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Abstract

A correspondence is established between flows of air above stationary
water, and flows of water below air at atmospheric pressure. Flows in the latter
category are well studied, and all such hydrodynamic flows can be "turned
upside-down" to generate flows of air in which the free surface deforms under
gravity, due to a balance between aerodynamic and hydrostatic pressures.
Examples are given of some exact inverse solutions, and a general semi-
inverse approach is outlined for numerical solutions via an integral formula-
tion.

1. Introduction

In almost all of classical water-wave theory (e.g. Wehausen and Laitone,
[13]) it is implicitly or explicitly assumed that movement of the air above the
free surface has no effect on the hydrodynamics, so that the free surface may
be treated as a surface of constant (atmospheric) pressure. If one wished to be
more accurate, one could consider a coupled dynamic problem in which both
air motion and water motion were taken into account, the condition at the free
surface (for inviscid fluids) being now continuity of pressure.

It is then clear that significant coupling between air and water motions
occurs if and only if the dynamic contributions ~ipq2 to the pressure are
comparable in the two fluids, where p is density and q fluid velocity magnitude.
Thus the condition for validity of the classical water-wave theory, neglecting
air motion, is that the velocity of the air is significantly less than A~* times the
velocity of the water, where A is the air/water density ratio. Since A = 0.0012,
the classical theory remains valid up to air velocities several times as great as
the water velocity.

In the present paper we are concerned with other extreme, when the air
velocity is so far in excess of the water velocity, that \pq2 in the air far exceeds
its value in the water. This requires for example that the water velocity be
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much less than 4% of the air velocity. If this condition is met, the motion on the
water may be neglected when computing the motion of the air. The condition at
the free surface is however not one of constant pressure, but one of
hydrostatic pressure.

Problems of this nature occur in a number of widely-varying applications.
Perhaps the most obvious potential application is to oceanographic problems
such as sea-level variations due to meteorological conditions. Such phenomena
as the "inverse barometer" effect are well known (e.g. Hamon, [4]). On a
somewhat smaller geophysical scale, problems associated with sea-level varia-
tions due to land or sea breezes at a shore line are typical of the type of problem
of greatest interest here, in which interactions between free and solid surfaces
are dominant. Unfortunately, however, in such geophysical applications it is
seldom permissible to neglect viscosity, as we shall do in the following
analysis.

In an engineering context, problems of impingement of jets of fluid on a
free surface have been studied theoretically and experimentally by a number of
authors (e.g. Berghmans, [1], Turkdogan [11], Olmstead and Raynor [8]). Some
of this interest results from potential applications to welding, and other
problems in metallurgy.

Finally, (but not exclusively) there are applications in naval hydrodynamic
contexts, particularly to the dynamics of hovercraft or similar vehicles.
Hydrodynamicists generally approximate hovercraft by given pressure dis-
tributions travelling over a classical free surface. But the pressure distribution
of a hovercraft, at least in the edge or seal region, must depend on the
displacement of the water beneath it, and therefore it is dangerous to treat it as
given. Indeed, some authors (e.g. Doctors [2]) have found it necessary to
"smooth off" pressure distributions in an artificial and empirical manner near
the edges, in order to obtain finite wave resistances. Murthy [5] considered
more fundamental questions involving the static depression of the water
surface beneath a given pressure distribution, allowing for surface tension, and
also made some empirical estimates of the actual dynamic effect of the air flow
on the water surface. The present analysis is relevant only to hovercraft
without forward motion, since the water is assumed stationary.

In the following sections we formulate and discuss some very limited and
idealized problems of air flow over free surfaces of stationary water. Only
two-dimensional steady flows are considered, and no account is taken of
viscosity or compressibility of the air. Surface tension is included at first, but
neglected subsequently. The resulting problems are still in every respect as
complicated as those of classical water-wave theory.

In fact, the resulting problems are in a certain sense complementary to
water-wave problems, since the resulting free-surface condition is obtained
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from the water-wave condition by replacing the acceleration of gravity g with
-g /A. Thus the aerodynamic problems are negative-gravity water-wave
problems turned upside-down! Once this observation is made, the whole
literature on water-wave problems can be extended to cover aerodynamic
free-surface problems.

However, most problems of present interest represent violent jet-like air
flows, or possess sharp-cornered body geometries, so that the free-surface
condition remains essentially non-linear, in contrast to the water-wave case,
where linearization has been particularly fruitful. Little assistance can there-
fore be gained by analogy, although part of the present paper involves
exploiting inverse solutions analogous to those well-established in non-linear
hydrodynamic free-surface problems.

