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Abstract. Mercury is locked in an unusual 3:2 spin-orbit resonance and as such is expected
to be in a state of equilibrium called Cassini state. In that state, the angle between the spin
axis and orbit normal, called obliquity, remains almost constant while the spin axis remains
almost in the plane, also called Cassini plane, defined by the normal to the Laplace plane and
the normal to the orbital plane. The spin axis and the orbit normal precess together with a
period of about 300 kyr. The orientation of the spin axis of Mercury has been estimated using
different approaches: (i) Earth-based radar observations, (ii) Messenger images and altimeter
data, and (iii) Messenger radio tracking data. The different estimates all tend to confirm that
Mercury occupies the Cassini state. The observed obliquity is small and close to 2 arcmin. It
indicates a normalized polar moment of inertia of about 0.34. This information, combined with
the existence of a liquid iron core, as evidenced by the librations, allows to constrain the interior
structure of Mercury. However, the different estimates of the orientation of the spin axis locate
the spin axis somewhat behind or ahead of the Cassini plane, and it is difficult to reconcile
and interpret them coherently in terms of detailed interior properties. We review recent models
for the obliquity and spin orientation of Mercury, which include the effects of complex orbital
dynamics, tidal deformations and associated dissipation, and internal couplings related to the
presence of fluid and solid cores. We discuss some implications regarding the interpretations of
the orientation estimates in term of interior properties.

Keywords. planets and satellites: individual (Mercury), celestial mechanics, methods: analyt-
ical, obliquity, librations, geodesy, dynamics, rotation, planetary interiors

1. Introduction

1.1. An unusual rotation

Three important letters concerning the rotation of Mercury were published in 1965.
First, using radar observations obtained at the Arecibo Ionospheric Observatory in Puerto
Rico, Pettengill and Dyce (1965) determined that the rotation of Mercury is direct with a
sidereal period of 59± 5 days which differs from the orbital period (88 days). They could
not determine the direction of the pole, which is approximately normal to the planetary
orbit. The fact that Mercury’s rotation is not synchronous with its revolution was an
unexpected discovery. Secondly, Peale and Gold (1965) noted that while for a planet
in a circular orbit, tidal friction should synchronise its rotation with its revolution, the
large eccentricity of Mercury (0.206) allows faster rotation because the tidal torque at
pericenter, where the orbital angular velocity is maximum, exceeds that at other times.
Finally, Colombo (1965) indicated that a uniform rotation with a period of 2/3 of the
orbital period can be a stable state of rotation, because the axis of minimum moment of
inertia (the largest axis in terms of dimension) is aligned with the Sun-Mercury direction
at each pericenter passage, where the interaction between the two bodies is the strongest.
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2 R.-M. Baland

Table 1. Values of the orientation parameters of Mercury, obtained from different
observational techiques. Based on Baland et al. (2017a) and Bertone et al. (2021).

Reference Technique α0(
◦) δ0(

◦)

Margot et al. (2007) Earth-based radar observations 281.0097 61.4143

Margot et al. (2012) Earth-based radar observations 281.0103± 0.0015 61.4155± 0.0013

Mazarico et al. (2014) MESSENGER radio tracking data 281.00480± 0.0054 61.41436± 0.0021

Stark et al. (2015) Images and laser altimeter data 281.00980± 0.00088 61.4156± 0.0016

from MESSENGER

Verma and Margot (2016) MESSENGER radio tracking data 281.00975± 0.0048 61.41828± 0.0028

Genova et al. (2019) MESSENGER radio tracking data 281.0082± 0.0009 61.4164± 0.0003

Konopliv et al. (2020) MESSENGER radio tracking data 281.0138± 0.0025 61.4161± 0.0017

Bertone et al. (2021) Images and laser altimeter data 281.0093± 0.00063 61.4153± 0.00048

from MESSENGER

This part of the history of the study of Mercury’s rotation is nicely documented in
Sections 2 and 4 of Goldreich and Peale (1968).

