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Abstract 

Long-term river terrace sequences reveal that many regions have uplifted by several hundred metres since the Middle 
Pliocene. They indeed provide evidence of a global increase in uplift rates in the Late Pliocene, followed by a calm period then 
a renewed increase around the Early-Middle Pleistocene boundary. It is suggested that this uplift pattern has resulted from 
thickening of the continental crust caused by flow in the lower crust which has been induced by cyclic surface loading caused 
by growth and decay of ice sheets and the associated global sea-level fluctuations. Observed uplift histories are modelled using 
a technique which incorporates increases in the strength of forcing of this process caused by step changes in the intensity of 
glaciations starting at~3.1,~2.5,~1.2, and~0.9 Ma. 
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Introduction 

Whether the Earth's surface has uplifted systematical­
ly during Late Cenozoic time has long been debated. 
Decades ago, studies noted that land surfaces indica­
tive of prolonged stability have become incised by riv­
er gorges during the Neogene and Quaternary by 
hundreds of metres (e.g., DuToit, 1933; King, 1955; 
De Sitter, 1952; Flint, 1957; Holmes 1965; Damon, 
1971). These early studies made the common sense 
assumption that this incision has required uplift of 
these land surfaces relative to sea level. In some re­
gions the Earth's surface is of course uplifting due to 
crustal thickening caused by convergent plate mo­
tions. However, until recently no satisfactory physical 
mechanism was known that could account for uplift 
of this order away from plate boundaries (see below). 

Molnar & England (1990) suggested mat previous 
studies had mistaken increases in relief during the 

Quaternary, caused by increased rates of denudation 
in response to the changing climate, for increases in 
the mean altitude of the Earth's surface. Gilchrist et 
al. (1994) and others have also noted that rates of 
gorge incision do not necessarily relate simply to up­
lift rates of interfluves. Any use of altitudes of river 
terraces, deposited during gorge incision, to deter­
mine a region's uplift history must thus take care to 
justify its assumptions. 

The continental crust consists of an upper, brittle, 
layer, overlying a plastic layer which behaves like a 
viscous fluid on geological time scales. It was estab­
lished many years ago that the boundary between 
these layers is thermal - not compositional - being 
the depth at which the temperature is ~350°C (e.g., 
Sibson, 1982; Kusznir & Park, 1984).The viscosity of 
the lower crust at a given temperature is difficult to 
determine, because its composition and physical state 
(whether typically isotropic or possessing a fabric 
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caused by earlier deformation) are unclear. As was 
shown by Westaway (1998), another important factor 
is the nature of the extrapolation used to relate labo­
ratory rock mechanics data obtained at high tempera­
tures and strain rates to the much lower temperatures 
and strain rates typically present in the lower conti­
nental crust. Westaway's (1998) results established 
the likelihood that the effective viscosity of the lower 
continental crust (the viscosity which an isoviscous 
layer would need to have to produce the same flow 
rate in response to a given pressure gradient as is ob­
served in the real lower crust with a temperature-de­
pendent viscosity) can be as low as ~1018 - 1019 Pa s. 

Like any other fluid, the lower crust will flow in re­
sponse to applied pressure gradients. These may re­
sult from lateral variations in loading at the Earth's 
surface. Mitchell & Westaway (1999) showed by sim­
ple first-order calculations that with such low viscosi­
ties in the lower crust, steady rates of erosion and sed­
imentation can cause pressure gradients in the lower 
crust which are sufficient to cause significant relief to 
develop. However, surface loads in some localities are 
not steady: they may be cyclic, caused by the growth 
and decay of ice sheets or the associated variations in 
global sea-level; or transient, caused by changing rates 
of denudation or sedimentation. Crustal deformation 
caused by lower-crustal flow induced by surface 
processes is called 'atectonic' deformation (e.g., 
Kaufman & Royden, 1994), in contrast with tectonic 
deformation that is caused by plate motions. Because 
the lower crust is weaker than either the brittle layer 
above it or the mantle lithosphere or asthenosphere 
below it, flow in it provides an important mechanism 
for isostatic compensation. However, as already not­
ed, the top of the lower crust is a thermal - not a 
compositional - boundary, which is maintained at 
~350°C. As a result, denudation will cause the base of 
the brittle layer to advect down relative to the rock 
layers present at mid-crustal depths: transferring 
crust from the plastic to the brittle regime; and sedi­
mentation will conversely transfer crust from the brit­
tle to the plastic regime. This complexity means that 
developing internally-consistent methods for model­
ling transient surface processes is extremely difficult. 

Molnar & England (1990) ignored lower-crustal 
flow in their isostatic response calculations. Mitchell 
& Westaway (1999) showed that a localised increase 
in the denudation rate can reduce the pressure at the 
base of the brittle layer sufficiently to cause an influx 
of lower crust which vastly outweighs the loss by de­
nudation at the surface. As a result, the crust can ex­
perience dramatic net thickening, accompanied by 
surface uplift, in localities with increased rates of de­
nudation. The main conclusion by England & Molnar 

(1990), that increased rates of denudation will create 
increased relief but maintain a near constant (but 
slightly decreasing) mean surface altitude, is thus 
mistaken: increased rates of denudation can instead 
cause significant increases in mean surface altitude. 

Regardless of the role of transient changes in de­
nudation rates, it is evident that many major rivers 
which have incised gorges and created terrace se­
quences drain regions with negligible denudation 
rates (e.g., Maddy, 1997, 1998; Westaway, 2001; 
Westaway et al., 2002). As a result, an alternative 
physical mechanism can be considered, in which the 
observed surface uplift results from lower-crustal flow 
induced by cyclic surface loading. 

Fig. 1 summarises such a model. This model is ex­
plained qualitatively here (see Fig. 1 caption). Its al­
gebraic form is omitted due to length limitations, but 
is given in full by Westaway (2001) and Westaway et 
al. (2002). It uses an approximate analytic solution to 
the advective diffusion equation for heat flow, which 
is solved for a sequence of 25 ka time steps, to deter­
mine the advection of the base of the brittle layer and 
the resulting pressure perturbation. This result is then 
used in a simultaneous solution of the equations for 
conservation of lower-crustal mass and pressure equi­
librium at the end of each loading cycle, to determine 
the time-averaged uplift rate during that cycle. This 
solution incorporates the effect of offshore water 
loading, which contributes to maintaining the modi­
fied equilibrium state in which the offshore crust has 
experienced net thinning to supply the net accumula­
tion of lower crust beneath the land. The resulting 
predicted uplift history of the land area is then deter­
mined by numerical integration. 