A common feature of two-dimensional aerodynamic and hydrodynamic
free-surface problems is that they can be reduced to non-linear integral
equations. The classical examples of the use of such a reduction in water-wave
theory are the proofs of existence of periodic water-waves. Unfortunately,
little use has been made of these integral equations, even in the hydrodynamic
case, as tools for obtaining numerical solutions of potentially-practical prob-
lems involving interactions between free and solid surfaces, although Olmstead
and Raynor [8] have made progress in such an attack on a jet impingement
problem. Work is proceeding on numerical solution of integral equations of the
kind presented here.

2. The non-linear free-surface conditions
We consider two-dimensional steady flow of an incompressible fluid (e.g.

air at sufficiently low Mach number) of density pA over a stationary incom-
pressible fluid (e.g. water) of density pw- The interface between the two fluids is
a free surface, with equation y = 17 (x). The kinematic boundary condition is
that this surface be a stream surface, i.e.

<fc = V«k (2.1)
where q = V<f) is the fluid velocity vector, or

tf, = 0 (2.2)

where ip is the stream function, conjugate to <j>. Note that flow takes place in
the air only, so that <f>,ty are harmonic for y g 17(JC); thus f(z) = <f> + itff is an
analytic function of z = x + iy[ for y ^ 17 (x).

The dynamic free-surface condition is that any jump in pressure across
y = 17 is supported only by surface tension. Now in the water, which is
stationary, the pressure is hydrostatic, i.e.

Pw = po-pwgy (2.3)
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where p0 is some base pressure, equal to atmospheric pressure if y = 0 at some
portion of the free surface where the air is at rest. In the moving air, the
pressure is given by Bernoulli's equation as

PA =Po-jpA\q\2~pAgy, (2.4)

where p<> is the same base pressure as in (2.4), since again again pA = p0 where
y = 0 and q = 0.

Now the jump in pressure across y = 17 must be given by

Pw-pA = - TTJ"(X)/[1 +(TJ')2]§ (2-5)

where T is the surface tension, i.e.

- (pw - pA )grj +2 pA q\ = - 117 n 1 + (17 ) r

or, since pA -^ pw,

Qj) — 2A q — 2li
 = U (Z.o)

where

A = PAKPW - PA) — PAIPW (2.7)

is the density ratio. Equation (2.6) constitutes the required free-surface
condition for static water. This condition may also be interpreted as an
approximation to the condition which holds when both fluids are moving,
providing pA \ qA |2 > pw \ q w\, where qA = q is the air velocity, and qw the water
velocity.

Note that the zero level 17 = 0 of the free surface has been normalized to
that for zero air flow. The corresponding uniform level for a uniform flow
\q\= U is

(2.8)

The length scale TJ0 is the amount by which the free surface is raised due to the
lower free-stream pressure when the air is blowing. It is important to note that,
if U is a typical measure of q, we shall take TJ0 as our typical length scale. This
means that, even though the density ratio A is very small, typically 0.0012 for
air-water interfaces, nevertheless on a length scale of TJ0 the first two terms of
(2.6) are comparable in magnitude. Indeed, if we perform the non-
dimensionalization x = 170**, 17 = 17017*, q = Uq* etc., we have from (2.6)

- « ( 2 9 )
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where

(2.10)T 7 T
(pw- PA )gT?o

is a non-dimensional surface tension.
It is of interest to contrast the corresponding boundary condition for

conventional non-linear water waves, in which the water y < 77 (x) moves, but
the effect of the air above it is negligible. Then (Wehausen and Laitone, 113J, p.
453) the free-surface condition corresponding to (2.6) would be simply

g T , + ^ | 2 - — T , " [ 1 + ( V ) T ' = 0 (2.11)
Pw

and the normalized equation corresponding to (2.9) would be

Clearly all that has happened to the dimensionless equation is a switch in the
sign of the velocity term. In the absence of surface tension, the dimensional
aerodynamic condition (2.b) is obtained from the hydrodynamic condition (2.11)
by replacing g with — g/A. The apparent dimensional gravity is of course much
increased, because of the factor A"1, but on the length scale TJ0 this increase
scales out, as is clear by comparing the dimension-
less equations (2.9), (2.12). A reflection of this property is that, even
including surface tension, the hydrodynamic condition (2.11) can be retrieved
from the aerodynamic condition (2.6) by the artificial choice A = — 1. We shall
exploit this property in the following sections.