1.2. Cassini state

Because the rotation rate of Mercury is commensurate with its orbital mean motion,
the planet is assumed to be locked in a Cassini state and to follow Cassini’s second and
third laws (Peale 1969). In this state, the spin axis and the orbit normal precess together
about the normal to the Laplace plane at the same rate (period of ∼ 300 kyr), which
means that all three axes are coplanar and the obliquity (the angle from the orbit normal
to the spin axis) remains constant over time. The Laplace plane is the inertial plane that
minimizes the variation in orbital inclination. In what follows, this particular state is
referred to as the Classical Cassini state, as opposed to the more recent and advanced
models which indicate that the spin axis can deviate by of a few arcsec from the Cassini
plane (the plane defined by the Laplace and orbit normal axes), see Section 3.

2. Orientation measurements

2.1. Published studies

Using three different observational techniques, the orientation of Mercury’s spin axis
has been estimated no less than eight times since 2007, see Table 1. Each measure-
ment is provided in terms of right ascension α0 and declination δ0 with respect to the
International Celestial Reference Frame (ICRF) at the J2000 epoch, the format used
by the IAU Working Group on Cartographic Coordinates and Rotational Elements of
the Planets and Satellites. Almost all estimates listed in Table 1 are compatible with
coplanarity/occupancy of the Classical Cassini state within the limits of measurements
precision (see Fig. 1). The epoch spin location of Margot et al. (2012) is currently adopted
by the IAU (Archinal et al. 2018). To those readers who desire more details on the evo-
lution of the IAU adopted values for the rotation angles of Mercury, we recommend the
articles by Margot (2009) and Stark et al. (2018).

2.2. Obliquity/deviation representation

Each pair (α, δ) corresponds to a pair of obliquity and deviation (ε, δ̃), see Section 4.3
of Baland et al. (2017a) for the mathematical relationships. For example, the orientation
of Stark et al. (2015) corresponds to an obliquity of about 2 arcmin and a deviation of
1.7 arcsec.
The obliquity/deviation representation is used in theoretical models to relate the esti-

mated orientation to the interior properties of the planet, see Section 3. In particular,
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Figure 1. Orientation (right ascension α and declination δ w.r.t the ICRF) of the orbit pole
and of the spin axis of Mercury at the J2000 epoch for the studies listed in Table 1. The solid line
represents the location of the Cassini plane (Clasical Cassini state, see Section 1.2). The dashed
rectangle on the left panel represents the plot limits used in the right panel (figure adapted from
Baland et al. (2017a)).

Figure 2. The different values for obliquity and deviation, according to the observational
technique (Earth-based radar observations in blue - Messenger images and altimeter data in
green - Messenger radio tracking data in red) and publication date.

the deviation δ̃ represents the offest of the spin axis with respect to the Cassini plane
and is zero in the Classical Cassini state.
From Margot et al. (2007) to Bertone et al. (2021), the estimated value for the obliquity

has followed a downward trend (Fig. 2, left panel). As we will see in Section 3.2, this
result has implication in terms of interior interpretation, and in particular in terms of the
presence of a solid inner core. The estimated deviation started close to 0 with Margot et al.
(2007). With the exception of Mazarico et al. (2014) and their negative deviation, δ̃ is
either close to 0, or follows an upward trend in subsequent studies (Fig. 2, right panel).
In some respects, the situation is reminiscent of the process of the determination of the

