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Abstract. General relativistic deflection of light by mass, dipole, and quadrupole moments of
gravitational field of a moving massive planet in the Solar system is derived in the approximation
of the linearized Einstein equations. All terms of the order of 1 µas and larger are taken into
account, parameterized, and classified in accordance with their physical origin. We discuss the
observational capabilities of the near-future optical and radio interferometers for detecting the
Doppler modulation of the radial deflection, and the dipolar and quadrupolar light-ray bending
by Jupiter and Saturn.
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Attaining the level of a microarcsecond (µas) positional accuracy and better will com-
pletely revolutionize fundamental astrometry by merging it with relativistic gravitational
physics. Beyond the microarcsecond threshold, one will be able to observe a new range of
celestial physical phenomena caused by gravitational waves from the early universe and
various localized astronomical sources, space-time topological defects, moving gravita-
tional lenses, time variability of gravitational fields of super-massive binary black holes lo-
cated in quasars, and many others (Kopeikin et al. 1999, Wex & Kopeikin 1999, Kopeikin
& Gwinn 2000, Kopeikin & Makarov 2006). Furthermore, it will allow us to test general
theory of relativity in the Solar system in a dynamic regime, that is when the velocity-
and acceleration-dependent components of gravitational field (the metric tensor) of the
Sun and planets bring about observable relativistic effects in the light deflection, time
delay and frequency to an unparalleled degree of precision (Kopeikin 2001, Fomalont &
Kopeikin 2003, Kopeikin et al. 2007).

Preliminary calculations (Brumberg, Klioner & Kopeikin 1990) reveal that the major
planets of the Solar system are sufficiently massive to pull photons by their gravita-
tional fields, which have significant multipolar structures, in contrast with the Sun whose
quadrupole moment is only J2� � 2.3 × 10−7 (Pitjeva 2005). Moreover, in the case of a
photon propagating near the planet the interaction between the gravitational field and
the photon can no longer be considered static, because the planet moves around the Sun
as the photon traverses through the Solar system(Kopeikin & Schäfer 1999, Kopeikin
& Mashhoon 2002). The optical interferometer designed for the space astrometric mis-
sion SIM (Laskin 2006) is capable of observing optical sources fairly close in the sky
projection to planetary limbs with a microarcsecond accuracy. Similar resolution can be
achieved for radio sources with the Square Kilometer Array (SKA) (Carilli & Rawlings
2004) if it is included in the inter-continental baseline network of VLBI stations (Fo-
malont & Reid 2004). The Gaia (Perryman 2005) and JASMINE (Gouda et al. 2006)
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astrometric projects represent another alternative path to microarcsecond astrometry. It
is a challenge for the SIM and SKA interferometers as well as for Gaia and JASMINE to
measure the gravitational bending of light caused by various planetary multipoles and
the orbital motion of the planets. This measurement, if successful, will be a cornerstone
step in further deployment of theoretical principles of general relativity to fundamental
astrometry and navigation at a new and exciting technological level.

The first detection of gravitational bending of light by Jupiter was conducted in 1988
(Schuh et al. 1988, Treuhaft & Lowe 1991), and the deflection term associated with the
monopole field of Jupiter was determined to an accuracy of � 15% to be in agreement
with Einstein’s general relativity theory. Later on, the Hubble Space Telescope was used
to measure the gravitational deflection of light of the bright star HD 148898 as it passed
within a few seconds of arc near Jupiter’s limb on 24 September 1995 (Whipple et al.
1996). Kopeikin (2001) proposed to use Jupiter’s orbital motion in order to measure the
retardation effect in the time of propagation of the dynamic part of gravitational force of
Jupiter to photon, that appears as a small excess to the Shapiro time delay and should
be interpreted as a gravimagnetic dragging of light ray caused by the orbital motion
of Jupiter (Kopeikin & Fomalont 2006, Kopeikin & Fomalont 2007). This proposal was
executed experimentally in 2002 September 8, and the gravimagnetic dragging of light
was measured to � 20% accuracy (Fomalont & Kopeikin 2003) thus, complementing the
LAGEOS measurement of the gravimagnetic field induced by intrinsic rotation of the
Earth (Ciufolini 2007).

Crosta & Mignard (2006) proposed to measure the deflection-of-light term associated
with the axisymmetric (quadrupolar) part of Jupiter’s gravitational field. Detection and
precise measurement of the quadrupolar deflection of light in the Solar system is impor-
tant for providing an independent experimental support for detection of dark matter via
gravitational lensing by clusters of galaxies (Schneider, Ehlers & Falco 1992). The work
by Crosta & Mignard (2006) can be extended in several directions (Kopeikin & Makarov
2007). First, it assumes that light propagates in the field of a static planet while Jupiter
moves on its orbit as light traverses the Solar system toward the observer. Second, Crosta
& Mignard (2006) implicitly assumed that the center of mass of the planet deflecting light
rays coincides precisely with the origin of the inertial coordinate system on the sky used
for interpretation of the apparent displacements from the gravity-unperturbed (cata-
logue) positions of stars. This makes the dipole moment, Ii , of the gravitational field of
Jupiter vanish, which significantly simplifies the theoretical calculation of light bending.
However, the assumption of Ii = 0 is not practical because the instantaneous position
of the planet’s center of mass on its orbit is known with some error due to the finite
precision of the Jovian ephemeris limited to a few hundred kilometers (Pitjeva 2005).
The ephemeris error will unavoidably bring about a non-zero dipole moment that must
be included in the multipolar expansion of the gravitational field of the planet al.ong
with its mass and the quadrupole moment.

