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Consider the motion of a thin layer of electrically conducting fluid, between two closely
spaced parallel plates, in a classical Hele-Shaw geometry. Furthermore, let the system be
immersed in a uniform external magnetic field (normal to the plates) and let electrical
current be driven between conducting probes immersed in the fluid layer. In the present
paper, we analyse the ensuing fluid flow at low Hartmann numbers. Physically, the system
is particularly interesting because it allows for circulation in the flow, which is not possible
in the standard pressure-driven Hele-Shaw cell. We first elucidate the mechanism of
flow generation both physically and mathematically. After formulating the problem using
complex variables, we present mathematical solutions for a class of canonical multiply
connected geometries in terms of the prime function framework developed by Crowdy
(Solving Problems in Multiply Connected Domains, SIAM, 2020). We then demonstrate
how recently developed fast numerical methods may be applied to accurately determine
the flow field in arbitrary geometries.

Key words: Hele-Shaw flows, microfluidics

1. Introduction

Magnetohydrodynamic flows find applications in a variety of fields from geophysics and
astrophysics to metallurgy, in situations where the fluid under study interacts significantly
with external or self-induced electromagnetic fields (Moffatt 1978; Davidson 2001).
Although magnetic effects tend to transform the Navier–Stokes equations into an even
more formidable form, they also generate a host of unique phenomena that have been
studied over the past century, including Alfvén waves (Alfvén 1942) and geodynamos
(Moffatt 1978; Moffatt & Dormy 2019). In the present paper, we analyse mathematically
the manner in which electrical and magnetic effects modify arguably the simplest possible
base flow – a two-dimensional potential flow as is physically realized in a Hele-Shaw cell.
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First, consider a Hele-Shaw flow in the absence of electromagnetic effects. The flow
is obtained through the solution of a two-dimensional boundary-value problem for a
harmonic pressure field whose negative gradient gives the velocity field. Since the pressure
field must be single valued, the fluid flow must possess zero circulation, thus removing
the usual paradox of undetermined circulations present in aerofoil theory (see Gonzalez
& Taha (2022) for a recent development and survey of the aerofoil problem). Because
pressure-driven Hele-Shaw flows possess exactly zero circulation around any closed
contour, circulation cannot be used to mix or control such flows. Since the Hele-Shaw
cell constitutes a model for flows through porous media and microfluidic devices, it is
of technological interest to overcome the no-circulation limitation. We now outline some
relevant literature regarding circulation generation via electromagnetic effects.

Moffatt (1991) discussed mechanisms for stirring using time-dependent electromagnetic
fields, in general three-dimensional contexts. The mechanisms presented therein rely
mainly on truly three-dimensional aspects of flow, and the Hele-Shaw limit was not
considered. Recently, Mirzadeh et al. (2020) showed that circulation can be generated in
electro-osmotic Hele-Shaw flows if the gap thickness is made inhomogeneous. Henceforth,
when discussing Hele-Shaw cells, we restrict our attention to the case of uniform
thickness.

Bau, Zhong & Yi (2001) and Zhong, Yi & Bau (2002) fabricated Hele-Shaw-type
devices containing thin layers of electrolytes, through which electrical current was driven
between electrodes immersed in the fluid. The former work placed electrodes on the base
of the device whereas the latter placed electrodes on the walls of a concentric annulus.
When the devices were placed in a uniform magnetic field, Lorentz forces induced a
fluid flow in the bulk. Yi, Qian & Bau (2002) showed that, under certain conditions,
the application of periodic AC electrical currents in similar devices may lead to chaotic
advection. Later, Homsy et al. (2005) manufactured a high current density DC microfluidic
pump which found applications in nuclear magnetic resonance (Homsy et al. 2007);
notably, the pump avoided significant Joule heating. A recent comprehensive review of
applications of magnetohydrodynamics in the context of microfluidics is given by Bau
(2022).

The papers discussed in the paragraph above were mainly experimental in nature. In the
cases where fluid flows were analysed analytically, such as in Bau et al. (2001) and Zhong
et al. (2002), solutions were obtained as infinite series in highly specialized coordinate
systems, using methods only applicable to special geometries. One aim of the present
paper is to demonstrate how conformal maps obviate these complicated analyses and yield
a class of flow geometries with closed-form solutions.

More recently, David et al. (2023) investigated magnetically driven flow in a
Taylor–Couette geometry (concentric annulus) with a free surface. Experiments presented
therein beautifully reproduced the classic kinematic reversibility experiments of Taylor
(1967) without the need for moving boundaries. After investigating mixing in this flow
geometry, the authors pointed out that, under certain assumptions, and in the limit of a
shallow fluid layer, the flow is approximated by potential flow.

In the present paper, we analyse generally the flow of a conducting fluid in a Hele-Shaw
cell, immersed in an external uniform and constant magnetic field that is directed normal
to the cell walls, B = B0ẑ (see figure 1). We consider scenarios where flow is driven by
applying voltages to conducting probes that are immersed in the fluid, the probes being
impermeable to fluid flow. We assume an ohmic fluid to model the electrical current flow,
J = σE, where σ is the electrical conductivity of the fluid and E is the electric field
experienced by the fluid. The presence of electrical current leads to Lorentz forces acting
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V1

V2

V3

y

x

(a) (b)

Figure 1. (a) Schematic of the system under consideration in the present paper. Voltages are applied to
conducting bodies immersed in a thin layer of conducting fluid, of thickness h, that is bounded above and
below by parallel walls. The entire system is immersed in a uniform magnetic field oriented along the z-axis
and normal to the bounding walls. (b) Top view of the flow geometry. Each conducting probe serves as an
impermeable obstacle in the fluid flow. Each probe is held at a fixed voltage. We also investigate the effect of
insulating obstacles in the flow, which obey the zero Neumann condition, ∇V · n = 0, in place of the Dirichlet
condition satisfied by conductors, where n is the unit normal vector to the surface of the obstacle.

on the fluid bulk, F = J × B, which ultimately induces a fluid flow. We also consider the
effect of adding obstacles to the flow that are either electrical insulators or conductors.
We present mathematical solutions for a large class of multiply connected geometries in
terms of the prime function given by Crowdy (2020). In general geometries where the
relevant conformal mappings needed to apply Crowdy’s prime function machinery are
difficult to find, we show how highly accurate approximate solutions can be obtained
using series solution methods as described by Trefethen (2018). The principal aims of
the present paper are to elucidate the physical mechanism of circulation generation, to
develop a mathematical formulation of magnetically driven Hele-Shaw flow, to provide a
framework for solving the mathematical problem and to demonstrate how such flows can
be used to augment known pressure-driven flows.

The remainder of this paper is arranged as follows. In § 2, we discuss the simplifying
assumptions in our mathematical formulation, and subsequently outline the physical
mechanism driving the fluid flow. In § 3, we present a complex variables formulation
of the model described in § 2. We proceed by deriving mathematical solutions for the
fluid flow in a variety of multiply connected geometries, using the framework of Crowdy
(2020). One such solution gives the flow in a geometry explored experimentally by David
et al. (2023). In § 3.5, another solution is compared with a new experiment which serves
as further motivation for the present theoretical study. In § 4, we show how more general
geometries can be solved to high accuracy using series solutions.

2. Assumptions and physical picture

Consider a thin layer of conducting fluid occupying the region between two rigid walls
separated by a distance h, as in figure 1(a). The conducting fluid may be taken, for
example, to be saltwater or liquid mercury. Perfectly conducting probes, held at fixed
voltages, penetrate the entire cell thickness h. Meanwhile, the system is immersed in an
external magnetic field perpendicular to the flow, B = B0ẑ. The application of a voltage
difference between two conductors gives rise to an electric field in the conducting fluid,
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which induces an electrical current flow according to Ohm’s law. The external magnetic
field then induces a Lorentz force on fluid parcels which gives rise to a fluid flow whose
direction can be predicted using the right-hand rule.