elementary charge. Millikan’s 1909 oil drop experiment, the initial direct determination of
the magnitude of the elementary charge, yielded a value that we currently know slightly
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inaccurate due to his use of an incorrect value for the viscosity of the air. Although
Millikan’s first estimate was not correct, subsequent experimental attempts tended to
be close to Millikan’s, until they finally stabilized at a higher, correct value. To quote
Feynman (1985): “It’s apparent that people did things like this: When they got a number
that was too high above Millikan’s, they thought something must be wrong and they would
look for and find a reason why something might be wrong. When they got a number
close to Millikan’s value they didn’t look so hard.” Were successive spin-axis orientation
estimates influenced by the first obliquity estimate of Margot et al. (2007) and/or the
authors’ preconceived ideas about deviation? Since the discovery of the 3:2 spin orbit
resonance of Mercury, the planet is reasonably considered to be in the Cassini state.
Naturally, some authors did not imagine that the deviation could differ from zero, as
appears clearly in Margot et al. (2007) † and Genova et al. (2019)‡. The possibility of a
non zero deviation, and the implications in terms of energy dissipation due to solid-body
tides and core-mantle interactions, was first recognized in Margot et al. (2012).
The authors sometimes explain the dispersion of their results by the different observa-

tion techniques used. On the one side, both the Earth-based radar (Margot et al. 2007,
2012) and laser altimeter (Stark et al. 2015; Bertone et al. 2021) determinations are
specifically tied to the rotation of the solid surface layer, since Mercury has an at least
partially liquid core. And indeed, all four orientation determinations (especially the last
three) are in very good agreement with each other. They are characterized by similar
obliquities despite differences in observational techniques. Despite a possible bias towards
0 at the beginning, they ultimately tend to indicate a small deviation. On the other side,
the radio tracking determinations of Mazarico et al. (2014); Verma and Margot (2016);
Genova et al. (2019); Konopliv et al. (2020) are allegedly tied to the orientation of the
gravity field of the planet, and so we might expect to see them grouped together in
Fig. 1. However, they are more scattered than the determinations tied to the surface,
and marginally consistent with each other. Verma and Margot (2016) invoke the use of
different ephemerides and range data to explain the difference between their estimate and
that of Mazarico et al. (2014). The subsequent determinations of Genova et al. (2019)
and Konopliv et al. (2020) did not resolved the differences. Topping it all off, the devi-
ation is either negative, or positive but compatible with 0, or almost 0, or positive and
not compatible with zero within the 1− σ limit.

3. Orientation modeling and interior interpretation

3.1. Classical model

The Classical Cassini state model for an entirely rigid Mercury comes with a relation-
ship between the small obliquity ε and the polar moment of inertia C (see Eq. (4) of
Peale 1981 and Eq. (12) of Yseboodt and Margot 2006):

ε=
−CΩ̇ sin i

CΩ̇ cos i+ 2nM�R2G201(e)C22 − nM�R2G210(e)C20

(1)

† In Margot et al. (2007): “The confidence regions for the spin orientation fall precisely on
the locus of pole positions that satisfy the Cassini condition.” The Cassini condition referred to
here is in fact the Classical Cassini state, with no deviation.

‡ Genova et al. (2019) argue that the spin pole orientations of Margot et al. (2012) and
Stark et al. (2015) showed a “substantial” offset from the Cassini state, but that in contrast,
their own estimate is in “full agreement with the Cassini state”, and by that, they mean the
Classical Cassini state with a zero deviation.
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Figure 3. Normalized polar moment of inertia C/M�R2 as a function of the obliquity ε. The

solid line shows the quasi linear relationship resulting from Eq. (1) for the Classical Cassini state
model.

where

G210(e) =
(
1− e2

)−3/2
(2)

G201(e) =
7

2
e− 123

16
e3 +

489

128
e5 +O(e7) (3)

are eccentricity (e) functions, n is the mean motion, Ω and i are the longitude of the
ascending node and orbital inclination with respect to the Laplace plane, M� and R are

the mass and mean radius of Mercury, and C20 and C22 are second-degree gravity field
coefficients. Note that Eq. (1) has been derived independently in Baland et al. (2017a) to
clarify the situation in the litterature, where uncorrect versions of the equation were in
used, due to confusion regarding sign conventions (here the obliquity angle ε > 0 and the
precession rate Ω̇< 0). Eq. (1) is obtained by assuming that Mercury behaves rigidly and
that coplanarity is satisfied, so that no deviation is associated with the classical model.
Each estimate of the obliquity (1.88− 2.11 arcmin) corresponds to an estimate of the

normalized polar moment of inertia (0.318− 0.358), see Fig. 3, which, together with the
estimated mean density, indicates that Mercury is a differentiated body with a large
iron core.