The dipolar anisotropy in the light-ray deflection pattern is a coordinate-dependent
effect and, hence, should be properly evaluated and suppressed as much as possible
by fitting the origin of the coordinate system used for data analysis to the center of
mass of the planet. Until the effect of the gravitational dipole is properly removed from
observations it will forge a model-dependent quadrupolar deflection of light because of
the translational change in the planetary moments of inertia – the effect known as the
parallel-axis theorem (Arnold 1978). This translation-induced quadrupolar distortion
of the light-ray deflection pattern should be clearly discerned from that caused by the
physical quadrupole moment of the planet J2 .
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Perhaps, the SIM, which is a Michelson-type interferometer with articulating siderostat
mirrors, holds the best prospects for precision tests of general relativity in the Solar
system through gravitational bending effects. In these experimental-gravity applications
the advantages of the SIM facility are as follows:

(a) SIM is a pointing mission.
(b) In the differential regime of operation the SIM interferometer is expected to achieve

an unprecedented accuracy of 1 µas in a single observation on stars separated on the sky
by ∼2 deg.

(c) The baseline of SIM can be rotated by 90 degrees for a dedicated observation. Two-
dimensional observations on a given set of stars are crucial for unambiguous disentangling
the dipole and quadrupole deflection patterns.

(d) SIM will self-calibrate its 15◦-wide field of view. This dramatically reduces the
correlated and/or systematic errors.

(e) SIM can observe stars and quasars as close as several arcseconds from the planetary
limb.

Extensive discussion of various fascinating science drivers and of the evolving techni-
cal possibilities has led to a concept for the Square Kilometer Array (SKA) and a set
of design goals (Carilli & Rawlings 2004). The SKA will be an interferometric array of
individual antenna stations, synthesizing an aperture with a diameter of up to several
1000 kilometers. A number of configurations will distribute the 1 million square meters
of collecting area. These include 150 stations each with the collecting area of a 90 m
telescope and 30 stations each with the collecting area equivalent to a 200 meters diam-
eter telescope. The sensitivity and versatility of SKA can provide ∼ 1 µas astrometric
precision and high quality milliarcsec-resolution images by simultaneously detecting cal-
ibrator sources near the target source if an appreciable component of SKA is contained
in elements which are more than 1000 km from the core SKA (Fomalont & Reid 2004).

Measurement of the light bending by a moving planet with microarcsecond accuracy
requires a continuous phase-referencing observation of the target and the calibrating
radio sources (Fomalont & Kopeikin 2003). The main limitation of the accuracy is the
tropospheric refraction which affects radio observations. The large-scale tropospheric
refraction can be estimated by observing many radio sources over the sky in a short
period of time. At present the determination of the global troposphere properties can
only be estimated in about one hour, and smaller angular-scale variations can not be
determined in most cases. However, the SKA, by using observations in ten sub-arrays,
on strong radio sources across the sky, will determine the tropospheric properties on
time-scales which may be as short at five minutes.

Quasars as astrometric calibrators have one peculiar property: they are variable. The
massive outflows and shocks in the jet change the intensity and the structure of the radio
emission. Hence, the position of the quasar reference point is variable by about 0.05 mas
in most quasars. Thus, the calibrators used to determine the SKA astrometric precision
to better than 10 µsec have a jitter which is somewhat larger. In order to reach the
intended angular precision, the change in the position of calibrators must be determined.

In addition to various special and general relativistic effects in the time of propagation
of electromagnetic waves from a quasar to the SKA-VLBI antenna network, we must
account for the effects produced by the planetary magnetosphere. The magnetospheric
deflection estimate reveals that a single frequency observation of the light deflection will
be affected by the magnetosphere at the level exceeding 1 µas. This assumes that we
should observe at two widely spaced frequencies to determine and eliminate the mag-
netospheric effects. The noise due to turbulence in the magnetosphere (and the Earth
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ionosphere) may also be a limiting factor.. However, this rapidly fluctuation model is
fairly pessimistic and unlikely, and would probably average out to a steady state model.

Further particular details of the theoretical study of the deflection of light by quadrupole
and higher gravitational multipoles can be found in papers (Kopeikin, Korobkov &
Polnarev 2006, Kopeikin & Makarov 2007) and references therein.
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