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Abstract
In this paper, we study quasi-metric spaces using domain theory. Given a quasi-metric space (X, d), we
use (B(X, d),≤d+ ) to denote the poset of formal balls of the associated quasi-metric space (X, d). We intro-
duce the notion of local Yoneda-complete quasi-metric spaces in terms of domain-theoretic properties of
(B(X, d),≤d+ ). The manner in which this definition is obtained is inspired by Romaguera--Valero theorem
and Kostanek–Waszkiewicz theorem. Furthermore, we obtain characterizations of local Yoneda-complete
quasi-metric spaces via local nets in quasi-metric spaces. More precisely, we prove that a quasi-metric
space is local Yoneda-complete if and only if every local net has a d-limit. Finally, we prove that every
quasi-metric space has a local Yoneda completion.
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1. Introduction
A quasi-metric on a nonempty set X is a map d : X × X −→ [0,+∞] satisfying: d(x, x)= 0;

d(x, z)≤ d(x, y)+ d(y, z); and d(x, y)= d(y, x)= 0 implies x= y. The pair (X, d) is then called a
quasi-metric space. One motivation of domain theory is to study the properties of spaces and pro-
vide them with suitable computational models (Abramsky and Jung 1994; Gierz et al. 2003). The
space of formal balls B(X, d) of a quasi-metric space (X, d) is probably the single most impor-
tant artifact (Edalat and Heckmann 1998; Weihrauch and Schreiber 1981). Formal balls were
introduced by Weihrauch and Schreiber (Weihrauch and Schreiber 1981). Edalat and Heckmann
proved that a metric space is complete if and only if its poset of formal balls is a domain, and then
they showed why formal balls were so important in the metric case (Edalat and Heckmann 1998).
It is natural to ask whether the links between domain theory and quasi-metric space theory can be
established in the style of Edalat and Heckmann. There are five important parallel theories in the
setting of quasi-metric spaces and the formal ball model:

(1) [Romaguera–Valero Theorem] A quasi-metric space (X, d) is Smyth-complete if and only
if (B(X, d),≤d+) is a continuous dcpo and its way-below relation is the relation ≺, defined by
(x, r)≺ (y, s) if and only if d(x, y)< r − s (Romaguera and Valero 2010).

(2) [Kostanek--Waszkiewicz Theorem] A quasi-metric space (X, d) is Yoneda-complete if and
only if (B(X, d),≤d+) is a dcpo (Kostanek and Waszkiewicz 2011).

(3) A quasi-metric space (X, d) is continuous Yoneda-complete if and only if (B(X, d),≤d+) is
a domain (Goubault-Larrecq and Ng 2017).
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(4) A quasi-metric space (X, d) is algebraic Yoneda-complete if and only if (B(X, d),≤d+) is a
domain with basis {(x, r) | x is finite} (Ali-Akbari et al. 2009).

(5) A Yoneda-complete quasi-metric space (X, d) is quasi-continuous if and only if
(B(X, d),≤d+) is a quasi-continuous domain with a fin basis of {{(x, s) | x ∈G} |G ∈ Pf (X), s ∈
[0,+∞)}, where Pf (X) is the set of all nonempty finite subsets of X (Ng and Ho 2019).

It is obvious from the above statements that we research on quasi-metric spaces and their spaces
of formal balls, mostly focused on Yoneda-complete spaces, but those should have a meaning even
in noncomplete spaces. One question arises naturally: can we give a characterization of properties
of a non-Yoneda-complete quasi-metric space in terms of some order-theoretic properties of its
poset of formal balls. Our objective is to answer this question. In this paper, we propose the notion
of local Yoneda-complete quasi-metric spaces using the domain-theoretic properties of the poset
of formal balls and prove that a quasi-metric space is local Yoneda-complete if and only if every
local net has a d-limit.

Quasi-metric space unifies the metric space and partially ordered set, and this structure has
been extensively studied by several people (Bonsangue et al. 1998; Lawvere 1973). Similar to
the classical completion of metric spaces and posets, Smyth completions and Yoneda comple-
tions of quasi-metric spaces are fundamental in the study of quasi-metric spaces (Bonsangue et al.
1998; Künzi and Schellekens 2002; Vickers 2005). Smyth provided that there exists an idempo-
tent Smyth completion to every quasi-metric space (Smyth 1987). Künzi and Schellekens (2002)
prove that every quasi-metric space has a Yoneda completion. However, the fact remains that
this Yoneda completion is not idempotent in general. In Ng and Ho (2017), Ng and Ho showed
that every quasi-metric space (X, d) has an idempotent Yoneda completion via dcpo completion
of B(X, d). After seeing that every quasi-metric space has a Smyth completion and Yoneda com-
pletion, one may ask: whether every quasi-metric space has a local Yoneda completion. In this
paper, we shall provide a positive answer, that is, we prove that every quasi-metric space has a
local Yoneda completion.

2. Quasi-Metric Spaces
Let (X, d) be a quasi-metric space, (xi)i∈I,� be a net, and x ∈ X. If for all y ∈ X, it holds that

d(x, y)= lim sup d(xi, y), then x ∈ X is called a d-limit of (xi)i∈I,�, denoted by x= limd xi. A net
(xi, ri)i∈I,� in X × [0,+∞) is Cauchy-weighted in (X, d) if

∧
i∈I ri = 0, and for each i, i′ ∈ I, when-

ever i� i′ , d(xi, xi′ )≤ ri − ri′ . For any Cauchy-weighted net (xi, ri)i∈I,� in (X, d), x ∈ X is a d-limit
of the Cauchy net (xi)i∈I,� if and only if for any y ∈ X, it holds that d(x, y)= ∨

i∈I (d(xi, y)− ri).

