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Statistical properties of neutrally and stably
stratified boundary layers in response to an
abrupt change in surface roughness
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We conducted experimental investigations on the effect of stable thermal conditions on
rough-wall boundary layers, with a specific focus on their response to abrupt increases
in surface roughness. For stably stratified boundary layers, a new analytical relation
between the skin-friction coefficient, Cf , and the displacement thickness was proposed.
Following the sharp roughness change, the overshoot in Cf is slightly enhanced in stably
stratified layers when compared with that of neutral boundary layers. Regarding the
velocity defect law, we found that the displacement thickness multiplied by

√
2/Cf ,

performs better than the boundary layer thickness alone when describing the similarity
within internal boundary layers for both neutral and stable cases. A non-adjusted region
located just beneath the upper edge of the internal boundary layer was observed, with large
magnitudes of skewness and kurtosis of streamwise and wall-normal velocity fluctuations
for both neutral and stable cases. At a fixed wall-normal location, the greater the thermal
stratification, the greater the magnitudes of skewness and kurtosis. Quadrant analysis
revealed that the non-adjusted region is characterised by an enhancement/reduction of
ejection/sweep events, particularly for stably stratified boundary layers. Spatially, these
ejections correspond well with peaks of kurtosis, exhibit stronger intensity and occur more
frequently following the abrupt change in surface conditions.
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1. Introduction

When an atmospheric boundary layer flows over a surface with different properties, be it
the roughness, temperature, moisture or all of the aforementioned factors, an internally
developing boundary layer will be produced. Meteorological examples include wind
flowing over different types of vegetation/media, surface morphologies (rural to urban
or vice versa), etc. An overview of internal boundary layers in the context of field
measurements, laboratory experiments, numerical simulations and analytical models was
provided by the seminal paper of Garratt (1990). Studying the statistical properties of
the internally developing flow has implications for applications such as wind-energy
utilisation and meteorological predictions in situations where there is a sudden change
in surface properties.

To investigate the effect of surface aerodynamic properties’ variation on the boundary
layer development, a commonly used model is a surface constructed with a streamwise
step change in roughness. Developed from the discontinuity in surface roughness, the
flow inside a layer, i.e. the internal boundary layer (IBL), will adjust its characteristics
to the underlying new surface, while the flow aloft retains the upwind characteristics. The
produced IBL usually includes two layers: the one just beneath its upper edge is in a
non-equilibrium state, and the one below contains flows fully adapted to the underlying
surface condition.

A large amount of previous work about the IBL focuses on its growth rate and on models
to predict its interface with the outer flow. The thickness of the IBL, δi, is found to grow
with fetch x as a power function with an exponent n, namely, δi ≈ xn. The power exponent
n varies within the range of [0.2, 0.8] in the existing literature, and it is dependent on
the roughness arrangement and sensitive to the estimation procedure. The approaches to
identify the IBL can be categorised into two branches according to the variables of interest,
which are the mean streamwise velocity (Elliott 1958; Antonia & Luxton 1971a; Cheng &
Castro 2002; Gul & Ganapathisubramani 2022) and normal stress (Efros & Krogstad 2011;
Li et al. 2021). Thus, recent work applied distinctive identification procedures to compare
the growth curves of IBLs (see Rouhi, Chung & Hutchins (2019), Bou-Zeid, Meneveau &
Parlange (2004), Sessa, Xie & Herring (2018) and Li et al. (2021) amongst others). The
growth curves of IBLs for a long fetch with n close to 0.8 were anticipated by the original
model proposed by Elliott (1958) and by the diffusion analogue in Miyake (1965), which
were further developed by Savelyev & Taylor (2005). However, slower growth of the IBLs
(n < 0.8) is generally observed when there is a change from a rough to a smooth surface
(Antonia & Luxton 1972) as well as from a smooth (or smoother than the downstream
surface) to protruding-roughness surface (Antonia & Luxton 1971a; Cheng & Castro 2002;
Lee 2015; Sessa et al. 2018; Ding et al. 2023), which is troublesome to explain/reproduce
with these early analytical models. Progress in interpreting the appearance of small n
values includes the study of a flow from a rough to a smooth surface by Li et al. (2022),
where they incorporated the finite IBL thickness and thus included the shear stress decay
into the model of Elliott (1958). In addition, Ding et al. (2023) incorporated the decay
laws of the diffusion and the vertical advection terms into the original diffusion model to
interpret the small exponent n that arises for both neutrally and stably stratified boundary
layers developing from a rough to a much rougher surface.

In contrast with their growth rate, the dynamics of IBLs has been studied less.
Quadrant analysis, describing the contribution to the shear stress from four quadrants of
the streamwise and wall-normal velocity fluctuations (u and w, respectively) serves as
a powerful tool to study the dynamics of turbulent boundary layers (Lu & Willmarth
1973). Through studying the recovery of a developing flow from the two-dimensional
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(2-D) square-cylinder ribbed surface to a smooth surface, Ismail, Zaki & Durbin (2018)
found that, among four quadrant events, ejections (u < 0, w > 0) recover at the fastest
rate followed by sweeps (u > 0, w < 0). Gul & Ganapathisubramani (2022) found that the
contribution from the second and fourth quadrants can be affected significantly by the step
change in surface roughness. In their cases, from a sandpaper roughness to a smoother
surface, ejection events were observed to diminish and sweep events enhance. Near the
wall, ejection (sweep) events first overshoot (undershoot) and then undershoot (overshoot)
before reaching their equilibrium state when the streamwise locations of the two surfaces
were inverted.

Hanson & Ganapathisubramani (2016) and Li et al. (2021) studied the power spectrum
density (PSD) of streamwise velocity fluctuations during the recovery of a rough flow
across a smooth surface. Li et al. (2021) found that the difference in the PSD between
the developing flow and the fully developed flow on the smooth wall showed a footprint
of energy excess. Such energy excess arose in restricted time scales ranging from the
Kolmogorov time scale to the time scale associated with the large-scale motion aloft
(Ismail et al. 2018).

Although considerable progress has been made in understanding the recovery of
the equilibrium layer over smooth surfaces, the dynamics related to the development
of the non-equilibrium layer over a rough surface remains less explored. Other than
the aforementioned quadrant analysis by Gul & Ganapathisubramani (2022), another
paramount contribution is from Antonia & Luxton (1971a), who performed turbulent
energy balance analysis in the IBL. One of their key findings is that the turbulent diffusion
term reaches a peak just beneath the IBL, playing a key role in the growth of the IBL and
reflected in the large skewness of wall-normal velocity observed in this layer.

Thermal stability, an inevitable ingredient in atmospheric fluid motion in nature,
modifies the near-wall structure, and hence the turbulent properties of the boundary layer.
Due to the suppression of the vertical mixing by thermal stability (Williams et al. 2017;
Marucci, Carpentieri & Hayden 2018), it was found that the IBL becomes much shallower
when compared with neutrally stratified boundary layers (Sessa et al. 2018; Ding et al.
2023), hence the slow growth rates of stable IBLs. However, the statistical properties
during the development of stably stratified IBLs remain largely unexplored and their
dynamics is poorly understood.

This study aims to understand the dynamics of IBLs induced by an abrupt change in
surface roughness, and especially the impact of thermal stability (see the experimental
set-up in § 2). Firstly, the skin-friction coefficient for stably stratified boundary layers
is studied in § 3.1, followed by the outer-layer similarity in § 3.2. Then, by investigating
high-order moments of the velocity in § 3.3, a non-adjusted region characterised by
strong skewness of wall-normal velocity is discussed. Quadrant analysis is performed
in § 3.4. The results associated with thermal properties are given in § 3.5. Conclusions
are presented in § 4.

2. Experimental set-up and parameters

2.1. Facility and boundary layer generation
The experiments were conducted in the EnFlo wind tunnel, which is a suck-down
open-circuit wind tunnel with a working section size of 1.5 m × 3.5 m × 20 m in the
wall-normal, spanwise and streamwise directions, respectively. The wind tunnel is capable
of simulating non-neutrally vertically stratified boundary layers. These are achieved
through 15 vertical levels of independent heaters (total 450 kW) at the inlet section.
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Figure 1. Schematic of the experimental set-up. Symbols referring to the measurement locations of the
vertical profiles are used consistently throughout the paper.

In addition, the floor of the wind tunnel is made of 20 panels connected to a recirculating
chilled water system and can be cooled/heated independently.