3.2. Peale experiment

To characterize the size and state of the core of Mercury, Peale (1976, 1981) proposed an
observational procedure, since known as the Peale experiment. In the following equation[

(B −A)

M�R2

] [
M�R2

C

] [
Cm

(B −A)

]
=
Cm

C
≤ 1, (4)

(i) the first factor is obtained from the second-degree and -order gravity coefficient C22,
(ii) the second factor is derived from the obliquity, using Eq. (1), and thus assuming
that the core must follow the mantle on the time scale of forced precession, and (iii)
the third factor is obtained from the forced libration at 88 days, the annual variation
in the rotation due to the periodically reversing solar torque on the asymmetric figure,
assuming that a liquid core would not follow the mantle’s longitudinal oscillations. After
multiplying these three factors, we obtain the ratio of the polar moment of inertia of the
outer solid layer Cm over the total polar moment of inertia C. The ratio is 1 if the core is
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entirely solid, but is smaller if at least a part of the core is fluid. This procedure has been
applied for example in Margot et al. (2007, 2012); Stark et al. (2015); Genova et al. (2019)
and shows that Cm/C � 0.4, indicating that the core is at least partially molten. The
presence of a liquid core has important implications, as it provides a possible explanation
based on a dynamo mechanism for the magnetic field observed by Mariner 10, helps to
sort between thermal evolution models, and possibily explains the capture into resonance
thanks to dissipation at the core-mantle boundary.
Considering a simple interior model consisting of two layers of uniform density, the

ratio Cm/C implies that the size of the core (� 2000 km) is � 80% of the total radius
and that the core and mantle densities are � 7250 kg/m3 and � 3200 kg/m3, respectively
(Margot et al. 2012). Using more elaborate and realistic interior models and accurate
estimates of the gravity coefficients by MESSENGER, Smith et al. (2012) or Hauck et al.
(2013) estimated that the core radius is 2040± 37 or 2020± 30 km. Because their estimate
of obliquity is lower than previous ones by Margot et al. (2007, 2012), Genova et al.
(2019) derived a lower value for the polar moment of inertia and therefore concluded that
Mercury has a solid inner core with a radius of at least 600 km (see also Steinbrügge et al.
(2021)).

3.3. Improving the experiment ?

Annual libration

It has been shown that the relationship between the measured libration and the third
factor of Eq. (4) is not valid (i) in the presence of a solid inner core, because of the
gravitational-pressure coupling between the internal layers, and (ii) when the solid lay-
ers deform periodically. Tides decrease the forced annual libration amplitude, by about
1− 2 m, below the present and future expected observational precision, whereas an
inner core larger than 1000 km could have a noticeable effect (Van Hoolst et al. 2012;
Dumberry et al. 2013).

To avoid possible biases in the interpretation of rotation measurements in terms of
interior structure, due to simplistic modeling of librations, Rivoldini and Van Hoolst
(2013) has somewhat redesigned the Peale experiment. As the annual libration amplitude
cannot be expressed as a function of the equatorial moment of inertia difference (B −A)
of the whole body (compare Eqs. 8 and 11 of Rivoldini and Van Hoolst (2013)), the
improved experiment, unlike Eq. (4), can no longer be written in an elegant form to
first obtain the moment of inertia of the silicate shell, which will then be interpreted in
terms of interior properties. Instead, Rivoldini and Van Hoolst (2013) used as data the
mean moment of inertia and the annual libration amplitude of Margot et al. (2012) in
combination with the libration model of Van Hoolst et al. (2012) to directly constrain
Mercury’s interior structure.
Considering elaborate interior models that include a crust and an inner core, non