Definition 1 (Ng and Ho 2017). Let (X, d) and (X′, d′) be two quasi-metric spaces, and f : X −→
X′ be a mapping. We say that f is

(1) limit-continuous if it preserves Cauchy nets and their existing d-limits;
(2) Y-continuous if it is limit-continuous and nonexpansive, that is, for any x, y ∈ X,

d′(f (x), f (y))≤ d(x, y).

Definition 2 (Goubault-Larrecq 2013). Let (X, d) be a quasi-metric space. Define B(X, d)= X ×
[0,+∞). We call the elements of B(X, d) formal balls. On B(X, d), we can define a quasi-metric
d+ as follows:

∀ (x, r), (y, s) ∈ B(X, d), d+((x, r), (y, s))=max (d(x, y)− r + s, 0),

and as a result the induced order ≤d+ defined by

∀ (x, r), (y, s) ∈ B(X, d), (x, r)≤d+
(y, s)⇐⇒ d(x, y)≤ r − s.
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Unless otherwise stated, throughout the paper, whenever an order is mentioned in the context of
B(X, d), it is to be interpreted with respect to the induced order ≤d+ on B(X, d).

A quasi-metric space (X, d) is standard if and only if, for every directed family of formal balls
(xi, ri)i∈I , for every s ∈ [0,+∞), (xi, ri)i∈I has a supremum in B(X, d) if and only if (xi, ri + s)i∈I
has a supremum in B(X, d).

Let (X, d) be a quasi-metric space. A directed family (xi, ri)i∈I in B(X, d) is translational
complete if for any a ∈ [− ∧

i∈I ri,+∞),
∨

i∈I (xi, ri + a) exists.

Remark 3. Let (X, d) be a quasi-metric space. If (xi, ri)i∈I is a translational complete directed
family in B(X, d) and has supremum (x, r), then (xi, ri + a)i∈I is a translational complete directed
family in B(X, d) and has supremum (x, r + a) for any a ∈ [− ∧

i∈I ri,+∞).

Let (X, d) and (X′, d′) be two quasi-metric spaces. A map g : B(X, d)−→ B(X′, d′) is Y-Scott
continuous if it preserves the suprema of translational complete directed families.

Proposition 4 (Ng and Ho 2017). Let (X, d) and (X′, d′) be two quasi-metric spaces, and f : X −→
X′ be a mapping. Define a mapping B(f ) : B(X, d)−→ B(X′, d′) as follows:

∀ (x, r) ∈ B(X, d), B(f )(x, r)= (f (x), r).

Then f is Y-continuous if and only if B(f ) is a Y-Scott continuous map.

Definition 5 (Ng and Ho 2017). Let (X, d) be a quasi-metric space. A subset C of B(X, d) is called
g-closed if it is

(1) downward closed with respect to ≤d+ ;
(2) closed under the existing suprema of translational complete directed families, that is, when-

ever (xi, ri)i∈I ⊆ C is a translational complete directed family that has supremum (x, r), then (x, r)
belongs to C.

We denote the collection of all g-closed subsets of B(X, d) by �g(B(X, d)). Then �g(B(X, d)) is
a co-topology on B(X, d), that is, the family

{U ⊆ B(X, d) | the complement of U is a g-closed subset of B(X, d)}
is a topology, called the g-topology on B(X, d). For any subset E of B(X, d), let clg(E) denote the
g-closure of E. Define the Hausdorf-f-Hoare quasi-metric dH on �g(B(X, d)) by dH (A, B)=∨

(a,m)∈A
∧

(c,r)∈B d+((a,m), (c, r)). Then dH (A, B)= 0 if and only if A⊆ B.

Remark 6. Let (X, d) be a Yoneda-complete quasi-metric space. Then C is a g-closed set if and
only if C is a Scott closed set.

Let α : �g(B(X, d))−→ [0,+∞], C �−→ ∧
(x,r)∈C r. Call α(C) the aperture of C. Let t ≥ 0 and

C + t = {(c, t + s) | (c, s) ∈ C}. Then C + t is a g-closed set. Let r ≤ α(C) and C − r = {(c, s− r) |
(c, s) ∈ C}. Then C − r is a g-closed set.

Proposition 7 (Ng and Ho 2017). Let (X, d) be a quasi-metric space and E⊆ B(X, d). Then
clg(E)= clg(E− α(E))+ α(E).

Definition 8 (Mislove 1999). A poset P is called a local dcpo if every directed subset of P with an
upper bound has a least upper bound.
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3. Local Yoneda-Complete Quasi-Metric Spaces
Definition 9. Let (X, d) be a quasi-metric space. Then (X, d) is called local Yoneda-complete if the
following conditions are satisfied:

(1) whenever a directed family (xi, ri)i∈I in B(X, d) has supremum (x, r), then r = ∧
i∈I ri;

(2) B(X, d) is a local dcpo.