The tunnel floor was covered by two types of three-dimensional (3-D) roughness
elements, both of which were arranged in staggered patterns, as shown in figure 1. The
first 11 metre fetch from the inlet section was covered by the roughness element ‘A’ of
height h1 = 16 mm. The following 9 metre rougher surface was made by using roughness
element ‘B’, with a height h2 = 20 mm. Further details on their dimension and spacing are
discussed in Ding et al. (2023), where this set-up was first used. The resulting roughness
lengths, evaluated with the methodology described in § 2.3, are z01 = 0.1 mm for the
upstream and z02 = 1 mm for the downstream surface in neutral conditions, respectively.
The coordinate system is defined in figure 1, where x, and z represent the streamwise and
wall-normal directions, respectively. The origin of this system is located at the intersection
of the centre line of the wind tunnel and the first row of the downstream roughness,
on the tunnel floor (i.e. at the location of the discontinuity in surface roughness). The
homogeneity of flows in the spanwise direction is rigorously verified in Appendix B.

Thick boundary layers were generated by 13 Irwin spires of height of 600 mm spaced
uniformly at the working section inlet. This is a widely used technique to scale the
atmospheric boundary layer in the laboratory. The reference wind speed Uref at z = 1 m
and 5 m downstream from the inlet section was monitored by a sonic anemometer. To
generate stably stratified boundary layers, the incoming flow was heated at a prescribed
temperature profile at the inlet and developed over the cooled floor which is chilled to a
constant value of surface potential temperature, Θ0, except for the first 5 m. The uncooled
fetch is necessary for the incoming flow to reach equilibrium at short fetch and to obtain
smoothly varying boundary layer quantities (within 9 m, see Hancock & Hayden (2018),
who utilised that same set-up).

The measurement of streamwise and wall-normal velocities (ũ, w̃) was performed using
a two-component laser Doppler anemometer (LDA). Two probes of diameter 27 mm and
a focal length of 160 mm were used. Mean and fluctuating absolute temperatures were
recorded by a thermistor and a cold wire, respectively, which were mounted onto the
same traverse as the LDA probe; then corresponding potential temperatures, Θ and θ

were calculated. The cold wire was placed 4 mm downstream of the LDA measurement
volume (estimated to be 1.57 mm long in the spanwise direction and with a diameter of
0.074 mm) and the thermistor was placed adjacent to it (15 mm) to avoid any interference
with the LDA, as described by Marucci et al. (2018). The bias error in the mean velocity is
within ±1 %, and ±0.1 % for Θ . For any cross- or self-correlation between u, w and θ , the
error is within ±7 %. The measured locations of vertical profiles are presented as vertical
dashed lines in figure 1, while the symbols on the top of these profiles are used throughout
the paper to denote their streamwise positions.
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δ0 Uref u∗1, u∗2 z01, z02 L0
Case # (m) (m s−1) Reδ Surface (m s−1) (m) Re∗ k+

s (m) Rib

Case 1 0.52 1.5 4.5 × 104 Upstream 0.068 1.00 × 10−4 0.39 13 ∞ 0
Downstream 0.096 1.23 × 10−3 6.8 220 ∞ 0

Case 2 0.52 1.5 4.5 × 104 Upstream 0.054 7.00 × 10−5 0.22 — 0.55 0.13
Downstream 0.074 1.15 × 10−3 4.9 — 1.01 0.13

Case 3 0.53 1.0 3.0 × 104 Upstream 0.049 2.10 × 10−4 0.59 18 ∞ 0
Downstream 0.067 2.11 × 10−3 8.1 265 ∞ 0

Case 4 0.50 1.0 2.9 × 104 Upstream 0.030 7.00 × 10−5 0.12 — 0.30 0.27
Downstream 0.047 1.45 × 10−3 3.9 — 3.4 0.27

Table 1. Summary of experimental parameters. The equivalent sand grain roughness is determined by
k+

s = (z0u∗/ν)eκAAF , with AAF = 8.5 (Jiménez 2004).

2.2. Cases studied
Four different cases are considered in this work. Two neutral boundary layers with
Reynolds number Reδ = 4.5 × 104 and Reδ = 3.0 × 104, achieved by varying the
reference wind speed, were studied. Here, Reδ = U∞δ0/ν, with U∞ denoting the
free-stream velocity at a height of 800 mm from the floor, δ0 being the depth where
the mean streamwise velocity U reaches 0.99U∞ and ν being the kinematic viscosity.
Two stably stratified boundary layers with different degrees of thermal stability were
investigated, as measured by the bulk Richardson number

Rib = g(Θδ − Θ0)δ0

Θ0U2∞
, (2.1)

where g denotes the gravitational acceleration and Θ0 (Θδ) the mean potential temperature
of the floor (the top of the boundary layer). For the weakly stable case, Rib = 0.13 and
Reδ = 4.5 × 104, whereas, for the moderately stable case, Rib = 0.27 was achieved by
reducing the wind speed, giving Reδ = 3.0 × 104, providing Reδ-matched conditions in
stable and neutral boundary layers. Further boundary layer properties are reported in
table 1.

2.3. Roughness length and friction velocity determination
Through varying the wind speed and thermal stability, the aerodynamic properties of the
upstream and downstream surfaces are altered accordingly. The friction velocities u∗ of the
upstream and downstream surfaces are determined by linearly extrapolating uw within the
logarithmic region 0.1 < z/δ < 0.2 to the ground for both neutral and stable conditions.
Here, the overbar denotes time averaging. The incoming flow is in a state of equilibrium, as
discussed in Ding et al. (2023), and its friction velocity, u∗1, is determined at x = −0.76 m.
With regards to the downstream surface, the friction velocity u∗2 is determined by the
mean value of the local friction velocity in the range 2.28 m < x < 5.88 m based on the
observation that the local friction velocity becomes invariant with fetch for x > 2.28 m.
According to the study of Placidi & Ganapathisubramani (2015), the discrepancy of using
the least-square fit procedure to determine u∗ when compared with that obtained using
direct measurements is around 10 %. In neutrally stratified boundary layers, the roughness
length z0 was determined by least-squared fitting the mean streamwise velocity U in the
logarithmic region (0.1 < z/δ < 0.2) using the expression U = u∗/κ ln (z − d)/z0, with
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the von Kármán constant κ = 0.41, which is applicable in rough-wall boundary layers
(Snyder & Castro 2002). The zero-plane displacement d = 0 arises from the sparseness
of the roughness elements regardless of thermal stability. The rough surfaces in figure 1
resemble that of Snyder & Castro (2002), where the roughness Reynolds number, Re∗ =
z0u∗/ν, for the upstream roughness is 0.4 < Re∗ < 0.6 and Re∗ > 1 for the downstream
roughness (neutral cases 1 and 3). Thus, the approach flow is close to an aerodynamically
smooth boundary layer and the downstream flow is fully rough.

For the stable case, the similarity in the surface layer is dictated by the Monin–Obukhov
similarity theory (MOST) (Monin & Obukhov 1954), which prescribes the vertical profile
of the mean streamwise velocity in the surface layer

U(z) = u∗/κ
[
ln(z/z0) + Ψm(z)

]
. (2.2)

According to the MOST, Ψm(z) = βm(z − z0)/L0, which measures the modification to the
law of the wall. Here, L0 is the surface Obukhov length, that is, L0 = u2∗Θ0/(gκθ∗). In the
expression, θ∗, the friction temperature, is determined by the ratio of the wall heat flux to
the friction velocity, i.e. wθ0/u∗. The parameter βm is a constant value, which was found
to be 8 in the case studied (Hancock & Hayden 2018). The roughness length z0 in stable
cases was determined by fitting the above vertical profiles of U in the surface layer instead.
The parameters describing the surface properties are listed in table 1.

Two different methodologies were employed to determine the friction velocity as it
responds to the change in roughness. The first methodology, based on the model in Elliott
(1958), has been widely used to determine the response of the wall shear stress to a
roughness change (Gul & Ganapathisubramani 2022; Li et al. 2022). This model assumes
that the flow within the IBL reaches equilibrium promptly, hence there is a constant
roughness length of the downstream surface z02, while the mean streamwise velocity
assumes the form of a piecewise function

U(z) =

⎧⎪⎨
⎪⎩

u∗1

κ
ln(z/z01), z ≥ δi,

u∗
κ

ln(z/z02), z ≤ δi.