Restricting our attention to steady and quasi-steady problems, the voltage V(x) is
determined generally as the solution to a Poisson equation. In an uncharged ohmic
material, the Poisson equation reduces to the Laplace equation so that V(x) must be a
harmonic function. We now justify the proposed physical picture.

In the studies mentioned in § 1, as well as our experiment in § 3.5, the conducting fluid
is a binary electrolyte and so the ‘uncharged’ assumption requires extra justification. A
binary electrolyte comprises two oppositely charged species, whose concentrations we
denote c+ and c−. If at any point of space c+ /= c− holds, then the Poisson equation
does not reduce to the Laplace equation, since the charge density (source term) is not
identically zero in all space. In such a case, V(x) fails to be harmonic across the entire
domain. To ensure that V(x) is indeed harmonic, we must invoke the so-called local
electroneutrality condition, c+ = c−, which is a standard assumption in the modelling
of electrolytes (Zaltzman & Rubinstein 2007). This assumption is valid in the bulk of
the fluid but is violated in the electric double layer, within a Debye length of conducting
boundaries. In the present study, we make no effort to model double layer effects. Instead
we treat boundaries as simplified ideal conductors and insulators, and the bulk fluid as
a locally electroneutral ohmic conductor. We now proceed under the assumption that the
electrical potential can be modelled as a harmonic function in the fluid domain.

Under the stated assumptions, the electric field as measured in the laboratory frame
is given by the gradient of a harmonic potential, Elab = −∇V . The electric field drives
an electrical current density according to Ohm’s law, J = σE, where E is the electric
field felt in the frame of a fluid parcel. The electric field that a fluid parcel experiences
is related to the electric field in the laboratory frame by the relation E = Elab + u × B,
owing to the fact that the electric field is not invariant under Galilean transformations (see
Moffatt 1978, p. 34). However, we will now show that the second term is negligible in
the context of the Hele-Shaw flow under consideration here. In our system, typical voltage
differences between probes are 1 V; voltages higher than roughly 1.23 V create bubbles
due to water electrolysis. With typical separation distances between electrical probes being
of the order of centimetres, the typical electric field magnitude is E0 ≈ 1 V cm−1. Typical
velocities in the cell are U0 ≈ 1 mm s−1, while the maximum magnetic field is roughly
B0 ≈ 2340 G. Hence, the relative importance of u × B as compared with Elab scales as
U0B0/E0 = O(10−6) and we thus safely neglect the cross-product term. Henceforth, we
use E to denote the electric field and ignore any distinction between the field experienced
in different frames. The equations of conservation of fluid momentum and mass then
become

ρ

(
∂u
∂t

+ u · ∇u
)

= μ∇2u − ∇P + σE × B, (2.1a)

∇ · u = 0. (2.1b)

Since the cell thickness, h, is much smaller than the lateral extent of the system, the
Hele-Shaw approximation is justified, implying that viscous forces dominate inertial forces
(see Batchelor 1967, p. 222). Hence, the left-hand side of (2.1a) can be neglected, and the
flow is determined by a balance of viscous forces and both pressure and magnetic driving
forces. In order to invoke the usual Hele-Shaw approximation, it is important to ensure that
the flow across the entire gap thickness, h, is fully developed. The presence of a magnetic
field has the ability to shrink the boundary layer so that the fully developed parabolic
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velocity profile may not be reached (Davidson 2001, figure 5.10 on p. 153); see also the
work of Rossow (1958) for an interesting application of this concept. In our system, the

Hartmann number is small, Ha =
√

B2
0h2σ/μ ≈ 0.01, indicating that magnetic dissipation

is negligible and the flow does indeed adopt the fully developed viscous parabolic profile;
our calculations use the typical gap thickness, h ≈ 0.7 mm (see § 3.5). For comparison,
liquid mercury in a Hele-Shaw cell of the same thickness, and subject to the same magnetic
field, has a larger Hartman number Ha ≈ 4; thus, a thinner gap is necessary to attain the
Hele-Shaw limit (Ha � 1) for the liquid metal.

Under the Hele-Shaw approximation, the top-down velocity becomes two-dimensional
and we can immediately write

u = 1
2μ

(−∇P + σB0E × ẑ
)

z(h − z), (2.2a)

∇ · u = 0. (2.2b)

To make further progress, we note that the Lorentz force, F = −σB0∇V × ẑ, is clearly
solenoidal and irrotational so that ∇ · F = 0 and ∇ × F = 0. It is therefore possible to
represent it as the gradient of a harmonic function, F = ∇φ, where ∇2φ = 0. In general
φ need not be single valued. Equation (2.2a) then reduces to

u = z(h − z)
2μ

∇ (φ(x, y)− P(x, y)) , (2.3)

where the gradient is two-dimensional. Henceforth, we shall suppress the vertical structure
of the flow, z(h − z), for convenience since we are only concerned with a top-down view
of the flow. Note that since φ is a harmonic function, (2.2b) and (2.3) together imply that
P must be harmonic too.

While P must be a single-valued function, there is no such restriction on φ. In fact, the
main manner in which the Lorentz force generates flow, as will be shown, is by inducing
flow circulation which actually requires φ to be multi-valued. Physically, the circulation
is induced as follows. Since electric field lines must exit perpendicular to conducting
surfaces, so too must the current density, J , according to Ohm’s law. The right-hand rule
then reveals that the Lorentz force induces a circulatory flow around each conductor.

3. Complex variables formulation and solution procedure

We proceed by formulating the boundary-value problem for the two-dimensional velocity
field, ũ ≡ ∇(φ − P), using a complex variables approach. The solution procedure for
obtaining ũ is as follows. First, one must solve the electrostatic problem for V(x, y) in
the fluid domain. Once V is known, the potential φ, which describes the Lorentz force
according to F = ∇φ, may be obtained. Finally, a single-valued pressure field P, as
appears in (2.3), must be obtained to enforce the impermeability condition on the surface
of each flow obstacle. The procedure is outlined in detail in the remainder of § 3.

3.1. Complex variables formulation
Consider the electrostatic boundary-value problem in the domain illustrated in figure 1(b).
We seek a real harmonic function V(x, y) in the fluid domain satisfying constant Dirichlet
conditions on each conducting boundary. More generally, we consider also the addition
of perfectly insulating obstacles, on the surface of which V satisfies a zero Neumann
boundary condition.
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On each conducting surface, ∂Bi, constant Dirichlet boundary data are prescribed so
that V = Vj for j ∈ {1, 2, . . . ,NC}, where NC is the total number of conductors. On
insulating boundaries, ∂Dk, the normal derivative must vanish so that ∇V · n = 0, where
k ∈ {1, 2, . . . ,NI} and NI is the total number of electrical insulators. To make progress,
we now express the boundary-value problem in the language of complex variables.

We may take V to be the real part of an analytic function WE(z), where z = x + iy. We
require WE(z) to be analytic over the entire fluid domain to ensure the harmonicity of
V(x, y). We thus seek an analytic function WE with the properties

Re {WE(z)} = Vj, z ∈ ∂Bj, j ∈ {1, 2, . . . ,NC}, (3.1a)

Im {WE(z)} = Cj, z ∈ ∂Dj, j ∈ {1, 2, . . . ,NI}, (3.1b)

where Cj are real constants that are unknown a priori. In (3.1b), the zero Neumann
condition on V has been re-expressed as a constant condition on its harmonic conjugate.

Suppose now that WE, satisfying (3.1), is known. Then the complex electric field
is given by E ≡ Ex + iEy = −dWE/dz, from which the current may be obtained via
Ohm’s law, J = −σdWE/dz. Here, the complex current density is defined as J = Jx + iJy,
where J = (Jx, Jy). The cross-product giving the Lorentz force is performed through a
pre-multiplication by −i, which corresponds to a rotation through an angle of −π/2 in the
plane, giving F = iσB0dWE/dz. The Lorentz potential and force are then written as

WL = −iσB0WE (3.2a)

F = dWL/dz. (3.2b)

In complex notation, the two-dimensional velocity ũ may thus be written as

u = d
dz
(WL − WP) ≡ d

dz

(
Wflow

)
, (3.3)

where WP is an analytic function satisfying Re{WP} = P(x, y). In (3.3), we have defined
the flow potential function Wflow = WL − WP.