Modelling strategy 

Modelling using this method requires knowledge of zb 

and zw, the depths of the top and base of the lower 
crust, and u and K, its geothermal gradient and ther­
mal diffusivity. The depth zi5 where lower-crustal flow 
is concentrated, is roughly nine tenths of the way be­
tween zb and zw (Westaway, 1998). The equations 
used to predict uplift rates and histories are given in 
Westaway (2001). 

Modelling follows the strategy of Westaway (2001): 
Kis fixed at 1.2xl0~6 m2 s"1; zb, zw, and u vary. Surface 
uplift is assumed to result from the superposition of 
forcing components, caused by the process in Fig. 1, 
with different magnitudes and start times. As in West­
away (2001), this forcing is assumed to comprise five 
such components, each characterised by the parame­
ter ATe. 
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Fig. 1. Summary of the model. Just above the Moho, the lower 
crust will have a lower temperature offshore than onshore, due to 
thermal conduction: the offshore crust is thinner than the onshore 
crust, but the mantle lithosphere is assumed to have the same 
thickness in both localities, (a) During interglacial marine high-
stands, the rise in sea level (1) causes an increase in the pressure at 
the base of the brittle layer beneath the offshore shelf (2). This 
causes a landward pressure gradient, which drives relatively cool 
lower crust from beneath the shelf to beneath the land (3). This in­
flow of relatively cool lower crust perturbs the geothermal gradient 
beneath the land, causing the base of the brittle layer to move 
downward relative to the land surface (4). The effect of earlier flow 

of warm lower crust to beneath the offshore shelf causes a corre­
sponding perturbation to the offshore geothermal gradient, which 
causes the base of the brittle layer to move upward relative to the 
sea floor (5). Taking account of the need to balance overall crustal 
volume within a closed system, the overall isostatic response to 
these processes requires the sea floor of the shelf to adjust down­
ward, causing net thinning of the offshore crust and deepening of 
the shelf sea (6), and thickening of the crust beneath the land, caus­
ing the land surface to uplift (7). (b) During glacial marine low-
stands, the fall in sea level (1) causes a decrease in the pressure at 
die base of the brittle layer beneath the offshore shelf (2). This 
causes a seaward pressure gradient, which drives relatively warm 
lower crust from beneath the land to beneath the shelf (3). This in­
flow of relatively warm lower crust perturbs the geothermal gradi­
ent beneath the shelf, causing the base of the brittle layer to move 
upward relative to the sea floor (4). The effect of earlier flow of cool 
lower crust to beneatii the land causes a corresponding perturba­
tion to the onshore geothermal gradient, which causes the base of 
the brittle layer to move downward relative to the land surface (5). 
Taking account of the need to balance overall crustal volume with­
in a closed system, the overall isostatic response to these processes 
requires the sea floor of the shelf to adjust downward, causing net 
thinning of the offshore crust and deepening of the shelf sea (6), 
and thickening of the crust beneath the land, causing the land sur­
face to uplift (7). The resulting relief is dynamically maintained by 
the requirement for overall pressure equilibrium at the base of the 
brittle layer. This equilibrium state is assumed to be maintained 
pointwise: the flexural rigidity of the brittle upper crust is ignored, 
as many studies (e.g., Westaway, 1993a) indicate this is very low 
such that if required the brittle can warp on a spatial scale of a few 
kilometres (see, also,Westaway et al., 2002). 

This figure illustrates mis equilibrium for a notional small isolated 
island in continental crust where the growth of topography is unac­
companied by the development of a lower-crustal 'root' - the ex­
cess mass is instead supported by the mantle lithosphere. Given the 
magnitude of the flexural rigidity of the mantle lithosphere, the 
spatial scale of loading in most examples in the present study re­
quires the downward deflection of the mantle lithosphere and the 
resulting creation of a lower-crustal root. However, the principle of 
the calculation is unaffected (but see text for further discussion). 

Forcing chronology 

ATe provides a measure of the temperature contrast, 
near the base of the crust, between the study region 
and the adjoining source of the lower crust which 
causes the crustal thickening that supports its surface 
uplift, scaled by the ratio of dimensions of the re­
gions. The actual temperature contrasts are unknown, 
as are the overall dimensions of the sources of lower 
crust and the regions which are uplifting. As a result, 
like in Westaway (2001), ATe for each phase of uplift 
forcing is treated as a free parameter, whose value is 
adjusted to match the available observations. 

The first phase of forcing included, starting at a 
nominal time of t0l = 18 Ma, causes very slow uplift 
throughout the Late Miocene and Pliocene. Westaway 
(2001) suggested that this slow uplift was forced by 
cyclic loading of the continental shelf by fluctuations 
in the global sea-level caused by the growth and decay 

of the Antarctic ice sheet, which already existed in the 
Miocene. 

The timings of other phases of uplift forcing also 
follow Westaway (2001). The second phase, starting at 
to2=3.1 Ma, represents forcing due to ice loading ef­
fects and sea-level fluctuations following the start of 
upland glaciation in the northern hemisphere around 
3.1 Ma. The third phase, starting at to3=2.5 Ma, rep­
resents additional forcing due to enhanced ice loading 
effects and sea-level fluctuations following the start of 
lowland glaciation in the northern hemisphere 
around 2.5 Ma. The fourth phase, starting at to4=1.2 
Ma, represents additional forcing due to enhanced ice 
loading effects and sea-level fluctuations following the 
buildup in scale of ice sheets at glacial maxima 
around oxygen isotope stage 36, revealed in some 
oxygen isotope records (e.g., Shackleton et al., 1990). 
The final phase, starting at to5=0.9 Ma, represents ad­
ditional forcing by their further growth in scale start-
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ing in oxygen isotope stage 22 (e.g., Mudelsee & 
Schwartz, 1997). 

Calculation of Uplift from Incision 

In general, no simple relationship exists between the 
incision of a gorge and the uplift of the adjacent land 
surface (e.g., Gilchrist et al., 1994; Whipple et al., 
1999). However, if a river returns to the same gradi­
ent at each pause in incision (i.e., during each inter-
glacial), thus establishing a new quasi-equilibrium 
profile which is the same as its previous profiles, and 
erosion rates of interfluves are negligible, then - as 
previously argued (Maddy et al., 2001; Westaway, 
2001;Westaway et al., 2002) - incision can provide a 
measure of the uplift of the land surface forming the 
interfluves. The requirement for negligible erosion of 
interfluves arises because, if interfluves are eroding 
significantly, the isostatic response will cause the crust 
beneath the interfluves to uplift, simply in order to 
compensate the erosion. As a result, the river gorge 
will also be uplifted. Depending on geometrical fac­
tors, such as the distance of the study locality from 
the edge of the uplifting region (and thus, from locali­
ties which are not uplifting, and so remain in touch 
with base level) the river may or may not incise fur­
ther in response to this uplift of its gorge. 