uniform layers, and plausible chemical compositions and temperature profiles, see also
Rivoldini et al. (2009) for additional details, they placed a lower constraint on the core
radius (2004± 39 km) than Smith et al. (2012); Hauck et al. (2013), due to the mantle-
core coupling taken into account in the libration model. They also determined the average
density of the core (7233± 267 kg/m3) and the fraction of sulfur in the core if sulfur
is the only light element in the core (4.5± 1.8wt%). They could not however confirm
or infirm the existence of an inner core or impose constraints on the mantle density.
According to Dumberry and Rivoldini (2015), which also use the rotation measurements
of Margot et al. (2012), the largest inner core compatible with the rotation observations
has a radius of 1325± 250 km, and geodetic observations suggest the formation of Fe-snow
within the fluid core that could contribute to the magnetic field. The conclusions drawn
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by Rivoldini and Van Hoolst (2013); Dumberry and Rivoldini (2015) depend strongly on
the chosen value of the polar moment of inertia, derived from the measured obliquity.

Obliquity

The relationship between obliquity and interior structure as provided by Eq. (1), and
used to obtain the second factor of Eq. (4), needs to be questioned. Baland et al. (2017a)
have listed various approximations in the modeling process that affect the determination
of the polar moment of inertia from the measured orientation of the rotation axis. Among
these, the most important are neglecting (i) the nutations due to the precession of the
pericenter, (ii) the periodic tidal deformations, and (iii) the presence of a solid inner core
(see details below). The use of an improved Cassini state model instead of Eq. (1) may,
as with improved libration models, modify the interpretation of rotation measurements
in terms of interior structure.

Using other observations

Finally, Peale’s experiment can be extended to observations other than obliquity and
annual libration, although in this case we can no longer really speak of Peale’s experiment.
For example, the long period libration (11.864 years) due to the orbital perturbations
of Mercury’s orbit by Jupiter could be resonantly amplified and affect the instantaneous
spin rate, so that it deviates from the resonant rate (Stark et al. 2015, Yseboodt et al.
2013 and references within). In addition to rotation, the observed tidal Love numbers (see
Mazarico et al. (2014); Verma and Margot (2016); Genova et al. (2019); Konopliv et al.
(2020) for k2 and Bertone et al. (2021) for h2) and deviation of the spin axis from
coplanarity (see below) can also contribute to a detailed study of Mercury’s interior
structure and rheology (e.g. Rivoldini et al. 2009; Padovan et al. 2014; Margot et al. 2018;
Steinbrügge et al. 2021; Goossens et al. 2022). Note that the measured k2, larger than
expected for an entirely solid Mercury, confirms the presence of a liquid core, whereas
the measured h2 suggests the presence of a solid inner core.

3.4. Cassini state: Effect of pericenter precession

According to Baland et al. (2017a), assuming that Mercury rotates as a solid rigid
body on very long timescales, the angular momentum equation governing the motion of
its spin axis in space can be written in an inertial reference frame attached to the Laplace
plane and centered at the center of mass of the planet as

d�L

dt
= �Γprec + �Γnut (5)

with �L the angular momentum and �Γprec and �Γnut the two parts of the torque exerted
by the Sun on Mercury. The solution for �L is associated to time-varying obliquity and
deviation:

ε(t)� εΩ + εω cos 2ω(t), (6)

δ̃(t)� εω sin 2ω(t). (7)

