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Abstract

In this paper we produce infinite families of counterexamples to Jantzen’s question
posed in 1980 on the existence of Weyl p-filtrations for Weyl modules for an algebraic
group and Donkin’s tilting module conjecture formulated in 1990. New techniques to
exhibit explicit examples are provided along with methods to produce counterexamples
in large rank from counterexamples in small rank. Counterexamples can be produced
via our methods for all groups other than when the root system is of type An or B2.

1. Introduction

1.1 History
Let G be a connected reductive group over an algebraically closed field k of characteristic p > 0.
A fundamental problem in the representation theory of G is to understand the structure of Weyl
modules or, equivalently, the structure of the induced modules ∇(λ) for λ ∈ X+ a dominant
integral weight. The determination of the composition factors of ∇(λ) for all λ ∈ X+ is equivalent
to knowing the characters of simple modules for G. This central problem still remains open even
though there has been much work done to formulate new character formulas using tilting modules
and p-Kazhdan–Lusztig polynomials. In order to enhance our understanding of the structure of
∇(λ), Jantzen asked the question in 1980 as to whether the induced modules ∇(λ) have good
p-filtrations. Parshall and Scott [PS15] proved that this holds as long as p ≥ 2(h − 1) and the
Lusztig character formula holds for G. Andersen [And19] recently proved that ∇(λ) has a good
p-filtration as long as p ≥ h(h − 2).

Another important and still unresolved problem in the representation theory of G is to
determine whether a projective module for a Frobenius kernel of G has a structure as a G-
module. The expectation that this should be true dates back to the work of Humphreys and
Verma [HV73]. Donkin later conjectured that such structures should arise from tilting modules
for G (cf. [Don93]), which is now known to hold for p ≥ 2(h − 2) (and some small rank cases).
In some sense, this conjecture was implicit in [HV73], which predates the concept of tilting
modules by many years. The general method involved tensoring by the Steinberg representation
and locating an important G-summand that is known to be a tilting module by a result due to
Pillen [Pil93].
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In [BNPS20b], the authors found counterexamples to (i) Jantzen’s question (JQ) and (ii) the
tilting module conjecture (TMC). For exact statements of JQ and the TMC, see Question 2.3.1
and Conjecture 2.3.2. The counterexamples occur for the simple algebraic group of type G2 in
characteristic 2, where it was shown that the tilting module T (2, 2) is not indecomposable over
the Frobenius kernel of G and that ∇(2, 1) does not have a good p-filtration. As the first surprising
example of its kind, it provided some clarity regarding the TMC, explaining if nothing else why
it had resisted proof for nearly 30 years. After that paper was written, a number of questions still
remained to be answered. For instance, was this example an anomaly, or were there many others
like it? There is also the basic question as to what features about the representation theory
and cohomology give rise to this counterexample and what causes the tilting module T (2, 2) to
split over the Frobenius kernel. It should be noted that Kildetoft and Nakano, and Sobaje made
explicit connections between the TMC and good p-filtrations on G-modules (cf. [KN15, Sob18]).

1.2 Results
The main goal of this paper is to show that the type G2 examples were not, in fact, anomalies.
We show how to produce large families of counterexamples to JQ and the TMC. Our results are
summarized in the following theorem.

Theorem 1.2.1. Let G be a simple algebraic group over an algebraically closed field of char-
acteristic p > 0. Assume that the underlying root system Φ is not of type An or B2. Then there
exists a prime p for which G produces a counterexample to JQ and the TMC.

In particular, we can exhibit counterexamples to JQ and the TMC for the following groups:

– Φ = Bn, p = 2, n ≥ 3;
– Φ = Cn, p = 3, n ≥ 3;
– Φ = Dn, p = 2, n ≥ 4;
– Φ = En, p = 2, n = 6, 7, 8;
– Φ = F4, p = 2, 3;
– Φ = G2, p = 2.

The counterexamples in type Cn at p = 3 are particularly interesting as 3 is a good prime
for the root system. We anticipate that counterexamples exist for all Cn when n = p is prime. In
general, the question of when the TMC holds still seems quite subtle. In [BNPS22] and [And19],
it was shown that JQ and the TMC holds when Φ = B2 for all p. Moreover, it was shown in
[BNPS22] that the TMC holds in type G2 for all p > 2 and for all primes for Φ = An when n ≤ 3.
It is still possible that the TMC for Φ = An holds for all n and all p.

The paper is organized as follows. In § 2, we introduce the notation and conventions for the
paper. Two reduction theorems (cf. Theorems 2.4.1 and 2.6.1) are established for JQ and the
TMC that enable one to use counterexamples in low rank to establish counterexamples in large
rank via Levi subgroups.

Section 3 focuses on new methods to use Ext1 structural information to produce counterex-
amples to the TMC. Our new examples also give some indication as to why the failure of the
TMC is occurring. Namely, in each case one finds that there are (restricted) dominant weights
λ and μ such that the G/G1-module Ext1G1

(L(λ), L(μ)) is not a tilting module. Indeed, the
counterexamples in this paper were actually discovered by first looking for such behavior in
Ext-groups, having already observed its effect on the Φ = G2, p = 2, example in [BNPS20b].

In § 4 counterexamples to JQ and the TMC are worked out for Φ = B3, C3, and D4 via the
methods in § 3. In the following section (§ 5) the main theorem is proved. In § 6 we show how
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to produce other counterexamples using the Jantzen filtration. In particular, we exhibit other
counterexamples to the TMC in characteristic 2 for all groups of type Bn with n ≥ 3. We also
construct additional counterexamples in type Cn for p = 3 and n ≥ 3.

At the end of the paper, in § 7, we present some open problems involving the connections
with the TMC and the question of whether Ext1G1

(L(λ), L(μ)) is a tilting G/G1-module. We
view these important observations as opening the door for future investigation.

2. Preliminaries

2.1 Notation
In this paper we generally follow the standard conventions in [Jan03]. Throughout this paper k
is an algebraically closed field of characteristic p > 0. Let G be a connected semisimple algebraic
group scheme defined over Fp. The Frobenius morphism is denoted by F and the rth Frobenius
kernel will be denoted by Gr. Given a maximal torus T , the root system Φ is associated to the
pair (G, T ). Let Φ+ be a set of positive roots and Φ− be the corresponding set of negative roots.
The set of simple roots determined by Φ+ is Δ = {α1, . . . , αl}. The ordering of simple roots is
described in [Hum72] following Bourbaki.

Let B be the Borel subgroup given by the set of negative roots and let U be the unipotent
radical of B. More generally, if J ⊆ Δ, let PJ be the parabolic subgroup relative to −J , LJ

be the Levi factor of PJ and UJ be the unipotent radical. Let ΦJ be the root subsystem in Φ
generated by the simple roots in J , with positive subset Φ+

J = ΦJ ∩ Φ+.
Let E be the Euclidean space associated with Φ, and denote the inner product on E by

〈 , 〉. Set α0 to be the highest short root. Let ρ be the half-sum of positive roots and α∨ be
the coroot corresponding to α ∈ Φ. The Coxeter number associated to Φ is h = 〈ρ, α∨

0 〉 + 1. The
Weyl group associated to Φ will be denoted by W , and, for any J ⊆ Δ, let WJ be the subgroup
of W generated by reflections corresponding to simple roots in J . Let w0 (respectively, wJ,0)
denote the longest word of W (respectively, WJ , for J ⊆ Δ.). Set ρJ to be the half-sum of all
the roots in Φ+

J .
Let X := X(T ) be the integral weight lattice spanned by the fundamental weights

{ω1, . . . , ωl}, X+ be the dominant weights for G, and Xr be the pr-restricted weights. Moreover,
for J ⊆ Δ, let X+

J be the weights that are dominant on J . That is, X+
J := {λ ∈ X | 〈λ, α∨〉 ≥

0 ∀ α ∈ J}.
Let τ : G → G be the Chevalley antiautomorphism of G that is the identity morphism when

restricted to T (see [Jan03, II.1.16]). Given a finite-dimensional G-module M over k, the module
τM is M∗ (the ordinary k-linear dual of M) as a k-vector space, with action g.f(m) = f(τ(g).m).
This defines a functor from G-mod to G-mod that preserves the character of M . In particular,
it is the identity functor on all simple and tilting modules.

The following result is used throughout this section. Note that we follow the convention in
[Jan03] that the set N includes 0.

Lemma 2.1.1. Let μ ∈ X+ and w ∈ W be such that μ − wμ ∈ NJ . Then there exists wJ ∈ WJ

with wμ = wJμ.

Proof. There exists u ∈ WJ such that 〈uwμ, β∨〉 ≥ 0 for all β ∈ J, (i.e. uwμ is J-dominant). Since
u ∈ WJ , wμ − uwμ ∈ ZJ. With this and the hypothesis, μ − uwμ = (μ − wμ) + (wμ − uwμ) ∈
ZJ. However, μ ≥ uwμ, thus μ − uwμ ∈ NJ .
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If uwμ ∈ X+, then uwμ = μ and one may choose wJ = u−1 ∈ WJ . Thus, wμ = wJμ. If uwμ
is not in X+, then there exists a β ∈ Δ \ J such that 〈uwμ, β∨〉 < 0, which implies that 〈μ −
uwμ, β∨〉 > 0. This contradicts the fact that μ − uwμ ∈ NJ . �

2.2 Representations
For λ ∈ X+, there are four fundamental families of G-modules (each having highest weight λ):
L(λ) (simple), ∇(λ) = H0(λ) (costandard/induced), Δ(λ) = V (λ) (standard/Weyl), and T (λ)
(indecomposable tilting). Let Str = L((pr − 1)ρ) be the rth Steinberg module. For λ ∈ Xr, let
Qr(λ) denote the Gr-projective cover (equivalently, injective hull) of L(λ) as a Gr-module. For
λ ∈ X, if L̂r(λ) is the corresponding simple GrT -module, let Q̂r(λ) denote the GrT -projective
cover (equivalently, injective hull) of L̂r(λ). For λ ∈ X+, write λ = λ0 + prλ1 with λ0 ∈ Xr and
λ1 ∈ X+. Define ∇(p,r)(λ) = L(λ0) ⊗∇(λ1)(r), where (r) denotes the twisting of the module
action by the rth Frobenius morphism.

A G-module M has a good filtration (respectively, good (p, r)-filtration) if and only if M has
a filtration with factors of the form ∇(μ) (respectively, ∇(p,r)(μ)) for suitable μ ∈ X+. In the
case when r = 1, good (p, 1)-filtrations are often referred to as good p-filtrations.

For each λ ∈ X+
J there is a simple LJ -module LJ(λ), a standard/Weyl module ΔJ(λ), a

costandard/induced module ∇J(λ), and an indecomposable tilting module TJ(λ). Specifically,
for λ ∈ X+

J , ∇J(λ) = indPJ
B (λ) ∼= indLJ

B∩LJ
(λ). Furthermore, for λ ∈ X and r ≥ 1, set

Ẑ ′
J,r(λ) = ind(PJ )rT

BrT (λ) ∼= ind(LJ )rT
(Br∩LJ )T (λ)

and Q̂J,r(λ) to be the (LJ)rT -injective hull of the simple (LJ)rT -module L̂J,r(λ). When J = Δ,
we simply denote Ẑ ′

J,r(λ) by Ẑ ′
r(λ).