In fact, every hydrodynamic (A = - 1) flow can be turned upside-down,
reversed in direction, and increased in magnitude, to generate an aerodynamic
(A>0) counterpart. Thus if we use a subscript " - " to denote quantities
satisfying (2.11), then

q(x,y) = A-lq-(-x,-y) (2.13)

satisfies (2.6) on y = 17 (x), where

TJ(JC)= - T J - ( - J C ) , (2.14)

and defines a flow of air in y g TJ(X). This correspondence allows us to make
use of the large range of hydrodynamic solutions to generate new air-blowing
solutions.

3. The linearized problem

Suppose we set

<t> = Ux+4>t (3.1)
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and
17 = TJO+ TJ, (3.2)

where |V<£,| <§ U and | -17. | <§ TJ0- That is, we consider only small perturbations
to a uniform air flow U over a flat free surface at y = TJ0. Then, neglecting
squares of small quantities, (2.1) becomes

CK = C/T,; (3.3)

and (2.6) becomes

gTj , -At /^ , , - f r /T = O. (3.4)

where

f = —. (3.5)

Upon elimination of TJ, between (3.3) and (3.4), we have

g<K = At/2 <*>,„ +T<K,, (3.6)

as our free-surface condition for <p, on y = TJ0. Again, if we put A = - 1 we
recover the usual condition for gravity-capillary water waves (Wehausen and
Laitone [13], p. 632).

Plane waves of the form

t -'—ky (3.7)

can exist in y > 170, if /C > 0 , and k satisfies the dispersion relation

g = AU2k-Tk2, (3.8)

which possesses solutions only if U > Umin, where

' - ' mm • 2 • {•>•'/

If A= - 1, this gives the normal minimum wave speed for gravity-capillary
waves, which for an air-water interface takes a value

[t/min]<A~,, = 0.23 m s " .

Correspondingly, if A ^ - 1,

Umin = A"* • [£/„,,„]«*-„ = 6.5 ms-', (3.10)

for an air-water boundary. This speed is of course well known (e.g. Ursell [12])
as the minimum velocity for Kelvin-Helmholtz instability to occur.

It is possible to utilize the whole range of steady linearized water-wave
solutions, e.g. Wehausen and Laitone [13], pp. 568-591, to study
aerodynamically-induced waves with U > Um,n. In fact, we assume henceforth
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in the present paper that U > C/min, so that surface tension can be neglected. It
is not our purpose here to catalogue such possibilities. However, we may
mention as an example that the theory of planing surfaces (Wehausen and
Laitone [13], p. 587) can be inverted to provide the solution for air flow over a
low barrier, or reef. The solution appears to imply a singularity at the leading or
windward edge of the barrier and a system of waves trailing smoothly off its
trailing or lee edge. Clearly some further work is required to clarify the true
nature of the leading-edge flow, which in the planing-surface problem repre-
sents spray. Another example would be inversion of the classical solutions for
hydrofoils just below the free surface (e.g. Wehausen and Laitone [13], p. 583)
to provide solutions for airfoils operating just above the free surface, with
possible applications to high-speed hovercraft, or related vehicles.

4. Hodograph transformation of the free-surface condition

As in the case of hydrodynamic water waves, solution of practical
problems with the full non-linear free surface condition (2.6), on a surface
y = 17 (x) which is unknown, presents formidable difficulties. In the absence of
surface tension (T = 0) we can, however, use a hodograph-type approach to
reduce the flow region to a known space, as follows. If u, v are the x and y
components of velocity, then

u-iv =f'(z)=Ue-i" (4.1)
where

0 + IT. (4.2)

Thus 8 is the angle between streamlines and x-axis, and

\q\=Ue\ (4.3)

Thus (2.6) with T = 0 implies

g y - | A L / V r = O (4.4)

on y = T/, where if/ = 0. We now treat </>, i/f as independent variables, with
y = y(<£,i/>), T = T(<f>,tp) in (4.4). Differentiating with respect to </> implies

But g

y* =
 "^(WY)

 =Tfe T s ' n^>

from (4.1). Hence (4.5) implies
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Again the corresponding water-wave condition (Wehausen and Laitone [13], p.
728) is obtained by setting A = - 1 in equation (4.6).

