions, as zc > 1 violates
our assumptions; this critical q0 appears to be independent of γ .

A selection of unsaturated atmospheres, all at α = 3 and γ = 0.19 with q(z = 0) =
q0 = 0.6, is shown in figure 4. The full details on constructing these piecewise solutions
to unsaturated atmospheres are in Appendix A. In this atmosphere, zc ≈ 0.475 and
Tc ≈ −0.459 for all values of β. The saturated portion of the atmosphere above z = zc
shows similar nonlinearity in q(z) and b(z) as in figure 1, while the unsaturated portions
below z = zc are linear and the profiles of m(z) are linear throughout. The profiles of
T (z) are nonlinear above z = zc, though this is difficult to discern in the plot. As with
the saturated atmospheres, b(z) and m(z) depend on β, while q(z) and T (z) do not. The
character of the gradients is similar to what was found for saturated atmospheres, and as
before, atmospheres can be either fully unstable (e.g. β = 1), moist unstable but dry stable
(e.g. β = 1.1) or fully stable (e.g. β = 1.15). In all cases, the relative humidity rh is less
than one below z = zc and rh = 1 above that critical point.

As for the saturated atmosphere, the ideal stability of the unsaturated atmospheres
based on the gradients ∇m and ∇b is shown in figure 5. Atmospheres can again be
either stable, conditionally unstable or unconditionally unstable. Generally, at fixed γ ,
the unsaturated atmospheres become stable for smaller values of β than their saturated
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β = 1 1.05 1.1 1.15

0

0.2

0.4

0.6

0.8

1.0

0.1 0 0.2–0.2 0 1–1

T,b, m q,γq, rh

Z

∇b, γ∇q, ∇m,

(a)
(b) (c)

Figure 4. Unsaturated atmospheres with α = 3 and γ = 0.19, and with q(z = 0) = 0.6, at varying values of β

(labelled above corresponding b, m (a)). In this atmosphere, zc ≈ 0.475 and Tc ≈ −0.459, independent of β.
Shown at left are profiles of buoyancy b, scaled humidity γ q and moist static energy m. Below zc (dashed
lines) the profiles are linear, while above zc (solid lines) q(z) and b(z) have nonlinear structure. The profiles
of b and m change with β, gradually increasing the value of the gradient from negative (convectively unstable)
to positive (convectively stable, grey region of panel). These gradients are shown in (b). The profile of q is
independent of β; this is true both below zc and above, where it follows qs which depends on T , which is itself
independent of β (c). The temperature profile is given by a Lambert-W function and is not linear above zc. The
relative humidity is rh < 1 below zc and rh = 1 for z � zc.

counterparts (compare with figure 2). The interesting wedge of dry stability and moist
instability remains present and, as before, this wedge converges at γ = 0, and widens
as γ increases. For unsaturated atmospheres with q(z = 0) = 0.6, we choose γ = 0.19,
β = 1.1 as our representative conditionally unstable atmosphere, and β = 1.05 as our
representative unconditionally unstable atmosphere.

3.3. Drizzle solutions via nonlinear boundary value problems
When approaching a system like Rainy–Bénard, one might naturally attempt computing
equilibrium solutions using numerical tools for the full coupled nonlinear system in
equilibrium

P∇2b = γ

τ
(q − qs)H(q − qs), (3.10)

S∇2q = −1
τ
(q − qs)H(q − qs), (3.11)

qs = exp (α(b − βz)), (3.12)
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Figure 5. Ideal stability of unsaturated (q(z = 0) = 0.6) Rainy–Bénard atmospheres. Shown are the boundaries
to moist instability (∇m = 0) and to dry instability (∂zbmin = 0, with this the smallest or most negative value
of ∂zb). At fixed γ , as β increases, the atmosphere goes from fully unstable to dry stable but moist unstable
(light grey wedge) before becoming fully stable (dark grey region). Squares show points from figure 4.

seeking solutions to b and q subject to boundary conditions. In the remainder of this
section, we set P = S . Using the Dedalus nonlinear boundary value problem (NLBVP)
solver to compute drizzle solutions with saturated and unsaturated lower boundaries, we
found them to be difficult to converge.

While the rest of this manuscript utilizes the analytic atmosphere solutions discussed in
§§ 3.1 and 3.2, here, we present some details of NLBVP solutions. This section will act
both as a word of caution and to help isolate the effect of numerical approximations to the
Heaviside function on resulting equilibria.

In this section, we assess convergence via relative error in the humidity variable,
comparing the NLBVP computed q(z) with the analytic solution qA(z)

Eq =
∫ |q(z) − qA(z)|dz∫ |qA(z)|dz

. (3.13)

We find that convergence in Eq is similar to convergence in other variables in the system
(e.g. buoyancy or relative humidity).

For saturated atmospheres, where q(z = 0) = 1, γ = 0.19, β = 1.1, the NLBVPs
quickly converge to an accurate solution. These atmospheres can be solved using two
different approaches to the condensation rate. In the simplest approach, we explicitly set
H(A) = 1, as the atmosphere is everywhere saturated. This removes the numerical effects
from a finite-width Heaviside function. The system remains nonlinear via qs(z). Under this
approach, sampling in 3 × 10−6 � τP � 10−3, we find that convergence is independent
of resolution above a very low threshold (e.g. we found good solutions from nz = 8 to
nz = 1024), and convergence depends only on τ , with Eq ∝ τ . Using our techniques, we
were unable to converge solutions at lower τ at any resolution (e.g. τP � 10−6).