The precise mechanism for the generation of circulation is now evident and can be
described as follows. First, the electrostatic problem (3.1) is solved in the fluid domain
exterior to the collection of insulators and conductors held at different electrical potentials.
We reiterate that while the mathematical problem (3.1) describes an electrostatic problem,
this is just a mathematical step leveraged to attain the steady electrical current flow,
wherein charges do in fact flow. Depending on the geometry and the applied voltages,
some amount of surface charge, Qj, accumulates on each conductor surface ∂Bj in the
electrostatic problem. We now solve the electrical problem with the electrical permittivity
equal to unity, ε = 1, since the final solution will clearly be independent of ε. Each surface
charge manifests as a source term in the complex potential WE so that the potential satisfies
the relation

WE = −
NC∑
j=1

Qj

2π
log

(
z − zj

) + single valued function, (3.4)

where zj ∈ Bj. The amount of current, Ij, leaving each conductor, Bj, is then trivially related
to the induced charge in the electrostatic problem through Ohm’s law so that Ij = σQj.

The Lorentz force potential is obtained through (3.2a), which converts the source term
present in (3.4) into a circulation term through a pre-multiplication by i. Since the pressure
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is a single-valued function, we immediately deduce that

Wflow = −i
B0

2π

NC∑
j=1

Ij log
(
z − zj

) + WSV
flow, (3.5)

where WSV
flow is a single-valued function. Thus, the amount of electrical current leaving a

particular conductor alone dictates the induced circulation around that same conductor in
the induced fluid flow, Γj = B0Ij.

After obtaining Qi through the solution to the electrostatic problem (3.1), the
boundary-value problem for Wflow becomes fully specified by (3.5) supplemented by
impermeability conditions on each conducting body which may be expressed as follows:

Im
{

WSV
flow(z)

}
= Im

⎧⎨
⎩i

B0

2π

NC∑
j=1

Ij log
(
z − zj

)⎫⎬⎭ + ψk, (3.6)

where z ∈ ∂Bk for k ∈ {1, 2, . . . ,NC}, and ψk are real constants that are unknown a priori.
We have assumed the absence of additional driving forces. However, we note that a
background free stream of complex velocity U, for example, may be included simply by
augmenting the right-hand side of (3.5) with the term Ūz and the right-hand side of (3.6)
with the term −Im{Ūz}.

Note that, even in the case of a strictly magnetically driven flow, a non-zero pressure
field (WP /= 0) may be required to enforce the impermeability boundary conditions, to
be explained as follows. In the case that all obstacles in the flow are perfect conductors
(NI = 0), it is clear that Wflow = WL = −iσB0WE alone satisfies the fluid flow boundary
conditions and WP = 0. Since the electric field lines of WE are necessarily perpendicular
to the boundary of a perfect conductor, the multiplication by i in (3.2a) ensures that the
fluid flow streamlines are tangent to each conducting surface and thus WL is the valid fluid
flow potential.

However, in cases where some obstacles are electrical insulators, WL alone does not
satisfy the impermeability boundary conditions. On the surface of each insulator, the
electric field lines of WE are necessarily tangent to the insulating surface. Hence, the
multiplication by i in (3.2a) produces fluid flow streamlines that are normal to each
insulating surface, so that WL alone violates the impermeability condition on insulators.
Hence, when insulators exist in the flow, a non-zero pressure field develops to enforce the
impermeability condition on insulators. When electrically insulating obstacles are present,
the fluid flow must thus be obtained in two steps. First, one must solve the electrostatic
problem and thus obtain a set of charges Qj accumulated on the surface of each conducting
body. Second, those charges are used to specify the circulation in the fluid flow problem
so that the flow problem described by (3.5)–(3.6) is fully posed and can be solved. We
note again that, since the circulation around each body is specified, the problem is well
posed and we do not encounter the issue of undetermined circulations that plagues high
Reynolds number aerofoil theory (Gonzalez & Taha 2022). We proceed in § 3.2 with a
brief discussion relating the electrostatic problem (3.1) to the induced circulations. We
subsequently derive mathematical solutions for the flow in various multiply connected
geometries.

3.2. Connection between induced circulation electrostatic capacitance
It is worth noting that in the special case where only two distinct voltage values are
prescribed on the boundary, (3.1) is an electrostatic capacitance problem. The electrostatic
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|ζ| = 1

|ζ| = ρ

∂B1 ∂B2

V2 = 0V1 = 1

y

x

2s2s

d

(b)(a)

Figure 2. (a) Conformally mapped domain of the physical geometry given in panel (b). The circles |ζ | = 1
and |ζ | = ρ map to the two conductor boundaries in the physical plane. (b) Schematic for electrostatic problem
between two perfectly conducting cylinders held at fixed voltages in the physical z-domain.

capacitance is the measure of the magnitude of induced charge on each conducting
surface per unit applied voltage difference, and it is determined by the geometry. It
is a conformal invariant and is the reciprocal of the extremal distance (Ahlfors 2010,
p. 65). A significant literature exists regarding bounds and comparison theorems for the
capacitance of different geometries (Ahlfors 2010, p. 65). Recall that, in § 3.1, it was
shown that the circulation of the induced fluid flow is solely determined by the charges
present in the electrostatic problem (3.1). Thus, theorems that indicate how one might
geometrically tune the capacitance of the electrostatic problem also indicate how one
might tune the circulation of the induced fluid flow. For example, the introduction of an
insulator anywhere into a given probe configuration necessarily decreases the capacitance
and hence also the induced circulation. Meanwhile, the introduction of a floating conductor
necessarily increases the capacitance and circulation.

3.3. Magnetically driven flows around a collection of conductors (WP = 0)
Through example, we now outline a procedure for obtaining solutions when there are
no electrically insulating obstacles in the flow (NI = 0). We consider the geometry in
figure 2(b), which is a special case of the general geometry of figure 1(b) where NI = 0
and NC = 2. Two conducting obstacles lie in a two-dimensional conducting fluid. The
first is held at the voltage V1 = 1 while the second is held at V2 = 0. Otherwise the
flow is infinite in extent and there are no external pressures driving fluid flow. In order to
determine the induced fluid flow, we first must solve (3.1) for the electrical potential, and
then the resulting flow is given by (3.2a) and (3.3) after taking WP = 0, as was outlined
in § 3.1, since all the immersed bodies are perfect conductors. We solve for WE by first
conformally mapping the physical domain in figure 2(b) onto the concentric annulus of
figure 2(a).

The conformal map from the physical geometry in figure 2(b) to the annulus of
figure 2(a) is given by

ζ(z) = √
ρ

√
d2 − s2 − z√
d2 − s2 + z

, (3.7)

where the inner annular radius is given by ρ = ((d − √
d2 − s2)/s)2. Note that, for unit

circles, s = 1. The left conductor in the physical domain is mapped to the inner circle
|ζ | = ρ while the right conductor is mapped to the outer circle of the annulus, |ζ | = 1. It
is simple to solve the Dirichlet problem in the conformally mapped domain. In order to
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V1 = 1

V = 1 V = 5V = 0 V = 0

V = 0V = 0V2 = 0

Γ–Γ

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
0.1

0

(b)(a)

(d )(c)

Figure 3. (a) Visualization of the flow solution given in (3.10). Grey lines represent electric field lines and
the direction of current flow, J . Black lines are streamlines of the fluid flow. A circulation of magnitude
Γ = |σB0V0| is induced around each body. (b) Black lines represent streamlines of a uniform flow past two
conducting bodies. The given flow may be driven by either pressure or an external electric field since both
solutions are identical. (c) Streamlines of a uniform flow past two cylinders when a potential difference
V = 1
is applied between the two cylinders, which drives electrical current and hence a circulation around each body.
(d) Same plot as panel (c) with a larger applied voltage differential, and hence larger electrical current, between
the cylinders. The larger current induces more circulation around each body as compared with panel (c).

achieve V = 1 on |ζ | = ρ and V = 0 on |ζ | = 1, the potential in the annulus must be

WE,ζ (ζ ) = V0
log (ζ/ρ)
log (1/ρ)

. (3.8)

The complex potential in the physical domain is then given simply by

WE(z) = WE,ζ (ζ(z)) = V0

log

(
1√
ρ

√
d2 − s2 − z√
d2 − s2 + z

)

log (1/ρ)
. (3.9)

The complex potential for the flow is then obtained simply through multiplication by
−iσB0, as follows:

Wflow(z) = −iσB0V0

log

(
1√
ρ

√
d2 − s2 − z√
d2 − s2 + z

)

log (1/ρ)
. (3.10)

It is clear from (3.10) that the applied voltage difference manifests as a fluid flow
circulation of magnitude Γ = 2πσB0V0 around each of the cylinder conductors. The
induced fluid flow is plotted in figure 3(a).