(2.3)

For the continuity of U at z = δi, the relation between u∗ and δi needs to be

u∗ = u∗1 ln(δi/z01)/ ln(δi/z02). (2.4)

Here, we extend this methodology to stably stratified boundary layers, under the two
following assumptions. Firstly, the shallow IBL is assumed to be located within the surface
layer. Secondly, MOST is assumed for velocity and temperature, in the forms of piecewise
functions

U(z) =

⎧⎪⎪⎨
⎪⎪⎩

u∗1

κ

[
ln(z/z01) + βm(z − z01)

L01

]
, z ≥ δi,

u∗
κ

[
ln(z/z02) + βm(z − z02)

L02

]
, z ≤ δi,

(2.5)

Θ(z) =

⎧⎪⎪⎨
⎪⎪⎩

θ∗1

κ

[
ln(z/z0h1) + βh(z − z0h1)

L01

]
, z ≥ δi,

θ∗
κ

[
ln(z/z0h2) + βh(z − z0h2)

L02

]
, z ≤ δi.

(2.6)

The kinematic (thermal) roughness length, z02 (z0h2) downstream of the step is determined
at the furthest measurement location and kept invariant during the fitting procedure,
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Figure 2. Variation of the skin-friction coefficient (a) with fetch, and (b) with the displacement thickness. The
empty symbols in (a) are from the extrapolation method and solid symbols are from Elliott’s method. The inset
in (a) shows the difference of Cf between two methodologies. In (b), the darkness of colour decreases with
fetch, and the black solid and dotted curves are generated from (3.6) with Π = 0.55 and Π = 0.7, respectively.
The blue and light blue curves are from (3.6) with K = 3.88 for Rib = 0.13 and K = 7.85 for Rib = 0.27,
respectively.

so was the downstream Obukhov length L02. Here, βm = 8 and βh = 16 (Hancock &
Hayden 2018). For each x, the vertical fitting regions are divided into two sections by
the thickness of IBL, which is identified as the height of local variance of the streamwise
velocity beginning to deviate from its counterpart upstream of the roughness change (Ding
et al. 2023). The second common methodology (Cheng & Castro 2002) deduces the
friction velocity from uw, as mentioned in the context of equilibrium boundary layers.
The comparison of the obtained friction velocity from two methodologies is conducted
in § 3.1 and some complementary results are present in Appendix A.

3. Results and discussion

3.1. Skin-friction coefficient
For a boundary layer in equilibrium, the skin-friction coefficient Cf = 2ρwu2∗/(ρ∞U2∞),
where ρw, ρ∞ denote the density at the wall and in the free stream, is found to decrease
with an increasing degree of thermal stability and Reynolds number (Williams et al. 2017).
This is also the case in the current work. Throughout the paper, Cf = 2u2∗/U2∞ is used
for the neutrally stratified boundary layers. Herein, we calculated ρw using the surface
temperature, which was monitored by thermistors attached to the tunnel floor. The floor
temperature is 15 ◦C for case 2 and 14 ◦C for case 4, leading to ρw = 1.225 kg m−3 for
case 2 and ρw = 1.221 kg m−3 for case 4.

3.1.1. Skin-friction coefficient development
Figure 2(a) shows the behaviour of the skin-friction coefficient ratio Cf /Cf 1 across the
roughness change, where Cf 1 represents the reference value at x = −0.76 m. An overshoot
of Cf /Cf 1 to the roughness change takes place for all cases before the skin-friction
coefficient adjusts to the new underlying surface and its degree is enhanced slightly
by thermal stratification. This overshoot is more pronounced in the results obtained
by Elliott’s methodology (solid symbols) when compared with those determined from
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−uw (empty symbols), especially very near the roughness change. Here, we discuss the
accuracy of the two methodologies in determining u∗ following the roughness change.
Li et al. (2022) found the predicted behaviour of u∗ across the transition in roughness
with Elliott’s methodology to be 90 % accurate when compared with direct measurements
provided that (i) the thickness of the IBL was less than 0.6δ and (ii) that the point of
interest was far enough from the roughness change (x+ > 5000). The measurement region
in our study is from 1.32 m (1.8 m) onward for case 1 (3), which meets the requirement of
x+ > 5000. Therefore, we expect the estimation of the friction velocity for neutral cases
at x > 1.32 m to be acceptable when using Elliott’s model. On the other hand, using a
linear extrapolation to determine u∗ after the roughness change is highly dependent on the
existence of an equilibrium logarithmic layer. Rouhi et al. (2019) reported that the recovery
region of the boundary layer ‘reaches the beginning of the logarithmic layer after a fetch
of 2.5h’ for a transition from smooth to rough surfaces, implying that the recovery of the
logarithmic layer takes place after 2.5 times the boundary layer thickness. This adjustment
region is – no doubt – roughness-property dependent. In figure 2 of Ding et al. (2023),
we observed that the mean streamwise velocity profiles in the lower region (in the range
0.1 < z/δ < 0.2) collapse onto each other after x = 2.28 m; this fetch for log-law recovery
is consistent with that in Rouhi et al. (2019). Furthermore, the difference between the
estimation of the skin-friction coefficient from these two methodologies nearly vanishes
around 3δ0, as shown in the inset of figure 2(a). This suggests that the estimation of u∗
by the extrapolation method enables a reasonable evaluation of the friction velocity in
this region. It must be noted, however, that, near the roughness change, the actual value
of u∗ is difficult to determine accurately – as highlighted by the discrepancy between the
methodologies adopted herein – but it is expected to be somewhere between the two sets
of estimated values. We fully acknowledge the uncertainty in determining this quantity in
the near-step-change region, but this is not the focus of the work here.

3.1.2. Skin-friction coefficient as a function of displacement thickness
The relation between Cf and the displacement thickness, δ∗, or the momentum thickness,
θ , customarily defined as δ∗ = ∫∞

0 (1 − U/U∞) dz and θ = ∫∞
0 U/U∞(1 − U/U∞) dz,

respectively, reflects properties of developing boundary layers. Clauser (2002) and
Rotta (1962) derived an analytical relationship between Cf and θ with neutral-thermal
stratification, which was revisited by Castro (2007) for its application on fully rough
boundary layers. Here, we extend the methodology in Castro (2007) to stably stratified
conditions. Two assumptions associated with the similarity in the surface and outer layers
are applied.

Firstly, given that the MOST is applicable within the surface layer, using the error
function to restrict the effective region of MOST modifies the gradient of Ψm(z) into

dΨm

dz
= βm

L0

[
0.5 − 0.5 erf

(
z − zm

s

)]
, (3.1)

where the parameter zm denotes the height of the surface layer and s measures the height
of the transition region from the surface layer to the outer layer. In our cases, zm/L0 ≈ 0.2.
Secondly, in the outer region of the weakly stable case, the modification is so small that its
wake function has nearly the same form as that of the neutrally stratified boundary layer.
Using the general wake function W (derived empirically by Coles (1956) in table 1 of his
paper), the complete profile of the mean streamwise velocity reads

U(z) = u∗
κ

ln
z
z0

+ u∗βm

κL0
F(z, zm, s) + u∗

κ
ΠW (z/δ), (3.2)
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where F(z, zm, s) = 0.5
∫ z

z0
(1 − erf(z − zm/s)) dz, with the parameter Π representing the

strength of the wake function. The above formulation can return to that of neutral
conditions when the second term on the right-hand side vanishes owing to the Obukhov
length L0 approaching infinity.

When z = δ in (3.2), the velocity at the top of the boundary layer (BL) reads

Ue = u∗
κ

ln
δ

z0
+ u∗βm

κL0
Fδ + u∗Π

κ
W (1), (3.3)

where Fδ denotes the value of the function F(z, zm, s) at the top of the BL, that is, Fδ ≡
F(δ, zm, s). Thus, the velocity profile in the defect form is given by

Ue − U
u∗

= − 1
κ

ln
z
δ

+ βm

κL0
[Fδ − F(z)] + Π

κ

[
W (1) − W (z/δ)

]
, (3.4)

where the wake function W (z/δ) has the same boundary and normalising conditions
as those in the neutral case, namely, W (1) = 2,

∫ 1
0 W d( y/δ) = 1 and W (0) = 0.