Let r ≥ 1 and write λ = λ0 + prλ1, where λ0 ∈ Xr(T ) and λ1 ∈ X+
J . By ∇(p,r)

J (λ) denote the
module

∇(p,r)
J (λ) = LJ(λ0) ⊗∇J(λ1)(r).

An LJ -module with a filtration whose factors have this form is said to have a good (p, r)-filtration.
In [Jan03, Propositions II.2.11 and II.5.21], it is observed that one has the following facts with
λ, μ ∈ X+:

(i) ∇J(λ) =
⊕

ν∈NJ ∇(λ)λ−ν ;
(ii) LJ(λ) =

⊕
ν∈NJ L(λ)λ−ν ;

(iii) [∇(λ) : L(μ)] = [∇J(λ) : LJ(μ)], whenever λ − μ ∈ NJ.

Furthermore, the arguments in [Don83] can be adapted to yield for λ, μ, λ′, μ′ ∈ X:

(iv) Ẑ ′
J,r(λ) =

⊕
ν∈NJ Ẑ ′

r(λ)λ−ν ;
(v) [Ẑ ′

r(λ) : L̂r(μ)] = [Ẑ ′
J,r(λ) : L̂J,r(μ)], whenever λ − μ ∈ NJ ;

(vi) If λ − μ ∈ NJ and 〈λ − λ′, β∨〉 = 〈μ − μ′, β∨〉 = 0 for all β ∈ J, then

[Ẑ ′
J,r(λ) : L̂J,r(μ)] = [Ẑ ′

J,r(λ
′) : L̂J,r(μ′)].

The following proposition discusses the restriction of tensor products of G-modules with
unique highest weights to Levi subgroups, with an immediate application involving induced
modules. Note that a module with ‘unique highest weight’ is not assumed to be generated by
a highest weight vector. This allows the proposition to apply, for example, to indecomposable
tilting modules.
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Proposition 2.2.1. Let λ, μ ∈ X+.

(a) If Y (λ) and Y (μ) are G-modules with unique highest weights λ and μ, respectively, then
we have an equality of LJ -modules( ⊕

ν∈NJ

(Y (λ))λ−ν

)
⊗

( ⊕
ν∈NJ

(Y (μ))μ−ν

)
=

⊕
ν∈NJ

(Y (λ) ⊗ Y (μ))λ+μ−ν .

(b) There exists an equality of LJ -modules

∇(p,r)
J (λ) =

⊕
ν∈NJ

∇(p,r)(λ)λ−ν .

Proof. (a) Clearly we have that( ⊕
ν∈NJ

Y (λ)λ−ν

)
⊗

( ⊕
ν∈NJ

Y (μ)μ−ν

)
⊆

⊕
ν∈NJ

(Y (λ) ⊗ Y (μ))λ+μ−ν .

On the other hand, if Y (λ)γ is a nonzero weight space and γ is not of the form λ − ν for some
ν ∈ NJ , then there is some simple root α ∈ Δ\J such that when λ − γ is expressed in the basis
of simple roots, the coefficient nα of α has nα > 0. For there to be a weight σ of Y (μ) such that
γ + σ = λ + μ − ν with ν ∈ NJ , we need that

λ + μ − (γ + σ) ∈ NJ

or, equivalently, that
(λ − γ) + (μ − σ) ∈ NJ.

Thus, we have that in writing μ − σ in the basis Δ, the coefficient of α is −nα, and −nα < 0.
Since μ ≥ σ, this cannot happen. A similar argument, reversing the roles of λ and μ, shows then
that we have an equality( ⊕

ν∈NJ

(Y (λ))λ−ν

)
⊗

( ⊕
ν∈NJ

(Y (μ))μ−ν

)
=

⊕
ν∈NJ

(Y (λ) ⊗ Y (μ))λ+μ−ν .

(b) With facts (i) and (ii), applying part (a) to Y (λ0) = L(λ0), with λ0 ∈ Xr, and Y (prλ1) =
∇(λ1)(r), with λ1 ∈ X+, immediately yields the result. �

2.3 JQ and the TMC
For a complete description of JQ, Donkin’s (p, r)-filtration conjecture, and Donkin’s TMC, we
refer the reader to [BNPS20b, § 2.2]. In 1980, Jantzen [Jan80] asked the following question which
lead to the formulation of the (p, r)-filtration conjecture.

Question 2.3.1. For λ ∈ X+, does ∇(λ) admit a good (p, r)-filtration?

The TMC, introduced by Donkin in 1990 [Don93], states that a projective indecomposable
module for Gr can be realized as an indecomposable tilting G-module.

Conjecture 2.3.2. For all λ ∈ Xr,

T ((pr − 1)ρ + λ)|GrT
∼= Q̂r((pr − 1)ρ + w0λ).

An alternative and equivalent formulation of the conjecture is that

T (2(pr − 1)ρ + w0λ)|GrT
∼= Q̂r(λ)

for all λ ∈ Xr.
One direction of Donkin’s (p, r)-filtration conjecture is equivalent to the following.
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Conjecture 2.3.3. For λ ∈ Xr, Str ⊗L(λ) is a tilting module.

In [Sob18], it was shown that an affirmative answer to Question 2.3.1 and Conjecture 2.3.3
implies that Conjecture 2.3.2 holds.

2.4 JQ and Levi subgroups
The following result demonstrates that JQ is compatible with restricting to Levi subgroups. This
theorem will be used later to produce counterexamples to JQ by analyzing examples in low rank.

Theorem 2.4.1. Let LJ be a Levi subgroup of G, and let λ ∈ X+. If ∇(λ) has a good (p, r)-
filtration as a G-module, then ∇J(λ) has a good (p, r)-filtration as an LJ -module. Moreover, one

obtains that [∇(λ) : ∇(p,r)(μ)] = [∇J(λ) : ∇(p,r)
J (μ)], whenever λ − μ ∈ NJ .

Proof. As an LJ -module, ∇J(λ) is a direct summand of ∇(λ) and, from fact (i) in § 2.2, is given
explicitly as the sum of weight spaces ⊕

ν∈NJ

∇(λ)λ−ν .

In particular, there is a projection map π : ∇(λ) → ∇J(λ), which is a homomorphism of LJ -
modules. In addition, it follows that on each T -weight space, π is the zero map if the weight is
not of the form λ − ν for ν ∈ NJ , otherwise π is an isomorphism onto the corresponding weight
space in the image.

If ∇(λ) has a good (p, r)-filtration, then there is a filtration of G-submodules

{0} = F0 ⊆ F1 ⊆ · · · ⊆ Fm = ∇(λ)

and dominant weights μ1, . . . , μm such that each Fi/Fi−1
∼= ∇(p,r)(μi). We can apply π to this

filtration, obtaining a filtration on ∇J(λ):

{0} = π(F0) ⊆ π(F1) ⊆ · · · ⊆ π(Fm) = ∇J(λ).

For each i, we have (by restricting π and composing with a quotient map) an LJ -module
homomorphism

πi : Fi → π(Fi)/π(Fi−1),

and clearly Fi−1 is contained in the kernel of πi. Thus, we obtain a homomorphism of LJ -modules

∇(p,r)(μi) → π(Fi)/π(Fi−1).

As noted previously, this homomorphism is nonzero if and only if ∇(p,r)(μi) has nonzero weight
vectors of the form λ − ν for ν ∈ NJ . Since λ ≥ μi, it follows (by an argument as the proof of
Proposition 2.2.1) that it is necessary (and clearly sufficient) that λ − μi ∈ NJ .

Thus, we have that

π(Fi)/π(Fi−1) ∼= ∇(p,r)
J (μi)

if λ − μi ∈ NJ , and

π(Fi)/π(Fi−1) = {0}
otherwise, so that ∇J(λ) has a good (p, r)-filtration. �

2.5 Injective hulls and Levi subgroups
It was first observed by Donkin [Don93] that the restriction of a projective indecomposable GrT
module to (LJ)rT yields a decomposition that is similar to those listed in § 2.2. As a proof was
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only outlined in [Don93], for the reader’s convenience, we include a self-contained proof that will
also be used in [BNPS23].

Theorem 2.5.1 [Don93, Proposition 2.7]. Let LJ be a Levi subgroup of G and λ ∈ Xr. Then
we have an equality of (LJ)rT -modules:

Q̂J,r((pr − 1)ρ + wJ,0λ) =
⊕
ν∈NJ

Q̂r((pr − 1)ρ + w0λ)(pr−1)ρ+λ−ν .

Proof. To prove the theorem, we define the (LJ)rT -summand M of Q̂r((pr − 1)ρ + w0λ) via

M =
⊕
ν∈NJ

Q̂r((pr − 1)ρ + w0λ)(pr−1)ρ+λ−ν .

The restriction of Q̂r((pr − 1)ρ + w0λ) to (LJ)rT is still injective and projective. Therefore, M
is also injective and projective as an (LJ)rT -module. It suffices to show that

ch M = ch Q̂J,r((pr − 1)ρ + wJ,0λ).

Verification of this latter claim will be carried out over the next several steps.
(1) Formal character of Q̂J,r((pr − 1)ρ + wJ,0λ). The (LJ)rT -module

∇J((pr − 1)ρ) = LJ((pr − 1)ρ) = Ẑ ′
J,r((p

r − 1)ρ)

is irreducible, injective and projective. In addition,

Hom(LJ )rT (LJ((pr − 1)ρ + wJ,0λ), Ẑ ′
J,r((p

r − 1)ρ) ⊗ LJ(λ))

∼= Hom(LJ )rT (LJ((pr − 1)ρ + wJ,0λ) ⊗ LJ(−wJ,0λ), LJ((pr − 1)ρ))

∼= k.

Therefore, Q̂J,r((pr − 1)ρ + wJ,0λ) is an (LJ)rT -summand of Ẑ ′
J,r((p

r − 1)ρ) ⊗ LJ(λ). The latter
has a Ẑ ′

J,r-filtration with factors of the form Ẑ ′
J,r((p

r − 1)ρ + γ), with γ being a weight of LJ(λ).
The weights of LJ(λ) are all of the form wμ with μ ∈ X+

J , w ∈ WJ , and λ − μ ∈ NJ . Note that
λ ∈ Xr, μ ∈ X+

J , and λ − μ ∈ NJ implies that μ ∈ X+. Hence, Q̂J,r((pr − 1)ρ + wJ,0λ) has an
(LJ)rT -filtration with factors of the form Ẑ ′

J,r((p
r − 1)ρ + wμ) with μ ∈ {γ ∈ X+ |λ − γ ∈ NJ}

and w ∈ WJ . By making use of Brauer–Humphreys reciprocity [Jan03, II.11.4] and WJ -invariance
[Jan03, II.9.16(5)], one obtains

ch Q̂J,r((pr − 1)ρ + wJ,0λ)

=
∑

{μ∈X+ |λ−μ∈NJ}

1
|StabWJ

(μ)|
∑

w∈WJ

[Q̂J,r((pr − 1)ρ + wJ,0λ) : Ẑ ′
J,r((p

r − 1)ρ + wμ)]

· ch Ẑ ′
J,r((p

r − 1)ρ + wμ)

=
∑

{μ∈X+ |λ−μ∈NJ}

1
|StabWJ

(μ)|
∑

w∈WJ

[Ẑ ′
J,r((p

r − 1)ρ + wμ) : LJ((pr − 1)ρ + wJ,0λ)]

· ch Ẑ ′
J,r((p

r − 1)ρ + wμ)
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=
∑

{μ∈X+ |λ−μ∈NJ}

1
|StabWJ

(μ)| · [Ẑ
′
J,r((p

r − 1)ρ + μ) : LJ((pr − 1)ρ + wJ,0λ)]

·
∑

w∈WJ

ch Ẑ ′
J,r((p

r − 1)ρ + wμ).