3.4. Uniform stream past perfect conductors
We now derive the solution for a strictly pressure-driven flow – which possesses zero
circulation – past the same two cylinders. We proceed by demonstrating, through direct
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calculations, how magnetic fields may induce circulation in the pressure-driven flow. Note
that the conformal maps being used to solve the Laplace problems in the present section
follow directly from theoretical developments laid out in earlier work summarized in
Crowdy (2020).

3.4.1. The pressure-driven uniform stream (no circulation)
Consider again the circular obstacle geometry given in figure 2(b), except now a uniform
steam U ∈ R is directed along the real axis past the two cylinders with zero circulation
around each cylinder. Such a flow might be generated, for example, by an applied pressure
gradient along the x̂ direction.

The flow solution can be obtained directly by the methods of Crowdy (2020, chap. 15),
who presents a calculus for potential theory. With vanishing circulations around each body,
and the behaviour at infinity specified (Wflow ∼ Uz as |z| → ∞), a class of mathematical
solutions for the magnetohydrodynamically driven flow in the Hele-Shaw cell become
expressible in terms of the prime function. Notably, the prime function has a closed-form
series representation in the doubly connected case (Baddoo et al. 2020). In what follows,
we present the solution procedure for the two-cylinder problem. We later outline how
N-body solutions follow by an identical procedure (for more details, see Crowdy (2020,
p. 294) and Crowdy 2006b,a).

Consider two unit cylinders a distance 2d apart, with each centred on the real axis,
as in figure 2(b). Take the left-most circle to be centred on the origin. The Möbius
transformation ζ = 1/z then maps the origin-centred circle to itself. However, the second
circle is mapped to a circle of radius δ < 1 inside the unit circle and centred at the point
q. More generally, if additional cylinders were added to the physical domain, the same
Möbius transformation would take each additional cylinder to a distinct excised circle
contained inside the unit disk. The unit circle, with a number of excised interior circles,
represents a canonical domain, where the so-called prime function ω(z1, z2) becomes
useful for obtaining mathematical solutions to certain boundary-value problems (Crowdy
2020).

Let us return to the two-cylinder problem of current interest. In this case (figure 2b), it
is convenient to choose the canonical domain to be a concentric annulus (q = 0) as drawn
in figure 2(a), since the solution possesses an explicit sum representation there.

The particular map to the concentric annulus was already presented in (3.7). By direct
manipulation, it may be shown that the map can be re-expressed as z = (1 − |a|2)/(ζ −
a)− ā − d, where a = −d + √

d2 − 1. Recasting the map in this form makes it clear that
ζ = a is the pre-image of infinity. We now seek a complex potential which, in the physical
domain, possesses zero circulation around each body and which tends to Wflow ∼ Uz as
|z| → ∞.

The free-stream condition in the ζ -plane becomes Wflow,ζ ∼ U(1 − |a|2)/(ζ − a)
as ζ → a. The impermeability condition on rigid boundaries may be expressed as
Im{Wflow,ζ (ζ )} = C̃j for z ∈ ∂Bj for some set of constants {C̃j}. A function which possesses
all of the necessary properties, in the canonical domain, can be written concisely as
follows:

Wflow,ζ (ζ ) = U
(

1 − |a|2
)
φ0(ζ, a), (3.11a)

φ0(ζ, a) = −1
a
K (ζ, a)+ 1

a
K

(
ζ,

1
ā

)
, (3.11b)
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where K(ζ, a) = a∂ log (ω(z, a))/∂a and ω is the prime function as developed in Crowdy
(2020). The function φ0 has the two important properties: it has a simple pole with unit
residue at ζ = a, and it maps the circles of the canonical domain to slits parallel to the
real axis, which possess a constant imaginary part (see Crowdy 2020, p. 83). Hence, φ0
satisfies the impermeability condition on each body. The K functions in (3.11) possess a
simple series representation in the doubly connected case (Crowdy 2020, p. 280), which
was used to generate the plot of flow streamlines given in figure 3(b). Note that the solution
in the physical domain is simply given by Wflow,ζ (ζ(z)), which is computed by substituting
(3.7) into (3.11).

We note that if instead there were N > 2 cylinders in the flow, the same solution (3.11)
applies. However, the definition of K changes. In such a case, a Möbius map converts
the physical domain into a canonical domain comprising a unit disk with N − 1 excised
disks. The definition of K depends on the form of this canonical domain through ω and, in
higher connectivities, it must be computed numerically by methods described in Crowdy
& Marshall (2007) and Crowdy (2020, chap. 14).

3.4.2. Magnetic driving induces circulation
In this section, we demonstrate how magnetic driving may be used to induce circulation
into an otherwise circulation-free pressure driven flows such as that described in § 3.4.1
and illustrated in figure 3(b). The solution for a flow comprising a pressure-driven free
stream in addition to magnetic driving can be obtained simply via superposition of the
solutions from §§ 3.3 and 3.4.1.

In figure 3(b), streamlines for the flow of a uniform stream in a Hele-Shaw cell are
plotted using (3.11). Meanwhile, in figure 3(a), the flow streamlines of the magnetic-driven
flow from § 3.3 are plotted. Figure 3(c) then plots flow streamlines when a pressure-driven
uniform stream is combined with a circulatory magnetic flow, of the type described in
§ 3.3. Figure 3(d) shows the streamlines when the intensity of magnetic flow is increased
relative to the situation in 3(c); therein, the relative voltage between the conducting probes
is increased by a factor of five which increases the magnitude of circulation around each
body. The resulting flow streamlines in figure 3(d) are successfully diverted between the
cylinders.

Increasing the relative voltage between probes increases the magnitude of induced
circulations, leading to a stronger diversion of the fluid flow from the uniform stream
profile. Alternatively, the circulation can be enhanced for a fixed voltage differential by
adjusting the geometry. As seen in (3.8), the electrostatic capacitance of the two-cylinder
system is C = 2π/ log (1/ρ). Since the capacitance is a conformal invariant, any
configuration of conductors that can be conformally mapped to an annulus with inner
radius ρ and outer radius unity will induce the same circulation around each of the two
conductors in the flow (for a fixed voltage difference). Thus, by changing the geometry in
a conformally inequivalent manner, the induced circulation may thus be changed without
modifying the applied voltage difference. See Levi (2023) for a related discussion in the
electrostatic context.

