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MEANS AND VARIANCES IN STOCHASTIC
MULTISTAGE CANCER MODELS
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Abstract

A widely used model of carcinogenesis assumes that cells must go through a process of
acquiring several mutations before they become cancerous. This implies that at any time
there will be several populations of cells at different stages of mutation. In this paper we
give exact expressions for the expectations and variances of the number of cells in each
stage of such a stochastic multistage cancer model .
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1. Introduction

One model of cancer development that has been widely studied is what is generally called
a stochastic multistage model (see, for example, Zheng (2008)). At a fixed rate a healthy cell,
when it divides, may give rise to a healthy cell and a mutant cell. A mutant cell, when it divides,
may then give birth to two mutant cells of the same type, or possibly to one of the same type
and to one with a further mutation. This process may continue so that the population consists of
several subpopulations of cells with each subpopulation having a different number of mutations.
We represent such a model in Figure 1, where cell death has also been allowed for. The classical
treatment of the two-stage model is given in Armitage and Doll (1957). However, it is now
generally considered that the number of stages through which the cells have to pass before
becoming carcinogenic is greater than two. Such models have been analysed using computer
simulation in Connolly and Kimbell (1994) and theoretically in Portier et al. (1996), (2000).
Previous derivations have been somewhat difficult to follow due to the mathematical complexity
of the treatment. In this paper we consider a slightly simplified version of this model, allowing
us to calculate exactly expectations and variances for the number of cells in each stage of the
multistage model. Since it is believed that a certain number of mutations may be necessary
before a tumour becomes cancerous, we shall also give a recursive formula for the probability
that at time t the number of mutations has reached a certain threshold.

The major drawback of this treatment is the assumption that all cells act independently of all
others, an assumption that may be reasonable while the numbers of cancerous cells are small.
Nor does the treatment take into account programmed cell death or the possibility that cancer
rates may change at different ages.

We imagine that there are r + 1 subpopulations, S0, S1, . . . , Sr , and that the number of
mutations in Si is i. Subpopulation S0 is different from the rest. Otherwise, cells in subpop-
ulation Si, i �= 0, divide in two ways. First, a cell is replaced by two new cells at rate µi so
that the subpop- ulation increases by 1. This can be considered a pure birth process at rate µi .
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Figure 2: Log population size versus time for a four-stage model with mutation rates (MRs) 0.05–0.20
and growth rates (GRs) 1.2–1.8.

Second, at rate λi , two new cells are produced, one in Si and the other in Si+1. In other words,
each cell in Si produces a Poisson process of cells at rate λi into Si+1. The death rate of a cell
is δi . The overall growth rate γi = µi − δi . All possible cell divisions and deaths are assumed
independent.

The S0 case is rather different. We assume that the subpopulations of mutants are sufficiently
small compared to that of S0, so that S0 maintains its size, and simply produces a stream of
mutants into S1. This rate will be taken to be λ0 which, unlike the other λs, will be for the
whole of S0 rather than a rate for an individual cell. We shall show the following result.

Theorem 1. If Zr(t) is the number of cells in Sr at time t and γi �= γj , i �= j, then

E{Zr(t)} = λ0 · · · λr−1

r∑
i=1

1∏
j �=i (γi − γj )

eγi t − 1

γi

,

and, setting γ0 = 2γr ,

var{Zr(t)} = λ0 · · · λr−1(µr + δr )

r∑
i=0

1∏
j �=i (γi − γj )

eγi t − 1

γi

.

We set γ0 = 2γr purely to make the formula simple. It should be noted that the mutation rates
{λi} appear only in the form of their product. In Figure 2 we show the growth in the expected
population sizes for a four-stage model with mutation rates into stages 1–4 of 0.05–0.20 and
growth rates of 1.2–1.8. It is seen that, once established in a stage, the growth rates dominate.

2. The mean and variance of the population in Sr

We use a method employed in Kingman (1975) for the treatment of the first birth problem
in branching processes. Let Br1, . . . , Brm, . . . be the birth times of cells in Sr . These include
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mutations from Sr−1 and births within Sr . Let Zr(t) be the number of cells in Sr at time t, and
define

br(θ) = E

{∑
m

e−θBrm

}
=

∫ ∞

0
e−θtd{E Zr(t)}, (1)

by Fubini’s theorem.

Lemma 1. If B1, . . . , Bm, . . . are the birth times in Sr of a single cell in Sr−1 born at time t0
then

E

{∑
m

e−θBm

}
= e−θt0

λr−1

θ − γr

.

Proof. In a birth-and-death process with birth rate µ and death-rate δ starting from a single
cell at time 0, the expected size of the population at time t is eγ t . Thus, if the number of
descendants of the cell in Sr−1 at time s is Z(s) then

E{Z(t)} =
∫ t

t0

eγr (t−s)λr−1 ds = eγr t
λr−1

γr

[e−γr t0 − e−γr t ], t > t0,

and

E

{∑
m

e−θBm

}
=

∫ ∞

t0

e−θtλr−1e−γr t0 eγr t dt = e−θt0
λr−1

θ − γr

.

Lemma 2. It holds that

br(θ) = λr−1

θ − γr

br−1(θ).

Proof. Let Fr−1,k(t) be the distribution function of the birth time of the kth cell in Sr−1. If
this cell gives rise to cells in Sr at times Brk1, . . . then, by Lemma 1,

E

{∑
m

e−θBrkm

}
= λr−1

θ − γr

∫ ∞

0
e−θtdFr−1,k(t).

As br(θ) = ∑
k E{∑m e−θBrkm} and E{Zr−1(t)} = ∑

k Fr−1,k(t), the result follows.