Equation (4.6) can be integrated to give

3r<*0) =
3£_ f

which enables T(<J>,0) to be calculated for all <£ values of the free surface, given
the corresponding values of 0(<£,O) and the value of T at one point </> = <f>0. For
example, if $ = <f>0 is a stagnation point, e3r(*»0) = 0; alternatively if <̂> = <̂>o
(usually cj)0 = °°) is a point where the velocity takes the free-stream value U,
then T(</»O,0) = 0. Transformations such as (4.7) with A = - 1 have been used,
e.g. by Nekrasov [6], as the basis for existence proofs for periodic water waves.

The analytic character of the hodograph function £l(/) depends on the
presence of fixed bodies or other disturbing influences in the flow region if/ S 0.
For example, a stagnation point corresponds to a logarithmic singularity in
£l(f). After taking appropriate care of any such singularities, we can always use
Cauchy's theorem in the upper-half /-plane to express il(f) in terms of its
values on the real axis ij/ = 0. This provides a second integral expression for
r((f>,0) in terms of 0(0,0), and hence in combination with (4.7) provides an
integral equation for the unknown 0(<£,O).

As an example of a simple problem of this type, consider air flow over a
semi-infinite solid boundary JC < 0 and a semi-infinite free water surface x > 0.
The problem can be set up as an integral equation in a semi-inverse manner, if
we "specify" the shape of the solid surface by prescribing

0(<t>,0) = e(<f>) = given, 4 > < 0 . (4.8)

Now in this case fl(/) is analytic for all \p > 0 and tends to zero as tf/—* + °°, so
that Cauchy's theorem indicates that

TT ]-*
(4.9)

the integral taking a Cauchy principal value. Using (4.7) with </>0 = + °°,
T(</>0,0) = 0, we have for <j> > 0 ,

1 - ^ 3 f sine(<p,0)d<p=e3l<*0)

(4.10)

where
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is a known function. A characteristic example is the stepped boundary

for some parameter K > 0 (which ultimately fixes the height of the step) which
gives

More complicated problems can be reduced to integral equations similar to
(4.10), after preliminary conformal mapping or other transformations. In
particular, problems involving jets of air blowing on free surfaces can be
treated in this way, the jet boundary being a constant-velocity streamline on
which T = 0. Such a reduction to a non-linear integral equation was carried out
by Olmstead and Raynor [8], who also obtained numerical solutions of an
approximate version of the integral equation, by trapezoidal discretization and
Newtonian iteration.

The task of solving non-linear singular integral equations such as (4.10) is
difficult and challenging from both the numerical and analytic points of view.
Analytically, we are concerned with existence and uniqueness questions.
Cleary as g—»°° or U—*0, the free surface becomes flat and 0(</>,O) = O, (f> >0 ,
is the limiting solution. For sufficiently large non-dimensional gravity g/C/Al/3,
or small Froude number L/VA/gL, where L is a typical length scale, we should
expect a solution to exist, and could obtain it by iteration about the 0 = 0 limit.
However, there is a real suspicion that there is a finite value of the Froude
number above which no solution exists. The numerical results of Olmstead and
Raynor [8] appear to indicate this effect, as does the physical fact that flows of
this nature do tend to break up into spray if the air flow is sufficiently violent.
There is thus some considerable value in establishing the limits on the Froude
number for existence of a solution to integral equations such as (4.10). Such
analysis would parallel existence work on periodic water waves, the limiting
Froude number being analogous to the height/wavelength ratio of the highest
wave. In the hydrodynamic case (A = — 1), some such analysis of (4.10) has
been carried out by Oertel [7], as part of an investigation into bow waves of
ships.

An inverse approach to (4.10) is perhaps of interest. We may ask whether
we can find a solid-boundary function ©(/), <£ < 0, which generates a "given"
free surface d(cf>,0), 4>), <f>>0. Thus (4.10) is used with given 9{<j>,0) as an
equation to determine Q(<f>), and (4.11) then becomes a Stieltjes integral
equation f0

- :^-d<p = -\\ogQ(4>), <t>>0, (4.14)
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for the now-unknown ©(</>), </><0. Although the integral equation. (4.14) is
linear and non-singular, in pleasant contrast to (4.10), inversion of such Stieltjes
transforms (Erdelyi [3]) is not at all straightforward, and it is not even certain if
a solution exists for arbitrary #(</>,0), </> > 0 .