3.4.3. General N-body solutions using framework of Crowdy
Up to this point, we have examined the two-body problem to illustrate the physical
mechanism for circulation generation. Any two-body problem can be conformally mapped
onto a concentric annulus having some inner radius ρ and an outer radius 1, where
the value of ρ depends on the geometry. In contrast to the Riemann mapping theorem
– applicable for simply connected domains – not all doubly connected domains are
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Figure 4. (a) Experimental image from experiments performed by David et al. (2023) in a shallow free-surface
annulus. (b) Exact solution, as obtained through the procedure of § 3.4.3, for the experimental geometry from
panel (a). Flow streamlines are depicted in grey. The voltage distribution is indicated in colour. (c) Another
mathematical solution, as obtained through the procedure of § 3.4.3. The central circle is held at 1 V while the
outer circle is held at 0 V. Other circles are taken to be floating conductors.

necessarily conformally equivalent (they are equivalent only if ρ happens to be the same).
More generally, any N-body problems can be mapped to the interior of a unit circle with
N − 1 excised circles whose positions and radii are determined by the physical geometry.
The concentric annulus is the special case of exactly one excised circle. To obtain the
fluid flow around a number of physical obstacles, such as N cylinders, it suffices to solve
a problem in a conformally equivalent canonical domain, and then to map back to the
physical domain of interest. Exact solutions for problems in the canonical domain are
accessible through the framework of Crowdy (2020). Note that, to evaluate the solution
in the physical domain, one must possess a conformal map to the physical domain of
interest. In arbitrary geometries, the map between the physical and canonical domains may
be difficult to attain analytically, although several general constructions exist including a
generalized Schwarz–Christoffel formula for mapping to multiply connected polygonal
regions (Crowdy 2007).

The procedure for solving the N-body problem is as follows. First, one must find a
mapping from the physical domain of interest to a canonical domain comprising the unit
circle with N − 1 excised disks. Crowdy (2020) showed that this map can be written
exactly in terms of the so-called prime function ω(z, a), for a number of physically relevant
domains. For the case of the unbounded domain exterior to finitely many cylinders of
arbitrary position and radius, a simple Möbius transformation brings the domain onto a
canonical domain, as was described in § 3.4.1. Once the mapping to the canonical domain
is found, the boundary-value problem can be solved there instead. We now focus on
solutions in canonical domains.

The solution in the canonical domain is amenable to the techniques developed by
Crowdy (2020) and is expressible exactly in terms of the prime function. In relation to
§ 3.3, we seek a complex analytic function WE defined on a canonical domain which
satisfies (3.1a) on the unit circle and each excised disk. The geometry in figure 4(c)
represents NC = 6, so that there are five excised circles. In what follows we only consider
only situations where all boundaries are perfectly conducting, so that NI = 0, and where
external voltages are applied to each conductor. We also allow the possibility that some
of the conductors are floating and not explicitly connected to a voltage source. We now
describe how one may obtain solutions for the induced fluid flow in such geometries.

Crowdy (2020) introduced a special set of functions called integrals of the first kind,
{vj(z)}, defined in the canonical domain in terms of the prime function ω, which will serve
as the basis for the solutions obtained in the present section. Crowdy & Marshall (2007)
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and Crowdy (2020, chap. 14) present efficient methods for computing the prime function.
Codes for computing the prime function are readily available (Crowdy, Kropf & Green
2016).

There exists one such function, vj(z), for each of the excised circles so that j ∈
{1, 2, . . . ,NC − 1}, each possessing the following two important properties. First, vj(z)
introduces a unit circulation around the jth excised circle and exactly zero circulation
around each of the other excised circles. Second, the imaginary part of vj(z) is constant
on all other boundaries. It is thus clear that a linear superposition of the functions ivj(z) is
capable of meeting the boundary conditions in (3.1a); the coefficients of the superposition
are determined through the solution of a linear system of NC equations which is easily
solved with the backslash operator in MATLAB. Details are presented in Appendix A.2.
Once the electrostatic potential has been obtained, pre-multiplication by −iσB0 gives the
complex potential of the fluid flow as was described in § 3.1.

Solutions in two canonical domains, as obtained through the solution of a linear system
of equations (see Appendix A.2), are presented in figures 4(b) and 4(c). Figure 5(a) shows a
geometry that was explored experimentally by David et al. (2023), wherein the authors did
not seek an exact solution. Figure 4(b) shows the streamlines of the exact solution for the
fluid flow in the same geometry as obtained through the method of the present section. The
central cylinder is held at V = 1 and the outer cylinder at V = 0. The off-centre cylinder
is taken to as a floating conductor, since it was not connected to voltage source in the
experiments. As a consequence, there is no net circulation around the floating conductor.
In figure 5(c), we plot flow streamlines in a domain of higher connectivity where NC = 6.
The central cylinder is held at V = 1 and the outer cylinder at V = 0. The other conductors
are chosen to be floating. Note that any combination of the conductors can be taken to be
floating or possessing a prescribed voltage. Note that, in the case when insulating bodies
are also present, a new generalized Schwarz integral formula due to Miyoshi & Crowdy
(2023, § 2) can give explicit solutions to the electrostatic problem in terms of the prime
function in some cases; however, we do not elaborate further on that method in the present
paper. Secondary prime functions (Vasconcelos, Marshall & Crowdy 2015) can also be
useful for dealing mixed boundary-value problems.

3.5. Experiment
Here, we outline a simple experiment which realizes one of the exact solutions from
§ 3.4.3. This experiment is meant to motivate and supplement the present theoretical paper
but we note that it does not constitute a completely general experimental investigation of
the magnetohydrodynamic Hele-Shaw cell. Future studies may focus on a more detailed
experimental investigation of the system.

A Hele-Shaw cell was constructed from two thin circular sheets of transparent acrylic in
a configuration similar to figure 1(a). Each transparent sheet had a diameter of 8 cm and
a thickness of 1.5 mm. Two circles, with diameters of d1 = 7 mm and d2 = 10 mm, were
cut from each disk. Then, six small holes of diameter 1 mm were cut in the top acrylic
sheet along the line passing through the two circles of radii d1 and d2, for the purposes
of streamline visualization. A small drop of blue dye was place atop each such hole just
before the experiment began. All cuts were made using a laser cutter.

Note that four additional circular holes can be seen in seen in figure 5(a) near the
boundary of each acrylic sheet; these holes serve no function in the present experiment.
However, near the top left such hole, an unintentional bubble appeared when filling the
cell, which will be addressed below.
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(b)(a)

Figure 5. (a) Top-down view of the Hele-Shaw cell filled with saltwater. The cell sits atop a permanent
neodymium magnet. Two aluminium cylinders, of diameters 7 mm and 10 mm, completely penetrate the
Hele-Shaw and are held at a voltage difference of 1 V. (b) Same as panel (a) with mathematical solutions,
as presented in § 3.4.3, plotted atop the experimental streamlines. The bubbles in the top left of the Hele-Shaw
cell are modelled as impermeable obstacles in the exact solution.

The two sheets were then separated by spacers of thickness h = 0.7 mm. The sheets were
glued in place at each spacer, at several points along the boundary. Two metal cylinders,
with diameters d1 and d2, were then fitted into the cell. The cylinders fit snugly into the
bottom acrylic sheet in such a way that no glue was necessary to prevent leakage. In the
upper acrylic sheet, the holes for the cylinders were made slightly larger than the cylinder
diameters to allow gas to escape in the event of electrolysis.

The entire Hele-Shaw cell was then placed atop a DZ08-N52 Neodymium Disc Magnet,
as ordered from K&J Magnetics, with nominal surface field strength of 2340 G. The cell
was then completely filled with saltwater using a needle. The saltwater was produced by
simply adding salt packets to tap water. A small drop of blue dye was then placed atop each
of the six 1 mm diameter holes just before the experiment began. A voltage difference of
1V was then applied between the two cylinders. As the flow developed, the dye traced out
streamlines as can be seen in figure 5(a).

Streamlines of exact solutions, as obtained though the procedure of § 3.4.3, are plotted
in figure 5(b). Only the six thoreotical streamlines which intersect the dye release points
are plotted. The unintended bubble (top left) is treated as an impermeable boundary in the
theoretical solution as is drawn in figure 5(b). There is a reasonable agreement between
the experimental and theoretical streamlines.

Streamlines around the right-most cylinder are diffuse because the first few droplets
of dye were dropped into place from too high and consequently spread beyond the small
1 mm opening. At the dye release points near the left cylinder, drops were added more
carefully by gently touching a droplet onto the small opening, giving rise to more defined
streamlines.