The main torque �Γprec is caused by the precession of the orbital node (Ω, with a period
of ∼ 325 000 years) and, alone, leads to a spin precession characterized by a constant
obliquity εΩ given by Eq. (1) and a zero deviation. The classically neglected secondary

part �Γnut is caused by the precession of the orbital pericenter (ω, period of ∼ 134 000
years) and the large eccentricity e, and drives a small and very slow nutation about the
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Figure 4. From left to right: nutation amplitude εω as a function of the precession amplitude
εΩ, tidal shift in obliquity ΔεΩ as a function of k2 (C/MmR2 = 0.32 and 0.36 for the bottom
and top curves, respectively), and tidal shift in deviation as a function of Q (k2 = 0.3 and 0.6
for the bottom and top curves, respectively), taken from Baland et al. (2017a).

main precession with the amplitude εω, leading to periodic variations in obliquity and
deviation with respect to the coplanarity. Due to the nutation, coplanarity is therefore
very unlikely.
The amplitude εω of the nutation is proportional to the amplitude εΩ of the main

precession. For C/M�R2 ranging from 0.32 to 0.36, εω ranges between 0.8 and 1 arcsec,

see Fig. 4 (left panel). Since ω(0) = 50.379554◦, ε(0) is reduced by 0.15 to 0.19 arcsec

(∼ 0.14%) with respect to εΩ and the deviation δ̃(0) is positive and ranges between 0.8
and 1 arcsec.
The nutation induced by the pericenter precession is essential to explain and interpret

any observed positive deviation. The deviation related to the nutation is about half the
observed deviation of Stark et al. (2015) for instance. The nutation results from the
orbital dynamics and certainly does exist, even though it was classically neglected. In
Peale (1974), the Hamiltonian includes one term that would lead to nutation induced by
the pericenter precession, if it had not been neglected on the grounds that it is of third
order in eccentricity. Peale et al. (2016) numerically identifies the nutation in their model.

3.5. Cassini state: Effet of solid tides and associated dissipation

Even assuming that Mercury rotates as a solid body on very long timescales, it deforms
tidally at the orbital period, which consequently modifies the solar torque through (i) the
tidal Love number k2, which describes changes in the external gravitational potential,
and (ii) the quality factor Q associated with tidal dissipation and corresponding to a
phase shift ζ = 1/Q in the mean anomaly in the torque expression. Due to solid tides,
the angular momentum of Mercury is affected by a constant shift in orientation over time.
The solution for the time-varying obliquity and deviation, including both the nutation
due to the pericenter precession and the constant shift in orientation due to the solid
tides reads, see Baland et al. (2017a):

ε(t)� εΩ +ΔεΩ + εω cos 2ω(t), (8)

δ̃(t)� εζ + εω sin 2ω(t). (9)

The estimated k2 of Mercury varies between 0.45 and 0.57 (see Mazarico et al. (2014);
Verma and Margot (2016); Genova et al. (2019); Konopliv et al. (2020), whereas Q, as
yet unestimated, probably lies in the interval [30, 360] that covers current estimates for
the Earth, the Moon and Mars (Lainey 2016). The shift in obliquity ΔεΩ is proportional
to k2, positive, and varies from ∼ 0.30 to ∼ 0.45 arcsec (∼ 0.30%) for k2 in the interval
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Figure 5. Mantle obliquity of Mercury as a function of the normalized polar moment of inertia
for the set of 13 interiors structure models defined in Peale et al. (2016) (left panel) and for a
large set of realistic interior models consistent with the annual libration amplitude and based on
Rivoldini and Van Hoolst (2013). The black dots indicate the solid case obliquities according to
Eq. (1), the clear dots represent the results of Peale et al. (2016) (their Table 1), the purple and
red dots represent the results of Baland et al. (2017b), and the solid and dashed line represent the
measured obliquity of Margot et al. (2012). Note that the radius of the inner core Ri increases
with decreasing MOI and that one of Peales’s interior model, with Ri = 0, has no solid inner
core and the largest MOI. Figure adapted from from Baland et al. (2017b).

[0.45, 0.60], see Fig. 4 (middle panel). The shift in deviation εζ is inversely proportional
to Q, positive, and of the order of 1 arcsec (Fig. 4, right panel).