Figures 3( e) and 3(g) show the theoretical curves of velocity defect for the stably stratified
BLs. The integral of the aforementioned equation establishes the relationship between the
displacement thickness and the BL thickness, namely,

Ueδ
∗

u∗δ
= 1

κ
+ 2Π

κ
+ βm

κL0

[
Fδ −

∫ 1

0
F(z) d(z/δ)

]
= const. (3.5)

Replacing δ in (3.3) with its function of Ue/u∗ and δ∗ in (3.5), after rearrangement, the
relation of Cf and δ∗, now for any thermal stratification, is prescribed by

δ∗

z0
=
√

ρ∞
ρw

Cf

2
exp

(
κ

(√
2

Cf

ρw

ρ∞
− K

))
, (3.6)

with the constant value K = 2Π/κ − (1/κ) ln (1 + Π + F̃βm/L0)/κ + βmFδ/κL0 and
F̃ = Fδ − ∫ 1

0 F(z, zc, s) d(z).
Note that the above equation is also applicable in neutrally stratified BLs with K =

2Π/κ − (1/κ) ln ((1 + Π)/κ) and density ratio ρ∞/ρw = 1 as L0 → ∞. Under neutral
conditions, the formulation given in (3.6) recovers to that in (1.9) in Castro (2007) via (1.6)
in the same paper.

Let us now apply this newly developed formulation to our data. In the neutrally stratified
boundary layers (figure 2b), Cf in the incoming flow faithfully follows (3.6) with Π =
0.55. A sharp upward deviation takes place after the step change in surface roughness,
which is expected when only parts of BLs have adjusted to the roughness change. For
the stably stratified BLs, the curves of Cf (δ

∗) fall below the neutral cases due to the
modulation of the shear stress by thermal stability; this discrepancy is enlarged by the
thermal stability. This thermal stability effect on Cf (δ

∗) is well predicted by (3.6).

3.2. Outer-layer similarity

3.2.1. Velocity defect profiles
Velocity defect profiles have been widely studied to assess outer-layer similarity (Castro
2007; Efros & Krogstad 2011). Figure 3 shows the velocity defect scaled by the local
friction velocity (U∞ − U)+ ≡ (U∞ − U)/u∗ as a function of z/δ. In the developing

986 A4-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.329


S.-S. Ding, M. Carpentieri, A. Robins and M. Placidi

10

8

6

4

2

0

(U
∞

 –
 U

)+

(U
∞

 –
 U

)+

(U
∞

 –
 U

)/
u ∗

1
(U

∞
 –

 U
)/

u ∗
1

(U
∞

 –
 U

)/
u ∗

1
(U

∞
 –

 U
)/

u ∗
1

0

10
10

10

15

10

5

0

15

10

5

0
0 00.5 1.0 0.1 0.21.5

5

0

5

0

8

6

4

2

(U
∞

 –
 U

)+

(U
∞

 –
 U

)+

(U
∞

 –
 U

)+
(U

∞
 –

 U
)+

(U
∞

 –
 U

)+

0

10

8

6

4

2

0
0.5

z/δ z/Δ

z/Δ

z/Δ

z/Δ

1.0 1.5 0

0

5

0

10

0.1

0.1

0.2

0.2

z/Δ
0 0.1 0.2

0.3 0.4

0

10

8

6

4

2

0

0

15

10

5

0.5 1.0 1.5

0
0 0

0.5 1.0 1.5 0 0.05 0.10 0.15 0.20 0.25

0

0

5

10

15

0

5

10

15

0.5 1.0 1.5 0 0.05 0.10 0.15 0.20 0.25

10

5

0.1 0.2 0.3 0.4

1.51.00.50

1.51.00.50

1.51.00.50

10

5

0

(U
∞

 –
 U

)+

0 0.1 0.2

10

5

0

5

0

10

(e) ( f )

(h)(g)

(a) (b)

(d )(c)

Figure 3. Velocity defect (U∞ − U)+ as a function of (a,c,e,g) z/δ and (b,d, f,h) z/Δ at several streamwise
locations. The inset plots in (a,c,e,g) only show the data outside the IBL for x > 0 and the complete profile
at x = −0.76 m. The inset plots in (b,d, f,h) only show the data within the IBL for x > 0 and the complete
profile at x = −0.76 m. (a,b) Case 1; (c,d) case 3; (e, f ) case 2; (g,h) case 4. The solid curves represent the
theoretical expression given by (3.4) with the wake strength Π = 0.70 for (a–d), 1.0 for (e, f ) and 1.2 for (g,h).
Colours/symbols are defined in figure 1. The local u∗ is determined from Elliott’s model.
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neutrally stratified flow in figures 3(a) and 3(c), the velocity defect profiles fall below
that of the upstream flow (x = −0.76 m). With an increase of x, the lower part of the
profiles (within the IBL) lifts up gradually and approaches the counterpart upstream of the
roughness change. Meanwhile, data beyond the IBL depth remain divergent from those
of the upstream flow. The local friction velocity is not an adequate scaling parameter for
the entire layer, the upstream friction velocity u∗1 should be employed for depicting the
outer-layer similarity. As shown in insets of figures 3(a) and 3(c), (U∞ − U)/u∗1 as a
function of z/δ outside the IBL indeed collapses well onto the upstream reference curve.
This is also the case for the stably stratified flows in figures 3(e) and 3(g).

Regarding the velocity defect within the IBL, the vertical length scale Δ = δ∗U∞/u∗
(first proposed by Castro (2007) to describe the universal defect law for different types
of rough-wall BLs) improves the collapse of data within IBLs for all cases, as shown
in figures 3(b), 3(d), 3( f ) and 3(h). The variation of U within the IBL is proportional
to the variation of the wall shear stress (Antonia & Luxton 1971b); for this reason, Δ

incorporating the local friction velocity counteracts the change in U. Thus, Δ acts as a
better scale than δ for describing the universal defect law within the IBL. The quality
of the data collapse in figure 21 shows that the scaling is largely insensitive to the
methodology adopted for calculating u∗ for data x > 1.32 m as the difference of u∗ for
two methodologies vanishes at x = 2.28 m (see figure 2). However, for stable cases, the
improvement of collapse by using Δ is not as significant when compared with neutral cases
since Δ does not incorporate the Obukhov length, which becomes one of the dominant
length scales for stably stratified flows. A more appropriate length scale to describe the
defect law in stable cases needs to be further studied.

3.2.2. Diagnostic plots
Figure 4 shows the response of diagnostic plots (σu/U as a function of U/U∞, where
σu represents the standard deviation of the streamwise velocity) to the step change in
surface roughness. In the neutral approach flow (x = −0.76 m), σu/U in the outer layer
(0.6 < U/U∞ < 0.98) follows the smooth-wall asymptote of Alfredsson, Segalini & Örlü
(2011) described by σu/U = 0.286–0.255U/U∞. Given the sparse and small roughness
characterising the upstream approach flow, it is within expectations that the diagnostic
plots are close to those of a smooth surface.

Adjusted to the rougher surface, the slope of the diagnostic curve in the lower region
of the outer layer becomes −0.38, meanwhile this region gradually expands in height
with fetch. The modification of the slope ceases at the height of the IBL. While the
adjusted slope in the lower region aligns with that in the fully rough flows (solid line), its
magnitude is lower compared with a fully rough asymptote (Castro, Segalini & Alfredsson
2013). This discrepancy may be attributed to the relatively small Reynolds number. Gul &
Ganapathisubramani (2021) studied the effect of the Reynolds number on the diagnostic
curves by varying Reδ from 3 × 104 to 1.1 × 105 on sandpaper-rough surfaces and found
that all of them remain lower than the curve for fully rough flow found in Castro et al.
(2013), even though the diagnostic curves become higher with increasing Reδ . In our study,
Reδ is around 104, which is comparable.

The linear relation in the diagnostic plots modified to account for the thermal stability
of the BL is shown in figure 4(c,d). In the regime of U/U∞ < 0.75 (z/δ0 < 0.2), the
diagnostic curves have a slope of −0.255, the same as that in neutral conditions, but the
whole curve shifts downwards by an amount that increases with the degree of thermal
stability. Moreover, such a linear relation terminates at U/U∞ = 0.75 and is seemingly
replaced with a new linear relation with a smaller slope of −0.171 (−0.117) in the upper
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Figure 4. Diagnostic curves for (a) case 1, (b) case 3, (c) case 2 and (d) case 4 at several streamwise locations.
The dashed and the solid lines correspond to the smooth (Alfredsson et al. 2011) and fully rough (Castro
et al. 2013) asymptotes, respectively. The dotted lines in (c,d) are fits to the data in the forms of σu/U =
0.322–0.335U/U∞ and σu/U = 0.314–0.342U/U∞, respectively. Colours/symbols are defined in figure 1.

region of the outer layer (0.75 < U/U∞ < 0.96) for Rib = 0.13 (0.27). In contrast to the
gradual change with fetch in neutral flow, the diagnostic curves for stable cases overshoot
the asymptote following the roughness change, and then approach equilibrium states for
longer fetch. Within the surface layer (U/U∞ < 0.75), the linear relations at x = 5.88 m
for both stable cases have a slope of −0.34, which is slightly smaller than that for the
neutrally stratified flows. This linear relation intercepts with U/U∞ = 0 at around 0.322
(0.314) for Rib = 0.13 (0.27), which is much smaller than that in the neutral cases (0.4 for
both neutral cases).