Alternatively, we can take a smooth Heaviside for H(A) as in (2.8). Now we are able to
explicitly test the numerical effects of the approximate condensation rate used in the rest
of our work. Here we sample in both 3 × 10−6 � τP � 10−3 and in 103 � k � 105. For
these saturated atmospheres, we find essentially no dependence on k, and a similar Eq ∝ τ

dependence.
The story is different for unsaturated atmospheres, where q(z = 0) < 1. Here, we

compute NLBVP solutions with q(z = 0) = 0.6, γ = 0.19, β = 1.1 using H(A) as in (2.8)
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Figure 6. Convergence of NLBVP solutions with τ and k for saturated (a) and unsaturated (b) atmospheres
with β = 1.1. Here, we assess Eq for the computed humidity variable qc, compared with the same from the
analytic solution qa . Saturated atmospheres are straightforward to converge, and the degree of convergence
depends nearly only on τ . For unsaturated atmospheres, a dependence on both τ and k is visible.

and sample in both 3 × 10−6 � τP � 10−3 and in 103 � k � 105. As τ decreases, the
NLBVP system becomes increasingly difficult to converge, even with increased resolution
and irrespective of initial guesses for the solution. The underlying problem appears to be
related to linearization of the NLBVP system during iterative convergence: as discussed
in § 4 (see (4.4) and (4.5)), expansion of the smooth Heaviside H(A) includes a term
that is very small in the vicinity of the transition. To solve this problem in our NLBVPs,
we restricted our solver from expanding and linearizing H(A) during the interative
convergence. This dramatically improved the ability of the NLBVP solver to converge.
In general, we found fastest convergence by starting at large k with the analytic solution as
our guess, and then using continuation techniques to continue in the direction of decreasing
k at fixed τ .

Starting from the analytic solution highlights two important issues. First, NLBVP
approaches to finding drizzle solutions remain extremely challenging and analytic
techniques remain essential to make progress – even knowing the answer requires care
in handling k and τ . Second, these tests are reasonable proxies for nonlinear simulations,
as those will typically be updating data from prior time steps and thus will begin close to
the analytic solution and then drift slowly in a given timestep.

The resulting solutions in τ and k are shown in figure 6(a). At large τP = 10−3, the
solutions do not depend on k. As τ decreases, solutions initially depend strongly on k. At
low k, accuracy decreases as τ increases for the saturated case (left panel), as expected;
however, in the unsaturate case (right panel) the accuracy at low k decreases as τ decreases,
somewhat counter-intuitively. In all systems at high k, the solutions approach the analytic
solution. At fixed τ and large k we generally find that the accuracy plateaus at some fixed
Eq . The plateau values in the unsaturated atmospheres are similar to those found in the
fully saturated atmospheres.

Given that a nonlinear simulation will also involve iterated evaluations of these
nonlinearities, we expect that these results will set a floor on the overall accuracy,
particularly with regard to τ . A properly self-consistent simulation must choose �t � τ ,
placing strict limits on timestep size. There is tension between the weak convergence of
NLBVPs with τ observed here and the desire for high accuracy in nonlinear timestepping
simulations. Meanwhile, nonlinear simulations in unsaturated atmospheres desiring high
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accuracy will also need to select sufficiently large k, but the influence of k is governed
by τ . We will consider these interrelated issues further in subsequent work.

4. Linear stability
Having established the model equations and the character of their static solutions, we
now turn to the main result of this work. We seek the linear stability of the ‘drizzle’
solutions with both saturated and unsaturated lower boundaries, for both conditionally
and unconditionally unstable atmospheres. To do so, we linearize (2.4)–(2.7) about four
representative drizzle solutions and formulate them as generalized eigenvalue problems.

Linearzation of the RnBC equations is significantly complicated by the Heaviside
function in (2.1). In the saturated atmospheres, at leading order, the Heaviside function
is H(z) = 1 everywhere, and in these atmospheres the effect of H is straightforward
to resolve. In the unsaturated atmospheres, the leading-order behaviour of H is more
complicated and the linearized equations gain a non-constant coefficient N that is rather
sharp and requires significant resolution. In either case, one must provide an approximation
to the Heaviside function that can be linearized. The most common choices are tanh
and erf; both require a parameter k that determines the steepness of the interface. By
comparing the NLBVP solutions with the analytic and asymptotic solutions, we can
quantify the convergence of the approximate Heaviside function as a function of the
artificial parameter k and the physical parameter τ , whose small size is an assumption of
the Rainy–Bénard model. Because H is not a function of spatial coordinates, it is possible
to use a true piecewise function even when using spectral methods (D. Lecoanet, personal
communication). However, this precludes the linear stability analysis we perform here.
We have tested both tanh and erf and find the latter to have modestly better properties,
especially as related to spectral convergence; as reflected in (2.8) we use erf exclusively in
the calculations below.