The validity of the assumption that equivalent qua­
si-equilibrium profiles develop after each climate cy­
cle can be argued for many river terrace sequences 
given the near uniform thicknesses and parallelism of 
deposits from each cycle. The validity of the assump­
tion of negligible erosion rates of interfluves can be 
argued for many major rivers via first order calcula­
tions of sediment budgets (e.g., Ahnert, 1970; Milli-
man & Syvitski, 1992; Westaway, 2001).This reason­
ing is supported by observations that much of the 
area of interfluves may be covered by apparently in­
tact terrace deposits, or thin layers of weathered rock 
derived from prolonged weathering of Tertiary sedi­
ments, which have not been removed by erosion. 

Subject to these assumptions both being satisfied, 
the incision between equivalent parts of successive 
climate cycles will equal the uplift of the adjoining 
land surface, provided the downstream channel 
length has remained unaltered. If, instead, a new qua­
si-equilibrium profile, equivalent to the previous one, 
develops after the downstream channel length has in­
creased, then the incision will underestimate the up­
lift of the adjoining land surface. Corrections for such 
channel lengthening (or shortening) are necessary to 
model the Maas and Thames terrace sequences 
(Westaway, 2001; Westaway et al., 2002), but are un­
necessary for most other river terrace sequences ex­

amined here. The summaries presented here of the 
uplift histories of these other terrace sequences will in 
due course be reinforced by more detailed publica­
tions. 

Terrace sequences and their interpretation 

Sequences of gravel terraces rising to ~100 m or more 
above modern river levels have long been identified 
along the major rivers of north-western Europe (e.g., 
Antoine, 1994; Van den Berg, 1996; Maddy, 1997; 
Bridgland, 2000; Westaway, 2001) and in other re­
gions at temperate latitudes. It is well-established that 
these gravels have aggraded during cold climate cy­
cles, as river valleys change from incisional to deposi-
tional environments due to the combination of in­
creased rates of erosion in upstream localities, result­
ing from the reduced cover of vegetation, and from 
large-magnitude seasonal flows (e.g., Bridgland & 
Allen, 1996; Schumm et al., 2000; Maddy et al., 
2001). As a result, the base of each terrace is assumed 
to mark the early part of the cooling limb of a climate 
cycle, shortly after each interglacial; the top of each 
terrace being assumed to mark the early part of the 
following warming limb, shortly after the subsequent 
glacial maximum. 

The Maas, southeastern Netherlands 

The Maas around Maastricht in the Netherlands 
(Fig. 2) has yielded the most complete published 
long-term river terrace record anywhere in the world 
(Figs. 3, 4), with 31 terraces, many independently 
dated (Van den Berg, 1996; Van den Berg & van 
Hoof, 2001). The resulting uplift history has been 
modelled by Westaway (2001) (Fig. 5). 

The Rhine, western Germany 

In contrast with the nearby Maas, no more than 16 
terraces are recognised along any reach of the Rhine 
(Fig. 2). Their timing of formation is also problemat­
ic, as different reaches have been studied by different 
people who have devised different chronologies. West­
away (2001) thus proposed a new chronology which 
appears to satisfy the available evidence. The altitudes 
of individual terraces above river level increases 
southward from the lower Rhine embayment into the 
Middle Rhine gorge (Fig. 6), where uplift has been up 
to three times faster than around Maastricht (Figs. 7, 
8). Westaway (2001) suggested that the heating effect 
in the uppermost mantle accompanying this crustal 
thickening may account for this region's Quaternary 
volcanism. 
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Fig. 2. Map of western and central Europe, showing the locations of most of the river terrace sequence which are modelled in this study. Note 
the east-west-trending 'corridor', ~200 to -400 km wide, between localities which have been covered by Alpine or Scandinavian ice sheets, 
where these terrace sequences are located. Adapted from Westaway (2001), (Fig. 1). 

The Rhenish Massif also provides the possibility of 
testing the internal consistency of independent esti­
mates of the effective viscosity r|e of the lower crust. 
First, using local heat flow data, Westaway (2001) es­
timated the typical temperature at the base of the 
plastic lower crust (at the top of the underlying layer 
of mafic underplating) as ~640 °C. Using the calcula­
tion procedure from Westaway (1998), this tempera­
ture constrains r|e to between ~1017 Pa s and ~6xl018 

Pa s. Second, Westaway (2001) estimated from their 
geometry that the Middle and Late Pleistocene Scan­
dinavian ice-sheets have been capable of sustaining 
time-averaged lateral pressure gradients, for driving 
lower crust southward to beneath the Rhenish Massif, 
of ~15 to ~55 Pa m 1 . From this range of pressure gra­
dients and the spatial scale and estimated crustal 
thickening rate for the Rhenish Massif on this time 
scale, r|e was estimated by Westaway (2001) as 
~3xl017 Pa s to ~2xl018 Pa s. Finally, the large-scale 
mining of coal (lignite near Cologne and anthracite in 
the Ruhr region farther north) has unloaded the crust 
sufficiently to cause localised surface uplift at up to ~2 
mm a"1 (observed by repeated surveying over recent 
decades; Klein et al., 1997). Rheological modelling of 
this uplift by Klein et al. (1997) constrains r|e to be­
tween ~3xl017 Pa s and ~1018 Pa s. These three inde-
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pendent methods thus give consistent results for T|e in 
this region. The possible objection to the physical 
modelling summarised in Fig. 1, on the grounds that 
it requires implausibly low viscosities in the lower 
continental crust, is thus untenable. 

The Elbe, eastern Germany and the Czech Republic 

The Elbe has developed a long-term terrace profile 
across eastern Germany, but this is fragmentary due 
to course diversions caused by Scandinavian ice 
sheets (e.g., Prager, 1966; Liittig & Meyer, 1975) 
(Fig. 2). A clearer record exists upstream in the Czech 

Republic, which has never been glaciated. 
The best-documented terrace sequence, with 25 

terraces, follows the Ohre tributary in the Most Basin 
(Tyracek, 1995) (Fig. 9 and 10). Within this basin, 
lignite seams have undergone spontaneous combus­
tion when first exposed subaerially by gorge incision. 
As a result, they become magnetised with the con­
temporaneous field direction, facilitating magne-
tostratigraphic dating. The overall chronology is con­
strained by the recognition by Tyracek (1995) of the 
Gauss chron in the Dobrcice sediments, ~140-165 m 
above river level; the Reunion subchron in clay cover­
ing the Vysocany (1-2) terrace; the Olduvai subchron 
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Fig. 10. Longitudinal profile of Ohre river terraces in the 
Most Basin, showing their assignments to terrace groups 
by Tyracek (1995) and interpreted oxygen isotope stages 
for aggradation. Adapted from Tyracek (1995), Fig. 7. 

within the Hradec (II-1) terrace; and the Brunhes age 
of theVyskov (IV-3) terrace (Fig. 10). Fig. 11 shows 
the resulting uplift history. 