Remark 10. (1) Let (X, d) be a Yoneda-complete quasi-metric space. Then (X, d) is a local
Yoneda-complete quasi-metric space. But the converse may not be true as shown by Examples 11
(1) and (2).

(2) The conditions (1) and (2) in Definition 9 are independent as shown by Examples 11 (2)
and (3).

Example 11. (1) ([0,+∞), d) is local Yoneda-complete, not Yoneda-complete, where d :
[0,+∞)× [0,+∞)−→ [0,+∞] as follows:

d(x, y)=
{
0, x≤ y,
x− y, y< x.

In fact, the map (x, r) �−→ (x−r,−r) defines an order isomorphism from B([0,+∞), d) onto
C = {(a, b) ∈R× (− ∞, 0] | a≥ b} ordered component-wise. Since C is a local dcpo, we have that
B([0,+∞), d) is a local dcpo. Let (xi, ri)i∈I be a directed family in B([0,+∞), d) with supre-

mum (x, r). Then
C∨
i∈I

(xi−ri,−ri)= (x− r,−r), and thus
∨

i∈I (− ri)= −r. Hence, r = ∧
i∈I ri.

So we conclude that ([0,+∞), d) is local Yoneda-complete. Obviously, C is not a dcpo. Then
B([0,+∞), d) is not a dcpo, and thus ([0,+∞), d) is not Yoneda-complete.

(2) Every poset (X,≤ ) can be seen as a quasi-metric space by letting

d≤(x, y)=
{
0, x≤ y,
+∞, otherwise.

On formal balls (x, r)≤d≤+ (y, s) if and only if x≤ y and r ≥ s. So (x, r) �−→ (x,−r) defines an order
isomorphism from B(X, d≤) onto X × (− ∞, 0] ordered component-wise. Obviously, (X, d≤) sat-
isfies the condition (1) in Definition 9. This implies that (X, d≤) is a local Yoneda-complete
quasi-metric space if and only if X is a local dcpo. Since N is a local dcpo, not a dcpo, we have
that (N, d�) is local Yoneda-complete, not Yoneda-complete, where N denotes the set of natural
numbers with the usual order �. Moreover, let X =N∪ {ω1,ω2}, and let the partial order ≤ on X
as follows:

• for x ∈N, x≤ ω1,ω2;
• ω1 ≤ ω1, ω2 ≤ ω2;
• for x, y ∈N, x≤ y if and only if x� y.
That is, we add ω1,ω2 above all elements in N. Then X is not a local dcpo, and thus (X, d≤)

does not satisfy the condition (2) in Definition 9.
(3) Let X = {0} ∪ { 1

2m |m ∈N+} and d on X × X which is defined as follows:

d(x, y)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x= y,
+∞, x< y,√
2, 0= y< x,

x− y, 0< y< x,
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where N+ denotes the set of all positive integers. Then (X, d) is a quasi-metric space. Let
(x, r), (y, s) ∈ B(X, d). If (x, r)≤d+ (y, s), then d(x, y)≤ r − s, and thus x≥ y. First, we shall prove
thatB(X, d) is a local dcpo. Let (xi, ri)i∈I be a directed family inB(X, d) with an upper bound (x, r).
Then d(xi, x)≤ ri−r for any i ∈ I. There are three cases:

Case 1. There exists i0 ∈ I such that xi0 = 0. Let J = {i ∈ I | (xi0 , ri0 )≤d+ (xi, ri)}. Then
(xj, rj)j∈J is a cofinal subset of (xi, ri)i∈I . Obviously,

∨
j∈J (xj, rj)= (0,

∧
i∈I ri). Then

∨
i∈I (xi, ri)=

(0,
∧

i∈I ri).
Case 2. xi �= 0 for any i ∈ I and

∧
i∈I xi = 0. Since (x, r) is an upper bound of (xi, ri)i∈I , we

have that x≤ xi for any i ∈ I. Then x= 0, and thus r + √
2≤ ri for any i ∈ I. Hence (

∧
i∈I ri)−√

2≥ 0. Obviously, (xi, ri)≤d+ (0, (
∧

i∈I ri)−
√
2) for any i ∈ I. Let (y, s) be an upper bound of

(xi, ri)i∈I in B(X, d). Then y≤ xi for any i ∈ I, and thus y= 0. This implies
√
2+ s≤ ∧

i∈I ri, that is
d(0, 0)≤ (

∧
i∈I ri)−

√
2− s, and hence (0, (

∧
i∈I ri)−

√
2)≤d+ (y, s). Therefore,

∨
i∈I (xi, ri)=

(0, (
∧

i∈I ri)−
√
2). In particular, ( 1

2m ,
1
2m + √

2)m∈N is a directed family in B(X, d) and has an
upper bound (0, 0). So we conclude that

∨
m∈N ( 1

2m ,
1
2m + √

2)= (0, 0).
Case 3. xi �= 0 for any i ∈ I and

∧
i∈I xi �= 0. Then there exists m ∈N such that

∧
i∈I xi = 1

2m ,
and thus there exists i1 ∈ I such that xi1 = 1

2m . For all i in I, there exists j ∈ I such that (xi, ri),
(xi1 , ri1 )≤d+ (xj, rj), and thus xj = 1

2m . So we conclude that d(xi, 1
2m )≤ ri − rj ≤ ri − ∧

i∈I ri. This
shows that ( 1

2m ,
∧

i∈I ri) is an upper bound of (xi, ri)i∈I . Let (y, s) be an upper bound of (xi, ri)i∈I
in B(X, d). Then d(xi, y)≤ ri − s for any i ∈ I. For all k in I, there exists k0 ∈ I such that
(xk, rk), (xi1 , ri1 )≤d+ (xk0 , rk0 ), and thus xk0 = 1

2m and rk0 ≤ rk. So we conclude that d( 1
2m , y)≤

rk0 − s≤ rk − s. This implies d( 1
2m , y)+ s≤ ∧

i∈I ri. Hence, ( 1
2m ,

∧
i∈I ri)≤d+ (y, s). Therefore,∨

i∈I (xi, ri)= ( 1
2m ,

∧
i∈I ri).