In the unsaturated cases, the problems posed by N are further exacerbated by
the Legendre polynomials we use to discretize the z direction, which cluster points
preferentially away from the centre of the interval, where the sharp discontinuity is
located near zc. For unsaturated atmospheres, we thus use three matched domains, one
from 0 < z1 < zc − zε , one from zc − zε < z2 < zc and a third from zc < z3 < 1, where zε

is chosen dynamically by the erf width parameter k. This allows the natural clustering
of resolution for the Legendre polynomials to enhance the resolution in the region at
which the solutions are changing most rapidly. Each domain has its own state variables,
{pi , ui , bi , qi } for each domain i ∈ {1, 2, 3}. The standard boundary conditions at the top
and bottom of the total domain, z = 0, 1, remain the same and are supplemented with a
set of matching conditions at the interfaces: p, b, q, u and the first derivatives of b, q, u
are all continuous. The equations for all three layers are identical; as they simply promote
numerical efficiency, in what follows we do not differentiate between them, referring only
to f1 for the perturbations to variable f .

In order to determine the onset of instability, we solve a series of linear eigenvalue
problems for perturbations to the background atmospheres described in § 3. We first
decompose all quantities into a static, z-dependent background and a time-dependent
fluctuation, f (x, z, t) = f0(z) + f1(x, z, t), assume a modal dependence in time and the
horizontal direction

f1(x, t) = f̂1(z) exp (ωt − i k⊥ · x⊥), (4.1)
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with x⊥ = x êx + y êy , and then solve equations for complex eigenvalue ω = ωr + iωi and
eigenfunctions f̂1(z). Inserting (4.1) into (2.4)–(2.7), we keep terms up to O( f1). Most
terms are straightforward, but a few require some care.

The Clausius–Clapeyron relation becomes

qs = exp (α(T0 + T1)) ≈ qs0(1 + αb1), (4.2)

with

qs0 ≡ exp (αT0). (4.3)

Terms involving the Heaviside function have the form AH(A), which becomes

AH(A) = (A0 + A1)H(A0 + A1)

= A0H(A0) + A1

[
H(A0) + A0

k√
π

exp (−k2 A2
0))

]
+O(A2

1). (4.4)

A subtle aspect of the phase-change term is that in the vicinity of the transition,
A0 = (q0 − qs0) =O(ε)�O(A1), and owing to this the combined second term in the
square brackets with amplitude A1 A0 is at order O(A2

1) rather than order O(A1). As
a consequence, it cannot be included without also consistently including other terms at
O(A2

1), which could likely be done with a careful asymptotic analysis. We do not do so
here, and instead only include terms that are formally O(A1) in the linear equations

AH(A) = A0H(A0) + A1H(A0) +O(A2
1). (4.5)

The convergence of NLBVP solutions to analytic solutions in § 3 using this ordering
suggests it is sufficiently accurate.

In total, the linear contribution of the phase-change nonlinearity to order O(A1)
becomes

(q − qs)H(q − qs) ≈N (z)(q1 − qs0αb1), (4.6)

where the non-constant coefficient N (z) in (4.6) is

N (z) ≡H(q0 − qs0). (4.7)

The z dependence of N (z) arises from q0(z) and qs0(z).
With the analytic solutions for the base state b0 and q0, the linear system is

∇ · u1 = 0, (4.8)
∂u1

∂t
−R∇2u1 + ∇ p1 − b1 êz = 0, (4.9)

∂b1

∂t
−P∇2b1 + u · ∇b0 − γ

τ
(q1 − qs0αb1)N (z) = 0, (4.10)

∂q1

∂t
− S∇2q1 + u · ∇q0 + 1

τ
(q1 − qs0αb1)N (z) = 0. (4.11)

We restrict ourselves to two-dimensional modes, k⊥ · x⊥ = kx x , ky = 0.
The critical Rayleigh number Rac and wavenumber kx,c are the values at which the

maximum ωr = 0. To find these values, we initially scan on a discrete kx , Ra grid.
We identify two solutions that bracket ωr,peak = 0 in Ra. For each of these we use
scipy.optimize.minimize to identify the peak growth rates for continuous kx , which
are the points of maximal ωr below and above Rac. Constructing ωr,peak = F(Ra, kx ),
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Figure 7. Relative critical Rac numbers at γ = 0.19, normalized by the smallest value at that β, (circles; left
axis) and kc (squares; right axis) as functions of τ for saturated atmospheres. Here, we sample β = 1.175
(blue, conditional instability) and β = 1.1 (orange, unconditional instability), with k = 105 in all cases. As τ

decreases, Rac decreases and approaches a plateau value, as does kc.

we then interpolate F to find an approximate Ra′
c, k′

x,c where ωr = 0. This serves as the
initial condition for another optimization sweep at Ra = Ra′

c and continuous kx , and the
new maximum ωr is used to update the brackets in Ra. We continue this process until
ωr,peak = 0 to within a specified tolerance.