For comparison, only 10 terraces are identified 
along the Vltava tributary near Prague (Zaruba et al., 
1977). Near the top of the oldest, the Zdiby terrace, 
138 m above its latest Pleistocene counterpart, a se­
quence of polarity reversals probably marks the Reu­
nion subchrons (Zaruba et al., 1977), indicating that 
aggradation ceased around oxygen isotope stage 74 
(like Ohre terrace group 1; Fig. 10). Other evidence 
indicates that the Pankrac terrace, 75 m above its lat­
est Pleistocene counterpart, is latest Matuyama 
(Zaruba et al., 1977), possibly indicating stage 22. 

Slightly higher uplift rates are thus indicated than for 
the Most basin (Fig. 11), which has uplifted by 114 
and 65 m, respectively, on these time scales. 

The Thames, southern England 

Use of the Thames terrace record to deduce the uplift 
history of southeast England is complicated by chan­
nel length changes and the course diversion by the 
Anglian (oxygen isotope stage 12) ice sheet (West-
away et al., 2002) (Fig. 2). Fig. 13 shows the uplift 
history deduced at Reading, near the upstream limit 
of the middle Thames (Fig. 2), where Westaway et al. 
(2002) reported the greatest post-Middle Pliocene 
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Fig. 11. (a) Observed and predicted uplift history at Postoloprty in 
the Most Basin (Fig. 9). (b) Enlargement of (a), showing the Mid­
dle and Late Pleistocene in greater detail, (c) Predicted variation in 
uplift rate. Predictions use zb=20 km, z~29 km, u=10°C km1, 
ATcl=-6.0°C, ATe2=-1.3 °C, ATe3=-0.9°C, ATe4=-0.2°C, and 
ATe5=-1.4°C. Terrace names, age and altitude data, based on 
Tyracek (1995), are summarised in Fig. 10. A 10 m correction (~20 
km length change x 0.5 m km"1 river gradient) is added to convert 
incision to uplift for terraces up to the Rvenice (V-l) to correct for 
the channel shortening caused by the diversion of the Ohre river 
from its former course via Obrnice (Fig. 9), which is estimated here 
to have followed the Elster glaciation in oxygen isotope stage 12. 
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uplift. The Middle-Late Pleistocene uplift is roughly 
uniform, typically ~60 m, reflecting the parallelism of 
the youngest terraces (Fig. 12). In contrast, the earlier 
component decreases eastward, from ~200 m of uplift 
at Reading to tens of metres of subsidence at the 
North Sea coast. The less detailed terrace record for 
the upper Thames supports a westward continuation 
of this trend, indicating ~300 m of total uplift (Maddy 
etal.,2001). 

The clearest mismatch evident in Fig. 13b is be­
tween the 34 m of uplift, estimated from the net inci­
sion since deposition of the Winter Hill terrace during 

OIS 12, and the model prediction of 27 m over the 
same time scale. In accordance with Maddy & Bridg-
land (2000), this can be explained as a result of this 
gravel having been deposited while the adjacent crust 
was loaded by the Anglian ice sheet. After this ice 
melted, the crust rebounded, raising this terrace to a 
higher-than-expected level. This effect is greater in lo­
calities farther downstream, nearer the Anglian ice 
margin, where it increases from 7 m to 15 m or more 
(Maddy & Bridgland, 2000;Westaway et a l , 2002). 

The Somme, northern France 

Thames terraces at Reading: Uplift history 

Time t before present |Ma) 

Thames terraces at Reading: Uplift history 

(b) 
01 02 03 04 05 06 07 08 09 10 11 1.2 1? 

Time t before present (Ma) 

Thames terraces at Reading: Predicted uplift rates 

Time t before preient |Ma) 

Fig. 13. (a) Observed and predicted uplift history at Reading on 
the middle Thames, (b) Enlargement of (a), showing the Middle 
and Late Pleistocene in greater detail, (c) Predicted variation in up­
lift rate. Predictions use zb=21 km, z(=29 km, u=0.01°C m 1 , 
ATel=-6.0°C, ATe2= -2.9 °C, ATe3= -1.1 °C, ATe4=-0.5°C, and 
ATe5= -0.5 °C. Terrace names, age and altitude data are from Fig. 
12, uplift being derived from incision after correction for channel 
length changes as described in detail byWestaway et al. (2002). 

The Somme terrace chronology during the Middle-
Late Pleistocene is constrained by magnetostratigra-
phy, amino-acid dating, and other evidence (e.g., 
Bates, 1993; Antoine, 1994; Antoine et al., 1998) 
(Fig. 14). Fig. 15 shows the resulting uplift history. 

The Seine, northern France 

The Seine terrace sequence (Fig. 16) also includes 
marine sediments near the English Channel coastline 
(Fig. 17). However, the resulting chronology has been 
difficult to interpret, due to inconsistencies within the 
dating evidence. Amino acid dating (Bates, 1993), 
uranium-series dating of tufa (Lautridou et al., 
1999), biostratigraphic dating of Late Pliocene ma­
rine sediments (Morzadec-Kerfourn, 1997), and oth­
er studies (Antoine et al., 1998) suggest the age as­
signments in Figs. 16 and 17 and the uplift history in 
Fig. 18. 

The Huanghe, northeast margin of Tibet 

The Huanghe or Yellow River flows eastward from 
northeast Tibet, through regions of northern China 
with thick Quaternary loess. Magnetostratigraphic 
dating of this loess allows the ages of underlying river 
terrace gravels to be constrained. Li et al. (1997a) in­
vestigated the terrace sequence of the Daxia He river 
near Linxia (Fig. 19), just upstream of its confluence 
with the Huanghe. The seven terraces have altitudes 
ranging up to ~2400 m, ~500 m above the river level. 

Most of Tibet either drains internally or has low re­
lief, as rivers have not had time to achieve overall 
equilibrium with their reaches outside the plateau 
(e.g., Shackleton & Chang, 1988; Fielding et al., 
1994). Nick points are thus evident along river gorges 
leaving the plateau, at altitudes of ~3-4 km (Shackle-
ton & Chang, 1988). The parts of their courses at 
lower altitudes may thus achieve equivalent states of 
quasi-equilibrium during each climate cycle. 