Note that the tidal Love number k2 cannot be inferred from an obliquity measurement,
because it appears in ΔεΩ and would be correlated with the polar moment if inertia which
appears in εΩ. This is why it is useful to analyze tidal and rotational measurements
together. The shift in deviation due to solid body tides, also identified analytically in
MacPherson and Dumberry (2022), along with the deviation associated with pericenter
precession-induced nutation, could explain any observed positive deviation of a few arcsec
and help to constrain Mercury’s interior structure and rheology.

3.6. Cassini state: Effect of the fluid outer core and the inner core

As shown by the measured annual librations and the tidal Love number k2, the core
of Mercury is at least partially molten. The presence of a solid inner core is suspected,
although the conclusion seems to depend on the value considered for the polar moment of
inertia: Genova et al. (2019), thanks to their small obliquity, claim to have confirmed its
presence, while Rivoldini and Van Hoolst (2013) using the larger obliquity of Margot et al.
(2012) were unable to settle the question. In the presence of a solid inner core, internal
gravitational-pressure and magnetic-viscous couplings between the internal layers could
significantly influence the obliquity of the planet, thus affecting its interpretation in terms
of interior. However, contradictory results coexist on this subject in the literature.
Peale et al. (2016) computed the mantle obliquity εm for a limited set of 13 interior

structure models, see Fig. 5 (left panel). For each interior model, εm is larger (up to
5− 10%) than the solid case obliquity ε of Eq. (1). It should be noted that no clear
relationship between εm and C/M�R2 emerges from these results, which is intriguing.

Baland et al. (2017b) tried to reproduce the results for the same set of interior models
and found other values for εm, which depend linearly on C/M�R2. They also found

that the modeled obliquity εm is only 0.5 to 1% larger than the solid case obliquity.
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Dumberry (2021), for a different set of interior models which satisfy exactly the value of
C/M�R2 = 0.3455, concluded that the presence of a solid inner core affects the mantle

obliquity by as much as 0.5%.
The problem with the results discussed above is that they are based on a set of interior

models that is unrepresentative of the current knowledge of Mercury’s internal struc-
ture. Baland et al. (2017b), using a set of plausible interior structure models based on
Rivoldini and Van Hoolst (2013), found that the modeled obliquity may be up to 2%
larger than the solid case obliquity, see Fig. 5 (right panel). An additional increase in
mantle obliquity arises in the presence of a solid inner core, due to the elastic deformations
caused by the misalignment of the solid layers, which perturb the obliquity as much as the
tidal deformations due to gravitational potential of the Sun (MacPherson and Dumberry
2022).

All in all, interpreting a measured obliquity with a model which includes the effect of
pericenter precession, solid body tides, and the internal couplings between the internal
layers, instead of the Classical Cassini state model, may lead to a polar moment of inertia
decreased by up to ∼ 2% and therefore to a more differentiated interior more likely to
include a solid inner core. For now, the actual precision (3− 4%) on the orientation
precludes further constraints on Mercury’s interior.

4. Conclusion

Mercury is in a 3:2 spin-orbit resonance and is most likely locked in a Cassini state, as
different estimates of the orientation of its spin axis tend to confirm. Precise modeling
of the rotation is required to interpret these measurements in terms of the planet’s inner
properties. The most advanced theoretical models predict a slightly larger obliquity than
the classical Peale’s equation, making the presence of a solid inner core slightly more
likely. The advanced models also predict a deviation of a few arcsec from coplanarity, in
agreement with most observations. On the basis of theoretical modelling, it is practically
impossible for the actual deviation to be zero. Long-period librations, tidal Love numbers,
and deviation of the spin axis can be used in combination with measured obliquity, annual
libration, and gravity field and with advanced rotation models to constrain Mercury’s
interior structure and rheology more precisely than with Peale’s experiment.
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