4.1. Saturated atmospheres
The stability of saturated atmospheres depends strongly on whether or not the background
atmosphere is conditionally unstable or not. In all atmospheres that we studied, there is
exchange of stability, with all critical modes having ωi = 0. The spectrum for saturated
atmospheres is quite similar to that of Rayleigh–Bnard and thus rather uninteresting: it
consists of a set of zero-frequency modes differing only in their growth or damping rates.
We do not find any oscillatory modes in these saturated atmospheres, and for this reason
we do not plot their spectrum here.

Before we proceed, we first determine the dependence of critical Ra on the condensation
timescale τ . We test saturated atmospheres with β = 1.175 (conditional instability) and
β = 1.1 (unconditional instability) and γ = 0.19 for τ = [0.1, 10−3]. We set k = 105 in all
cases and nz = 128. The results are shown in figure 7. The left axis shows that the critical
Rac converges to less than ∼2 % at τ � 10−2. When τ is larger, the critical Ra is about
5%–20% larger than its converged value. The critical wavenumber kc also depends on τ ;
note that the right axis of figure 7 shows absolute values of kc. For the remainder of this
work, we fix τ = 10−3. At this τ and γ = 0.19, for the unconditionally unstable atmosphere
at β = 1.1, we find Rac ≈ 1.56 × 104. In the conditionally unstable atmosphere at
β = 1.175 we find Rac ≈ 2.27 × 105. In both cases the critical wavenumber kc ≈ 2.68.

The dependence of Rac on γ and on β is given in figure 8 where we show Rac for
either two values of β (top) or two values of γ (bottom) to give a sense of the multi-
dimensional parameter space. The ideal stability limits are marked (dotted vertical lines),
and Rac appears to diverge approaching these limits. The critical wavenumber kc shows
essentially no variation with either γ or β. In calculations at larger τ values (e.g. τ = 0.1,
not shown), we have found that kc does vary with γ and β, but that variation disappears as
τ decreases below approximately τ ≈ 10−2 (e.g. figure 7).
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Figure 8. Critical Rayleigh numbers and kc for saturated atmospheres, with τ = 10−3, k = 105. The upper
figure shows Ra (circles; left axis) and kc (squares; right axis) as functions of γ with β = 1.0 (blue) and
β = 1.2 (orange); the lower figure shows the same quantities as a function of β at γ = 0.19 (blue) and γ = 0.3
(orange). The upper figure also contains data from VPT19 as red and green circles. Note that these data have
been scaled to account for a minor correction to the parameters in that paper (see Appendix B).

We include on the top panel of figure 8 the results from VPT19, extracted with
webplotdigitizer (WebPlotDigitizer, https://automeris.io). We have scaled their results to
account for a minor correction to the parameters reported in their paper (see Appendix
B for details). The VPT19 results were found via timestepping nonlinear simulations and
looking for exponential growth or decay, while our results come from the linear stability
procedure described above. The agreement is excellent at all β and γ studied by VPT19.

We plot the eigenfunctions at Rac for both β = 1.1 and 1.175 in figure 9. Generally,
we find that uz , b, γ q and m all share the same phase while ux is π/2 out of phase. The
b, m and uz perturbations peak at similar heights while the q perturbation peaks in the
lower half of the domain. The combined structure of uz and ux is very similar to the
classic cellular patterns observed in linear Rayleigh–Bénard convection.

Comparing the eigenfunctions at Rac for β = 1.1 and 1.175, we see surprisingly
little difference. The only visible difference between the two is the higher velocity
perturbations ux and uz for the conditionally unstable case (β = 1.175), in keeping with
the much reduced diffusion at the significantly increased Ra. This suggests that while
conditional instability dramatically stabilizes the system with respect to diffusive effects,
the mechanism of instability remains the same: latent heat release causes an increase in
buoyancy over the background.
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Figure 9. Eigenfunctions of fastest growing modes for saturated atmospheres at Ra = Rac top: unconditional
instability (β = 1.1), Rac � 1.56 × 104, kc � 2.68, bottom: conditional instability (β = 1.175), Rac � 2.27 ×
105, kc � 2.68. From left to right, perturbations to ux , uz , b, γ q , m. The only difference between the two
modes is that for β = 1.175, the velocities are higher. All quantities are normalized such that m = 1 + 0i at its
maximum.

4.2. Unsaturated atmospheres
We now turn to the unsaturated atmospheres with α = 3, γ = 0.19 and q0 = 0.6 (with
τ = 10−3 and k = 105) and study their linear stability. First, we determine the critical
Ra for a conditionally unstable atmosphere (β = 1.1) and an unconditionally unstable
atmosphere (β = 1.05). The growth rates as a function of kx for these two cases are plotted
in figures 10 and 11, respectively. Here, the solutions are more challenging to resolve,
especially in the regions where the non-constant coefficient N (z) varies rapidly: even
with the three matched domains for unsaturated atmospheres, we generally use higher
resolutions (up to nz = 512 in total, with nz,1 = nz,3 = 128 and nz,2 = 256 in the matching
layer). These resolutions were sufficient for convergence here, but it is possible that more
efficient calculations with lower resolutions could be completed.

We start with the conditionally unstable atmosphere. As can be seen in figure 10,
at Ra > Rac there is a range of kx where modes grow in amplitude (ωr > 0) while at
Ra < Rac all modes are damped (ωr < 0). The critical Rac ≈ 723,000 curve contacts
ωr = 0 at one point, the critical wavenumber kc. The fastest growing mode has ωi = 0
and the instability proceeds via exchange of stability, as in the saturated atmosphere cases
earlier. The structure of these growth curves is broadly similar to those found in classical
Rayleigh–Bénard convection.