By comparing the diagnostic curves in the first linear region of the two stable cases with
those of the neutral cases, it is clear that thermal stability remarkably shrinks the linear
region as well as the intercept values, but does not alter the slope of the diagnostic curve.

3.3. Skewness and kurtosis
Skewness, Sq = q3/σ 3

q , and kurtosis, Kq = q4/σ 4
q , where q represents the streamwise

(wall-normal) velocity fluctuations, u (w), are associated with the intermittency of
turbulent BLs, and their dependence on thermal stability is of practical interest in
atmospheric turbulence (Maurizi 2006).

In the neutral case, the skewness (kurtosis) of the streamwise velocity, i.e. Su (Ku), varies
insignificantly in response to the roughness change when comparing its values within the

986 A4-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.329


Statistics of boundary layers across a roughness change

0.2 1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6Ri
b 

=
 0

Ri
b 

=
 0

.1
3

Ri
b 

=
 0

.2
7

Su Sw

1.0

0.8

0.6

0.4

0.2

–0.2

0

1.0

0.8

0.6

0.4

0.2

0

Sw

Sw

–0.8

–1.0
0.1 0.2 0.4 0.8 1.0 0.1 0.2 0.4 0.8 1.0

0.1 0.2 0.4 0.8 1.0 0.1 0.2 0.4 0.8 1.0

0.1 0.2 0.4

z/δ0 z/δ0

0.8 1.0 0.1 0.2 0.4 0.8 1.0

0

0.2

–0.2

–0.4

–0.6

Su

–0.8

–1.0

0

0.2

–0.2

–0.4

–0.6

Su

–0.8

–1.0

0

(e) ( f )

(b)(a)

(d )(c)

Figure 5. Vertical profiles of skewness of streamwise velocity Su (a,c,e) and wall-normal velocity Sw (b,d, f ) at
various x locations. Data of (a,b) are for case 1 (Rib = 0, Reδ = 4.5 × 104), data of (c,d) are for case 2 (Rib =
0.13, Reδ = 4.5 × 104) and data of (e, f ) are for case 4 (Rib = 0.27, Reδ = 2.9 × 104). Vertical dashed lines
represent upper edges of IBLs determined from σu for the data with the same colour shading. Colours/symbols
are defined in figure 1.

IBL with that at the same height but prior to the roughness change, as shown in figure 5(a)
(figure 6a). In contrast, the skewness and kurtosis of the wall-normal component, namely
Sw and Kw, are modified in a remarkable way. Underneath the IBL, noticeable peaks arise
in Sw (e.g. see z/δ0 ≈ 0.15 for x = 0.72 m in figure 5b). Peaks appear at the same heights in
Kw with their values exceeding 4, implying a non-Gaussian probability density function of
w. For stable cases in figures 5(d) to 5( f ), the peaks of Sw and Kw become more noticeable
within the IBL, and their magnitude gets amplified by the thermal stability. Furthermore,
Su is distinguished from that in the neutral case and has a negative wide peak within the
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Figure 6. Vertical profiles of kurtosis of streamwise velocity Ku (a,c,e), wall-normal velocity Kw (b,d, f ) at
various x locations. Data of (a,b) are for case 1 (Rib = 0, Reδ = 4.5 × 104). Data of (c,d) are for case 2 (Rib =
0.13, Reδ = 4.5 × 104). Data of (e, f ) are for case 4 (Rib = 0.27, Reδ = 2.9 × 104). Vertical dashed lines from
left to right present the upper edges of IBLs determined from σ 2

u . Colours/symbols are defined in figure 1.

IBL, for instance, z/δ0 = 0.42 at x = 5.88 m in figure 5(c); peaks arise at a similar height
in Ku(z) (figure 6).

To estimate the quantitative thermal impact on high-order moments, the locations of Kw
peaks, δk, their width, lk, and magnitude, Kmax

w , were studied. As shown in figure 7(a), δk
is around 0.1δ0 lower than the upper edge of the IBL and grows with the IBL depth in
all cases. The regions of Kw > Kc

w with a thickness of lk are illustrated by vertical bars
in figure 7(a). Here, Kc

w = 3.3 denotes the mean value of Kw upstream of the roughness
change. These regions are named non-adjusted regions hereafter as the notable peak in the
skewness (kurtosis) of w arises. Along the fetch, these regions expand in height from a
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Figure 7. (a) Height of the IBL, δi (closed symbols), and the locations of the maximum Kw, δk (open symbols),
for several cases. The bar on each data shows the height range with Kw larger than Kc

w. The curves for Rib = 0.13
(0.27) are shifted downwards by 0.3 (0.6). (b) Variation of 
Kw with δi/δ0.

thickness of 0.1δ0 to 0.2 ∼ 0.3δ0. It is worth noting that their upper limits exceed the top
edges of the IBL, which are identified from the merging point of σ 2

u with its counterpart
upstream to the roughness change in Ding et al. (2023).

Figure 7(b) shows the interesting tendency of 
Kw with δi/δ increasing, where 
Kw =
Kmax

w − Kc. For the neutral case, 
Kw shows non-monotonic variation with height such
that it decreases with height when δi/δ < 0.4, then reaches a minimum around δi/δ ≈ 0.4
and finally increases with height. The decreasing tendency of 
Kw with height is also
observed in stable cases, where 
Kw has larger magnitudes for the more stable case. The
increasing tendency in the outer region is absent in stable cases due to the shallow nature
of the IBL.

In studying the effect of thermal stability on the high-order moments, we note that
the larger degree of thermal stability of case 4 (Rib = 0.13, Reδ = 2.9 × 105) compared
with case 2 (Rib = 0.13, Reδ = 4.5 × 105) was achieved by reducing Reδ , which might
affect the results. To examine this possibility the results (including δk and 
Kw) for case 1
(neutral, Reδ = 4.5 × 105) and case 3 (neutral, Reδ = 2.9 × 105) were compared, and they
were found to vary little despite the differences in Reδ . Therefore, we believe that the
differences in skewness and kurtosis between the two stable cases can be attributed to the
variation in thermal stability and are independent of the Reynolds number.

3.4. Quadrant analysis

3.4.1. The Q events upstream of the roughness change
Prior to the investigation into the response of the dynamics of BLs to a step change
in roughness, we study the effect of thermal stability and of Reynolds number on the
dynamical events characterising the surface upstream to the roughness change using
quadrant analysis, as in Lu & Willmarth (1973). The definition of quadrant events is briefly
introduced here

uwi = 1
N

ΣN
j=1hiuw, (3.7)

where N is the sample size. The parameter hi = 1 if the pair (u, w) locates in the ith
quadrant and satisfies the condition uw > Hσuσw, otherwise, hi = 0. The threshold H
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Figure 8. (a) Inner-scaled shear stress of four events as functions of height. Closed symbols are for Reδ =
4.5 × 104, open symbols are for Reδ = 3 × 104. (b) Ratio uw2/uw4 as a function of height. In (a), case 1
(black solid symbols); case 2 (blue solid symbols); case 3 (black empty symbols); case 4 (light blue empty
symbols).

denotes the size of the hyperbolic hole for the conditional statistics. The second quadrant
uw2 with (u < 0, w > 0) is associated with low-momentum lifting (ejection Q2) events,
and the fourth quadrant uw4 with (u > 0, w < 0) is related to high-momentum injection
(sweep Q4) events. The Q4 events are distributed most probably on the outer side of hairpin
vortex legs while Q2 events arise between two legs of hairpin vortices (Adrian, Meinhart
& Tomkins 2000). These two events are major contributors to the Reynolds shear stress
and the turbulent kinetic energy production. The Q1 and Q3 events are associated with
(u > 0, w > 0) and (u < 0, w < 0), respectively.