The oldest terrace, T7, formed at ~1.7 Ma (Li et 
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Fig. 14. Longitudinal profile of Somme 
river terraces around Amiens, adapted 
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Fig. 15. (a) Observed and predicted uplift history at Amiens, (b) 
Enlargement of (a), showing the Middle and Late Pleistocene in 
greater detail, (c) Predicted variation in uplift rate. Predictions use 
zb=16 km, z~27 km, u=20°C km-1, ATel=-6.0°C, ATe2=-2.5°C, 
ATe3=0°C, ATe4=-2.2°C, and ATe5=-1.8<!C. Terrace names, age 
and altitude data are from Fig. 14, based on Antoine (1994). 
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al.j 1997a), on slightly older lake sediment (Fig. 19) 
(Li et al., 1997b), thus indicating the first appearance 
of the throughgoing Huanghe river system. Earlier, 
this region evidently drained internally (e.g., Li et al., 
1997a), presumably resembling the modern Tibetan 
plateau interior. The interval between terraces T7 and 
T6 thus does not represent the transition between 

equivalent states: it represents initial incision of an in­
cipient river gorge, and thus does not imply ~250 m 
of uplift in ~0.25 Ma. However, the increase in inci­
sion rates in the Late Pleistocene (Fig. 20) is not a lo­
cal effect, being widely observed elsewhere around 
the margins of Tibet (e.g., Li, 1991; Li et al., 1997a) 

Unlike the localities already studied, where rivers 
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Fig. 18. (a) Observed and predicted uplift history at Rouen, (b) 
Enlargement of (a), showing the Middle and Late Pleistocene in 
greater detail, (c) Predicted variation in uplift rate. Predictions use 
zb=20 km, z~29 km, u=20°C km"1, ATci=-6.0°C, ATc2=-2.7°C, 
ATe3=0°C, ATe4=0°C, and ATe5=-4.8°C. Terrace names, age and 
altitude data are from Figs 16 and 17, based on Lautridou et al. 
(1999). 
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Fig. 19. Transverse profile through the 
terrace sequence of the Daxia He river 
near Linxia, northern China, just up­
stream of its confluence with the 
Huanghe, adapted from Li et al. (1997a), 
Fig. 2. Loess beds are labelled for com­
parison with Li et al.'s (1997a) magne-
tostratigraphic studies, which lead to the 
indicated oxygen isotope stages for for­
mation of the land surfaces on which the 
basal gravels of each terrace were deposit­
ed. 

are near sea level in crust of normal ~30 km thickness, 
the crust around Linxia is ~50 km thick (e.g., Ma et 
al., 1982), roughly as is expected when in isostatic 
equilibrium with the Earth's surface at ~2.0-2.5 km 
altitude. These isostatic calculations assume that the 
crustal thickening has been unaccompanied by thick­
ening of the mantle lithosphere, as is expected if the 
crust has thickened by inward lower-crustal flow that 
leaves the mantle lithosphere unaffected (see, e.g., 
Westaway, 1995). This crustal thickening is transi­

tional to the Tibetan plateau interior, where the crust 
is ~65 km thick with a surface altitude of ~5 km (e.g., 
Fielding et al., 1994). 

Fig. 20 shows a solution from modelling the Linxia 
terraces. It implies that the increase in incision rate in 
the Late Pleistocene results from an increase in the up­
lift rate, analogous to the increase in the early Middle 
Pleistocene in other localities. The response at Linxia 
to the intensified forcing starting at 0.9 Ma is delayed 
because of the greater thickness of lower crust. 
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Fig. 20. (a) Observed and predicted uplift history at Linxia. (b) En­
largement of (a), showing the Middle and Late Pleistocene in 
greater detail, (c) Predicted variation in uplift rate. Predictions use 
zb=20 km, u=10°C km1, ATel=-15°C, A T ^ — I C C , ATe3=0°C, 
ATrt=0°C, and ATe5=-60°C, with zu=35 km, zi2=37 km, and z,=40 
km thereafter. Terrace numbers and altitude data are from Li et al. 
(1997a). 
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Marine terraces in the California Continental Borderland 

It is of interest to compare marine terrace records 
with the data already described. Clear long-term ma­
rine terrace sequences occur on islands in the outer 
California Continental Borderland, the ~200 km wide 
region of submerged continental crust offshore of 
southern California (Fig. 21) (e.g., Legg, 1991).This 
Borderland structure formed by right-lateral strike-
slip faulting at the boundary between the Pacific and 
North American plates, which ended at ~5 Ma when 
this plate boundary adjusted eastward to its present 
inland position (e.g., Atwater, 1987; Legg, 1991).The 
complex seafloor relief (Fig. 21) is inherited from this 
time: the bathymetric deeps mark pull-apart basins 
where strike-slip faults stepped to the right. At pre­
sent, the component of plate motion taken up across 
this Borderland is negligible (e.g., Larson, 1993).The 
nearshore basins trap sediment transported to the 
coast by rivers, and thus experience rapid sedimenta­
tion (e.g., Gorsline &Teng, 1989). The outer basins 
are thus sediment-starved (e.g., Schwalbach & 
Gorsline, 1985), which preserves the inherited relief. 
The marine terraces on San Clemente island were de­
scribed by Lawson (1893) and Smith (1898, 1900) 

(Fig. 22). Lawson (1893) reported 22 terraces up to 
~460 m altitude, with the higher land up to the 599 m 
summit not terraced. Smith's (1898) sequence agrees 
closely with Lawson (1893). For decades since, most 
of San Clemente has been inaccessible for fieldwork 
due to its use as a target range by the U.S. Navy; field-
work having only been possible on the northern half 
of the west coast (e.g., Muhs & Szabo, 1982; Muhs, 
1983; Muhs et al., 1994). Here, the limited altitude 
range restricts which terraces can be studied, but 
most have been dated using uranium series or amino 
acid methods. Ages of the older terraces are tentative­
ly estimated here by matching them to major inter-
glacials, from Shackleton et al. (1990) and Hilgen 
(1991), assuming by analogy with the sequences al­
ready described that the oldest dates from ~3.1 Ma 
and the uplift rate beforehand was minimal. Fig. 23 
shows the resulting uplift history. 

Rising to 276 m, San Nicolas (Fig. 21) has 14 ma­
rine terraces (Vedder & Norris, 1963; Muhs, 1985). 
Terrace 14 occupies the highest land, with no shore­
line angle, indicating that only a shoal existed when it 
formed. Several terraces are dated using the uranium 
series and amino acid methods (e.g., Valentine & 
Veeh, 1969; Wehmiller et al., 1977; Muhs, 1985; 

34° N + 
118°W 

Fig. 21. Map of the California Continental Borderland showing the locations of San Nicolas and San Clemente islands and the surrounding 
deep water basins. Key denotes: 1, oceanic crust of the Pacific abyssal plain; 2, continental crust; 3, coastline, with ornament on the landward 
side; 4, faults active with significant Pliocene and Quaternary slip rates, with paired arrows indicating sense of strike-slip; 5, faults which were 
active in the Miocene, before the modern Pacific-North American plate boundary developed, some of which may remain active with low slip 
rates; 6, selected intersections of parallels and meridians at 1° intervals; 7, spot heights and depths of shoals in metres; 8, depths of deepest 
water, in metres; 9, bathymetric contours, in kilometres. 
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Fig. 22. Relief-shaded topographic map of 
San Clemente, adapted from Lawson (1893) 
(Plate 8, facing page 138). The original Fig. 
was based on a contemporaneous 1:200,000 
scale map published by the U.S. Coast and 
Geodetic Survey. 