Using (LJ)rT -duality [Jan03, II.9.2], we obtain

[Ẑ ′
J,r((p

r − 1)ρ + μ) : LJ((pr − 1)ρ + wJ,0λ)]

= [Ẑ ′
J,r(2(pr − 1)ρJ − (pr − 1)ρ − μ) : LJ(−wJ,0(pr − 1)ρ − λ)]

= [Ẑ ′
J,r(−wJ,0(pr − 1)ρ − μ) : LJ(−wJ,0(pr − 1)ρ − λ)].

Hence,

ch Q̂J,r((pr − 1)ρ + wJ,0λ)

=
∑

{μ∈X+|λ−μ∈NJ}

1
|StabWJ

(μ)| · [Ẑ
′
J,r(−wJ,0(pr − 1)ρ − μ) : LJ(−wJ,0(pr − 1)ρ − λ)]

·
∑

w∈WJ

ch Ẑ ′
J,r((p

r − 1)ρ + wμ).

Observe also that the highest weight of Q̂J,r((pr − 1)ρ + wJ,0λ) is (pr − 1)ρ + λ.

(2) Formal character of Q̂r((pr − 1)ρ + w0λ). If one applies the calculation of step (1) to the
case J = Δ, one obtains a filtration of Q̂r((pr − 1)ρ + w0λ) with factors of the form Ẑ ′

r((p
r −

1)ρ + wμ) where μ ∈ X+ and w ∈ W. The equivalent of the last equation in step (1) is

ch Q̂r((pr − 1)ρ + w0λ) =
∑

{μ∈X+ |μ≤λ}

1
|StabW (μ)| · [Ẑ

′
r((p

r − 1)ρ − μ) : L((pr − 1)ρ − λ)]

·
∑

w∈W

ch Ẑ ′
r((p

r − 1)ρ + wμ).

(3) Formal character of M . The aforementioned Ẑ ′
r-filtration of Q̂r((pr − 1)ρ + w0λ) induces

a filtration on the (LJ)rT -summand M . Analogous to the argument in the proof of Theorem 2.4.1,
the resulting filtration will have factors of the form Ẑ ′

J,r(σ). One observes that a factor of the
form Ẑ ′

r((p
r − 1)ρ + wμ) can only contribute to the filtration of M if

(pr − 1)ρ + λ − (pr − 1)ρ − wμ = (λ − μ) + (μ − wμ) ∈ NJ.

Since both λ − μ ≥ 0 and μ − wμ ≥ 0, it follows that λ − μ ∈ NJ and that μ − wμ ∈ NJ . From
Lemma 2.1.1, the latter implies that wμ = wJμ for some wJ ∈ WJ . If these conditions are sat-
isfied, then it follows from fact (iv) in § 2.2 that the resulting (LJ)rT -factor of M is isomorphic
to

⊕
ν∈NJ Ẑ ′

r((p
r − 1)ρ + wJμ)(pr−1)ρ+λ−ν = Ẑ ′

J,r((p
r − 1)ρ + wJμ). One obtains from the above

discussion and step (2) that

ch M =
∑

{μ∈X+|λ−μ∈NJ}

1
|StabWJ

(μ)| · [Ẑ
′
r((p

r − 1)ρ − μ) : L((pr − 1)ρ − λ)]

·
∑

w∈WJ

ch Ẑ ′
J,r((p

r − 1)ρ + wμ).
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Since (pr − 1)ρ − μ − ((pr − 1)ρ − λ) = λ − μ ∈ NJ , by fact (v) in § 2.2, it follows that

[Ẑ ′
r((p

r − 1)ρ − μ) : L((pr − 1)ρ − λ)] = [Ẑ ′
J,r((p

r − 1)ρ − μ) : LJ((pr − 1)ρ − λ)]

and

ch M =
∑

{μ∈X+|λ−μ∈NJ}

1
|StabWJ

(μ)| · [Ẑ
′
J,r((p

r − 1)ρ − μ) : LJ((pr − 1)ρ − λ)]

·
∑

w∈WJ

ch Ẑ ′
J,r((p

r − 1)ρ + wμ).

(4) Comparison and completion of the proof. We claim that for λ ∈ Xr and μ ∈ X+ with
λ − μ ∈ NJ ,

[Ẑ ′
J,r((p

r − 1)ρ − μ) : LJ((pr − 1)ρ − λ)] = [Ẑ ′
J,r(−wJ,0(pr − 1)ρ − μ) : LJ(−wJ,0(pr − 1)ρ − λ)].

Note the pairs of weights on each side of the equation both differ by λ − μ. In addition,
〈(pr − 1)ρ + wJ,0(pr − 1)ρ, β∨〉 = 0, for all β ∈ J . The claim follows now from fact (vi) in
§ 2.2. Therefore, comparing the final equations of steps (1) and (3) yields the assertion of
Theorem 2.5.1. �

2.6 The TMC and Levi subgroups
Using Theorem 2.5.1, we can show that the validity of the TMC is compatible with restriction
to Levi subgroups.

Theorem 2.6.1. Let LJ be a Levi subgroup of G. If the TMC holds for G, then it also holds
for LJ .

Proof. Verifying the TMC for LJ is equivalent to showing the following: given a weight λ that is
pr-restricted on LJ , the unique indecomposable LJ -summand containing the highest weight (pr −
1)ρJ + λ in the tensor product LJ((pr − 1)ρJ) ⊗ LJ(λ) remains indecomposable as an (LJ)rT -
module.

Note that 〈(pr − 1)ρ − (pr − 1)ρJ , β∨〉 = 0 for all β ∈ J and that, given any simple pr-
restricted LJ -module V , one can always find λ ∈ Xr such that the highest weights of V and
LJ(λ) agree on all weight components corresponding to J .

It is therefore sufficient to show that, for all λ ∈ Xr, the unique indecomposable LJ -summand
containing the highest weight (pr − 1)ρ + λ in the tensor product LJ((pr − 1)ρ) ⊗ LJ(λ) is
indecomposable as an (LJ)rT -module. We denote this LJ -summand, which is tilting, by
TJ((pr − 1)ρ + λ).

The indecomposable G-tilting module T ((pr − 1)ρ + λ) appears as the unique G-summand
containing the weight (pr − 1)ρ + λ in L((pr − 1)ρ) ⊗ L(λ). From fact (ii) in § 2.2 and
Lemma 2.2.1,

LJ((pr − 1)ρ) ⊗ LJ(λ) =
⊕
ν∈NJ

(L((pr − 1)ρ) ⊗ L(λ))(pr−1)ρ+λ−ν .

It follows that TJ((pr − 1)ρ + λ) appears as an LJ -summand of T ((pr − 1)ρ + λ). More precisely,
it is a summand of the LJ -module N =

⊕
ν∈NJ T ((pr − 1)ρ + λ)(pr−1)ρ+λ−ν .

The TMC for G implies that T ((pr − 1)ρ + λ) = Q̂r((pr − 1)ρ + w0λ), as GrT -modules. We
obtain from Theorem 2.5.1 that

N =
⊕
ν∈NJ

Q̂r((pr − 1)ρ + w0λ)(pr−1)ρ+λ−ν = Q̂J,r((pr − 1)ρ + wJ,0λ),

as (LJ)rT -modules. Hence, N and TJ((pr − 1)ρ + λ) are indecomposable as (LJ)rT -modules. �
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Remark 2.6.2. Donkin observed in [Don93, Proposition 1.5(ii)] that indecomposable tilting
modules behave nicely when restricted to Levi subgroups. More precisely, he showed that for
any λ ∈ X+

TJ(λ) =
⊕
ν∈NJ

T (λ)λ−ν . (2.6.1)

Now (2.6.1) together with Theorem 2.5.1 may also be used to prove Theorem 2.6.1. In particular,
in the preceding proof of Theorem 2.6.1, it would immediately follow that TJ((pr − 1)ρ + λ) was,
in fact, equal to the module N , rather than simply being a summand; a conclusion that is also
reached at the end of the proof.

In subsequent sections, the contrapositives of Theorems 2.4.1 and 2.6.1 will be used to obtain
infinite families of counterexamples to JQ and the TMC from low rank counterexamples. To
conclude this section, we record the relationship between the validity of the TMC and of the
character of ∇J(λ) admitting the character of a module with a p-filtration.

Theorem 2.6.3. If G satisfies the TMC, then ∇J(λ) has the character of a module admitting
a good (p, r)-filtration for all λ ∈ X+, J ⊆ Δ and r ≥ 1.

Proof. Let r ≥ 1. First recall that if the TMC holds for G, then HomGr(Q̂r(σ),∇(λ)) has a good
filtration for all σ ∈ Xr and λ ∈ X+ (cf. [KN15, Theorem 9.2.3]).

Next observe that if M is a finite-dimensional G-module, then

ch M =
∑

σ∈Xr

ch L(σ) ⊗ ch HomGr(Q̂r(σ), M).

This can be proved via induction on the composition length of M and using the fact that for λ ∈
X+ with L(λ) ∼= L(λ0) ⊗ L(λ1)(r), λ0 ∈ Xr, and λ1 ∈ X+, the expression HomGr(Q̂r(σ), L(λ)) ∼=
HomGr(Q̂r(σ), L(λ0)) ⊗ L(λ)(r) vanishes unless σ = λ0, in which case it is L(λ1)(r).

Therefore, by using these facts, it follows that M = ∇(λ) has the character of a module with
a good (p, r)-filtration. The statement for ∇J(λ) where J ⊆ Δ follows by Proposition 2.2.1. �

The statement of the prior theorem for J = Δ was also observed by Kildetoft and conveyed
to the third author via a private correspondence.

3. Using extensions between simple modules to generate counterexamples

In this section, we show that the structure of the Ext1 between two simple G1-modules is a key
ingredient to the validity of the TMC. In the process of our analysis we present several related
methods for constructing counterexamples to the TMC.

3.1 First method
We begin by making the following observation.

Proposition 3.1.1. Let λ, μ ∈ X1 with λ �= μ. If the TMC holds, then Ext1G1
(L(λ), L(μ)) is a

G-submodule of HomG1(Q1(λ), Q1(μ)).

Proof. The TMC implies that Q1(σ) can be lifted to G-modules for all σ ∈ X1 and are tilting
modules. In particular, HomG1(Q1(λ), Q1(μ)) has a G-module structure. Consider

0 → L(μ) → Q1(μ) → Q1(μ)/L(μ) → 0.

1176

https://doi.org/10.1112/S0010437X24007115 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007115


On Donkin’s tilting module conjecture II: counterexamples

Using λ �= μ one immediately obtains

HomG1(L(λ), Q1(μ)/L(μ)) ∼= Ext1G1
(L(λ), L(μ)).

Next we use

0 → rad(Q1(λ)) → Q1(λ) → L(λ) → 0,

to obtain that

Ext1G1
(L(λ), L(μ)) ∼= HomG1(L(λ), Q1(μ)/L(μ)) ↪→ HomG1(Q1(λ), Q1(μ)/L(μ)).