Since we are assuming that the number of cells in S0 stays constant, λ0 represents the
total mutation rate from S0 and we take b0(θ) = 1. Lemma 2 and a standard partial fraction
expansion then imply the following result.

Lemma 3. If γi �= γj , i �= j, then

br(θ) =
r∏

i=1

λi−1

θ − γi

= λ0 · · · λr−1

r∑
i=1

1∏
j �=i (γi − γj )

1

θ − γi

.

Using (1) and Lemma 3, we obtain the first part of Theorem 1.
If γi �= γj , i �= j, then

E{Zr(t)} = λ0 · · · λr−1

r∑
i=1

1∏
j �=i (γi − γj )

eγi t − 1

γi

.

In a birth-and-death process with birth rate µ and death rate δ starting from a single cell at
time 0, the variance of the size of the population at time t is V (t) = γ ∗eγ t (eγ t − 1), where
γ ∗ = (µ + δ)/(µ − δ) and γ = µ − δ. Thus, if Vr(s) is the variance of the number of
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descendants in Sr at time s of a cell in Sr−1 born at time t0, then

Vr(t) = γ ∗
r

∫ t

t0

(e2γr (t−s) − eγr (t−s)λr−1) ds

= γ ∗
r

λr−1

γr

(
e2γr (t−t0) − 1

2
− [eγr (t−t0) − 1]

)
, t > t0.

Thus, ∫ ∞

t0

e−θtdVr(t) = λr−1γ
∗
r

∫ ∞

t0

(e−2γr t0 e−(θ−2γr )t − e−γr t0 e−(θ−γr )t ) dt

= λr−1γ
∗
r γr

1

(θ − 2γr)(θ − γr)
e−θt0 .

If the kth particle born in Sr−1 produces a population in Sr with variance Vrk(t) then, setting
Vr(t) = var{Zr(t)}, Vr(t) = ∑

k Vrk(t) so that
∫ ∞

0
e−θtdVr(t) = λr−1γrγ

∗
r

(θ − 2γr)(θ − γr)

∑
k

∫ ∞

0
e−θtdFr−1,k(t) = γrγ

∗
r

θ − 2γr

br(θ),

as in the proof of Lemma 2. By setting γ0 = 2γr we can express the formula for the variance
in much the same form as for the mean. Using the above equation and Lemma 3, we obtain the
second part of Theorem 1.

If γi �= γj , i �= j, and γ0 = 2γr , then

var{Zr(t)} = λ0 · · · λr−1(µr + δr )

r∑
i=0

1∏
j �=i (γi − γj )

eγi t − 1

γi

,

since γrγ
∗
r = µr + δr .

3. The probability Sr is occupied

In this section we will calculate the probability that the mutation chain has reached Sr by
time t . In order to solve the differential equations, we have assumed that the death rate δ = 0.
We will start by calculating the probability that a cell born at time 0 in Sr−1 has offspring in Sr ,
and then we will work backwards until we can calculate this probability for cells born in S0.
We will distinguish two ways in which descendants of the cell in Si arrive in Sr . First, they can
arrive by direct mutation from the cell in Si to Si+1. This stream of cells is a Poisson process at
rate λi . Second, they can arrive as mutations from Si to Si+1 from descendants of the original
cell within Si , that is, from the birth process in Si of that cell. What happens from Si+1 is not
relevant to this definition, only the manner in which descendants arrive in Si+1. For i < r ,
define

• Ci(t) to be the probability that a cell born in Si at time 0 has no descendants in Sr at time
t arising from direct mutations from the cell to Si+1,

• Bi(t) to be the probability that a cell born in Si at time 0 has no descendants in Sr at time
t arising from mutations to Si+1 from descendants of the cell in Si .

We should note that the probability that a cell born in Si at time 0 has no descendants in Sr at
time t equals Ci(t)Bi(t).

https://doi.org/10.1239/jap/1339878807 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1339878807


594 A. SUDBURY

We condition on the first birth to the cell in Si at time s. There are then two cells. The
probability that the new cell has no offspring equals Bi(t − s)Ci(t − s). Any descendants of
this cell are descendants of the birth process from the original cell. However, only descendants
from future births to the original cell count as descendants of the birth process from the original
cell. We thus have

Bi(t) =
∫ t

0
Bi(t − s)Ci(t − s)Bi(t − s)µie

−µisds + e−µi t

= µie
−µi t

∫ t

0
B2

i (u)Ci(u)eµiudu + e−µi t .

Dropping the subscript i for the moment and multiplying both sides by eµt and differentiating,
we obtain

[µB + Ḃ]eµt = µCB2eµt .

Setting D = 1/B and multiplying each side by e−µt gives

[µD − Ḋ]e−µt = µe−µtC = d

dt
[e−µtD] �⇒ −e−µtD =

∫ t

0
µe−µsC ds − 1, (2)

since D(0) = 1/B(0) = 1. Conditioning on the first mutation from the cell to Si+1 we obtain

Ci(t) =
∫ t

0
Bi+1(t − s)Ci+1(t − s)Ci(t − s)λie

−λisds + e−λi t

= λie
−λi t

∫ t

0
Bi+1(u)Ci+1(u)Ci(u)eλiudu + e−λi t .

Multiplying both sides by eλi t and differentiating we obtain

eλi t [λiCi + Ċi] = λie
λi tBi+1Ci+1Ci �⇒ d

dt
ln Ci = [λiBi+1Ci+1 − λi]. (3)

Solving equations (2) and (3) gives the following result.

Theorem 2. It holds that

Bi(t) = e−µi t

1 − ∫ t

0 µie−µisCi(s) ds
,

Ci(t) = e−λi t exp

(
λi

∫ t

0
Bi+1(s)Ci+1(s) ds

)
.
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