Figure 8(a) shows uw+
i (H = 0) at x = −0.72 m, where the dominant contributions to

the shear stress come from Q2 and Q4 (Lu & Willmarth 1973). Comparing the data with the
same Reδ number, e.g. case 1 vs case 2 or case 3 vs case 4, it is apparent that the thermal
stability alters the balance between Q2 and Q4 events. The Q2 events are reduced to a
greater extent than Q4, while Q1 and Q3 are rarely altered by the thermal stability. These
results are consistent with the findings in Williams et al. (2017), where they argued that
the greater damping of Q2 when compared with that of Q4 is due to the higher temperature
gradient characterising the near-wall region where lifting events (ejections) are generated.
Therefore, the ratio of uw2 to uw4 should be reduced by the thermal stability, as shown in
figure 8(b).

As for Reδ effects, magnitudes of uw+
i are reduced by more than half in case 3 when

compared with those at the same height in case 1, as shown in figure 8(a). Considering
that the BL with a higher Reδ is able to yield more turbulent hairpin vortices, all events
in case 1 (Reδ = 4.5 × 104) are thus expected to take place more frequently than those
in case 3 (Reδ = 2.9 × 104) (Priyadarshana & Klewicki 2004). Regardless of Reδ effects,
the ratio uw2/uw4 is invariant, as shown in figure 8(b), suggesting that the dynamics of
hairpin vortices, hence the balance between Q2 and Q4 events, is independent of Reδ .

3.4.2. Response of Q events to the roughness change
To investigate the response of each type of quadrant event to the surface roughness
transition, we examine the relative contribution from each quadrant event to the total shear
stress by looking at the ratio ri,H = |uwi,H/uw|. The results for case 4 with H = 0 are
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Figure 9. Contour plots of contribution from quadrant events to the total shear stress for case 4 (Rib = 0.27)

with H = 0. The colour shading in (a–d) represents ri(i = 1, 2, 3, 4) respectively. The solid curves represent
the upper edges of the IBL determined from σ 2

u .

presented in figure 9. Downstream of the roughness change, r1,0 and r3,0 within the IBL
are reduced when compared with those at the same height ahead of the step, as shown by
the darker shading region under the solid curve in figures 9(a) and 9(c). The contour plots
of r2,0 and r4,0 within the IBL have complicated structures. For r2,0, a layer of amplified
magnitude and thickness 0.1δ0 arises beneath the upper edge of the IBL, which collapses
well with the location of the non-adjusted region (as discussed in § 3.3). The amplification
of r2,0 in such a layer suggests more frequent (or more intense) ejection events. In contrast,
the relative contribution r4,0 from Q4 events in this layer is reduced, suggesting that sweep
events occur less frequently or subside. Below the non-adjusted region, r4,0 (r2,0) increases
(decreases) in magnitude but still remains smaller (larger) than the counterpart upstream
of the roughness change.

Given that quadrant events are dependent on the threshold value of H, we conducted
the analysis by varying H from 0 to 4. Figure 10 shows the comparison between the
vertical profiles of ri,H at x = 3.72 m and their counterparts upstream of the roughness
change (x = −0.76 m). Increasing H, the contributions from all events diminish. The
difference between the two profiles (red and black lines) of ri,H diminishes with increasing
H for Q1, Q3 and Q4 events, however, the difference of r2,H around z = δk = 0.38δ0
is maintained and even becomes greater. This result suggests that the amplification of
r2,H in the non-adjusted region is ascribed to the appearance of extremely strong ejection
events. This is supported by the local minimum (maximum) of Su (Sw), which is observed
in the same region. In neutrally stratified BLs, the modification of Q2 and Q4 events
caused by the roughness change is minor or hardly discernible (at some x locations for
H < 2). Increasing H, the enhancement in the contribution from Q2 events becomes more
noticeable.
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Figure 10. Comparison of uwi,H/uw at x = 3.72 m (red curves) with that at x = −0.76 m (black curves) with
several H values denoted in (a). The vertical dashed line denotes the upper edge of the IBL. Data for case 4.

3.4.3. Strong ejection events
A layer embedded underneath the IBL with strong ejection events is found to be universally
present, both in neutral and stable cases. Figure 11 demonstrates the significant contrast of
Q2 events before and after the step change in roughness for the four cases, as evaluated
by 
r2,4 = r2,4(x, z) − r2,4(x = −0.76 m, z). In the case of Rib = 0.27, as shown in
figure 11(d), a noticeable compact layer with 
r2,4 > 0.15 is located just below the upper
edge of the IBL. The behaviour of this layer, including the variation of its width and
strength of 
r2,4 with height, shows consistency with that of 
Kw in figure 7(b).

To explore the properties of these strong Q2 events, we analyse the time series of uw(t).
In figure 12(b), the time trace of −uw(t) at z = δk, x = 3.72 m has several extremely
sharp troughs (strong Q2 events) when compared with the time trace of uw(t) at the same
height in the incoming flow (figure 12a). To investigate the time scales of these events,
the complete structure of strong Q2 events is extracted based on the following two-step
procedure:

(i) The data with uw > 4σuσw are identified and separated into isolated events (marked
as red dots in figure 12a,b);

(ii) for each event, its starting (ts) and ending (te) time stamps are determined as the
time points when the event intersects with a threshold β (see the green dashed line
in figure 12c).

The value H = 4 is chosen to ensure that the properties of strong Q2 events are not
statistically weakened by weaker events and β = 0.2 is chosen to reduce the influence
of the background noise in extracting the complete signal structure of Q2 events.
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Figure 11. Contour plots of 
r2,4 for (a) case 1, (b) case 3, (c) case 2 and (d) case 4. The solid curves denote
the upper edges of the IBLs.
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Figure 12. Time series of uw/σuσw at (a) z = δk at x = −0.76 m, and (b) x = 3.72 m. (c) Partial zoomed-in
view of (b). The red dots represent the data point identified within strong Q2 events, τ denotes the time duration
of a strong Q2 event, T denotes the time separation of two successive strong events and the horizontal dashed
line has a value of β = −0.2. Data for case 4.
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Figure 13. (a) Mean duration time 〈τ 〉, and (b) bursting period 〈T〉 of identified strong Q2 events as a function
of height at various streamwise locations. The arrows from left to right illustrate the locations of δk/δ0 at
x = 0.72, 3.00 and 5.88 m, respectively. Colours/symbols are defined in figure 1.
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Figure 14. (a) Mean time duration 〈τ 〉, and (b) bursting period 〈T〉 of strong Q2 events at z = δk as functions
of x.

The time duration, τ , of a single strong Q2 event is defined as τ = te − ts in figure 12(c),
and T represents the time separation between two successive maxima of −uw/(σuσw).
Figure 13 shows the event-averaged time duration 〈τ 〉 and the bursting period 〈T〉 of strong
Q2 events at several x locations for Rib = 0.27. In figure 13(a), it is noticeable that 〈T〉 is
much smaller than that ahead of the step change with its minimum located at z = δk (the
location of the maximum Kw, marked by arrows). Meanwhile, 〈τ 〉 reaches its minimum
around 0.08 s at z ≈ δk. Results suggest that strong Q2 events are curtailed and take place
more frequently in the non-adjusted region.

The variation of the time scales associated with strong Q2 events (at z = δk) with fetch
and the impact of thermal stability are summarised in figure 14. For all cases, 〈τ 〉 and
〈T〉 vary insignificantly with x or with the thermal stability, having mean values of around
0.1 s and 2.5 s, respectively. To highlight the link between the time scale of strong Q2
events to flow scales, the mixed time scale τm is estimated. In atmospheric BLs, τm is
typically associated with the ‘mesolayer’, the length scale of which is the geometric mean
of inner and outer scales and can be estimated by τm = [(ν/u2∗)(δ/Uref )]1/2 (Alfredsson &
Johansson 1984). For the approach flow, τm ≈ 0.05s, which is of the same order as 〈τ 〉.
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Figure 15. Vertical profiles of heat flux at several x for (a) case 2 and (b) case 4. Colours/symbols are defined
in figure 1. Insets: the thickness of thermal IBLs δθ (solid symbols) compared with δi (empty symbols).