Consequently, B(X, d) is a local dcpo. Yet since
∨

m∈N ( 1
2m ,

1
2m + √

2)= (0, 0) as shown in
Case 2 and

∧
m∈N ( 1

2m + √
2)= √

2, we have that (X, d) does not satisfy the condition (1) in
Definition 9.

Proposition 12. A metric space (X, d) is local Yoneda-complete if and only if (X, d) is complete.

Proof. Sufficiency. Let (X, d) be a complete metric space. Then (X, d) is a Yoneda-complete metric
space, and thus (X, d) is local Yoneda-complete.

Necessity. Let (X, d) be a local Yoneda-complete metric space. We shall prove that B(X, d)
is a dcpo. Let (xi, ri)i∈I be a directed family in B(X, d) and let r∞ = ∧

i∈I ri. Then there exists
(yn, sn) ∈ (xi, ri)i∈I such that sn < r∞ + 1

n for any n ∈N+, where N+ denotes the set of all posi-
tive integers. Let (x1, r1)= (y1, s1). For any n> 1, let (xn, rn) be an upper bound of (yn, sn) and
(xn−1, rn−1). Then (x1, r1)≤d+ (x2, r2)≤d+ · · · ≤d+ (xn, rn)≤d+ · · ·, and thus · · · ≤ rn ≤ rn−1 ≤
· · · ≤ r2 ≤ r1. For a fixed ε > 0, there exists n0 ∈N+ such that rn − rm < ε for any n0 ≤ n≤m.
For all n in N+, there exists l ∈N+ such that n0, n≤ l, and by symmetry d(xl, xn0 )≤ rn0 − rl < ε,
and thus d(xn, xn0 )≤ d(xn, xl)+ d(xl, xn0 )< rn − rl + ε ≤ rn + ε. Hence (xn, rn + ε)≤d+ (xn0 , 0).
So we conclude that (xn0 , 0) is an upper bound of the directed family (xn, rn + ε)n∈N+ . By hypothe-
sis, we have that

∨
n∈N+ (xn, rn + ε) exists, denoted by (x, r). Then r = ∧

n∈N+ (rn + ε). Obviously,
(x, r − ε) is an upper bound of (xn, rn)n∈N+ . Let (y, s) be an upper bound of (xn, rn)n∈N+ . Then
(xn, rn + ε)≤d+ (y, s+ ε) for any n ∈N+, and thus (x, r)≤d+ (y, s+ ε). Hence (x, r − ε)≤d+

(y, s), and so we conclude that
∨

n∈N+ (xn, rn)= (x, r − ε). Let i ∈ I. Then there exists (zn, tn) ∈
(xi, ri)i∈I such that (xn, rn), (xi, ri)≤d+ (zn, tn) for any n ∈N+. Hence
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d(xi, x)≤ d(xi, zn)+ d(zn, xn)+ d(xn, x) ≤ ri − tn + rn − tn + rn − (r − ε)

= ri − (r − ε)+ 2(rn − tn)

≤ ri − (r − ε)+ 2(rn − r∞)

< ri − (r − ε)+ 2
n .

This implies d(xi, x)≤ ri − (r − ε). Then (xi, ri)≤d+ (x, r − ε), and thus (x, r − ε) is an upper
bound of (xi, ri)i∈I . Suppose that (z, t) is an upper bound of (xi, ri)i∈I . Then (z, t) is an upper
bound of (xn, rn)n∈N+ , and thus (x, r − ε)≤d+ (z, t). Hence,

∨
i∈I (xi, ri)= (x, r − ε). This shows

that B(X, d) is a dcpo. Therefore, (X, d) is complete.

Definition 13. Let (X, d) be a quasi-metric space, and (xi)i∈I,� be a net. If there exists (ri)i∈I,� ⊆
[0,+∞) such that (xi, ri)i∈I,� is a monotone net in B(X, d) and has an upper bound, then (xi)i∈I,�
is called a local net.

Theorem 14. Let (X, d) be a quasi-metric space. Then every local net has a d-limit if and only if
(X, d) is a local Yoneda-complete quasi-metric space.

Proof. Necessity. Let (X, d) be a quasi-metric space where every local net has a d-limit. We start by
proving part (2) of Definition 9. Let (xi, ri)i∈I be a directed family in B(X, d) with an upper bound.
Define a preorder � on I as follows:

∀ i, j ∈ I, i� j⇐⇒ (xi, ri)≤d+
(xj, rj).