Finally, using the first short exact sequence and the operator HomG1(Q1(λ),−) yields

Ext1G1
(L(λ), L(μ)) ↪→ HomG1(Q1(λ), Q1(μ)/L(μ)) ∼= HomG1(Q1(λ), Q1(μ)). �

Note that the TMC implies that HomG1(Q1(λ), Q1(μ))(−1) is a tilting module [KN15]. More-
over, the weights appearing in HomG1(Q1(λ), Q1(μ)) are less than or equal to 2(p − 1)ρ − λ +
ω0μ. One obtains immediately the following theorem.

Theorem 3.1.2. Let λ, μ ∈ X1 with λ �= μ. Assume the TMC holds.

(a) Then Ext1G1
(L(λ), L(μ))(−1) is a G-submodule of some tilting module whose weights γ satisfy

pγ ≤ 2(p − 1)ρ − λ + w0μ.
(b) If L(ν) ↪→ Ext1G1

(L(λ), L(μ))(−1), then L(ν) has to be a submodule of a Weyl module Δ(γ),
with pγ ≤ 2(p − 1)ρ − λ + w0μ.

Proof. (a) This follows by the observation stated before the theorem and Proposition 3.1.1.
(b) From part (a), we know that if the TMC holds, then L(ν) has to appear in the socle of

some indecomposable tilting module T (γ), with pγ ≤ 2(p − 1)ρ − λ + w0μ. The assertion follows
from the fact that a tilting module has a Weyl filtration. �

3.2 Counterexample revisited for Φ = G2

Let G be of type G2 and p = 2. It was shown in [BNPS20b] that the TMC fails in this case. We
will make use of the above set-up and give a new argument.

Let λ = 0 and μ = ω2. According to [Jan91, Proposition 5.2],

Ext1G1
(k, L(ω2))(−1) ∼= Ext1G1

(k,∇(ω2))(−1) ∼= ∇(ω1).

Moreover, 2ρ − λ + w0μ = 2ρ − ω2 = 2ω1 + ω2. The only weights γ with 2γ ≤ 2ω1 + ω2 are 0,
ω1, and ω2. The corresponding Weyl modules Δ(0), Δ(ω1), and Δ(ω2) have simple socles k, k,
and L(ω2), respectively. If the TMC held, this would contradict Theorem 3.1.2(b). Thus, the
TMC fails for G2 and p = 2.

3.3 Second method
If we assume that HomG1(Q1(λ),∇(μ)) vanishes, one obtains the following modifications of
Proposition 3.1.1 and Theorem 3.1.2.

Proposition 3.3.1. Let λ, μ ∈ X1 with λ �= μ. If the TMC holds and HomG1(Q1(λ),∇(μ)) = 0,
then Ext1G1

(L(λ),∇(μ)) is a G-submodule of HomG1(Q1(λ), Q1(μ)).

Theorem 3.3.2. Let λ, μ ∈ X1 with λ �= μ. Assume the TMC holds and HomG1(Q1(λ),
∇(μ)) = 0.

(a) Then Ext1G1
(L(λ),∇(μ))(−1) is a G-submodule of some tilting module T (γ), with pγ ≤

2(p − 1)ρ − λ + w0μ.
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(b) If L(ν) ↪→ Ext1G1
(L(λ),∇(μ))(−1), then L(ν) has to be a submodule of a Weyl module Δ(γ),

with pγ ≤ 2(p − 1)ρ − λ + w0μ.

The next result enables the employment of Theorem 3.3.2. This strategy will be used later
to produce a counterexample to the TMC in type Bn.

Proposition 3.3.3. Let λ, μ ∈ X1 satisfy the equation λ + pωi = μ + αi, where αi denotes a
simple root and ωi the corresponding fundamental weight. In addition, assume that 〈λ, α∨

i 〉 = 0.
Then there exists a G-module monomorphism

∇(ωi) ↪→ Ext1G1
(L(λ),∇(μ))(−1).

Proof. In computing G1-extensions, one has (cf. [Jan03, Lemma II.12.8])

Ext1G1
(L(λ),∇(μ))(−1) ∼= indG

B[Ext1B1
(L(λ), μ)(−1)].

There exists a short exact sequence of B-modules

0 → μ → k[U1] ⊗ μ → k[U1]/k ⊗ μ → 0,

which yields the exact sequence

0 → HomB1(L(λ), k[U1] ⊗ μ) → HomB1(L(λ), k[U1]/k ⊗ μ) → Ext1B1
(L(λ), μ) → 0.

From weight considerations one obtains a B-module injection

pωi
∼= HomB1(L(λ), μ + αi) ↪→ HomB1(L(λ), k[U1]/k ⊗ μ).

Note that 〈λ, α∨
i 〉 = 0 implies that λ − αi is not a weight of L(λ). This implies that pωi is not a

weight of HomB1(L(λ), k[U1] ⊗ μ). Consequently, there is an injection

pωi ↪→ Ext1B1
(L(λ), μ).

Since induction is left-exact, one obtains a G-module monomorphism:

∇(ωi) ↪→ Ext1G1
(L(λ),∇(μ))(−1). �

3.4 Third method
For a restricted weight λ ∈ X1 and a dominant weight μ, we will look at HomG1(Q1(λ),∇(μ)).
If the TMC holds, then it follows from [KN15, Theorem 9.2.3] that HomG1(Q1(λ),∇(μ))(−1)

has a good filtration. The idea now is to find appropriate weights λ and μ that violate this last
statement. We will use this technique to produce counterexamples for groups of type B3 with
p = 2 and type C3 with p = 3.

4. Low-rank counterexamples

4.1 Summary of results
In this section, we show that the TMC fails and JQ has a negative answer for G when Φ = B3,
C3, and D4. In particular, the following theorem is proved.

Theorem 4.1.1. Let G be a simple algebraic group. Then T (2(p − 1)ρ) is not isomorphic to
Q̂1(0) as a G1T -module in the following cases:

(a) Φ = B3, p = 2;
(b) Φ = C3, p = 3;
(c) Φ = D4, p = 2.
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In the cases (a)–(c), there exists an induced module ∇(λ), λ ∈ X+, that does not admit a good
p-filtration.

4.2 Jantzen filtration and Jantzen sum formula
Several of the important calculations that we will use are derived via the Jantzen filtration
(cf. [Jan03, Proposition II.8.19]) as described in the following.

For each λ ∈ X+, there is a filtration of G-modules

Δ(λ) = Δ(λ)0 ⊇ Δ(λ)1 ⊇ Δ(λ)2 ⊇ · · ·
such that radGΔ(λ) = Δ(λ)1 and Δ(λ)/Δ(λ)1 ∼= L(λ). Moreover,∑

i>0

ch Δ(λ)i =
∑

α∈Φ+

∑
0<mp<〈λ+ρ,α∨〉

νp(mp)χ(sα,mp · λ).

4.3 Some character data
For Φ = Bn when p = 2, we record the following information about the structure of various
representations.

Lemma 4.3.1. Let G be of type Bn, n ≥ 3, and p = 2.

(a) The composition factors of ∇(ω1) are L(ω1) and the trivial module, each appearing once.
In particular, the head of ∇(ω1) consists of the trivial module.

(b) For n odd, the module ∇(ω2) is uniserial with the three composition factors of L(ω2), L(ω1)
and the trivial module, listed from bottom to top. Its head consists of the trivial module.

(c) For n even, the module ∇(ω2) has four composition factors: L(ω2), L(ω1), and the trivial
module with multiplicity two. Its head consists of just one copy of the trivial module.

(d) For n = 3, the dominant weights appearing in the simple module L(ω1 + ω2) are ω1 + ω2

with multiplicity one, 2ω3 with multiplicity two, and ω1 with multiplicity four.

Proof. Note that ∇(ω2) is the dual of the adjoint representation. Claims (a) through (c) can be
found in [Jan91, Proposition 6.9(a)] and its proof.

For part (d), one can make use of the special isogenies between types Bn and Cn that exist
for p = 2 (see [DS96, I.3]). As a result, one obtains a sharpened version of the Steinberg tensor
product theorem [DS96, I.4.2(3)]. The character of the B3-module L(ω1 + ω2) can be obtained via
the character of the C3-module L(ω1 + ω2), which is identical to the C3-module ∇(ω1 + ω2). �

4.4 Φ = B3 and p = 2
In [BNPS22] it was shown that the TMC holds for a group of type B2 and all primes. In this
section, the third method that was introduced in § 3.4 is used to show that the TMC fails for a
group of type B3 and p = 2.

4.4.1 TMC. Assume that T (2ρ) |G1T
∼= Q̂1(0). We show in the following that HomG1(Q̂1(0),

∇(2ω2))(−1) does not afford a good filtration, thereby obtaining a contradiction to [KN15,
Theorem 9.2.3].

The dominant weights less than or equal to 2ω2 are 2ω2, ω1 + 2ω3, ω1 + ω2, 2ω3, 2ω1, ω2,
ω1, and 0. All of these are linked to 2ω2 and also appear in ∇(2ω2). Note that ω3 is minus-
cule. Lemma 4.3.1 provides, therefore, sufficient data to determine the characters of all simple
modules with highest weights from the above list as well as all the decomposition numbers for
all ∇(σ) with weights from the list. Alternatively, one could also refer to the tables in [Lub].
For our argument we make use of the Jantzen filtration for the Weyl module Δ(2ω2). The
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following table lists the multiplicities of each composition factor of Δ(2ω2) as well as the multi-
plicities of each simple factor in the Jantzen sum formula. We include only weights with positive
multiplicity.

λ [Δ(2ω2) : L(λ)] [
∑

i>0 ch Δ(2ω2)i : L(λ)]

2ω2 1 0
ω1 + 2ω3 1 1
ω1 + ω2 1 2
2ω1 2 2
ω2 2 4
0 2 2

This table indicates that any composition factor with highest weight ω1 + 2ω3, 2ω1, or 0
has to appear in the second highest layer of the Jantzen filtration, that is, in Δ(2ω2)1/Δ(2ω2)2.
Hence, only composition factors with highest weight ω2 or ω1 + ω2 appear in Δ(2ω2)2. Recall
the τ -functor as defined in § 2.1. Set S =τ(Δ(2ω2)/Δ(2ω2)2). Then one obtains the short exact
sequence via the τ -functor:

0 → S → ∇(2ω2) →τ(Δ(2ω2)2) → 0.

It follows that
HomG1(Q̂1(0),∇(2ω2)) ∼= HomG1(Q̂1(0), S).

In addition, there exists an embedding ∇(ω2)(1) ↪→ ∇(2ω2). Since none of the composition factors
of ∇(ω2)(1) appear in τ(Δ(2ω2)2) one obtains an embedding ∇(ω2)(1) ↪→ S. Lemma 4.3.1(b) now
yields embeddings

L(ω1)(1) ↪→ ∇(ω1)(1) ↪→ S/L(ω2)(1) =τ(Δ(2ω2)1/Δ(2ω2)2).

Note that the layers in the Jantzen filtration are τ -invariant (cf [Jan03, II.8.19(3)]). One obtains
a projection π : S � L(ω1)(1). Next we define Q via

0 → ∇(ω2)(1) → S → Q → 0.