Muhs et al., 1994). The others are tentatively as­
signed here to major interglacials, as for San 
Clemente (Fig. 24). 

The modelling in Figs. 23 and 24 suggests that the 
same atectonic uplift process can account for the ma­
rine terraces on these small islands and the river ter­
races described earlier. However, Ward & Valensise 
(1996) modelled the development of San Clemente 
as a result of uplift in the hanging-wall of a southwest-
dipping reverse fault. Such a fault would have no geo­
metrical relationship with the San Clemente fault 
(e.g., Legg, 1991), a strike-slip fault inherited from 
the Miocene, which delineates the northeast coastline 
(Fig. 21). Ward & Valensise (1996) deduced that this 
reverse fault accommodates NE-SW shortening be­
tween the Pacific and North American plates. Diffi­
culties with this interpretation include, first, that no 
component of shortening in this direction is expected 
either from the overall sense of plate motion or from 
geodetic surveys (e.g., Larson, 1993). Second, no 
field evidence of active reverse faulting or seismologi-
cal evidence of reverse-faulting microearthquakes has 
been reported. Finally, a seismic reflection profile 
which imaged the crust to ~7 km depth, published by 
Ward & Valensise (1996), showed no evidence for an 

active reverse fault. Subsequent improved seismic 
imaging by ten Brink et al. (2000) likewise did not re­
veal any such reverse fault. Ward & Valensise (1996) 
also claimed that slip on another active reverse fault 
may cause the uplift of San Nicolas, although there is 
no evidence for an active reverse fault there, either. 
The similarity in uplift histories of both islands any­
way appears better explained as a consequence of the 
same global forcing mechanism, as I suggest, rather 
than requiring both hypothetical reverse faults to slip 
at the same rate. 

Other localities 

Many other localities also provide evidence for an in­
crease in uplift rates around the start of the Middle 
Pleistocene. Examples include the Allier river terraces 
near Vichy in the French Massif Central (Veldkamp, 
1992), and marine terrace sequences in diverse locali­
ties including southern Italy (e.g., Westaway, 1993b), 
southern Australia (e.g., Murray-Wallace et al., 
1996), and the Indonesian island of Sumba (e.g., Pi-
razzoli et al., 1991). Some people, including myself 
(Westaway, 1993b), have tried to explain such in­
creases in uplift rates as a consequence of changes in 
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Fig. 23. (a) Observed and predicted uplift history for San Clemen­
te. (b) Enlargement of (a), showing the Middle and Late Pleis­
tocene in greater detail, (c) Predicted variation in uplift rate. Pre­
dictions use z„=16 km, z~26 km, u=20°C km1, ATel=-6.0°C, 
ATe2=-4.7°C, ATe3=-7.3°C, ATe4=-5.5°C, and ATe5=-6.2°C. Ter­
race numbers and altitude data are from Lawson (1893), Muhs & 
Szabo (1982) and Muhs (1983).Terraces are labelled as designated 
by Lawson (1893), followed by numbers from the modern notation 
where assigned. Middle Pleistocene and younger terraces are as­
sumed to have formed at global sea-levels estimated for each oxy­
gen isotope stage by Westaway (1996), uplift being calculated rela­
tive to these initial levels. 

(C) 

1.0 1.5 2.0 2.5 

Time t before present (Ma) 

Fig. 24. (a) Observed and predicted uplift history for San Nicolas, 
(b) Enlargement of (a), showing the Middle and Late Pleistocene 
in greater detail, (c) Predicted variation in uplift rate. Predictions 
use z„=16 km, ^=26 km, u=20°C km1, ATel=-6.0°C, ATe2= 
-4.7°C, ATe3=-7.4°C, ATe4=-5.8°C, and ATe5=-6.3°C. Terrace 
numbers and altitude data are from sources cited in the text. Uplift 
calculations follow the procedure used for Fig. 23. 

the sense of plate motions. However, Arger et al. 
(2000) have pointed out that whenever one has in the 
past observed uplift in any region known to be a plate 
boundary zone, it has seemed natural to try to explain 
this uplift as a result of plate motions, but it may in­

stead reflect the same atectonic uplift process as has 
been interpreted elsewhere. San Clemente, discussed 
earlier, highlights this point. It follows that, in other 
plate boundary zone regions also, the surface uplift 
may be unrelated to the plate boundary processes 
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that are occurring but may instead be forced by sur­
face processes as in the regions - already considered -
that are not in plate boundary zones. As Arger et al. 
(2000) noted, this possibility may be tested by com­
paring the observed timing of uplift with timings of 
changes in the sense and rate of plate motions -
known independently - and with the timings of 
changes in rates of uplift that - from the present study 
- seem characteristic of regions outside plate bound­
ary zones. 

For instance, in western Turkey, the first region 
within a plate boundary zone where atectonic surface 
uplift was recognised (Westaway, 1993a, 1994), up to 
~500 m of post-Miocene uplift is marked by large-
scale gorge incision (e.g., Hamilton & Strickland, 
1841; Ozaner, 1992; Westaway, 1993a; Richardson-
Bunbury, 1996; Kuzcuoglu, 1996). Similar incision 
indicates that many plate interior regions have also 
uplifted by hundreds of metres during the Neogene 
and Quaternary, but the timing is not well resolved. 
Examples include: southern and eastern Africa (e.g., 
DuToit, 1933; King 1955; Bond, 1978; Partridge & 
Maud, 1987;Veldkamp, 1996; Partridge, 1998); the 
Arabian platform, including southeastern Turkey 
(Arger et al., 2000) and western Iraq (Tyracek, 1987); 
and the Colorado Plateau (e.g., McKee & McKee, 
1972; Lucchitta, 1979) where McQuarrie & Chase 
(2000) have recently argued that the surface uplift 
must have been caused by inward lower-crustal flow 
from beneath surrounding regions. De Sitter (1952), 
Flint (1957), Holmes (1965), Damon (1971), Eyles 
(1996), and Bridgland & Maddy (2002) document 
more examples. 