We turn now to the unconditionally unstable atmosphere (figure 11). Here the behaviour
is similiar, with growing modes when Ra > Rac, decaying modes when Ra < Rac, and
instability at a critical Rac and wavenumber kc via exchange of stability. Compared
with the conditionally unstable atmospheres, here, the growth curves are more peaked,
including for cases with Ra < Rac. As expected from the fact that β = 1.05 is unstable
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Figure 10. Growth rates as a function of wavenumber kx for five values of Ra in a conditionally unstable,
unsaturated atmosphere, with β = 1.1, α = 3, γ = 0.19, q0 = 0.6. This background atmosphere is dry stable
but moist unstable; the critical Rac � 7.50 × 105, with kc � 2.89, is shown in blue.
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Figure 11. Growth rates as a function of wavenumber kx for four values of Ra in an unconditionally unstable,
unsaturated atmosphere, with β = 1.05, α = 3, γ = 0.19, q0 = 0.6. This background atmosphere is unstable to
both dry and moist convection. The critical Rac � 2.65 × 104, with kc � 2.58, is shown in blue.

to both moist and dry convection, the critical Rac = 2.69 × 104 for this unconditionally
unstable atmosphere is significantly lower in comparison with that for the β = 1.1
conditionally stable atmosphere, where it rises to Rac = 7.23 × 105. Curiously, however,
the wavenumber at onset is hardly changed at all. We shall return to this point below.

We plot the eigenfunctions for the fastest growing mode at Rac for both β = 1.05 and
1.1 in figure 12. The upper saturated portions of the atmospheres, above zc, look very
similar to our earlier results for fully saturated atmospheres, with uz , b, γ q and m all
share the same phase while ux is π/2 out of phase. The most unstable modes span down
into the lower, unsaturated part of the domain. In that lower region the amplitude of γ q
grows substantially as here q < qs and no latent heat release modifies b. The velocities uz ,
ux and m span the transition quite smoothly, while b and γ q show substantial structure
at the transition z = zc. The combined structure of uz and ux is very similar to the classic
cellular patterns observed in linear Rayleigh–Bénard convection, though here that structure
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Figure 12. Eigenfunctions for fastest growing modes for unsaturated atmospheres at Ra = Rac; top:
unconditional instability (β = 1.05), Rac � 2.68 × 104, kc � 2.57 bottom: conditional instability (β = 1.1),
Rac � 6.87 × 105, kc � 2.60. From left to right, perturbations to ux , uz , b, γ q , m. All quantities are normalized
such that m = 1 + 0i at its maximum.

spans down into the unsaturated region. In the conditionally unstable atmosphere, the most
unstable mode has a small second cell located at the very lowest regions of the atmosphere
(z � 0.2), and the b fluctuations are generally of larger amplitude and different structure
than the unconditionally unstable atmosphere.

The dependence of Rac on γ and on β for these unsaturated atmospheres is shown in
figure 13. Here, we include three values of β (top) and the same two values of γ (bottom)
to illustrate the multi-dimensional parameter space. Ideal stability limits are again marked
(dotted vertical lines), and Rac appears to diverge approaching these limits. The critical
wavenumber kc shows much less variation, though there is more variation than was seen in
the fully saturated atmospheres (figure 8). Some ordering of kc with β is visible in the top
panel, with β = 1 having a typical values of kc ≈ 2.62, β = 1.05 having typical values of
kc ≈ 2.59 and β = 1.1 having typical values of kc ≈ 2.57. As the critical value of γ (top)
or β (bottom) is approached, kc appears to decrease and then increase. These variations
are generally small compared with the large variations in Rac, and would likely diminish
further at even smaller values of τ .

Next, we consider the eigenvalue spectrum of the unsaturated atmospheres, where the
situation is more interesting than for the saturated cases. The spectrum for the conditionally
unstable atmosphere with β = 1.1 is shown in figure 14. Shown are cases at (left panel),
above (middle panel, Ra = 10Rac) and well above (right panel, Ra = 100Rac) the critical
Rac. Each case is computed at the wavenumber of the fastest growing mode. In all cases,
the onset of instability remains direct, with ωi = 0 for the fastest growing mode.