5. Exact inverse solutions

Another use of the free surface condition (4.6) arises if we write from (4.1)

^ jj + isin6) (5.1)

and use (4.6) to eliminate 6, obtaining

u L v U
( 5 . 2 )

where TO(<£) = T(<£,0). If now we allow TO(/) to be any analytic function,
integration of (5.2) provides an analytic function z(f) such that the free-surface
condition is satisfied whenever both T0 and the square root in (5.2) are real on
i/f = 0 .

Equation (5.2) thus provides an inverse procedure for generating free-
surface flows. This method is entirely equivalent to the inverse methods of
Sautreaux (e.g. [9]) and others (see Wehausen and Laitone, [13], p. 736) for the
water-wave case A = - 1. The substitution

(5.3)

simplifies (5.2) to

(5.4)

which, with A = - 1, is a form given in Wehausen and Laitone ([13], p. 737).
Equation (5.4) implies that y = Y(cj>) on the free surface, and can therefore be
obtained rather more directly using (4.4).

In principle, an unlimited range of inverse solutions are available to us by
suitable choice of Y(J) in (5.4). Unfortunately, almost any choice beyond the
simplest analytic functions introduces non-physical branch-point singularities
into the region of flow. For example, if the quantity under the square root in
(5.4) possesses a simple zero at / = /0, corresponding to z = z0 in the physical
plane, then

f-fo = a(z-zo) + b(z-zo)i + 0(z - z 0 ) 2 (5.5)
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for some constants a,b. Streamlines through z = z0 bifurcate, and the complex
plane is doubly covered near z = z0. In some but not all such circumstances,
one can simply remove this point by choosing as an upper boundary to the flow,
a streamline which passes below the offending point. On the other hand, simple
poles in the quantity A/2gY — Y'2 correspond to stagnation points, and are
quite acceptable.

Most useful simple choices for Y(J) have been summarized by Wehausen
and Laitone ([13], pp. 738-740) for the hydrodynamic case A= — 1. As we
should expect from the correspondence principle (2.13), every such hy-
drodynamic solution has its aerodynamic (A > 0) counterpart, simply obtained
by reversing signs of x, y, and TJ, and scaling velocities by the factor A~=.

The effect of this correspondence principle on the Sautreaux formula (5.4)
is that if we have already computed for i// = i / ̂  0 a set of hydrodynamic
streamlines z = z_(/), where

(5.6)

for some given function Y_(/) which is analytic in ip Si 0, then

2 = - z _ ( - A * / ) (5.7)

defines streamlines in i/igO, and satisfies (5.4) with

Y(/)=-Y.(-A'/). (5.8)

For example, the choice

Y-(f) = af (5.9)

for some positive real constant a, generates a hydrodynamic "fountain", which
on turning upside down according to (5.7) becomes a rising and falling stream
of air above a stationary water surface, between two vertical walls. Similarly,
the choice

Y-{f) = afi (5.10)

generates for A = - 1 a flow of water under a vertical '.'sluice gate", and for
A > 0 a flow of air over a vertical semi-infinite barrier holding back stationary
water.

The choice

Y(f) = ae"> (5.11)

in (5.4) leads for A>0 to the result

z(/) = «yZ(b/-logy) (5.12)
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where

and

On air flow over free surfaces of stationary water

r = 2g
—V

a3b)

Z'(F) = ieF

77

(5.13)

(5.14)

A set of streamlines ^ = $F g 0, computed by integration of (5.14), is shown in
Fig. 1. Although a choice of Y-(/) equivalent to (5.11) was made by Sautreaux
[9], hydrodynamic streamlines equivalent to an inversion of Fig. 1 do not seem
to have previously published.

-3-5

- 3 0

-30 -2-5 - 2 0 -1-5 -10

Fig- I.— Streamlines of air flow into a sink at S. The streamline ^ = 0 consists of a free water
surface from - » to A, and a vertical wall from A to S. The streamline ¥ = 2W3 bifurcates at B,

one branch entering S and the other passing through A onto a second flow sheet, not shown.

The flow of Fig. 1 consists of a radial streaming from infinity into a sink at
Z — 1.29/. The free surface extends from Z = -<»+ i 0 to Z = /, the remainder
of the streamline V = 0 being a vertical wall from Z = i to Z = 1.29i.
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Streamlines are single-valued only for ^ ^ 2TT-/3, there being a bifurcation point
B at z(27r//3) = 0.25+ 1.43/. The streamline ^ = TT/3 is a straight line and the
flow 0^=^^127773 is symmetrical about this line. Either of the streamlines
^ = TT/3 and ¥ = 77/2 are good choices for upper solid boundaries, the former
because it is straight, the latter because it meets the vertical wall smoothly. The
sink itself can mode! a small slit through which the air escapes (c.f. Tuck [10]).