Discussion 

In all localities considered, the observed uplift histo­
ries are well-explained as consequences of forcing of 
lower-crustal flow with the suggested chronologies. 
Localities show increased uplift rates in the Late 
Pliocene, caused by intensified forcing at ~3.1 and 
~2.5 Ma, followed by a decrease, then a renewed in­
crease in the Middle Pleistocene caused by further in­
tensifications at ~1.2 and ~0.9 Ma. Many localities ex­
amined, notably Maastricht (Fig. 5 c), the lower Rhine 
below Cologne (Fig. 6), the Most Basin (Fig. l i e ) , 
Reading (Fig. 13c), elsewhere along the Thames (Fig. 
12; also Maddy, 1997), and Amiens (Fig. 15c), plus 
others mentioned (including Vichy and southern Aus­
tralia: see Westaway, 2001; plus Prague), have had 
typical uplift rates of ~0.07 mm a1 during the Mid­
dle-Late Pleistocene. Some of these localities uplifted 
faster in the latest Pliocene than in the Middle Pleis­
tocene; others uplifted less quickly in response to this 

earlier forcing. This variability presumably reflects 
different geometries of lower-crustal flow due to the 
different amplitudes and periodicities of forcing at 
these different stages. 

In many of the localities considered, other explana­
tions have been proposed for the observed uplift, 
which regard it as having some local cause, such as an 
active fault zone running through the region. Often, as 
with the Channel Islands example already discussed, 
there is no independent evidence for this hypothetical 
local cause other than the uplift itself. Westaway 

(2001) discussed at length the history of local expla­
nations for the uplift of the Rhenish Massif. Rather 
than listing a longer series of ad hoc explanations here, 
each applicable to a single locality, I simply repeat the 
point that the observed similarities in timing and up­
lift rates favour a common explanation, and the ob­
served timings favour an explanation linked to Qua­
ternary glaciations as is proposed in this study. 

Another possibility, considered by Westaway et al. 
(2002) and Westaway (2002a), is that the first phase 
of accelerated uplift, starting in the latest Pliocene, is 
not the result of forcing of lower-crustal flow: it is 
instead the isostatic response to increased rates of 
erosion. It is suggested that during the long period of 
climate stability before the latest Pliocene, land 
surfaces became typically covered by a thick weath­
ered layer or "regolith", which was stabilised by the 
presence of vegetation. Following the initial deteriora­
tion in climate at ~3.1 Ma, the reduction in vegeta­
tion cover would be expected to result in the relative­
ly rapid erosion of this layer, avoiding any inconsis­
tency with the observation of low present-day erosion 
rates in the present study regions. This removal of 
material would reduce the pressure at the base of the 
brittle layer, whereupon the resulting inflow of lower 
crust could sustain surface uplift. The existence of 
this different mechanism provides a natural explana­
tion for the lack of correlation - already noted - be­
tween amounts of uplift in a given region during the 
latest Pliocene and Middle-Late Pleistocene uplift 
phases. The calculations by Westaway (2002a, b) 
show that the amount of surface uplift that results on 
a given time scale following an increase in erosion 
rates may exceed many times the thickness of the lay­
er of material eroded: under the resulting non-steady-
state conditions, erosion can thus cause crustal thick­
ening. Furthermore, these calculations indicate that 
the form of the uplift response following increased 
rates of erosion is very similar to that from cyclic 
surface loading (Fig. 1): thus resulting in no inconsis­
tency with the present set of modelling results. Zhang 
et al. (2001) suggested a similar global effect of 
climate on erosion rates in the Late Pliocene, but 
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much of their supporting evidence for its timing was 
not well constrained. 

Several studies (e.g., McKenzie, 1984; Lithgow-
Bertollini & Silver, 1998) have instead proposed that 
'epeirogenic' surface uplift (i.e., regional-scale uplift 
of the Earth's surface in localities which are distant 
from plate boundaries) is caused by mantle plumes: 
as the isostatic response to the heating effect of the 
thermal anomaly in the plume stem and to the intru­
sion of igneous rocks into the lower crust. However, 
fluid dynamical simulations now indicate that mantle 
plumes affect regions with a diameter of -1000 km 
(e.g., White & McKenzie, 1995), and do not exist on 
the variety of scales (both larger and smaller) which 
would be required to support all the instances of sur­
face uplift documented in this study and its refer­
ences. Furthermore, the observation that uplift rates 
world-wide have increased in the Quaternary would 
require, given this explanation, a global increase in 
mantle plume activity in the Quaternary. If one were 
to argue that this increase occurred coincidentally at 
the time of intensified glaciation, then there would be 
no way to develop this view into a testable hypothesis. 
If instead one were to argue that this timing relation­
ship was due to cause and effect, then one would 
need to identify a mechanism by which either ice 
loading can cause the vigour of mantle convection to 
increase, or an increase in vigour of mantle convec­
tion can cause glaciation. As no such link has ever 
been suggested in either direction, it seems appropri­
ate instead to explore the alternative general model 
summarised in Fig. 1. 

Although some people have long argued that to 
form long-term terrace staircases (as in Figs. 4, 6, 10, 
12, 14, and 16) requires uplift relative to sea level, 
others (e.g., Kiden &Tornqvist, 1998) have disputed 
this point. However, the argument that if the land sur­
face were not uplifting, river gravels will become re­
peatedly aggraded and incised at similar levels during 
successive climate cycles, appears unanswerable. This 
creates complex, scrappy, deposits, quite unlike or­
dered terrace staircases. This effect is illustrated by 
the Early Pleistocene gravels near the North Sea coast 
of southeast England (e.g., Bridgland & Allen, 1996; 
Westaway et al., 2002), which formed when this re­
gion was neither uplifting nor subsiding significantly. 
Another example is Rhine Main Terrace 1 (Figs. 6 
and 7), which apparently has an internal 'layer cake' 
stratigraphy in some localities and a 'cut and fill' 
stratigraphy in others, and developed over many cli­
mate cycles at a time of slow uplift (Fig. 7c) (West­
away, 2001). It is hoped that the point, that develop­
ment of river terrace staircases with the spatial scale, 
altitude range, and age span of the examples present­

ed here requires surface uplift, can now be regarded 
as settled. 

It is of interest to contrast the different dating 
methods for marine and river terraces. Most con­
straints come from pollen assemblages and magne-
tostratigraphy for river terraces but from amino acid 
and uranium series dating for marine terraces. Be­
cause neither amino acid nor uranium series methods 
work beyond ~0.3-0.5 Ma, the younger parts of ma­
rine terrace sequences can be well-dated but age con­
trol on their older parts may be completely lacking. In 
contrast, the sequence of magnetic polarity reversals 
in the Matuyama chron means that distinctive mag-
netostratigraphic records can be obtained from the 
Early Pleistocene: indeed, in Figs. 5 and 11 much of 
the Early Pleistocene appears better constrained than 
the Middle Pleistocene. The realisation that marine 
and river terrace deposits indicate equivalent uplift 
histories, despite the different forms of age con­
straints, suggests that future co-ordinated studies of 
both types of deposit in adjacent localities may yield 
better control than if either is studied separately. 