At the highest Ra = 100Rac, two different growing modes are visible above onset. The
fastest growing mode has a single cell in the upper, saturated portion of the atmosphere,
as in figure 12, while the slower growing mode is the next overtone, with two cells in z in

1007 A60-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.125


Journal of Fluid Mechanics

0 0.1

104

105
C

rit
ic

al
 R

a

C
rit

ic
al

 k

0.2 0.3 0.4 0.5 0.6
γ

β = 1
β = 1.05
β = 1.1

1.00

1.25

1.50

1.75

2.00

3.00

2.25

2.50

2.75

1.000 1.025

104

105

106

C
rit

ic
al

 R
a

C
rit

ic
al

 k

1.050 1.075 1.100 1.125 1.150
β

1.00

1.25

1.50

1.75

2.00

3.00

2.25

2.50

2.75

γ = 0.19
γ = 0.3

Figure 13. Critical Rayleigh numbers and kc for unsaturated atmospheres, with τ = 10−3, k = 105. The upper
figure shows Ra (circles; left axis) and kc (squares; right axis) as functions of γ with β = 1.0 (blue), β = 1.05
(orange) and β = 1.1 (green); the lower figure shows the same quantities as a function of β at γ = 0.19 (blue)
and γ = 0.3 (orange).

the saturated region. In all three cases, new branches of damped oscillatory modes with
ωi 
= 0 appear in the system. The waves are not destabilized in the region of parameter
space above onset: though the oscillatory branches become less damped, they also move
to higher frequencies and do not seem likely to cross the ωr = 0 axis.

The spectrum for the unconditionally unstable atmosphere with β = 1.05 is shown in
figure 15. Shown are cases at (left panel), above (centre panel, Ra = 10Rac) and well
above (right panel, Ra = 100Rac) the critical Rac. Each spectrum is computed at the kx of
the fastest growing mode. Here again all cases have direct onset of instability, with ωi = 0
for the fastest growing mode. At the highest Ra = 100Rac, two different growing modes
are visible above onset, with larger separation than in the β = 1.1 atmosphere. Oscillatory
branches are visible in all cases, with more such modes at higher Ra.

In order to understand the nature of these waves, we plot their frequency as a function
of horizontal wavenumber kx in figure 16 for the conditionally unstable case β = 1.05 and
at Ra = Rac ≈ 2.8 × 104. Shown at left is a frequency diagram, while at right is a period
diagram. Several branches of oscillatory modes are visible, and all are damped (ωr < 0).
At high kx , and for modes with periods above the lowest period, the spacing of modes at
fixed kx appears to be approximately constant in period. This is a well-known characteristic
of internal gravity waves (e.g. Turner 1973, (2.2.7)). The black line shows the dispersion
relation for Boussinesq internal gravity waves for Nb = ∂zb0 � 0.1 (as seen in figure 4)
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Figure 14. Eigenvalue spectrum ω = ωr + iωi for Ra = Rac = 6.87 × 105, kx = 2.60 (a), Ra = 10Rac,
kx = 6.0 (b), Ra = 100Rac, kx = 9.0 (c) for an unsaturated atmosphere with conditional instability (γ = 0.19,
β = 1.1). Here, the x-axis shows the growth rate ωr ; the y-axis shows frequency ωi . Blue points indicate wave
modes with non-zero frequencies; red points show growing modes; pale orange point shows the neutral mode.
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Figure 15. Eigenvalue spectrum ω = ωr + iωi for Ra = Rac = 2.68 × 104, kx = 2.57 (a), Ra = 10Rac,
kx = 4.0 (b) and Ra = 100Rac, kx = 6.5 (c) for an unsaturated atmosphere with unconditional instability
(γ = 0.19, β = 1.05). Here, the x-axis shows the growth rate ωr ; the y-axis shows frequency ωi . Each spectrum
is at the kx corresponding to the peak growth rate at that Ra. Blue points indicate wave modes with non-zero
frequencies; red points show growing modes; pale orange point shows the neutral mode.
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Figure 17. Eigenfunctions for highest-frequency waves in the same atmospheres as in figure 12 at Ra = Rac;
top: unconditional instability (β = 1.05), bottom: conditional instability (β = 1.1).

and kz = 2π/zc. The gravity wave dispersion relation provides a reasonable approximation
to the numerically computed frequencies when using the size of the unsaturated region,
strengthening our interpretation as moisture modified gravity waves. The branches of
modes at successively lower ωi (at fixed kx ) represent modes with increasing structure
in the z direction; it is interesting to note that they appear best fit by odd multiples of kz0.

The eigenfunctions for the highest-frequency oscillatory modes in the unconditionally
unstable atmosphere (β = 1.05) and in the conditionally unstable atmosphere (β = 1.1)
are shown in figure 17. Here, the modes have more complex phase relationships than were
present for the fastest growing modes (figure 12), but some patterns hold: the velocities ux ,
uz and the moist static energy m smoothly span between the saturated region above zc and
the unsaturated region below, while the buoyancy b and humidity q show more structure
in the vicinity of the transition at zc. It is striking that the profiles of m = b + γ q are
clearly continuous in figure 17 across the z = zc transition, while the profiles of b and γ q
appear at first to be discontinuous. This is especially visible in the conditionally unstable
atmosphere, where b and γ q appear to be zero in the saturated region of the atmosphere.
However, there is no inconsistency. Both b and γ q retain amplitude in the saturated region
above z = zc due to incomplete cancellation, and the plotting is visually dominated by their
very large amplitudes in the lower, unsaturated region of the atmosphere.