Since ∇(ω2) has a simple head isomorphic to the trivial module, π has to factor through Q.
Therefore, both Q and HomG1(Q̂1(0), Q) map onto L(ω1)(1). Since both [S : L(ω1)(1)] and [S : k]
are at most two, one concludes, via subtraction of the character of ∇(ω2)(1), that [Q : L(ω1)(1)]
= 1 and that [Q : k] ≤ 1. No other composition factor of Q can contribute to HomG1(Q̂1(0), Q).
The character of HomG1(Q̂1(0), Q)(−1) is therefore either equal to the character of L(ω1) or to
the character of L(ω1) together with a trivial character. Since HomG1(Q̂1(0), Q)(−1) maps onto
L(ω1) and ∇(ω1) �= L(ω1) one concludes that HomG1(Q̂1(0), Q)(−1) cannot have a good filtration.

On the other hand, by looking at

0 → HomG1(Q̂1(0),∇(ω2)(1)) → HomG1(Q̂1(0), S) → HomG1(Q̂1(0), Q) → 0

which is equivalent to

0 → ∇(ω2)(1) → HomG1(Q̂1(0),∇(2ω2)) → HomG1(Q̂1(0), Q) → 0,

one concludes that HomG1(Q̂1(0),∇(2ω2))(−1) does not afford a good filtration.

4.4.2 JQ. We show that the induced module ∇(2ω2) does not afford a good p-filtration.
Suppose that ∇(2ω2) has a good p-filtration. From the data given in the table of § 4.4.1, one con-
cludes that the factors ∇(ω2)(1) and ∇(ω1)(1) each have to appear once in such a filtration. The
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first, ∇(ω2)(1), appears at the very bottom of any good p-filtration. Then V := ∇(2ω2)/∇(ω2)(1)

also has as good p-filtration with one of the factors being ∇(ω1)(1). The module ∇(ω1)(1) has
two composition factors: the trivial module k and L(ω1)(1). Further, we would have [V : L(ω1)(1)]
= 1 = [V : k]. By the nature of ∇(ω1)(1), in the radical series for V , the copy of k must appear
higher than the L(ω1)(1). This means that the k must appear above the L(ω1)(1) in any com-
position series for V (as, in general, a composition series is a refinement of the radical series).
However, the argument in the previous section shows that there exists a composition series of V
in which a composition factor of the form L(ω1)(1) appears higher than the factor isomorphic to
the trivial module; a contradiction.

4.4.3 The methods of § 3 suggest a connection between the validity of the TMC and good
filtrations on G1-extension groups. With an eye towards a more precise connection (that will
be discussed further in § 7), we note that, from [DS96, Table II.2.5(a) on page 2632] or [Jan91,
Proposition 6.9],

Ext1G1
(k, L(ω2))(−1) ∼= ∇(ω1),

which is not tilting.

4.5 Φ = C3 and p = 3
We again employ the method introduced in § 3.4 to show that the TMC fails in this case.

4.5.1 TMC. By using the Jantzen filtration one obtains the following tables.

λ
∑

i>0 ch Δ(λ)i

(0, 0, 0) ∅
(0, 1, 0) χ(0, 0, 0)
(1, 0, 1) χ(0, 1, 0) − χ(0, 0, 0)
(0, 0, 2) ∅
(1, 1, 1) χ(0, 0, 2) + 2 × χ(1, 0, 1) − χ(0, 1, 0) + χ(0, 0, 0)
(0, 3, 0) χ(1, 1, 1) − χ(0, 0, 2) − χ(1, 0, 1) + 2 × χ(0, 1, 0) − χ(0, 0, 0)
(2, 0, 2) 2 × χ(1, 1, 1) + χ(0, 0, 2) − 2 × χ(1, 0, 1) + χ(0, 1, 0) − χ(0, 0, 0)
(2, 1, 2) χ(2, 0, 2) + 2 × χ(0, 3, 0) − χ(0, 0, 2) + χ(1, 0, 1) − 2 × χ(0, 1, 0) + χ(0, 0, 0)

λ [
∑

i>0 ch Δ(λ)i : L(0, 0, 0)] λ [
∑

i>0 ch Δ(λ)i : L(0, 3, 0)]

(0, 0, 0) 0 (2, 0, 2) 0
(0, 1, 0) 1 (2, 1, 2) 2
(1, 0, 1) 0
(0, 0, 2) 0
(1, 1, 1) 0
(0, 3, 0) 1
(2, 0, 2) 0
(2, 1, 2) 1

Assume that T (4ρ) |G1T
∼= Q̂1(0, 0, 0). From these tables, we conclude that[ ∑

i>0

ch Δ(2, 1, 2)i : L(0, 0, 0)
]

= [Δ(2, 1, 2) : L(0, 0, 0)] = 1,

1181

https://doi.org/10.1112/S0010437X24007115 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007115


C. P. Bendel et al.

whereas

[Δ(2, 1, 2)2 : L(0, 0, 0)] = 0.

Note that the only non-restricted composition factor of Δ(2, 1, 2) has highest weight (0, 3, 0) and
that [

∑
i>0 ch Δ(2, 1, 2)i : L(0, 3, 0)] = 2. There are two possibilities:

Case 1: [Δ(2, 1, 2)2 : L(0, 3, 0)] = 0. This implies that [Δ(2, 1, 2) : L(0, 3, 0)] = 2 and, therefore,

ch HomG1(T (4ρ) : ∇(2, 1, 2))(−1) = ch HomG1(Q̂1(0, 0, 0),∇(2, 1, 2))(−1)

= ch HomG1(Q̂1(0, 0, 0), Δ(2, 1, 2))(−1)

= 2 · ch L(0, 1, 0) + ch L(0, 0, 0).

Since ∇(ω2) has composition factors L(ω2) and k, ch HomG1(T (4ρ) : ∇(2, 1, 2))(−1) cannot be
the character of a module with a good filtration. Thus, we obtain a contradiction to [KN15,
Theorem 9.2.3].

Case 2: [Δ(2, 1, 2)2 : L(0, 3, 0)] = 1. This implies that [Δ(2, 1, 2) : L(0, 3, 0)] = 1. Define Q via
the exact sequence

0 → Δ(2, 1, 2)2 → Δ(2, 1, 2) → Q → 0,

which gives rise to the short exact sequence

0 → HomG1(Q̂1(0, 0, 0), Δ(2, 1, 2)2)(−1) → HomG1(Q̂1(0, 0, 0), Δ(2, 1, 2))(−1)

→ HomG1(Q̂1(0, 0, 0), Q)(−1) → 0.

This sequence is equivalent to

0 → L(0, 1, 0) → HomG1(Q̂1(0, 0, 0), Δ(2, 1, 2))(−1) → L(0, 0, 0) → 0.

Its dual version is

0 → L(0, 0, 0) → HomG1(Q̂1(0, 0, 0),∇(2, 1, 2))(−1) → L(0, 1, 0) → 0.

Again we obtain a contradiction to [KN15, Theorem 9.2.3].

4.5.2 JQ. We show that the induced module ∇(2, 1, 2) does not afford a good p-filtration.
Assume that ∇(2, 1, 2) has a good p-filtration. The weight 3ω2 is maximal among the dominant
weights of the form 3γ that appear in ∇(2, 1, 2). From the data given in the tables in § 4.5.1,
one can see that ∇(ω2)(1) has to appear at least once, possibly twice, in any good p-filtration of
∇(2, 1, 2). Note that ∇(ω2) has two composition factors with highest weights ω2 and 0. Corre-
spondingly, ∇(ω2)(1) will have factors L(ω2)(1) (socle) and k (head). As argued in § 4.4.2 for type
B3, for ∇(2, 1, 2) to admit a good p-filtration, every appearance of L(ω2)(1) must lie below an
occurrence of k in its radical series, and, hence, in any composition series. Consider cases 1 and
2 as in the argument of § 4.5.1. In the first case, ∇(2, 1, 2) would have two copies of L(ω2)(1), but
only a single copy of k; a clear contradiction. In case 2, k appears in Δ(2, 1, 2)1, whereas L(ω2)(1)

appears in Δ(2, 1, 2)2 (and only once in Δ(2, 1, 2)). Dualizing, there exists a composition series of
∇(2, 1, 2) for which a composition factor isomorphic to L(ω2)(1) appears higher than any trivial
module. With this contradiction, we conclude that ∇(2, 1, 2) does not afford a good p-filtration.

1182

https://doi.org/10.1112/S0010437X24007115 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007115


On Donkin’s tilting module conjecture II: counterexamples

4.5.3 From the table in § 4.5.1, one obtains that [∇(1, 1, 1) : k] = 0 and, therefore,
HomG1(k,∇(1, 1, 1)/L(1, 1, 1)) = 0. From [Jan91, Proposition 4.1 and § 4.2], one has

Ext1G1
(k, L(1, 1, 1))(−1) ↪→ Ext1G1

(k,∇(1, 1, 1))(1) ∼= ∇(ω2).

Furthermore, from [Jan91, Proposition 4.5],

L(ω2) ↪→ Ext1G1
(k, L(1, 1, 1))(−1).

It follows that Ext1G1
(k, L(1, 1, 1))(−1) is not tilting.

Remark 4.5.1. More generally, consider the case of type Cp for p ≥ 3. The module ∇(ω2) is not
simple. It has two composition factors: L(ω2) and the trivial module k. It follows from [Jan91,
Proposition 4.1, § 4.2, and Proposition 4.5] that Ext1G1

(k,∇(pω2 − α2))(−1) ∼= ∇(ω2) and one has
an exact sequence

0 → (∇(pω2 − α2)/L(pω2 − α2))G1 → Ext1G1
(k, L(pω2 − α2)) → Ext1G1

(k,∇(pω2 − α2)),

where the image of the last map contains L(ω2)(1). By direct computation, the only dominant
weight γ for which pγ is a weight of ∇(pω2 − α2) is γ = 0. As such, (∇(pω2 − α2)/L(pω2 −
α2))G1 is a (possibly empty) sum of trivial modules. If this term vanishes, we would see that
Ext1G1

(k, L(pω2 − α2))(−1) is not a tilting module, but we have been unable to confirm this. We
speculate that this is the case and that the TMC fails in type Cp for p ≥ 3.

4.6 Φ = D4 and p = 2
In this section the first method introduced in § 3.1 is used to show that the TMC fails for D4

and p = 2.

4.6.1 TMC. We demonstrate that the tilting module T (2ρ) is not isomorphic to Q̂1(0) as a
G1T -module. According to [DS96, 3.4(b), p. 2659] (cf. also [Sin94]),

Ext1G1
(k, L(ω1 + ω3 + ω4)) ∼= k ⊕ L(ω2)(1). (4.6.1)

Assume that the TMC holds. Then, according to Proposition 3.1.1,

L(ω2)(1) ↪→ Ext1G1
(L(0), L(ω1 + ω3 + ω4)) ↪→ HomG1(Q̂1(0), Q̂1(ω1 + ω3 + ω4)). (4.6.2)

Moreover, according to Theorem 3.1.2(b), L(ω2) must appear in the socle of a Weyl module
Δ(γ) with highest weight less than or equal to 2ρ − (ω1 + ω3 + ω4) = ρ + ω2. Any weight γ that
is linked to ω2 and satisfies 2γ ≤ ρ + ω2 is contained in the following list:

ω1 + ω3 + ω4, 2ω1, 2ω3, 2ω4, ω2, 0.