One further simple case, which has apparently not been studied even for
A= - 1 , is

Y(f) = a-bf2, (5.15)

for which (5.4) gives

z ' = -

Although for general a,b each distinct zero of the square bracket in (5.16)
represents an unacceptable bifurcation point, in the special case where

a2b=± (5.17)

the. zeros coalesce and we have

2 '= -2ibf + bHa -2bf2)(a - bf2rK (5.18)

which integrates to give

(5.19)

where

Z(F) = /(I -F2) + F(\-F2)' (5.20)

or

Streamlines ^ = $>F g 0 corresponding to (5.20) are shown in Figure 2, the
free surface ^ = 0 being the circle \Z —\i\=\. Streamlines at infinity are
asymptotically parabolic with a vertical axis. Thus the flow represents air
streaming around a vertical semi-infinite plate, near whose top edge is a
cylindrical bubble of stationary water. The bubble is held up by the stagnation
pressure at its contact points with the plate, the aerodynamic pressure around
its circular section then varying linearly with height, so as to provide precisely
what is required to balance hydrostatic pressure in the water.
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2 0 -

1-0-

0-5

-1-0-

-20-

- 1 0

Fig. 2.— Streamlines for air flow around a semi-infinite vertical plate, with a cylindrical bubble of
stationary water at its edge.

The above exact solutions are to a large extent mathematical curiosities,
the boundary geometries being remote from practical applications, and the
flows themselves possessing features which are unlikely to be realizeable for
real fluids with viscosity, surface tension, etc. However, these results at least
demonstrate the existence of solutions to potential-flow problems involving
non-linear free surfaces under gravity. In order to attack more practical
problems, one must attempt solutions of integral equations such as (4.10), and
work is proceeding on this task.

https://doi.org/10.1017/S0334270000000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000953


80 E. O. Tuck [15]

References

[1] J. Berghmans, 'Theoretical investigation of the interfacial stability of inviscid fluids in motion,
considering surface tension', /. Fluid Mech. 54 (1972), 129-141.

[2] L. J. Doctors, 'The forces on an air cushion vehicle executing an unsteady motion', 9th Symp.
Naval Hydro., Paris. Proceedings, O. N. R., Wash. D. C. (1972).

[3] A. Erdelyi (Ed.) Tables of integral transforms, Vol. II, McGraw-Hill (1954).
[4] B. V. Hamon, 'Continental shelf waves and the effects of atmospheric pressure and wind

stress on sea level', J. Geophys. Res. 71 (1966), 2883-2893.
[5] T. K. S. Murthy, The static depression of a hovercraft cushion and of the peripherical jets

over water. University of Southampton, A. A. S. U. Report No. 297 (1970).
[6] A. I. Nekrasov, 'On waves of permanent type I', Izv. Ivanovo-Voznesensk Politekhn. Inst. 3

(1921), 52-65.
[7] R. Oertel, The steady motion of a flat ship, with an investigation of the flow near the bow and

stern. Ph. D. thesis, University of Adelaide (1975).
[8] W. E. Olmstead and S. Raynor, 'Depression of an infinite liquid surface by an incompressible

gas jet', /. Fluid Mech. 19, (1964), 561-576.
[9] C. Sautreaux, 'Mouvement d'un liquide parfait soumis a la presanteur. Determination des

lignes de courant', J. Math, pures appl. (5) 7 (1901), 125-159.
[10] E. O. Tuck, 'Matching problems involving flows through small holes', in Advances in Applied

Mechanics (ed. C. S. Yih), Vol. 15, 89-158, Academic Press (1975).
[11] E. T. Turkdogan, 'Fluid dynamics of gas jets impinging on surface of liquids', Chem. Eng. Sci.

21 (1966), 1133-1144.
[12] F. Ursell, 'Wave generation by wind', in Surveys in Mechanics (eds. G. K. Batchelor and R. M.

Davies), Cambridge University Press (1956).
[13] J. V. Wehausen and E. V. Laitone, 'Surface waves', in Handbuch der Physik (ed. S. Flugge)

Vol. 9, Springer.

Department of Applied Mathematics
University of Adelaide
Adelaide, S. A. 5000
Australia.

https://doi.org/10.1017/S0334270000000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000953