The Huanghe terrace sequence (Figs. 19 and 20) 
provides an important test of the proposed model. As 
already noted, the greater time lag between the start 
of each phase of forcing and the resulting uplift re­
sponse is well-explained by the greater thickness of 
lower crust in this region, given the greater overall 
crustal thickness and the presence of mantle lithos-
phere of normal thickness. This time lag is deter­
mined by the time required for heat flow perturba­
tions to diffuse across the lower-crustal layer, and so 
will increase with thickness of this layer (Westaway, 
2001). Another test is provided by the magnitude of 
the uplift response, which is much greater than any 
other locality. The logic behind the physical model 
(Fig. 1) indicates that the greater the difference in 
Moho temperature, between a region and its sur­
roundings, the faster the uplift will be. Heat conduc­
tion across the extra ~15 km of crust beneath this re­
gion will raise the Moho temperature by ~200°C, en­
hancing the temperature contrast relative to crust of 
normal thickness and so facilitating a higher uplift 
rate. Due to length limitations, no attempt is made 
here to test whether the lower crust has a low enough 
viscosity to allow it to flow fast enough from sur­
rounding localities to maintain the required crustal 
thickening rate, for this locality or any other: except 
the tests for the Rhenish Massif already mentioned. 

The extra crustal thickness beneath central Tibet 
means an even hotter Moho, implying even faster up­
lift, possibly as much as ~1 km since the Middle 
Pliocene. Past international studies have argued that 
the uplift of Tibet was concentrated earlier, and it is 
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now either uplifting slowly (e.g., Westaway, 1995), or 
possibly even subsiding (e.g., England, 1993). In con­
trast, many Chinese studies have argued using bios-
tratigraphic evidence that the uplift of Tibet has been 
concentrated in the Plio-Quaternary (e.g., Yang, 
1986; Li, 1991). It now appears possible that this 
plateau has experienced its fastest uplift since the 
Middle Pliocene, although it was undoubtedly al­
ready several kilometres high by then. 

Many people (e.g., Ruddiman & Raymo, 1988) 
have argued that increasing relief of the Earth's sur­
face has contributed to global cooling. Like Westaway 
(2001), this study thus raises the possibility of a hith­
erto unknown global coupling mechanism linking 
crustal deformation, surface uplift, and climate 
change. It suggests that low-amplitude fluctuations in 
sea-level in Miocene time caused net flow of crust to 
beneath the land, which slightly increased the mean 
altitude of the Earth's surface. This increase in alti­
tude added to whatever global cooling was occurring 
independently, facilitating growth of ice sheets and 
the associated increase in amplitude of sea-level varia­
tions. The lower-crustal flow induced by these loading 
variations added to the increase in surface relief, 
which led to further global cooling, which further am­
plified the sea-level variations, which further affected 
the relief. The resulting positive feedback loop sug­
gests that this process and its effects may intensify un­
til they are ultimately countered by the increasing ef­
fective viscosity of the lower crust in areas of atectonic 
crustal thinning. However, other limiting mechanisms 
also exist (see, e.g., Westaway, 1995; Mitchell & West­
away, 1999), so this ultimate limit may not be achiev­
able. 

As was mentioned earlier, many river terrace se­
quences indicate Middle-Late Pleistocene uplift rates 
of ~0.07 mm a1, and become indistinct if rates are 
lower (<~0.03 mm a-1; Fig. 7c). However, if rates sub­
stantially exceed ~0.07 mm a-1, terrace sequences also 
become less clear. This is indicated by the Middle 
Pleistocene records from the Seine (uplift rate up to 
~0.12 mm a-1; Fig. 18c; terrace record difficult to in­
terpret) and middle Rhine (uplift rate up to 0.23 mm 
a ' ; Fig. 7c; terrace record often non-existent, as in 
Fig. 8), and the Early Pleistocene record from the 
middle Thames (uplift rate up to ~0.16 mm a-1; Fig. 
13c), which is poor compared with the contempora­
neous record from the Maas (uplift rate up to ~0.06 
mm a-1; Fig. 5c). A possible explanation is that when 
uplift rates are high, greater relief develops during the 
phase of incision at the start of the next climate cycle, 
after a given terrace has aggraded. As a result, slope 
processes may be fast enough to remove the material 
forming each terrace before the next one has time to 

form. The idea that these limitations lead to an opti­
mum uplift rate for river terrace formation was, of 
course, proposed long ago using numerical simula­
tions (e.g., Veldkamp & Vermeulen, 1989); it now ap­
pears well-supported by direct evidence. 

The preponderance of Middle-Late Pleistocene 
uplift rates of ~0.07 mm a'1 may be a selection bias ef­
fect, arising because people tend to study river ter­
races where they are clearest, which (as already dis­
cussed) seems to require rates of this order. Alterna­
tively, it may be indicating the most characteristic rate 
of lower-crustal flow in response to the typical magni­
tude of cyclic loading in the Middle-Late Pleistocene. 
A related point concerns the Middle-Late Pleistocene 
uplift rates of the small islands (peak: ~0.27 mm a-1; 
time-average: ~0.24 mm a-1; Figs. 23c and 24c), 
which are ~3 times faster than for the river terraces. 
The scale of these islands means that their uplift may 
well not be isostatically compensated, being instead 
supported by the mantle lithosphere and so unac­
companied by a lower-crustal 'root'. If so, unlike the 
much larger-scale river terrace localities, surface up­
lift rates will equal crustal thickening rates. However, 
the ratio of crustal thickening rate to surface uplift 
rate is ~6:1 for conventional Airy isostasy (e.g., West­
away, 1995), roughly double the ~3:1 ratio observed 
here. Exploring the physical significance of this differ­
ence is beyond the scope of this study. 

Conclusions 

Long-term river terrace sequences indicate a global 
increase in uplift rates in the Late Pliocene, followed 
by a lull then a renewed increase around the Early-
Middle Pleistocene boundary. Many regions have up­
lifted by several hundred metres on this time scale. 
Terrace sequences appear clearest when regions are 
uplifting at rates of ~0.07 mm a-1: a rate frequently 
observed during the Middle and Late Pleistocene. It 
is suggested that this uplift pattern has resulted from 
thickening of the continental crust caused by flow in 
the lower crust which has been induced by cyclic sur­
face loading caused by growth and decay of ice sheets 
and the associated global sea-level fluctuations. The 
observed uplift histories are modelled using a tech­
nique which incorporates increases in the intensity of 
forcing of this process caused by step changes in the 
intensity of glaciations starting at ~3.1, ~2.5, ~1.2, and 
-0.9 Ma. 
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