It is interesting that no such oscillatory modes are found in the fully saturated
atmospheres, but the structure of the eigenfunctions in the unsaturated case sheds some
light on that. The eigenfunctions of the waves are always such that the buoyancy and
humidity perturbations are oppositely signed. This means that where positive buoyancy
perturbations b occur, the atmosphere is drier than average and latent heat is not being
added. However, where the buoyancy perturbation is negative, there is a increase in q
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Figure 18. Here, we show an experiment to verify the proposed latent heat wave-damping mechanism. Zoom in
on eigenfunctions for b (orange red) and γ q (black) in the saturated regions of partiallyunsaturated atmosphere
(z > zc) for highest-frequency waves shown in figure 17 at Ra = Rac for the conditionally unstably atmosphere
(β = 1.1). The critical level zc is indicated in grey, and here the modes are normalized by the maximum
amplitude of b in the domain, rather than m. At left are the eigenfunctions for the wave equations with γ = 0.19
and normal full coupling between b and q . The amplitudes here are very small, indicating a high degree of
suppression of both b and q . At right are the eigenfunctions for b and γ q for wave equations where there is
no coupling between b and q by setting N = 0, corresponding to taking τ → ∞. Here the q fluctuations are
almost exactly out of phase with the b fluctuations, and the b amplitudes remain large.

and the atmosphere is more moist. This means that there is latent heat being added to
the system, counteracting the lower buoyancy. In the lower unsaturated region of the
atmosphere below zc, q < qs and the moisture does not condense out. As such, q is
decoupled from the buoyancy, rendering it unable to damp the wave. However, in the
saturated portion of the atmosphere above zc the Heaviside function is essentially always
on, and so the positive humidity perturbation couples directly to the buoyancy, adding
additional buoyancy in the portion where the negative b would otherwise provide a
restoring force. This acts to damp the waves in that region.

In these unsaturated atmospheres, the unsaturated region of the atmosphere below zc
gives the waves a region to continue propagating without this damping. In the fully
saturated atmospheres studied earlier, there is no such dry region, and the waves are
everywhere damped. This explains why no linear oscillatory modes are found in the fully
saturated atmospheres.

We tested this hypothesis by running a set of calculations in a conditionally unstable
(β = 1.175 where ∇b0 > 0 everywhere), fully saturated atmosphere with the background
state computed as normal at γ = 0.19 but with τ → ∞ by setting N (z) = 0. This
decouples b and q and renders q a passive scalar with sign opposite that of b due to
their respective oppositelysigned background gradients (see figure 1). While this is not
self-consistent, it removes the latent heat and condensation terms from the dynamical
equations. Spectra of these modified equations in fully saturated atmospheres show
oscillatory modes, in contrast to solutions with coupling between q and b. This suggests
that the gravity waves are present in fully saturated atmospheres, but are damped by the
negative feedback from the latent heat coupling of q and b.

To further test this hypothesis, we conducted the same experiment in the conditionally
unstable, partiallyunsaturated atmosphere used in figure 17 (γ = 0.19, β = 1.1). In
figure 18, we zoom in on the eigenfunctions for b and q in the saturated part of that
atmosphere at z > zc. The left panel shows the normal, full solution, while the right
panel shows the solution with N (z) = 0. The eigenfunctions in figure 18 are normalized
differently than those in figure 17, here using the maximum amplitude of b rather than
m. In the left panel of figure 18, the amplitudes are suppressed, showing the effects
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of condensation and latent heat release on q and b respectively. In the right panel, the
amplitudes of both q and b remain large and the fluctuations are almost exactly out of phase
with each other. This experiment suggests that the proposed latent heat wave-damping
mechanism is acting to suppress waves in the saturated regions of these atmospheres.

It is interesting to consider whether these moisture modified internal gravity waves
might exist in fully saturated atmospheres. Because the damping of the waves occurs
via the negative feedback associated with the latent heat of condensation, and since that
coupling between b and q is mediated by γ with γ < 1, it is possible that these waves
could be transiently excited in nonlinear simulations. As a plume transits through the
fully saturated atmosphere, the finite amplitude perturbations in q and b that it excites
(via u · ∇q and u · ∇b) will damp via the negative feedback process explored above.
However, since γ < 1, the cancellation of b by γ q is not complete in a single wave period.
We expect that nonlinear plumes may shed transient wakes of internal gravity waves,
where the waves damp out over several periods (roughly 1/γ ). Indeed, our preliminary
nonlinear simulations of fully saturated atmospheres have shown evidence of gravity
waves driven by moist convective plumes; this was also observed in VPT19. Those
authors found (their figure 16d−f ) internal gravity waves in the dry subsiding regions of
their higher Ra nonlinear simulations. This suggests that the mechanism outlined above
occurs in both unsaturated atmospheres and fully saturated atmospheres when nonlinear
convection can modify the local moisture. The study of coupled nonlinear convective
plumes with possible transient internal gravity waves will be the focus of our next study.

5. Conclusions
We have presented a detailed treatment of the linear dynamics of the simplified Rainy–
Bénard model for moist convection. We studied convective onset for a variety of
parameters of interest in Earth’s atmosphere, the spectra of the linear operator for
unsaturated atmospheres and conducted an investigation into the nature of the waves that
remain present even when the system has non-oscillatory convective instability present.
For unsaturated atmospheres, we find evidence of linear gravity waves even when the
background is unstable. Unlike in dry Rayleigh–Bénard convection, the existence of
gravity waves is not precluded by an unstable background. This is true regardless of
whether or not the entire atmosphere is stable to dry convection. As long as some part of
it has a positive buoyancy gradient, we find these waves. We speculated on the existence
of similar waves in fully saturated atmospheres from nonlinear effects. This work has
precedence in a number of works in the atmospheric literature in which the interaction
between conditional instability and gravity waves was considered (e.g. Lindzen 1974;
Lindzen & Tung 1976; Tulich & Mapes 2008). Here, we have demonstrated that such
wave activity may arise from properties of the linear operator even in very simple models
of moist convection.