Then (xi, ri)i∈I,� is a monotone net in B(X, d) and has an upper bound, and thus (xi)i∈I,� is a local
net. Hence, the net (xi)i∈I,� has a d-limit y. This implies

∧
i∈I

∨
j∈I,i�j d(xj, y)= 0. Then for all

ε > 0, there exists i0 ∈ I such that
∨

j∈I,i0�j d(xj, y)< ε. Let i ∈ I. Then there exists j ∈ I such that
i, i0 � j, and thus

d(xi, y)≤ d(xi, xj)+ d(xj, y) ≤ ri − rj + d(xj, y)

≤ ri − ∧
i∈I ri + d(xj, y)

< ri − ∧
i∈I ri + ε.

So we conclude that d(xi, y)≤ ri − ∧
i∈I ri. Hence, (y,

∧
i∈I ri) is an upper bound of (xi, ri)i∈I .

Let (z, s) be an upper bound of (xi, ri)i∈I . Then d(xi, z)≤ ri − s for any i ∈ I, and thus s≤∧
i∈I ri. Since d(y, z)=

∧
i∈I

∨
j∈I,i�j d(xj, z)≤

∧
i∈I

∨
j∈I,i�j (rj − s)≤ ∧

i∈I (ri − s)= (
∧

i∈I ri)−
s, we have that (y,

∧
i∈I ri)≤d+ (z, s). This shows that

∨
i∈I (xi, ri)= (y,

∧
i∈I ri). Part (1) of

Definition 9 is then a trivial consequence. Therefore, (X, d) is a local Yoneda-complete quasi-
metric space.

Sufficiency. Let (X, d) be a local Yoneda-complete quasi-metric space, and let (xi)i∈I,� be a
local net. Then, there exists (ri)i∈I,� ⊆ [0,+∞) such that (xi, ri)i∈I,� is a monotone net in B(X, d)
and has an upper bound, and thus (xi, ri)i∈I is a directed family in B(X, d) and has an upper
bound. Hence

∨
i∈I (xi, ri) exists, denoted by (x, r). By hypothesis, we have that r = ∧

i∈I ri.
Then (xi, ri − ∧

i∈I ri)i∈I,� is a Cauchy-weighted net and
∨

i∈I (xi, ri −
∧

i∈I ri)= (x, 0). Next,
we shall prove that x is the d-limit of (xi)i∈I,�. For any z ∈ X, since d(xi, z)≤ d(xi, x)+ d(x, z)≤
ri − ∧

i∈I ri + d(x, z) for any i ∈ I, we have that d(xi, z)− ri ≤ d(x, z)− ∧
i∈I ri for any i ∈ I.

Obviously,
∨

i∈I (d(xi, z)− ri) exists, denoted by s. Then s≤ d(x, z)− ∧
i∈I ri. Suppose

that s< d(x, z)− ∧
i∈I ri. Then s< +∞. Since d(xi, z)− ri ≤ s for any i ∈ I, we have that

d(xi, z)≤ ri + s for any i ∈ I. Then (xi, ri + s)≤d+ (z, 0) for any i ∈ I, and thus
∨

i∈I (xi, ri + s)
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exists, denoted by (y,
∧

i∈I ri + s). Hence y= x, that is
∨

i∈I (xi, ri + s)= (x,
∧

i∈I ri + s). This
implies (x,

∧
i∈I ri + s)≤d+ (z, 0). Then d(x, z)≤ ∧

i∈I ri + s, which is a contradiction. So
we conclude that s= d(x, z)− ∧

i∈I ri. Therefore, d(x, z)= ∨
i∈I (d(xi, z)− ri)+ ∧

i∈I ri =∨
i∈I (d(xi, z)− ri + ∧

i∈I ri). This shows that x is the d-limit of (xi)i∈I,�.

Proposition 15. Every local Yoneda-complete quasi-metric space is standard.

Proof. Let (X, d) be a local Yoneda-complete quasi-metric space and let (xi, ri)i∈I be a directed
family in B(X, d). By Lemma 7.4.25 of Goubault-Larrecq (2013) and Theorem 14, we have that
(x, r) is the supremum of (xi, ri)i∈I if and only if x is the d-limit of (xi)i∈I,� and r = ∧

i∈I ri. For
any s ∈ [0,+∞), then the existence of a supremum is equivalent for (xi, ri)i∈I and for (xi, ri +
s)i∈I , both being equivalent to the existence of a d-limit of the net (xi)i∈I,�. Therefore, (X, d) is
standard.

4. The Local Yoneda Completions of Quasi-Metric Spaces
Definition 16. A local Yoneda completion of a quasi-metric space (X, d) is a local Yoneda-
complete quasi-metric space (X̂, d̂), together with a Y-continuous map τ : X −→ X̂, such that for
any local Yoneda-complete quasi-metric space (X′, e) and Y-continuous map f : X −→ X′ , there
exists a unique Y-continuous map f̂ : X̂ −→ X′ such that f = f̂ ◦ τ , i.e., the following diagram
commutes:

X′

X̂�X
τ

f f̂

�
�
�
�
�
�
��� �

Definition 17. Let (X, d) be a quasi-metric space. A subset A of B(X, d) is called a local g-set if for
any Y-continuous function f : X −→ X′ mapping into a local Yoneda complete quasi-metric space
(X′, d′), there exists a unique (yA, rA) ∈ B(X′, d′) such that clg(B(f )(A))= ↓(yA, rA).