3.5. Thermal properties

3.5.1. Heat flux
Figure 15 shows the response of the vertical heat flux to the roughness change. The heat
flux in the surface layer peaks just after the roughness change, before adjusting back down
to the recovered state (x = 5.88 m). The heat flux recovery rate depends on the case under
examination. The vertical profiles of heat flux downstream of the roughness change merge
into those upstream at δθ/δ0, where δθ is defined as thermal internal BL thickness. As
shown in the inset plots in figure 15, the curve of δθ (solid symbols) follows very closely
that of δi (empty symbols) with a slight upward shift. This discrepancy is sensitive to the
methodology used to evaluate both δθ and δi, but their growths are comparable.

To examine the influence of different events on the heat flux, we conduct quadrant
analysis including the temperature, which divides the sample space (u, w, θ ) into 8
quadrants, known as octant analysis after Suzuki, Suzuki & Sato (1988). Relevant
events to the following discussion are: i = 2, u < 0, w > 0, θ > 0 (warm ejections), i =
4, u > 0, w < 0, θ > 0 (warm sweeps), i = 6, u < 0, w > 0, θ < 0 (cold ejections) and
i = 8, u > 0, w < 0, θ < 0 (cold sweeps). The conditionally averaged heat flux is defined
as wθ i = ((1/N)

∑N
j=1 hiwθ), where N denotes the sample size. The quadrant parameter

hi = 1 if (u, w, θ) is located in the ith quadrant and satisfies uw > Hσuσw, and the
contribution of each event is defined as wθ i/w̄θ . Figure 16 presents the contributions from
all events/interactions with their summation being 100 %. Taking H = 0 for the incoming
flow of case 4, cold ejections contribute approximately 70 % of the heat flux, which is
slightly higher than the second-dominant warm sweeps. This result is consistent with the
observation of the dominance of gradient transport in other studies (Wallace 2016). The
difference between these two types of events varies little with the threshold H. Just beneath
the upper edge of the IBL at x = 3.72 m, as shown in figure 16(d), the contribution from
cold ejections increases up to 90 % and that from warm sweeps reduces to 40 %, while
the contributions from other events remain nearly invariant for H = 0. The difference
between cold ejections and warm sweeps is maintained by increasing H. When H = 4
(figure 16 f ), the contribution from warm sweeps and other events vanishes, while that
from cold ejections remains substantial. Similar to the discussion in § 3.4 around the shear
stress, ejections and sweeps are also unbalanced from the point of view of the heat flux
and strong ejections are associated with the cold fluid parcels.
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Figure 16. Vertical profiles of conditionally averaged heat flux based on octant analysis for case 4. (a–c)
for x = −0.76 m and (d– f ) for x = 3.72 m. Panels show (a,d) H = 0, (b,e) H = 2, (c, f ) H = 4. The
notation of the symbols: i = 1, u > 0, w > 0, θ > 0 (solid square); i = 2, u < 0, w > 0, θ > 0 (solid circle,
warm ejections); i = 3, u < 0, w < 0, θ > 0 (solid diamond); i = 4, u > 0, w < 0, θ > 0 (solid triangle, warm
sweeps); i = 5, u > 0, w > 0, θ < 0 (empty square); i = 6, u < 0, w > 0, θ < 0 (empty circle, cold ejections);
i = 7, u < 0, w < 0, θ < 0 (empty diamond); i = 8, u > 0, w < 0, θ < 0 (empty triangle, cold sweeps). The
vertical dashed lines in (d– f ) represent the upper edge of the IBLs.

3.5.2. Conditional average of high-order moments
To shed light on the impact of thermal stability on turbulence statistics in the
non-adjusted layer, we performed a conditional analysis of high-order moments
conditioned with thermal properties. The conditionally averaged skewness and kurtosis
of the vertical component are defined as Sw,i = ((1/N)

∑N
j=1 hiw3)/σ 3

w and Kw,i =
((1/N)

∑N
j=1 hiw4)/σ 4

w. Their complements are also examined given the definition S̃w,i =
((1/N)

∑N
j=1 h̃iw3)/σ 3

w and K̃w,i = ((1/N)
∑N

j=1 h̃iw4)/σ 4
w, where h̃i = 1 for (u, w) in

the ith quadrant satisfying the condition of uw ≤ Hσuσw. These ˜ quantities represent
contributions from events with small magnitudes of uw. e.g. the relation between Sw,i

and its complement is prescribed by Sw = ∑8
i=1(Sw,i + S̃w,i).

Figure 17(a) shows that Sw,6 (positive) and Sw,4 (negative) dominate over other
components, suggesting that the major contributions to the high-order moments come
from cold ejections and warm sweeps. Given that the summation of all components (solid
curves) returns the vertical profile of Sw observed in figure 5( f ), the positive peak of Sw is
a result of the magnitude of Sw,6 exceeding Sw,4.

Here, we also examine the result of H = 4. Figure 17(c) shows that Sw,4 becomes zero
while Sw,6 remains substantial. The inset plot shows that the summation of S̃w,i of all
components becomes zero, suggesting a null contribution to Sw from events with H < 4.
These results provide evidence of a firm link between strong cold ejections and the peak

986 A4-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.329


Statistics of boundary layers across a roughness change

0.1 0.2
–0.2

0.1 0.3 0.5

–0.5

0

0.5

0

0.2

0.4

0.6

0.8

1.0

0.4

z/δ0

z/δ0

0.50.3

Sw,i

S̃w,i

0.1 0.3 0.5
0

0.5

1.0

z/δ0

K̃w,i

0.1 0.2
0

0.5

1.0

1.5

2.0

2.5

3.0

0.4

z/δ0

0.50.3

Kw,i

0.1 0.2
–1.0

–0.5

0

0.5

1.0

0.4 0.50.3

Sw,i

0.1 0.2
0

0.5

1.0

1.5

2.0

2.5

3.0

0.4 0.50.3

Kw,i

(a) (b)

(c) (d)

Figure 17. Conditionally averaged (a,c) skewness of vertical velocity and (b,d) kurtosis of vertical velocity for
case 4 at x = 3.72 m. Panels show (a,b) H = 0; (c,d) H = 4. The solid lines in (a,c) denote the summation of
all quadrant components with i ∈ [1, 8]. The vertical dashed line denotes the upper edge of IBL. Symbols are
defined in figure 16. Insets of (c,d) show complementary components of skewness and kurtosis, i.e. S̃w,i and
K̃w,i.

in Sw, as discussed in § 3.3. The dominant contribution from strong cold ejections on Kw
is also evident in figure 17(d) as the peak of Kw,6 is located at δk. Based on the above
analysis, we can conclude that the enhanced shear stress as well as the local maxima of
skewness and kurtosis of velocity underneath the edge of the IBL can be ascribed to the
strong ejections.

3.5.3. Local gradient Richardson number
In the final part of this section, we want to provide some insight into the strong ejection
events discussed so far. Regarding neutral BLs, Antonia & Luxton (1971a) found that the
large skewness of wall-normal velocity observed in this region can be ascribed to peaks in
the turbulent diffusion term. Our analysis on conditionally averaged high-order moments
provides a firm link between these strong ejections and high kurtosis/skewness, which
suggests that strong ejections correspond with energy gained by diffusion.

In stable flows, the enhanced contribution of ejections can appear counter-intuitive as
the thermal stratification is expected to dampen the fluctuations and weaken lifting events
(due to the potential energy gradient). These effects can be quantified by the relative
strength between the thermal stratification and the wall-normal shear, which is evaluated
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Figure 18. Contour plots of the local gradient Richardson number Rig for case 2 (a) and case 4 (b). The solid
curves represent the upper edges of IBLs.

quantitatively by the gradient Richardson number Rig = (g/Θ)(∂Θ/∂z)/(∂U/∂z)2. Miles
(1961) and Howard (1961) proposed a necessary condition for instability in an inviscid,
incompressible stratified flow, i.e. Rig < Ric, where the critical Richardson number Ric =
0.25. Turbulent bursting corresponding to Rig < 0.25 was observed in stable atmospheric
BLs due to the strong shear imposed by lower-level jets (Ohya, Nakamura & Uchida 2008).
Given that the mean streamwise velocity in the lower region of our studied cases is vastly
reduced due to the rougher downstream surface, it is interesting to examine the local shear
induced by the roughness change in stable layers. Figure 18 presents contours of the local
gradient Richardson number; here, regions of Rig < 0.25 are highlighted. Upstream of the
roughness change the region of Rig < 0.25 is restricted to the surface layer, while after
the roughness change, this region expands in height along the fetch, closely following
the growth of the IBL (this is particularly obvious in figure 18b). This suggests that
the deceleration of mean streamwise velocity within the IBL, induced by the roughness
change, can trigger a strong shear, resulting in Rig dropping below the critical value.
This can lead to the modification of the turbulence dynamics within the IBL which, we
infer, might be the reason for the enhanced contribution of ejections observed in the two
stable cases. The critical Richardson number (Ric) can vary between 0.2 and 1 depending
on the scenarios studied and its determination in turbulent environments is particularly
challenging (Galperin, Sukoriansky & Anderson 2007), however, this is outside the scope
of this manuscript. Similarly, a further investigation into the spatial organisation of flow
structures, such as hairpin vortices, would be needed for a more thorough interpretation of
the intense ejections found just below the IBL depth.