In a future work, we will consider the nonlinear evolution of these systems, the scaling
of various turbulent quantities with Ra, and the interaction of waves, plumes and moist
convective self-organization.
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Appendix A. Piecewise solutions for unsaturated atmospheres
Here, we expand on the discussion in VPT19 and give a detailed solution for constructing
the unsaturated drizzle solution. This is particularly important in light of the fact that
the problem itself is a strongly nonlinear boundary value problem but has an important
simplification that can be exploited to produce solutions accurately. We draw attention to
this because while it is tempting to attempt to solve the full nonlinear boundary value
problem numerically (using, for example iterative methods), this converges extremely
poorly.

In unsaturated atmospheres, (3.1) continues to hold and m has a linear profile,
now with

P = γ q0, (A1)

Q = β − 1 + γ ( exp (−α) − q0), (A2)

As in the saturated atmospheres, m(z) = P + Qz is fully determined by the values at
the boundaries. This means that the amplitude and sign of �m can be determined from
(A1)–(A2) alone, as can the ideal stability of the atmosphere to moist instabilities.

The profiles of q(z) and T (z) are piecewise functions, with saturated atmosphere
solutions for q+, T+ when z � zc and linear solutions for q−, T− when z < zc, matching at
height z = zc and temperature T = Tc

q(z) =
{

q−(z) = q0 + (qc − q0)(z/zc) z < zc

q+(z) = exp(αT+(z)) z � zc
(A3)

T (z) =
{

T−(z) = 1 + (Tc − 1)(z/zc) z < zc

T+(z) = C(z) − W (αγ exp (αC(z)))/α z � zc
(A4)

where

C(z) = bc + γ qc + ((b2 − bc) + γ (q2 − qc))
z − zc

1 − zc
− βz, (A5)

bc = Tc + βzc, (A6)

qc = exp (αTc). (A7)

The buoyancy profile b can be obtained from b(z) = m(z) − γ q(z), fully determining the
static atmosphere structure.

All that remains is finding the critical values zc and Tc. This is done, as described in
Vallis et al. (2019), by requiring C1 continuity of q(z) and T (z) at z = zc, and solving the
resulting nonlinear system via rootfinding
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q−(z) − q+(z) + τ1 = 0, (A8)

T−(z) − T+(z) + τ2 = 0, (A9)

∂

∂z
(q−(z) − q+(z)) = 0, (A10)

∂

∂z
(T−(z) − T+(z)) = 0, (A11)

z − zc = 0. (A12)

The nonlinear system of (A8)–(A12) can be solved for unknowns zc, Tc, along with the
slack variables τ1 and τ2 (which are zero to machine precision at the root) and z (which
equals zc at the root), using a symbolic tool (e.g. Mathematica or Sympy) or by other
methods.

Appendix B. A small correction to simulation parameters in VPT19
In the course of this work, we discovered a small inconsistency in the parameters reported
in portions of VPT19, in particular in figure 4 of that work where they reported critical
Rayleigh numbers. After consulting closely with the authors of that work, we discovered
that the code used in computing the nonlinear simulations accidentally adopted

qcode
s (T ) = K2 exp(α(T0 + T1)), (B1)

rather than the proper expression

qs(T ) = K2 exp(αT1), (B2)

where K2 is a constant. Equations (B1) and (B2) are identical if the temperature at the
lower boundary T0 = T (z = 0) = 0, as in the analytic sections of VPT19. The nonlinear
simulations of VPT19 instead set T (z = 0) = 5.5 leading to a difference between (B1) and
(B2).

To correct the results using (B1) from using the full T = T0 + T1 to the perturbation T1,
it is sufficient to adjust the saturated moisture values by a correction factor G with

qs(T ) = qcode
s (T )

G
, (B3)

where G = K2 exp(αT0)/q0 ≈ 1.542 (using values of K2, α, T0 and q0 from the scripts
used in VPT19).

The humidity values q inherit this scaling from qs , and thus (2.6) is left unchanged as
all terms scale the same. However, q couples to the buoyancy equation only via γ q, and
so this appears in the dynamics as

γ = Gγ code, (B4)

implying that the nonlinear simulations of VPT19 are effectively computed at γ = 0.293
rather than the intended value. By carrying this analysis through to the momentum
equation, there is a related correction to the Rayleigh number

Ra = Racode

G
. (B5)
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With these minor corrections, the critical Rayleigh numbers Rac reported in VPT19 are in
excellent agreement with our calculated values (see figure 8).

Finding this small error was only possible by having access to the simulation scripts that
the authors of VPT19 used to conduct their work. We emphasize that this highlights the
critical importance of making code available for inspection. We sincerely thank G. Vallis,
D. Parker and S. Tobias for their help and transparency.
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