Proposition 18. Let (X, d) be a quasi-metric space, and A be a local g-set satisfying α(A)= 0. If
(Y , d′) is a local Yoneda complete quasi-metric space and f : X −→ Y is a Y-continuous function,
then there exists a unique (yA, rA) ∈ B(Y, d′) such that clg(B(f )(A))= ↓(yA, rA) and rA = 0.

Proof. By Definition 17, we only need to prove that rA = 0. Let (y, s) ∈ clg(B(f )(A)). Then
(y, s)≤d′ + (yA, rA), and thus rA ≤ s. Hence rA ≤ α(clg(B(f )(A)))≤ α(A)= 0, that is, rA = 0.

Let X̃ = {A⊆ B(X, d) |A is a g-closed set satisfying α(A)= 0}, where the notion of g-closed
sets is introduced in Definition 5. Define a mapping d̃ = dH |X̃×X̃: X̃ × X̃ −→ [0,+∞] as follows:

∀ (A, B) ∈ X̃ × X̃, d̃(A, B)=
∨

(a,m)∈A

∧
(c,r)∈B

d+((a,m), (c, r)).
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Then (X̃, d̃) is a Yoneda-complete quasi-metric space (see Ng and Ho 2017). We write

X̂ = {A⊆ B(X, d) |A is a g-closed local g-set satisfying α(A)= 0}.
Then X̂ ⊆ X̃. Define the mapping d̂ as the restriction of d̃ to X̂ × X̂. Then (X̂, d̂) is a quasi-metric
space.

Proposition 19. Let (X, d) be a quasi-metric space, and (Ai1 , ri1 ), (Ai2 , ri2 ) ∈ B(X̃, d̃). Then
(Ai1 , ri1 )≤d̃+ (Ai2 , ri2 ) if and only if Ai1 + ri1 ⊆Ai2 + ri2 .

Proof. This immediately follows from Ng and Ho (2017, Lemma 3.14).

Proposition 20. Let (X, d) be a quasi-metric space, and (Ai, ri)i∈I be a directed family in B(X̃, d̃).

Then
B(X̃,d̃)∨
i∈I

(Ai, ri)= (clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)),

∧
i∈I ri).

Proof. Obviously, clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)) is a g-closed set. Since

α(clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri))) ≤ α(

⋃
i∈I (Ai + ri − ∧

i∈I ri))
= ∧

i∈I α(Ai + ri − ∧
i∈I ri)

= ∧
i∈I (ri −

∧
i∈I ri)

= 0,

we have that clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)) ∈ X̃. Since (Ai, ri)≤d̃+ (clg(

⋃
i∈I (Ai + ri −∧

i∈I ri)),
∧

i∈I ri) for any i ∈ I, we have that (clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)),

∧
i∈I ri) is

an upper bound of (Ai, ri)i∈I in B(X̃, d̃). Let (B, s) be an upper bound of (Ai, ri)i∈I in
B(X̃, d̃). Then (Ai, ri)≤d̃+ (B, s) for any i ∈ I, and thus Ai + ri ⊆ B+ s for any i ∈ I. So
we conclude that

⋃
i∈I (Ai + ri)⊆ B+ s, and hence clg(

⋃
i∈I (Ai + ri))⊆ B+ s. Since

α(
⋃

i∈I (Ai + ri))= ∧
i∈I ri, it follows from Proposition 7 that clg(

⋃
i∈I (Ai + ri))=

clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri))+

∧
i∈I ri. Therefore, clg(

⋃
i∈I (Ai + ri − ∧

i∈I ri))+
∧

i∈I ri ⊆
B+ s, whence (clg(

⋃
i∈I (Ai + ri − ∧

i∈I ri)),
∧

i∈I ri)≤d̃+ (B, s) by Proposition 19. Therefore,
B(X̃,d̃)∨
i∈I

(Ai, ri)= (clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)),

∧
i∈I ri).

Next, we show that the sub-poset B(X̂, d̂) of B(X̃, d̃) is closed under least upper bounds of
bounded directed families.

Proposition 21. Let (X, d) be a quasi-metric space, and (Ai, ri)i∈I be a directed family in B(X̂, d̂)

with an upper bound (A, r). Then
B(X̂,d̂)∨
i∈I

(Ai, ri)= (clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)),

∧
i∈I ri).

Proof. Let (Ai, ri)i∈I be a directed family in B(X̂, d̂) with an upper bound (A, r). Then