The module Δ(ω2) is the dual of the adjoint representation. Its radical consists of two copies of
the trivial module. The modules Δ(2ωi) with i ∈ {1, 3, 4} are uniserial with the trivial module
as their socle and a middle consisting of L(ω2) (cf. [Sin94, Lemma 4.3]).

Next we observe that L(ω2) does not appear in the socle of Δ(ω1 + ω3 + ω4). We embed
Δ(ω1 + ω3 + ω4) in Δ(ω1) ⊗ Δ(ω3 + ω4) and show that

HomG(L(ω2), Δ(ω1) ⊗ Δ(ω3 + ω4)) ∼= HomG(∇(ω3 + ω4), L(ω2) ⊗ Δ(ω1)) = 0.

Note that Δ(ω1) ∼= L(ω1) while ∇(ω3 + ω4) has length two with simple head L(ω1). Moreover, a
straightforward character calculation shows that L(ω2) ⊗ L(ω1) has composition factors L(ω1 +
ω2) and L(ω3 + ω4). Since L(ω1) does not appear as a factor, the socle of Δ(ω1 + ω3 + ω4) does
not contain L(ω2), giving a contradiction to Theorem 3.1.2.
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Thus, at least one of Q̂1(0) or Q̂1(ω1 + ω3 + ω4)) is not a tilting module. From character
data (particularly, that the dominant weights of ∇(ω2) are only ω2 and 0), T (ρ + ω2) |G1T

∼=
Q̂1(ω1 + ω3 + ω4). Therefore, T (2ρ) cannot be isomorphic to Q̂1(0), as a G1T -module.

4.6.2 JQ. It was shown in [BNPS20a, 5.6] that Conjecture 2.3.3 holds in this case. Moreover,
from [Sob18] we know that an affirmative answer to JQ (i.e. Question 2.3.1) together with
Conjecture 2.3.3 implies that the TMC holds. Since the TMC fails here, one concludes that
there exists a dominant weight for which JQ does not have a positive answer.

5. Proof of the main theorem

5.1 Proof
The following is a list of groups and their root systems for which the small rank groups of
Theorem 4.1.1 appear naturally as Levi subgroups:

– B3, appears in Bn, n ≥ 3, and in F4;
– C3, appears in Cn, n ≥ 3, and in F4;
– D4, appears in Dn, n ≥ 4, and in En, n = 6, 7, 8.

This allows one to apply the contrapositive of Theorem 2.6.1 and extend the statement
concerning the TMC of Theorems 4.1.1 to the root systems listed in § 1.2, for their respective
primes. Similarly, the contrapositive of Theorem 2.4.1 together with §§ 4.4.2, 4.5.2, and 4.6.2
immediately verify the part of the main theorem concerning JQ.

The following section gives a more precise statement concerning the failure of the TMC.

5.2 Statement with weights
Keeping track of the weights in Theorem 4.1.1 as well as including the counterexamples of
Theorems 6.1.2 and 6.5.1, provides for a more extensive list of cases in which the TMC fails. We
also include the original counterexample in [BNPS20b].

Theorem 5.2.1. Let G be a simple algebraic group over an algebraically closed field of
characteristic p > 0 with underlying root system Φ and λ a p-restricted weight. Then

T ((p − 1)ρ + λ)|G1T �= Q̂1((p − 1)ρ + w0λ),

provided the triple (Φ, p, λ) appears in the following list:

– Φ = Bn, n ≥ 3, p = 2, and
(i) 〈λ, α∨

i 〉 = p − 1, for n − 2 ≤ i ≤ n, or
(ii) for some k with 1 ≤ k ≤ n − 2, 〈λ, α∨

i 〉 = p − 1, for i ∈ {k, k + 1}, and 〈λ, α∨
i 〉 = 0, for

k + 2 ≤ i;
– Φ = Cn, n ≥ 3, p = 3, and

〈λ, α∨
i 〉 = p − 1, for n − 1 ≤ i ≤ n, and 〈λ, α∨

n−2〉 ∈ {p − 2, p − 1};
– Φ = Dn, n ≥ 4, p = 2, and 〈λ, α∨

i 〉 = p − 1, for n − 3 ≤ i ≤ n;
– Φ = En, n = 6, 7, 8, p = 2, and 〈λ, α∨

i 〉 = p − 1, for 2 ≤ i ≤ 5;
– Φ = F4,

(i) p = 2 and 〈λ, α∨
i 〉 = p − 1, for 1 ≤ i ≤ 2, or

(ii) p = 3, 〈λ, α∨
i 〉 = p − 1, for 2 ≤ i ≤ 3, and 〈λ, α∨

4 〉 ∈ {p − 2, p − 1};
– Φ = G2, p = 2, and λ = (p − 1)ρ.

Proof. For type Bn and p = 2, when n = 3, case (i) follows from § 4.4.1, where λ = ρ = (1, 1, 1).
For n > 3, one may consider the Levi subgroup LJ associated to J = {αn−2, αn−1, αn}. Let
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λ = (∗, . . . , ∗, 1, 1, 1) be any p-restricted weight. Then the TMC fails for TJ((p − 1)ρJ + λ) over
LJ . Applying the contrapositive of Theorem 2.6.1, the TMC must fail for T ((p − 1)ρ + λ) over
G. In case (ii), for any n ≥ 3, the base case of λ = (1, 1, 0, . . . , 0) follows from Theorem 6.1.2.
For n > 4 and λ = (∗, . . . , ∗, 1, 1, 0, . . . , 0), where the 1s lie in the kth and (k + 1)th spots (with
k ≤ n − 2), one uses a Levi subgroup LJ associated to J = {αk, αk+1, . . . , αn}.

For type Cn and p = 3, when n = 3, one base case is λ = (2, 2, 2), given in § 4.5.1. For
n > 3, the case of λ = (∗, . . . , ∗, 2, 2, 2) follows by using the Levi subgroup LJ associated to
J = {αn−2, αn−1, αn}. The second type C3 base case of λ = (1, 2, 2) is given in Theorem 6.5.1,
from which the general case of λ = (∗, . . . , ∗, 1, 2, 2) similarly follows.

For type Dn and p = 2, when n = 4, the base case of λ = ρ = (1, 1, 1, 1) is given in § 4.6.1.
For n > 4, the case of λ = (∗, . . . , ∗, 1, 1, 1, 1) follows using a Levi subgroup LJ associated to
J = {αn−3, αn−2, αn−1, αn}. This type D4 case also gives the type En cases by using a Levi
subgroup LJ associated to J = {α2, α3, α4, α5}.

For type F4 and p = 2, we start with the base case of λ = (1, 1, 0) for a type B3 group,
as above. Using a Levi subgroup LJ associated to J = {α1, α2, α3} gives the F4 case of λ =
(1, 1, ∗, ∗). Note that starting with the λ = (1, 1, 1) case for type B3 does not generate any
additional examples in type F4. For p = 3, we use the two type C3 cases of λ = (2, 2, 2) or
λ = (1, 2, 2) and a Levi subgroup associated to J = {α2, α3, α4} to give the type F4 cases of
λ = (∗, 2, 2, 2) or (∗, 2, 2, 1), respectively. Note the ordering swap when changing from type C3

to F4, as the root α2 is the long root, whereas α3, α4 are the short roots in the type C3 subroot
system.

Lastly, the type G2 case follows from [BNPS20b]. �
Remark 5.2.2. For all pairs (Φ, p) that appear above one always has

T (2(p − 1)ρ)|G1T � Q̂1(0).

5.3 Remarks about the proof
Our goal was to keep the calculations for the low rank groups in § 4 fairly self-contained. We
make use of Ext-data that appears in the literature, mainly due to Jantzen [Jan91], and to
Dowd and Sin [DS96]. In addition, we apply Weyl’s character formula, via the computer algebra
package [LCL92], and perform explicit calculations of the multiplicities appearing in the Jantzen
filtration. Some of these calculations are obtained via a short computer program written for LiE.
However, we owe a debt of gratitude to Frank Lübeck for his tables of weight multiplicites [Lub]
and to Stephen Doty for his [GAP21] package WeylModules [Dot09]. These enabled us to look
at various examples and observe many of the phenomena that are described in the paper.

6. More counterexamples

6.1 Type Bn revisited
With the use of Theorem 2.6.1 and Levi subgroups, we have already observed in Theorem 5.2.1
that the TMC fails for type Bn, n ≥ 3, and p = 2, based on a counterexample in type B3. We
present here a direct proof of the failure of the TMC for all n ≥ 3, noting that these counterex-
amples do not arise from Levi subgroups, thus demonstrating further subtleties in the question
of when the TMC holds. Here we make use of the construction outlined in § 3.3. As observed
in Theorem 5.2.1, Levi subgroups may also be used to generate further examples from these
examples.

A key result that is used involves having some information about the socles of Weyl modules.
The proof of the next proposition is technical and is provided in § 6.4.
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Proposition 6.1.1. Let G be of type Bn, n ≥ 3, and p = 2. Let σ ∈ X+. If σ < ρ − ω1 and
L(σ) appears as a composition factor of ∇(ρ − ω1), then σ < ρ − ω1 − ω2.

With Proposition 6.1.1, one can produce new counterexamples to the TMC for type Bn,
n ≥ 3, and p = 2.

Theorem 6.1.2. Let G be a simple algebraic group of type Bn, n ≥ 3, and p = 2. The tilting
module T (ρ + ω1 + ω2) is not isomorphic to Q̂1(ρ − ω1 − ω2) as a G1T -module.

Proof. Assume that the TMC holds for the tilting module T (ρ + ω1 + ω2). Set λ = ρ −
ω1 − ω2 and μ = ρ − ω1. Note that λ + 2ω1 = μ + α1 and that 〈λ, α∨

1 〉 = 0. It follows from
Proposition 3.3.3 that

L(ω1) ↪→ ∇(ω1) ↪→ Ext1G1
(L(λ),∇(μ))(−1).

In addition, Proposition 6.1.1 implies that HomG1(Q̂1(λ),∇(μ)) = 0. From Proposition 3.3.1 one
concludes that

L(ω1) ↪→ HomG1(Q̂1(λ), Q̂1(μ))(−1).

Using Theorem 3.3.2, one concludes that L(ω1) is a submodule of some Δ(γ) with 2γ ≤ 2ρ −
(ρ − ω1) − (ρ − ω1 − ω2) = 2ω1 + ω2. The only possibilities for γ with 2ω1 ≤ 2γ ≤ 2ω1 + ω2 are
ω1 and ω2. Now Lemma 4.3.1 implies that the corresponding Weyl modules Δ(ω1), and Δ(ω2)
both have the trivial module as their simple socle, a contradiction. It follows from character data
(the only dominant weights of ∇(ω1) are ω1 and 0) that T (ρ + ω1) is isomorphic to Q̂1(ρ − ω1)
as a G1T -module. From this argument, we can conclude that T (ρ + ω1 + ω2) is not isomorphic
Q̂1(ρ − ω1 − ω2) as a G1T -module. �

6.2 Euler characteristic
To prove Proposition 6.1.1, we consider the Jantzen filtration on Δ(ρ − ω1). Recall from § 4.2
that for any λ ∈ X+ ∑

i>0

ch Δ(λ)i =
∑

α∈Φ+

∑
0<mp<〈λ+ρ,α∨〉

νp(mp)χ(sα,mp · λ).

The goal is to show that (for λ = ρ − ω1) most of the χ(sα,mp · λ) appearing in the sum, in fact,
vanish.