Note that the solution in figure 5(b) treats the bubbles as floating electrical conductors
since the framework of § 3.4.3 only allows for conducting obstacles. In reality, a bubble is
better approximated by an insulator. However, since there are only two electrodes with
fixed applied voltages in the experimental geometry (figure 5a), the flow streamlines
are unaffected by this assumption. That is to say, the streamlines in figure 5(b) would
be identical to those found if bubbles were treated as perfect insulators. However, the
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magnitude of the induced flow velocities does in fact depend on the type of boundary
condition imposed: the induced circulation is higher in the presence of floating conductors
compared with insulators. Generally, when there are multiple applied voltages, one must
apply the appropriate insulating boundary condition on insulating obstacles in order to
obtain accurate flow streamlines. Even in the case of figure 5(a), the proper insulating
boundary condition needs to be applied in order to obtain accurate values for the velocity
magnitudes at each point in the flow. A numerical scheme which allows as well for
the presence of insulating obstacles, which thus overcomes the limitations of § 3.4.3, is
presented in § 4.

4. Series solutions

When no conformal mapping is known between the physical domain of interest and
a canonical domain, solutions are not attainable by the method presented in § 3.4.3.
Moreover, even when solutions can be written explicitly in terms of the prime function, as
in § 3.4.3, the numerical computation of the prime function can be expensive and actually
involves the numerical solution of a different boundary-value problem (Crowdy et al.
2016).

All of these facts lead us to seek out accurate and efficient numerical solutions for the
fluid flow, in general settings. In this section, we demonstrate how series solutions can
be adapted to our problem to solve for the fluid flow with many digits of accuracy in
just a few seconds of computing time on a standard laptop (Trefethen 2018). It is worth
noting that such solvers are by no means the only method for solving such boundary-value
problems as, for example, boundary integral methods are also applicable. However, we
focus on these series methods due to their flexibility and simplicity in implementation.
The solution procedure is described as follows.

The complex potential described by (3.1) is first expressed as a sum of Laurent series
centred inside each body (exterior to the flow domain). The Laurent series are then
truncated and their coefficients are determined through a least-squares problem which
enforces the conditions (3.1) at a finite number of points on each boundary.

The Vandermonde matrix in the least-squares problem becomes exponentially ill
conditioned in the degree of approximation. As a result, the numerical solution eventually
saturates with an increasing degree of approximation. Brubeck, Nakatsukasa & Trefethen
(2021) showed that, by performing Arnoldi orthogonalization, one can improve the
condition number and thus achieve more digits of accuracy in the numerical solution. In
some least-squares problems, the difference in accuracy between solutions obtained with
and without Arnoldi can be quite dramatic, even reaching ten digits (Brubeck et al. 2021,
see figure 3.1). Note that, for the examples considered in the present section, the Arnoldi
orthogonalization is not essential for attaining quite accurate solutions. In more general
geometries, the Arnoldi procedure may be necessary to achieve high accuracy solutions.

The numerical method described herein is similar to that presented by Baddoo (2020),
but with modified boundary conditions and an extension to multiply connected domains.
Note that, when sharp corners are present in the solution domain, strong singularities in
the solutions emerge, and rapidly converging lightning solvers can be applied (Gopal &
Trefethen 2019b). Lightning solvers supplement the Laurent series representation with a
set of poles clustered near sharp corners to approximate singularities. In the present work,
we focus on smooth bodies which do not require the placement of such poles. However,
the procedure for including such poles is rather straightforward (Gopal & Trefethen 2019b;
Baddoo 2020).
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4.1. Numerical solution of electrostatic problem
We seek the electrostatic potential in the unbounded domain exterior to N = NI + NC
distinct bodies, with NC conducting surfaces {∂Bj} held generally at different voltages
Vj, and NI insulating surfaces {∂Dj} obeying zero Neumann conditions ∇Vj · n = 0. For
notational convenience, let zj be a point interior to the jth conductor for j ∈ {1, . . . ,NC}
and the interior of the ( j − NC)th insulator for j ∈ {NC + 1, . . . ,NC + NI}.

The electrical potential then takes the form (3.4), where Qi are undetermined constants.
The solution can be written generally as a sum of a Laurent series and its logarithm terms
as

WE(z) = a0 +
NC∑
j=1

Qj log
(
z − zj

) +
N∑

j=1

∞∑
k=1

a( j)
k(

z − zj
)k , (4.1a)

NC∑
j=1

Qj = 0, (4.1b)

Re {WE} = Vj, z ∈ ∂Bj, j ∈ {1, 2, . . . ,NC}, (4.1c)

Im {WE} = Cj, z ∈ ∂Dj, j ∈ {1, 2, . . . ,NI}, (4.1d)

where Cj and Qj are a priori unknown real constants. Note that no logarithm terms are
centred inside of electrical insulators. The condition (4.1b) is required to ensure that the
potential is regular at infinity.

To convert (4.1) into a least-squares fitting problem, we must truncate each Laurent
series. Let the expansion centred around the jth body be truncated at N j

L terms. Combining
(4.1a) and (4.1b), the form of our approximation becomes

WE(z) ≈ a0 +
NC∑
j=2

Qj log
(

z − zj

z − z1

)
+

N∑
j=1

N j
L∑

k=1

a( j)
k(

z − zj
)k , (4.2)

where we have implemented (4.1b) by setting Q1 = −∑NC
j=2 Qj. Through this

implementation, we guarantee that (4.1b) is satisfied exactly so that WE(z) is finite as
|z| → ∞. If (4.1b) were instead implemented as a constraint in the least-squares problem,
then (4.1b) would only hold approximately and WE(z) would not be guaranteed to be finite
as |z| → ∞. We next choose N j

b sample points on the boundary of the jth body and fit WE
to the appropriate boundary conditions, (4.1c)–(4.1d).

We now formulate the least-squares problem. Let z(k)j denote the jth sample point on
the surface of the kth body, where k ∈ {1, . . . ,NI + NC} and j ∈ {1, . . . ,Nk

b}. In order to
construct the Vandermonde matrix, we first define the vector

V (k)
j =

[
(z(1)j − z1)

−1 · · · (z(1)j − z1)
−N1

L

∣∣∣ · · ·
∣∣∣ (z(1)j − zN)

−1

· · · (z(1)j − zN)
−NN

L

]
. (4.3)

We next define a vector of logarithm term evaluations corresponding to the jth sample
point on the kth boundary as follows:

L(k)j =
[

log
(

zj − z2

zj − z1

)
. . . log

(
zj − zNC

zj − z1

) ]
. (4.4)
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We also define the Laurent series coefficient vector as

a =
[

a(1)1 · · · a(1)
N1

L

∣∣∣∣ · · ·
∣∣∣∣ a(N)1 · · · a(N)

NN
L

]
. (4.5)

Now let V (k) be the matrix of containing all sample points on the kth body defined by

V (k) =

⎡
⎢⎢⎢⎣

V (k)1
V (k)2· · ·
V (k)

Nk
b

⎤
⎥⎥⎥⎦ . (4.6)

Similarly, we let L(k) define the matrix of logarithm evaluations on the kth body

L(k) =

⎡
⎢⎢⎢⎣

L(k)1
L(k)2· · ·
L(k)

Nk
b

⎤
⎥⎥⎥⎦ . (4.7)

Then, the least-squares problem for the undetermined coefficients can be expressed in
terms of the matrix A defined by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −Im
{
V (1)

}
Re

{
V (1)

}
Re

{
L(1)

}
0 0 · · · 0

0 1
...