(Ai, ri)i∈I is a directed family in B(X̃, d̃). By Proposition 20,
B(X̃,d̃)∨
i∈I

(Ai, ri)= (clg(
⋃

i∈I (Ai + ri −∧
i∈I ri)),

∧
i∈I ri) holds. Next, we shall prove that clg(

⋃
i∈I (Ai + ri − ∧

i∈I ri)) ∈ X̂. It suffices to
prove that clg(

⋃
i∈I (Ai + ri − ∧

i∈I ri)) is a local g-set. Let (Y , d′) be a local Yoneda-complete
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quasi-metric space and f : X −→ Y be a Y-continuous function. Then there exists a unique
(yAi , rAi) ∈ B(Y , d′) such that clg(B(f )(Ai))= ↓(yAi , rAi) and rAi = 0 for any i ∈ I, and there exists
a unique (yA, rA) ∈ B(Y , d′) such that clg(B(f )(A))= ↓(yA, rA) and rA = 0. Let i1, i2 ∈ I. Then
there exists i3 ∈ I such that (Ai1 , ri1 ), (Ai2 , ri2 )≤d̂+ (Ai3 , ri3 ), and thus Ai1 + ri1 ⊆Ai3 + ri3 and
Ai2 + ri2 ⊆Ai3 + ri3 . Hence clg(B(f )(Ai1 + ri1 ))⊆ clg(B(f )(Ai3 + ri3 )) and clg(B(f )(Ai2 + ri2 ))⊆
clg(B(f )(Ai3 + ri3 )). By Proposition 7, we have that clg(B(f )(Ai + ri))= clg(B(f )(Ai))+ ri for any
i ∈ I. Then clg(B(f )(Ai1 ))+ ri1 ⊆ clg(B(f )(Ai3 ))+ ri3 and clg(B(f )(Ai2 ))+ ri2 ⊆ clg(B(f )(Ai3 ))+
ri3 , and thus ↓(yAi1

, 0)+ ri1 ⊆ ↓(yAi3
, 0)+ ri3 and ↓(yAi2

, 0)+ ri2 ⊆ ↓(yAi3
, 0)+ ri3 . Hence

(yAi1
, ri1 ), (yAi2

, ri2 )≤d′ + (yAi3
, ri3 ), and so we conclude that (yAi , ri)i∈I is a directed family in

B(Y , d′). Similarly, we can check that (yA, r) is an upper bound of (yAi , ri)i∈I . Since (Y , d
′) is a local

Yoneda-complete quasi-metric space, we have that
∨

i∈I (yAi , ri) exists. Then (yAi , ri −
∧

i∈I ri)i∈I
is a directed family in B(Y , d′) and has an upper bound, hence there exists b ∈ Y such that∨

i∈I (yAi , ri −
∧

i∈I ri)= (b, 0). This implies B(f )(
⋃

i∈I (Ai + ri − ∧
i∈I ri))⊆ ↓(b, 0). Let B be

a g-closed set satisfying B(f )(
⋃

i∈I (Ai + ri − ∧
i∈I ri))⊆ B. Then (yAi , ri −

∧
i∈I ri) ∈ B for any

i ∈ I. Obviously, (yAi , ri −
∧

i∈I ri)i∈I is a translational complete directed set. Then
∨

i∈I (yAi , ri −∧
i∈I ri)= (b, 0) ∈ B, and thus ↓(b, 0)⊆ B. Hence, clg(B(f )(

⋃
i∈I (Ai + ri − ∧

i∈I ri)))= ↓(b, 0).

This shows that clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)) ∈ X̂. Therefore,

B(X̂,d̂)∨
i∈I

(Ai, ri)= (clg(
⋃

i∈I (Ai + ri −∧
i∈I ri)),

∧
i∈I ri).

Let A ⊆ X̃. A satisfies Condition (∗) if, whenever for any directed family (Ai, ri)i∈I in
B(A , dH |A ×A ) with an upper bound (Z, t), then

B(X̃,d̃)∨
i∈I

(Ai, ri) ∈ B(A , dH |A ×A ).

Proposition 21 means that X̂ satisfies Condition (∗). Let �(X)= {↓(x, 0) | x ∈ X}, and
clL(�(X))=

⋂
{A ⊆ X̃ | �(X)⊆ A and A satisfies Condition (∗)}.

Define the mapping dL as the restriction of d̃ to clL(�(X)). Then (clL(�(X)), dL) is a quasi-metric
space.

Proposition 22. Let (X, d) be a quasi-metric space. Then (clL(�(X)), dL) is a local Yoneda-
complete quasi-metric space.

Proof. We start by proving part (2) of Definition 9. Let (Ai, ri)i∈I be a directed family in
B(clL(�(X)), dL) with an upper bound. If A ⊆ X̃ with �(X)⊆ A satisfies Condition (∗), then
(Ai, ri)i∈I is a directed family in B(A , dH |A ×A ) and has an upper bound. So we conclude

that
B(X̃,d̃)∨
i∈I

(Ai, ri) ∈ B(A , dL). By Proposition 20, we have that
B(X̃,d̃)∨
i∈I

(Ai, ri)= (clg(
⋃

i∈I (Ai +
ri − ∧

i∈I ri)),
∧

i∈I ri). Then clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)) ∈ A , and thus clg(

⋃
i∈I (Ai + ri −∧

i∈I ri)) ∈ clL(�(X)). Hence
B(clL(�(X)),dL)∨

i∈I
(Ai, ri)= (clg(

⋃
i∈I (Ai + ri − ∧

i∈I ri)),
∧

i∈I ri). Part

(1) of Definition 9 is then a trivial consequence. Therefore, (clL(�(X)), dL) is a local Yoneda-
complete quasi-metric space.
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Proposition 23. Let (X, d) be a quasi-metric space. Define a mapping ζ : X −→ clL(�(X)) as
follows:

∀ x ∈ X, ζ (x)= ↓(x, 0).
Then ζ is a Y-continuous mapping.

Proof. Let (x, r), (y, s) ∈ B(X, d) satisfying (x, r)≤d+ (y, s). Then d(x, y)≤ r − s. If (a,m) ∈ ↓(x, 0),
then d+((a,m), (x, 0))= 0, and thus∧

(b,n)∈↓(y,0)
d+((a,m), (b, n))≤ d+((a,m), (y, 0))≤ d+((x, 0), (y, 0))≤ r − s.