We first recall some general facts about the Euler characteristic χ(μ) for a weight μ, which
is defined as

χ(μ) =
∑
ı≥0

(−1)ich(Ri indG
B μ).

The statements and the proofs can be found in [Jan03, II 5.4, 5.9, 8.19].

Lemma 6.2.1. Let μ ∈ X.

(a) If there exists α ∈ Δ with 〈μ, α∨〉 = −1, then χ(μ) = 0.
(b) For w ∈ W , χ(w · μ) = (−1)	(w)χ(μ).
(c) In particular, for α ∈ Δ, χ(sα · μ) = −χ(μ).
(d) For α ∈ Φ+, χ(sα,mp · λ) = −χ(λ − mpα).

6.3 Vanishing of χ
We next identify a condition for vanishing of χ(μ) in type Bn that is used repeatedly in § 6.4.
The condition is stated in terms of the epsilon-basis for weights. To this point in the paper, per
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standard convention, weights have been given in the omega-basis, that is, expressing a weight
as a linear combination of the fundamental dominant weights ωi. By the epsilon-basis, we mean
expressing a weight in terms of the standard basis vectors εi of the underlying Euclidean space
E. For clarity in this section, we are explicit about which basis is being used. When weights
are written in component notation, let με denote the weight μ in the epsilon-basis and μω

denote the weight the omega-basis. More precisely, for μ ∈ X, the notation με = (c1, c2, . . . , cn)
for integers {cs} means μ =

∑n
s=1 csεs, whereas μω = (c1, c2, . . . , cn) for integers {cs} means

μ =
∑n

s=1 csωs. For example, in type B3, ρ = 5
2ε1 + 3

2ε2 + 1
2ε3 = ω1 + ω2 + ω3, and so we write

ρε = (5
2 , 3

2 , 1
2) and ρω = (1, 1, 1). In the epsilon-basis, the positive roots for Φ = Bn consist of

{εi + εj , 1 ≤ i < j ≤ n}, {εi − εj , 1 ≤ i < j ≤ n}, and {εi, 1 ≤ i ≤ n}.
Lemma 6.3.1. Assume that the root system Φ is of type Bn or Cn. Let μ ∈ X with μ + ρ =∑n

s=1 msεs for integers {ms}. If there exist 1 ≤ i < j ≤ n with |mi| = |mj |, then χ(μ) = 0.

Proof. Let Φ be a root system of type B or C. Note that the condition on μ + ρ implies that
there is a root β ∈ Φ such that 〈μ + ρ, β∨〉 = 0 (e.g. β = εi ± εj as appropriate). Using the W -
invariance of the inner product we can find w ∈ W and α ∈ Δ such that 〈w · μ, α∨〉 = −1. It
follows from Lemma 6.3.1(a) and (b) that χ(μ) = 0. �

6.4 Proof of Proposition 6.1.1
We are now ready to compute the Jantzen sum formula for Δ(ρ − ω1) in type Bn and p = 2.
Proposition 6.1.1 will follow from the result below, since ρ − ωm − ωm+1 < ρ − ω1 − ω2 for m ≥ 2.

Proposition 6.4.1. Let Φ be of type Bn with n ≥ 3 and p = 2. In the Jantzen sum formula,∑
i>0

ch Δ(ρ − ω1)i =
∑

mμχ(μ),

for integers mμ, where μ = ρ − ωm − ωm+1 for m being even and at least 2.

Proof. Set λ = ρ − ω1. Then λ + ρ = 2ρ − ω1 = (2n − 2)ε1 +
∑n

s=2(2(n − s) + 1)εs or

(λ + ρ)ε = (2n − 2, 2n − 3, 2n − 5, . . . , 3, 1). (6.4.1)

For each positive root α, which will be considered in the epsilon-basis, we consider all χ(sα,2m · λ)
that may occur. More precisely, using Lemma 6.2.1(d), we consider χ(λ − 2mα). For many α,
by the nature of λ − 2mα + ρ, we may apply Lemma 6.3.1 to conclude that χ(λ − 2mα) (and,
hence, χ(sα,2m · λ)) is zero. In some other cases, we show that while terms initially survive, they
appear more than once and will cancel, in the end leaving only the stated weights.

Case 1: α = εi + εj for 1 < i < j ≤ n. Here 〈λ + ρ, α∨〉 = 2(n − i) + 2(n − j) + 2. We show that
χ(λ − 2mα) = 0 for 2 ≤ 2m ≤ 2(n − i) + 2(n − j) by considering the components of (λ + ρ −
2mα)ε and applying Lemma 6.3.1. Write (λ + ρ − 2mα)ε = (c1, c2, . . . , cn). Note that the cs

match those in (6.4.1) with two exceptions: ci = 2(n − i) + 1 − 2m and cj = 2(n − j) + 1 − 2m.
Consider ci. Based on the possible values for m, we have

−2(n − (j + 1)) − 1 = 2(n − i) + 1 − [2(n − i) + 2(n − j)] ≤ ci ≤ 2(n − i) + 1 − 2

= 2(n − (i + 1)) + 1.

When ci < 0, we have −2(n − (j + 1)) − 1 ≤ ci ≤ −1. Therefore, |ci| = ct for some j + 1 ≤ t ≤ n,
and the vanishing follows as claimed. When ci ≥ 0, we have 1 ≤ ci ≤ 2(n − (i + 1)) + 1. Here
ci = ct for some i + 1 ≤ t ≤ n, with one exception: when t = j or ci = 2(n − j) + 1. That occurs
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when 2(n − i) + 1 − 2m = 2(n − j) + 1 or when 2m = 2j − 2i. In that situation,

cj = 2(n − j) + 1 − 2m = 2(n − j) + 1 − (2j − 2i) = 2(n − 2j + i) + 1.

Since j > i, cj �= 2(n − j) + 1. However, it is possible that cj = −2(n − j) − 1. In that case,
|cj | = ci, and we are done. In general, since i + 1 ≤ j ≤ n, we have

−2(n − (i + 1)) − 1 = 2(n − 2n + i) + 1 ≤ cj ≤ 2(n − 2(i + 1) + i) + 1 = 2(n − (i + 2)) + 1.

If |cj | �= 2(n − j) + 1, then we see that |cj | = ct for some i + 1 ≤ t ≤ n, t �= j, and the claim
follows.

Case 2: α = εi − εj for 1 ≤ i < j ≤ n. Here

〈λ + ρ, α∨〉 =

{
2n − 2 − 2(n − j) − 1 = 2(j − 1) − 1 if i = 1,

2(n − i) + 1 − 2(n − j) − 1 = 2(j − i) if i > 1.

We need to show that χ(λ − 2mα) = 0 for 2 ≤ 2m ≤ 2(j − i) − 2 (which is vacuous if j = i + 1).
We proceed as in case 1 to apply Lemma 6.3.1. Write (λ + ρ − 2mα)ε = (c1, c2, . . . , cn). Note
that the cs match those in (6.4.1) with two exceptions: ci and cj . Here we need to consider only
cj = 2(n − j) + 1 + 2m. We have

2(n − (j − 1)) + 1 = 2(n − j) + 1 + 2 ≤ cj ≤ 2(n − j) + 1 + 2(j − i) − 2 = 2(n − (i + 1)) + 1.

Therefore, cj = ct for some i + 1 ≤ t ≤ j − 1, and the claim follows.

Case 3: α = εi for i > 1. Here 〈λ + ρ, α∨〉 = 2(2(n − i) + 1) = 4(n − i) + 2. We need to show
that χ(λ − 2mα) = 0 for 2 ≤ 2m ≤ 4(n − i) (which is vacuous if i = n). We proceed as above
and apply Lemma 6.3.1. Write (λ + ρ − 2mα)ε = (c1, c2, . . . , cn). Note that the cs match those in
(6.4.1) with one exception: ci = 2(n − i) + 1 − 2m. Based on the possible values for m, we have

−2(n − (i + 1)) − 1 = 2(n − i) + 1 − 4(n − i) ≤ ci ≤ 2(n − i) + 1 − 2 = 2(n − (i + 1)) + 1.

Therefore, |ci| = ct for some i + 1 ≤ t ≤ n.

Case 4: α = ε1. Here 〈λ + ρ, α∨〉 = 2(2n − 2) = 4(n − 1). We need to consider χ(sα,2m · λ) =
−χ(λ − 2mα) for 2 ≤ 2m ≤ 4(n − 1) − 2. Unlike the previous cases, these do not all vanish,
although some will be seen to cancel. Consider first the case 2m = 2(n − 1) (or m = n − 1). By
definition,

χ(sα,2m · λ) = χ(λ − (4(n − 1) − 2(n − 1))α) = χ(λ − 2(n − 1)α) = χ(λ − 2mα).

Since this also equals (as noted previously) −χ(λ − 2mα), we must have χ(λ − 2mα) = 0.
The remaining cases are considered in pairs: 2m and 4(n − 1) − 2m for 2 ≤ 2m ≤ 2(n − 2) or

1 ≤ m ≤ n − 2. Write (λ + ρ − 2mα)ε = (c1, c2, . . . , cn) as before, again, this agrees with (6.4.1)
except in the first component, where c1 = 2n − 2 − 2m. On the other hand, the first component
of λ + ρ − [4(n − 1) − 2m]α is

2n − 2 − [4(n − 1) − 2m] = −2n + 2 + 2m = −(2n − 2 − 2m).

Let w be the reflection in the ε1-hyperplane, then w(λ + ρ − 2mα) = λ + ρ − (4(n − 1) − 2m))α.
Since the length of w is odd, by Lemma 6.2.1(b), χ(λ − 2mα) = −χ(λ − (4(n − 1) − 2m)α). If m
is odd, ν2(2m) = 1 = ν2(2(2(n − 1) − m)) = ν2(4(n − 1) − 2m), and so the two characters cancel.
If m is even, the characters do not necessarily cancel.

Suppose that m is even and 2 ≤ m ≤ n − 2. Let w be the Weyl group element such that w ·
(λ − 2mα) = w(λ + ρ − 2mα) − ρ is dominant. Then χ(λ − 2mα) = (−1)	(w)χ(w · (λ − 2mα)).
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We have

(λ + ρ − 2mα)ε = (2n − 2 − 2m, 2n − 3, 2n − 5, . . . , 3, 1).

Note that all components are necessarily positive. As discussed in the proof of Lemma 6.3.1, we
obtain the components of (w(λ + ρ − 2mα))ε by placing these in decreasing order (left to right).
Thus, we obtain

(w(λ + ρ − 2mα))ε = (2n − 3, 2n − 5, . . . , 2n − 1 − 2m, 2n − 2 − 2m, 2n − 3 − 2m, . . . , 3, 1).

Hence,
(w(λ + ρ − 2mα))ω = (2, 2, . . . , 2, 1, 1, 2, . . . , 2, 2),

where the ones are in the mth and (m + 1)th components. Subtracting ρ gives

(w · (λ − 2mα))ω = [w(λ + ρ − 2mα) − ρ]ω = (1, . . . , 1, 0, 0, 1, . . . , 1),

with the zeros in the same locations as above. Hence, w · (λ − 2mα) = ρ − ωm − ωm+1 and mul-
tiples of χ(ρ − ωm − ωm+1) may appear in the sum. There are no other contributions in this
case.