...
... 0 0 · · · 0

0 1 −Im
{
V (NC)

}
Re

{
V (NC)

}
Re

{
L(NC)

}
0 0 · · · 0

1 0 Re
{
V (NC+1)} Im

{
V (NC+1)} Im

{
L(NC+1)} −1 0 · · · 0

1 0 Re
{
V (NC+2)} Im

{
V (NC+2)} Im

{
L(NC+2)} 0 −1 0 · · ·

1 0 · · · · · · · · · · · · · · · · · · · · ·
1 0 Re

{
V (N)

}
Im

{
V (N)

}
Im

{
L(N)

}
0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4.8)
along with the accompanying coefficient vector c defined by

c = [
Im {a0} Re {a0} Im {a} Re {a} Q2 . . . QNC C1 . . . CNI

]
. (4.9)

Note that the vectors 1 and 0 in the definition of A represent vectors of ones and zeros of
the appropriate length; for example, the vector 1 in the top row has a length of N1

b while
the 1 in the bottom row has a length of NN

b . The load vector, having a length equal to the
total number of boundary sample points,

∑N
j=1 N j

b, then takes the form

f = [
V1 · · · V1 | · · · ∣∣ VNC · · · VNC

∣∣ 0 · · · 0
]
, (4.10)

with which the approximate form of (4.1) is expressed as the following matrix equation:

AcT ≈ f T . (4.11)

Equation (4.11) can be solved with the backslash operator in MATLAB for the coefficient
vector c, from which the complex potential can be readily evaluated using (4.2). Generally,
the solution accuracy can be greatly improved by using Arnoldi orthogonalization on
the Vandermonde part of the matrix Aflow. We omit the details of the Vandermonde
orthogonalization procedure for brevity. Details of the procedure may be found in Brubeck
et al. (2021) and an application to potential flow is presented by Baddoo (2020). Arnoldi
orthogonalization may be applied to the least-squares problem (4.11) through simple
modifications to code given by Brubeck et al. (2021).
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4.2. Finding the fluid flow
If all of the bodies in the flow are perfect electrical conductors, then the complex potential
describing the fluid flow is obtained by pre-multiplying the electrical potential from § 4.1
by −iσB0, which follows from (3.2a) and (3.3), since in this case WP = 0 as was discussed
in § 3.1.

When one or more of the obstacles in the flow is an electrical insulator, the potential
−iσB0WE violates the impermeability condition on electrical insulators. This is illustrated
in figure 6(a), where the flow streamlines of −iσB0WE (shown in grey) clearly penetrate
the insulating body. In cases where insulating bodies are present, the fluid flow must thus
be obtained in two steps. First, the electrostatic problem must be solved to specify the
induced circulation in the fluid flow around each body as in (3.5). Then, the fluid flow
boundary-value problem, subject to impermeable boundary conditions on each obstacle,
must be solved. When electrical insulators are present in the flow, a non-zero pressure
arises whose role is to enforce the impermeability condition.

The complex potential for the fluid flow problem can be written as follows:

Wflow(z) = b0 +
∑
j∈IC

iσB0Qj log (z − zi)+
N∑

j=1

∞∑
k=1

b( j)
k(

z − zj
)k + Ūz, (4.12a)

Im {WE} = ψj, z ∈ ∂Bj, j ∈ {1, 2, . . . ,N}, (4.12b)

where {b( j)
k } and {ψj} are unknown coefficients, U is a background pressure-driven flow

and Qj are the known charges from the electrostatic solution of § 4.1. Taking U = 0 gives
the situation of a flow driven exclusively by magnetic effects. Note that we can immediately
take Re{b0} = 0, since the boundary-value problem does not place any restriction on the
real part of this constant.

The potential can be approximated by once again truncating the Laurent series centred
in each body

Wflow(z) ≈ b0 +
∑
j∈IC

iσB0Qj log (z − zi)+
N∑

j=1

N( j)
L∑

k=1

b( j)
k(

z − zj
)k + Ūz, (4.13a)

which is still subject to (4.13b).
The sets of coefficients, b j

k and ψk, can be obtained in a manner similar to § 4.1. In this
case, there are no undetermined coefficients associated with logarithm terms. Compared
with the electrostatic problem of § 4.1, the matrix A is changed in two ways in the fluid
flow problem. Firstly, logarithm terms appear in f instead of in Aflow. Second, since all
bodies possess an undetermined stream function value, the right partition of A is changed
accordingly. In the flow problem, the flow matrix A becomes

Aflow =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Re
{
V (1)

}
Im

{
V (1)

} −1 0 0 0

1
...

... 0 −1 0
...

1 Re
{
V (NC)

}
Im

{
V (NC)

} ... 0 −1
. . .

1 Re
{
V (NC+1)} Im

{
V (NC+1)} ...

... 0
. . .

1 · · · · · · ...
...

...
. . .

1 Re
{
V (N)

}
Im

{
V (N)

}
0 0 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.14)
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Figure 6. (a) Numerical solution of the electrostatic problem involving two perfect conductors held at voltages
V = 1 and V = 0 along with a perfect insulator, obtained though the approach outlined in § 4.1. The charge
magnitude on each conducting surface, Q, is obtained through the solution of the least-squares problem.(b)
The fluid flow induced by the voltage distribution of (a), in the presence of an out-of-plane magnetic field.
The flow is computed through the procedure outlined in § 4.2. The magnitude of the circulation around each
conductor is specified through the solution presented in (a), Γ = σB0Q. (c) A free-stream fluid flow past the
same obstacles in a Hele-Shaw cell in the absence of magnetic effects (no circulation). (d) The free-stream flow
from (c) combined with magnetically induced circulation due to the electrical configuration in part (a). The
fluid flow depicted in (d) is essentially a superposition of the flows depicted in (b,c).

where 1 and 0 represent vectors of ones and zeros of the appropriate length; for example,
the vector 1 in the top row has a length of N1

b while the 1 in the bottom row has a length
of NN

b . The corresponding coefficient vector becomes

cflow = [Im {a0} Im {a} Re {a} ψ1 . . . ψN] . (4.15)

The length of the new load vector f flow is the total number of sample points on
all boundaries,

∑N
k=1 Nk

b components. For the boundary points on the kth body, the
corresponding section of f flow is given by a row vector f (k) whose nth component is
given by

f (k)n = Im

⎧⎨
⎩−

NC∑
j=1

iσB0Qj log(z(k)n − zj)− Ūz(k)n

⎫⎬
⎭ . (4.16)
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The new load vector is then given by concatenating the vectors corresponding to each
boundary so that fflow = [ f (1) . . . f (N)]. The boundary-value problem is then reduced to
the following least-squares problem,

AflowcT
flow ≈ f T

flow. (4.17)

Once again, we note that the solution accuracy can be improved by using Arnoldi
orthogonalization on the Vandermonde part of the matrix Aflow when solving (4.17).
Figure 6(b) shows the fluid flow induced by the voltage configuration illustrated in
figure 6(a).

By checking the deviation of the imaginary part of the Wflow from a constant, we can
attain an estimate for the error in Im{Wflow} over the entire domain. Checking the boundary
convergence on a set that is 16 times as dense as the sample points, we find an accuracy
of ten digits on the circular boundaries when using 40 Laurent terms in each body and
200 uniformly sample points per body. The accuracy on the trefoil shaped boundary in
figure 6 is limited to a more modest seven digits owing to the finger-like geometry. In more
extreme finger-like geometries, one should consider the placement of poles in addition
to the Laurent series used in the present paper, to account for the well-known crowding
phenomenon (Gopal & Trefethen 2019a). For work exploiting simple pole placement to
achieve accurate solutions in the case of sharp corners and highly curved geometries, see
the works of Gopal & Trefethen (2019b), Costa & Trefethen (2023) and Xue, Waters
& Trefethen (2024). Note that Baddoo (2020) applied such methods to the potential
flow problem past a simply connected body with a corner and he demonstrated rapid
convergence when simple poles are exponentially clustered near corners.

5. Discussion and conclusion

We have analysed the flow of an uncharged ohmic fluid inside a magnetically driven
Hele-Shaw cell, at low Hartmann numbers. The problem was first cast the into a
complex variables framework. Within this framework, we elucidated – both physically
and mathematically – the mechanism by which an external magnetic field may convert
electric current into a tuneable fluid flow circulation. Whereas pressure-driven Hele-Shaw
flows exhibit identically zero circulation around any closed contour, the circulation in
magnetically driven Hele-Shaw flows need not vanish. Moreover, we have demonstrated
that by changing the voltage difference applied between conducting probes in the fluid, as
well as the probe geometries, one can control the induced fluid flow circulation.