4. Conclusions

In this paper, we studied the statistical properties of neutrally and stably stratified boundary
layers in response to a step change in surface roughness from a rough to a rougher surface.
By comparing the results of four cases with various Reδ and Rib values, the effects of
thermal stability on the statistical properties of developing flows are studied. Our primary
findings are listed below.

(i) The skin-friction relationship, Cf (δ
∗), for the stably stratified BLs in equilibrium

has been derived for the first time, extending the approach of Castro (2007) to stable
flows. The new relation asymptotically approaches that in the neutrally stratified
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BL of Castro (2007) when the Obukhov length approaches infinity. The overshoot
behaviour of Cf (x) during the transition to a rougher downstream surface is slightly
enhanced by the thermal stability.

(ii) The normalised length scale Δ = δ∗u∗/(U∞) is found to be able to collapse
the velocity defect profiles for neutrally stratified IBLs onto those upstream of
the roughness change. Influenced by the Obukhov length scale, Δ becomes less
suitable for collapsing the velocity defect profiles in stably stratified BLs. Further
investigation into a more appropriate scaling is needed.

(iii) The diagnostic plots are significantly altered by thermal stability. Upstream of the
roughness change, the relation between σu/U and U/U∞ breaks into two linear
regions. The first linear relation has a slope of −0.255 (the same as that in the neutral
cases), while the magnitude of the slope in the second linear region becomes smaller.
Downstream of the roughness change, the diagnostic curves in the lower region of
the outer layer initially overshoot and then approach the fully developed state, in
contrast to the more gradual approach in neutral cases.

(iv) A region with large magnitudes of skewness and kurtosis of streamwise velocity and
wall-normal velocity is identified just beneath the interface of the IBL with the outer
flow for stably stratified flows. Quadrant analysis reveals that this feature/region is
characterised by an increased occurrence of strong ejections (Q2) and a reduced
occurrence of sweeps (Q4) when compared with the flow upstream of the roughness
change. This non-adjusted region with strong ejection events is present in both
neutrally and stably stratified IBLs and becomes more noticeable with increased
thermal stability.

(v) In stably stratified BLs, these strong ejections are associated with cold fluid parcels
and make major contributions to the heat flux, which is around twice that of the
warm sweeps. These strong cold ejections account for the peaks of skewness and
kurtosis observed in the non-adjusted region.

In conclusion, this work demonstrated the significant impact of thermal stability on the
statistical properties and dynamics within the IBL.
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Appendix A. Mean velocity profiles – surface scaling

Figure 19(a) shows the inner-normalised mean velocity profiles using the u∗ value
determined from uw. A logarithmic layer is still identifiable in the lower part of the
developing neutrally stratified BL where the data collapse well onto the logarithmic curve.
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Figure 19. (a) Inner-scaled profiles of mean streamwise velocity, which is scaled by the local friction
velocity determined by the extrapolation of uw. The solid line represents the logarithmic function of U+ =
(1/κ) ln(z/z0). (b) Inner-scaled mean streamwise velocity after correction of law of the wall as a function of
(z − z0)/L0. The solid line represents a linear function with a slope of 8 and intercept on the y-axis at 0.
(a) Is for the neutral case (Rib = 0, Reδ = 4.5 × 104) and (b) is for the stable case (Rib = 0.13, Reδ =
4.5 × 104). Colours/symbols are defined in figure 1.
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Figure 20. (a) Inner-scaled profiles of mean streamwise velocity, which is scaled by the local friction velocity
calculated from Elliott’s model. The solid line represents the logarithmic function of U+ = (1/κ) ln(z/z0).
(b) Inner-scaled mean streamwise velocity after correction of law of the wall as a function of (z − z0)/L0.
The solid line represents a linear function with a slope of 8 and intercept on the y-axis at 0. Panels show
(a) Rib = 0, Reδ = 4.5 × 104 and (b) Rib = 0.13, Reδ = 4.5 × 104. Colours/symbols are defined in figure 1.

With x increasing, U+ becomes progressively smaller due to the rougher downstream
surface. Figure 19(b) shows scaling of the mean profiles in stable conditions. The
log-corrected mean streamwise velocity near the wall follows βm(z − z0)/z0, evidence of
the existence of the surface layer (consider how, for the data at x = 5.88 m, the region
0.05 < (z − z0)/L0 < 0.15 aligns with the solid line). We note that this inner layer has
a height of around 0.2L0 (0.22δ0) in the incoming stable flow (see solid grey symbols).
After the roughness change, this region grows in height (to around 0.46δ0 at x = 5.88 m),
suggesting a thicker surface layer for a rougher wall.

Figure 20(a) shows the velocity scaled by the local u∗ calculated from Elliott’s model.
The lower part of the developing neutrally stratified boundary layer collapses well onto the
logarithmic curve when z is scaled by the local roughness length z0. With an increase in x
the wake region progressively lifts due to the rougher downstream surface.
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Figure 21. Velocity defect (U∞ − U)+ as a function of (a,c,e,g) z/δ and (b,d, f,h) z/Δ at several streamwise
locations. The inset plots in (a,c,e,g) only show the data outside the IBL for x > 0 and the complete profile at
x = −0.76 m. The inset plots in (b,d, f,h) only show the data within the IBL for x > 0 and the complete profile
at x = −0.76 m. (a,b) Case 1; (c,d) case 3; (e, f ) case 2; (g,h) case 4. The solid curves represent the theoretical
expression given by (3.4) with the wake strength Π = 0.70 for (a–d), 1.0 for (e, f ) and 1.2 for (g,h). Local u∗
is determined from the linear extrapolation method. Colours/symbols are defined in figure 1.
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Figure 22. Contour plots of mean streamwise velocity U (a), mean temperature Θ (b), the shear stress uw (c)
and the heat flux wθ (d) in the y–z plane. The black line and symbol represent the top of the IBL. Example for
case 4 at x = 0.72 m.

Finally, the mean velocity in defect form using u∗ from the linear extrapolation
methodology is presented in figure 21. These data support that the collapse of the velocity
defect discussed in § 3.2.1 is insensitive to the methodology adopted to calculate the
friction velocity.

Appendix B. Two-dimensionality of the mean flow

Given that most of the analysis presented in the manuscript is performed along the centre
line of the wind tunnel and given the 3-D nature of the roughness, it is important to
assess the homogeneity of the IBL along the spanwise direction. Vertical profiles at eight
different spanwise locations, spanning one period of the roughness elements arrangement,
were measured both in neutral and stable cases at x = 0.72 mm and x = 5.88 mm for this
purpose. The former streamwise location is just in front of a roughness element while the
latter is in the middle of two rows of roughness elements, as shown in figure 1. Figure 22
shows an example of contour plots of the mean velocity, mean temperature, as well as the
covariances in the y–z plane for case 4 at x = 0.72 m. Above the surface layer (z > 0.1 m),
the homogeneity in the spanwise direction is evident, while the mean flow below this
height is affected by the roughness arrangement. We note that, at x = 0.72 m, the top of the
IBL reaches the top of the surface layer. The difference in δi at various y locations is around
12 % for the neutral case (case 3) and ≈5 % for the stable case (case 4) at x = 0.72 m. This
difference decreases to ≈8 % for case 3 and ≈4 % for case 4 at x = 5.88 m. Regarding the
surface properties, the difference between the friction velocity calculated along the wind
tunnel centre line (at y = 0) and its spanwise mean value for both cases at two streamwise
locations is below 6 %. Given the intrinsic accuracy of the methodology used herein, the
surface properties measured along the centre line of the wind tunnel can be considered to
be representative, more generally, of the surface as a whole.
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