Case 5: α = ε1 + εj for 2 ≤ j ≤ n. Here 〈λ + ρ, α∨〉 = 2(n − 1) + 2(n − j) + 1. We need to con-
sider χ(sα,2m · λ) = −χ(λ − 2mα) for 2 ≤ 2m ≤ 2(n − 1) + 2(n − j). We use Lemma 6.3.1 to
show that most of these vanish, with some remaining cases seen to cancel, so that these terms give
no further contribution to the sum formula. Write (λ + ρ − 2mα)ε = (c1, c2, . . . , cn). Note that
the cs match those in (6.4.1) with two exceptions: c1 and cj . Consider cj = 2(n − j) + 1 − 2m.
Based on the values of m, we have

−2(n − 2)− 1 = 2(n − j) + 1− 2(n − 1)− 2(n − j) ≤ cj ≤ 2(n − j) + 1− 2 = 2(n− (j + 1)) + 1.

If cj ≥ 0, then we have 1 ≤ cj ≤ 2(n − (j + 1)) + 1. Thus, cj = ct for some j + 1 ≤ t ≤ n and the
terms vanish by Lemma 6.3.1. If cj < 0, we have −2(n − 2) − 1 < cj < −1 and |cj | = ct for some
2 ≤ t ≤ n, unless t = j. That is, when 2(n − j) + 1 − 2m = −2(n − j) − 1 or 2m = 4(n − j) + 2.

Suppose 2m = 4(n − j) + 2 and consider the first component: c1 = 2n − 2 − 4(n − j) − 2 =
−2n + 4j − 4 = −2(n − 2j + 2). If n is even, this is zero when n = 2j − 2 or j = (n + 2)/2. Let
w ∈ W be such that w(λ + ρ − 2mα) is dominant. Since (λ + ρ − 2mα)ε has a zero in the first
component, (w(λ + ρ − 2mα))ε has a zero in the last component. Hence, the last component of
(w(λ + ρ − 2mα))ω is also zero, and so the last component of (w · (λ − 2mα))ω = (w(λ + ρ −
2mα) − ρ)ω is −1. From Lemma 6.2.1(a) and (b), it follows that χ(λ − 2mα) = 0. Thus, we are
done for j = (n + 2)/2.

Recapping: for any 2 ≤ j ≤ n with j �= (n + 2)/2, we know that χ(λ − 2mα) = 0 except
when 2m = 4(n − j) + 2 (or m = 2(n − j) + 1). Split {j : 2 ≤ j ≤ n, j �= (n + 2)/2} into pairs
j and n + 2 − j for 2 ≤ j ≤ �(n + 1)/2�. For each such j, we show that ν2(2m)χ(λ − 2mα) =
−ν2(2m̃)χ(λ − 2m̃α̃), where m̃ = 2(j − 2) + 1 is the relevant ‘m’ for the index n + 2 − j and
α̃ = ε1 + εn+2−j . This shows that these remaining characters cancel, so there is no contribution
from the ε1 + εj .

First, observe that both m and m̃ are odd, so ν2(2m) = 1 = ν2(2m̃). As previously, write
(λ + ρ − 2mα)ε = (c1, c2, . . . , cn). Then the cs match those in (6.4.1) with two exceptions:

c1 = −2(n − 2j + 2) and cj = 2(n − j) + 1 − 4(n − j) − 2 = −2(n − j) − 1.

Similarly, write (λ + ρ − 2m̃α̃)ε = (d1, d2, . . . , dn). Again, the ds agree with those in (6.4.1) with
two exceptions:

d1 = 2n − 2 − 4(j − 2) − 2 = 2(n − 2j + 2)
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and

dn+2−j = 2(j − 2) + 1 − 4(j − 2) − 2 = −2(j − 2) − 1.

We see that cs = ds for s �= 1, j, n + 2 − j, whereas c1 = −d1, cj = −dj , and cn+2−j = −dn+2−j .
Let wi denote the reflection in the εi-hyperplane and set w = w1wjwn+2−j (the ordering
being irrelevant). Then w(λ + ρ − 2mα) = λ + ρ − 2m̃α̃, and so χ(λ − 2mα) = (−1)	(w)χ(w ·
(λ − 2mα) = (−1)	(w)χ(λ − 2m̃α̃). Since each wi has odd length, so does w, and the claim that
ν2(2m)χ(λ − 2mα) = −ν2(2m̃)χ(λ − 2m̃α̃) follows. �

6.5 A second failure of the TMC for type C3

Let G be of type C3 with p = 3. In § 4.5.1, we saw that T (4ρ) fails to be indecomposable upon
restriction to G1T . In this section, we show that the tilting module T (4ρ − ω1) also fails to remain
indecomposable when restricted to G1T. Note that, in this subsection, we return to expressing
weights solely in the omega-basis.

Theorem 6.5.1. Let G be a simple algebraic group of type C3 and p = 3. The tilting module
T (4ρ − ω1) is not isomorphic to Q̂1(ω1) as a G1T -module.

Data obtained via the Jantzen filtration yield the following table.

λ
∑

i>0 ch Δ(λ)i

(1, 0, 0) ∅
(0, 1, 1) ∅
(2, 1, 1) χ(0, 1, 1)
(1, 3, 0) χ(2, 1, 1)) − χ(0, 1, 1) + χ(1, 0, 0)
(3, 2, 0) χ(1, 3, 0) + χ(2, 1, 1)) + χ(1, 0, 0)
(2, 2, 1) χ(3, 2, 0) + 2 · χ(1, 3, 0) + χ(2, 1, 1) − 2 · χ(1, 0, 0)

It follows that Δ(1, 0, 0) and Δ(0, 1, 1) are simple and that Δ(2, 1, 1) has length two, the
second factor having highest weight (0, 1, 1). Character considerations now show that Δ(1, 3, 0)
is multiplicity free with three composition factors, including factors with highest weights (2, 1, 1)
and (1, 0, 0). Similarly one concludes from character data that Δ(3, 2, 0) has six composition
factors, namely the simple modules with highest weights (3, 2, 0), (1, 3, 0), (2, 1, 1), (0, 1, 1), and
(1, 0, 0) twice. One concludes that∑

i>0

ch Δ(2, 2, 1)i = ch L(3, 2, 0) + 2 · ch L(0, 1, 1) + 2 · ch L(1, 0, 0)

+ 3 · ch L(1, 3, 0) + 4 · ch L(2, 1, 1).

Suppose that T (4ρ − ω1) ∼= Q̂1(ω1) as G1T -module. Then

V := HomG1(Q̂1(1, 0, 0),∇(2, 2, 1))(−1)

admits a good filtration. We argue in a similar manner as in § 4.5.1. From above, we see that V
has composition factors of L(ω2) and k, with the number (and arrangement) of such factors
determined by the number (and arrangement) of copies of L(1, 3, 0) and L(1, 0, 0), respec-
tively, in ∇(2, 2, 1). From the above, we have that Δ(2, 2, 1) (and, hence, ∇(2, 2, 1)) contains
between one and three copies of L(1, 3, 0) and one or two copies of L(1, 0, 0). Analogous to
the argument in case 1 of § 4.5.1, for V to admit a good filtration, the number of copies of
L(1, 0, 0) appearing must be at least the number of copies of L(1, 3, 0) that appear. In particular,
there can, in fact, be at most 2 copies of L(1, 3, 0). Suppose that [Δ(2, 2, 1) : L(1, 0, 0)] = 2.
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Then [Δ(2, 2, 1)2 : L(1, 0, 0)] = 0. Furthermore, [Δ(2, 2, 1) : L(1, 3, 0)] = 1 or 2, and, in either
case, [Δ(2, 2, 1)2 : L(1, 3, 0)] = 1. One may now argue as in case 2 of § 4.5.1, starting from an
exact sequence

0 → Δ(2, 2, 1)2 → Δ(2, 2, 1) → Q → 0,

to obtain a similar contradiction. Lastly, suppose [Δ(2, 2, 1) : L(1, 0, 0)] = 1, then

[Δ(2, 2, 1)2 : L(1, 0, 0)] = 1,

[Δ(2, 2, 1) : L(1, 3, 0)] = 1,

[Δ(2, 2, 1)2 : L(1, 3, 0)] = 0,

[Δ(2, 2, 1)3 : L(1, 3, 0)] = 1.

In this case, one starts from an exact sequence

0 → Δ(2, 2, 1)3 → Δ(2, 2, 1) → Q → 0

to obtain a contradiction.

7. Further questions

7.1 Gr-extensions being tilting
We define the condition (ET) as follows.

(ET) Ext1Gr
(L(λ), L(μ))(−r) is tilting as a G-module for all λ, μ ∈ Xr.

The evidence thus far suggests that there is some connection between this condition and the
TMC. Indeed, (ET) fails in each of the (known) low-rank counterexamples to the TMC, and in
the present paper, the former served to help detect the latter. At the same time, in every case
in which we know that the TMC holds, we also know that (ET) holds.

In the course of this discussion, one would like to know the answer to the following question,
which is of interest in its own right.

Question 7.1.1. Under what conditions does (ET) hold?

In [BNPS23, Theorem 4.3.1], the authors proved that if p ≥ 2h − 4, then (ET) holds for r = 1.
Moreover, the structure is semi-simple (so that the tilting factors are all simple G-modules). This
improved an earlier confirmation of (ET) for r = 1 by Andersen [And84] for p ≥ 3h − 3 and by
Bendel, Nakano, and Pillen [BNP04, § 5.5] for p ≥ 2h − 2. In the recent work [BNPS23] of the
present authors, it was also shown that the TMC holds when p ≥ 2h − 4. Further sharpening of
this bound in (ET) could be a key step in lowering the bound of validity for the TMC.

7.2 Gr-extensions and the TMC
Another mystery to unravel is precisely how (ET) and the TMC relate to each other.

Question 7.2.1. Is the TMC equivalent to (ET)? If not, does one imply the other?

A revised problem is to consider this for each restricted λ.

Question 7.2.2. Is T (2(pr − 1)ρ + w0λ) indecomposable over Gr if and only if

Ext1Gr
(L(λ), L(μ))(−r)

is tilting for all μ ∈ Xr where μ ≥Q λ?
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To motivate this question, as observed in § 3.1, if Qr(λ) and Qr(μ) admit a G-structure, then
we have an embedding of G-modules

Ext1Gr
(L(λ), L(μ))(−r) ⊆ HomGr(Qr(λ), Qr(μ))(−r).

The idea then is that if the submodule is not tilting over G, potentially the larger Hom-set
cannot carry such a structure either, in which case one or both of Qr(λ) and Qr(μ) cannot lift
to a tilting module for G.

The final stipulation, that μ ≥Q λ, is to isolate the larger of the two projective covers, Qr(λ),
as the one that must fail to be tilting if only one of two does.

7.3 Twice the Steinberg weight
We also have observed that the G1T -projective cover of the trivial module fails to be isomorphic
to T (2(p − 1)ρ) in all cases in which the TMC fails. This raises another question as to whether
the TMC is equivalent to T (2(p − 1)ρ) |G1T

∼= Q̂(0).

Question 7.3.1. Does the TMC hold if and only if T (2(p − 1)ρ) is indecomposable over G1?

We note that if there is an affirmative answer to this question and to the questions raised in
the previous subsections, then in such a case the problem of checking the validity of the TMC
would reduce to checking if H1(G1, L(λ))(−1) is tilting for all λ ∈ X1.
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