Within our complex variables framework, we presented mathematical solutions, in terms
of the prime function, for a class of geometries involving circular conductors; one such
solution describes an experiment of David et al. (2023) whose geometry is illustrated
in figure 3. Notably, the prime function has a series representation in doubly connected
geometries (Baddoo et al. 2020). We note that more exact solutions in periodic domains are
also available through the theoretical developments of Baddoo & Ayton (2021); however,
such results were not explored in the present paper.

We subsequently noted two limitations of the aforementioned mathematical solutions.
First, they are only applicable in canonical circular domains. To obtain a solution in
non-circular geometries, a conformal map between a canonical domain and the physical
domain of interest must be known. As such, the class of solutions that may be written
explicitly in terms of the prime function is limited. Second, the exact solutions do not
apply when any of the obstacles in the flow is electrically insulating. Moreover, it should
be noted that the prime function must also be computed numerically in domains with a
connectivity greater than two.
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Because of these limitations, we proceeded to present a numerical scheme capable of
finding the fluid flow in more general geometries and in situations where obstacles in
the flow may be either insulating or conducting. We outlined a procedure for obtaining
accurate Laurent series solutions for the flow in a manner similar to that described by
Trefethen (2018).

Approximate solutions must be obtained in two steps. First, one must obtain a series
solution to the relevant electrostatic problem. The electrostatic field E is then converted to
an electric current via Ohm’s law, J = σE. The induced flow circulation is related to the
product of the net current Ij leaving each conducting body and the external magnetic field
strength, B0. Both geometry and applied voltage magnitudes thus affect the magnitude
of induced circulations. The key result of the first step is that the electrostatic problem
specifies the fluid flow circulation around each conducting body. With the circulation
around each body fixed, the potential flow problem is fully posed. The second step of the
solution is to find a series solution for the potential flow subject to impermeable boundary
conditions on each obstacle and with the circulations around each obstacle imposed by the
electrostatic problem. A uniform stream, or other background flows, can be added at this
stage by superposition.

Note that in the magnetohydrodynamic Hele-Shaw cell, the circulation around each
body in the flow is specified. In the absence of magnetic fields, the velocity potential
in a Hele-Shaw cell is proportional to the pressure and is therefore single valued,
corresponding to a flow with identically zero circulation. Meanwhile, when a magnetic
field is introduced, the Lorentz force generates a well-defined and calculable amount
of circulation around each body. This situation is in contrast with potential aerofoil
theory, where the circulation around each body is unknown. Since the velocity potential
in aerofoil theory is not related to a physical quantity (such as pressure), no physical
constraint enforces the circulation value around each body. In some special cases, such as
for aerofoils with a single sharp corner, Kutta’s condition specifies a unique circulation
to de-singularize the velocity field. Recent developments by Gonzalez & Taha (2022)
conjecture a new criterion to replace the Kutta condition in more general aerofoil
geometries.

Magnetohydrodynamic flow control, as explored in the present study, has many
potentially interesting applications in, for example, microfluidic devices. The voltage
difference applied between probes, in the magnetically driven flow, may be actively
controlled during an experiment to divert flow along desired paths. Probe geometries
may also be designed to achieve desired flows. More engineering applications that might
be explored in future studies are outlined by Bau (2022). Future theoretical work might
examine the possibility of bubble manipulation using magnetically driven flows in a
Hele-Shaw cell (Booth, Griffiths & Howell 2023). In realizing such applications, the
principles and solution methods of the present paper may be useful for quick and iterative
design. Probe geometries and voltages can be adjusted very simply within the framework
of § 4 making it and attractive tool for iterative design.
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Appendix A. Solution for bodies at different potentials

A.1. The Dirichlet problem in canonical domains
Consider the N-body Dirichlet problem for the electrical potential. In particular, consider
the canonical geometry in figure 4(c) where excised circles of radius qj are centred at
positions δj. Each circle is held at some constant specified potential Vj. We seek the
potential in the interstitial region between excised circles. Following § 3.1, we represent
Vj as the real part of an analytic function WE.

In § 3.3, the exact complex potential for the two-body problem was expressible in terms
of the simple logarithm, (3.8). As we will show, the potential WE in the canonical N-body
domain, is expressible in terms of the prime function.

A.2. Prime function machinery: integral of the first kind, vj(z)
We will present the essential components of the theory for the reader. For a more complete
treatment, see Crowdy (2020). Crowdy (2020) introduces the functions vj(z), defined in
the canonical domain, which possess two important properties: (i) the imaginary part of
vj(z) is constant on all circular boundaries; and (ii) vj(z) possesses unit circulation around
∂Bj and zero-circulation around all other excised circles ∂Bk for k /= j∫

∂Bj

dvi

dz
dz = −δij. (A1)

Crowdy (2020, p. 67) showed that, in the canonical domain, vj(z) can be written in terms
of the prime function as follows:

vj(z) = 1
2πi

log

(
ω
(
z, θj (1/ā)

)
ω (z, 1/ā)

)
− 1

2πi
log

(
− (

1 − δj/ā
)

qj

)
+ vj(1/ā)+ τjj

2
, (A2)

where θj is the Möbius map defined by

θj(z) = δj +
q2

j z

1 − δjz
, (A3)

and τjj is a constant element of the so-called period matrix as defined by Crowdy (2020,
p. 31). In our developments, the value of τjj is immaterial. Since our problem requires a
potential with constant real part, the functions ivj are of interest since they possess constant
real part on each boundary. Note that an induced charge exists on the boundary ∂Bj, for
the functions ivj, rather than a circulation as in (A1). This is consistent with the fact that
the electrostatic potential, V = Re{We}, must be single-valued function.

Note also that vj is independent of the choice of a despite the appearance of (A2). For
our purposes, we can eliminate the constants in (A2) and define the new functions

ṽj(z) = 1
2πi

log

(
ω
(
z, θj (1/ā)

)
ω (z, 1/ā)

)
− 1

2πi
log

(
− (

1 − δj/ā
)

qj

)
. (A4)

Note that ṽj(z) in (A4) can be computed directly using the numerical implementation of
the prime function developed by Crowdy & Marshall (2007).
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A.3. Solution procedure
The solution for the N-body problem can clearly be represented as a linear superposition
of the vj plus a constant. That is

WE = α0 + i
N−1∑
j=1

αjṽj(z), (A5)

where αj are N real constants and j ∈ {0, 1, . . . ,N − 1}. The boundary conditions on the
N bodies fix the N undetermined coefficients.

The electrical potential is specified on each surface so that Re{WE} = Vi for z ∈ ∂Bi,
where ∂BN indicates the unit circle and ∂Bj for j ∈ {1, 2, . . . ,N − 1} are the N − 1
excised circles. We define the N-dimensional vector V whose jth component is Vj for
j = {1, . . . ,N}. We also define the N-dimensional coefficient vector α defined by,

α = [
α0 α1 · · · αN−1

]
. (A6)

Lastly, we define the matrix A with components Ai0 = 1 and Aij = −Im{ṽj(δi + qi)} for
j > 0. Then the coefficients α are determined by the following linear algebra problem:

AαT = V , (A7)

which can be solved using the backslash operator in MATLAB.

A.4. Floating conductors
Suppose now that the voltage on the pth conductor, ∂Bp, is unspecified. The floating
conductor, if uncharged, must satisfy the condition

Im

{∫
∂Bp

dWE

dz
dz

}
= 0, (A8)

which implies that αp = 0. Thus, to enforce the floating boundary condition on the pth
conductor, the pth term of the summation in (A5) must be deleted. The corresponding
linear algebra problem in (A7) has its pth row removed. The value of Vp is then determined
through the solution of the new linear algebra problem. If M conductors have floating
voltages, the summation in (A5) has the corresponding M terms removed and the linear
algebra problem (A7) has the corresponding M rows removed.
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