Hence
∨

(a,m)∈↓(x,0)
∧

(b,n)∈↓(y,0)
d+((a,m), (b, n))≤ r − s. So we conclude that

dL(↓(x, 0), ↓(y, 0))≤ r − s.

Therefore, (↓(x, 0), r)≤dL+ (↓(y, 0), s). This shows that B(ζ )(x, r)≤dL+ B(ζ )(y, s).
Let (xi, ri)i∈I be a translational complete directed family in B(X, d) with supremum (x, r). Then

r = ∧
i∈I ri, and (↓(xi, 0), ri)i∈I is a directed family in B(clL(�(X)), dL). Since (xi, ri)≤d+ (x, r)

for any i ∈ I, we have that (↓(xi, 0), ri)≤dL+ (↓(x, 0), r) for any i ∈ I. Let (B, s) ∈ B(clL(�(X)), dL)
such that (↓(xi, 0), ri)≤dL+ (B, s) for any i ∈ I. Then s≤ ∧

i∈I ri, and (xi, ri) ∈ B+ s for any i ∈ I.
Since B+ s is a g-closed set, we have that (x, r) ∈ B+ s. Then (x, r − s) ∈ B, and thus ↓(x, r − s)⊆
B. Therefore, (↓(x, 0), r)≤dL+ (B, s). So we conclude that

B(clL(�(X)),dL)∨
i∈I

(↓(xi, 0), ri)= (↓(x, 0), r).
This shows that B(ζ ) is Y-Scott continuous, and hence ζ is a Y-continuous mapping.

Proposition 24. Let (X, d) be a quasi-metric space. Then X̂ = clL(�(X)).

Proof. By Proposition 21, we have that X̂ satisfies Condition (∗). Obviously, �(X)⊆ X̂.
Then clL(�(X))⊆ X̂. Let A ∈ X̂. By Proposition 22, we have that (clL(�(X)), dL) is a local
Yoneda-complete quasi-metric space. It follows from Proposition 23 that there exists (M, s) ∈
B(clL(�(X)), dL) such that clg(B(ζ )(A))= ↓(M, s). Then s= 0 and A⊆M. Let

B = {(Z, t) ∈ B(X̃, d̃) | dH (Z,A)≤ t} ∩ B(clL(�(X)), dL).

Then B is a g-closed subset of B(clL(�(X)), dL). Since B(ζ )(A)⊆ B, we have that clg(B(ζ )(A))⊆
B. Then (M, 0) ∈ B, and thus dH (M,A)= 0. So we conclude that M ⊆A. Therefore, M =A ∈
clL(�(X)). This shows that X̂ = clL(�(X)).

Corollary 25. Let (X, d) be a quasi-metric space. Then (X̂, d̂) is a local Yoneda-complete quasi-
metric space.

Proof. Immediately from Propositions 22 and 24.

Proposition 26. Let (X, d), (X′, d′) be two quasi-metric spaces, and f : X −→ X′be a function. Then
B(f ) is a Y-Scott continuous map if and only if B(f ) is continuous with respect to the g-topology.

Proof. Only-if direction. Let C be a g-closed subset of B(X′, d′). Then (B(f ))−1(C) is downward
closed. Let (xi, ri)i∈I be a translational complete directed family in (B(f ))−1(C) with supremum
(x, r). Then (f (xi), ri)i∈I ⊆ C. Since B(f ) is a Y-Scott continuous map, we have that (f (xi), ri)i∈I
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is a translational complete directed family in B(X′, d′), and
∨

i∈I (f (xi), ri)= B(f )(x, r)= (f (x), r).
Then (f (x), r) ∈ C, and thus (x, r) ∈ (B(f ))−1(C). Therefore, (B(f ))−1(C) is a g-closed set. This
shows that B(f ) is continuous with respect to the g-topology.

If direction. Let (x1, r1), (x2, r2) ∈ B(X, d) satisfying (x1, r1)≤d+ (x2, r2). Clearly, (f (x2), r2) ∈
↓(f (x2), r2), and therefore, (x2, r2) ∈ (B(f ))−1(↓(f (x2), r2)). Since ↓(f (x2), r2) is a g-closed set,
so is (B(f ))−1(↓(f (x2), r2)). Thus, (x1, r1) ∈ (B(f ))−1(↓(f (x2), r2)), which implies (f (x1), r1) ∈
↓(f (x2), r2), whence (f (x1), r1)≤d′+ (f (x2), r2).

Let (xi, ri)i∈I be a translational complete directed family in B(X, d) with supremum (x, r).
Then (f (xi), ri)≤d′+ (f (x), r) for any i ∈ I. Let (y, s) be an upper bound of (f (xi), ri)i∈I . Then
(f (xi), ri) ∈ ↓(y, s) for any i ∈ I, and thus (xi, ri) ∈ (B(f ))−1(↓(y, s)) for any i ∈ I. Obviously, ↓(y, s)
is a g-closed set. Then (B(f ))−1(↓(y, s)) is a g-closed set, and thus (x, r) ∈ (B(f ))−1(↓(y, s)), that is,
(f (x), r)≤d′+ (y, s). Therefore,

∨
i∈I (f (xi), ri)= (f (x), r). This implies that (f (xi), ri)i∈I is a trans-

lational complete directed family in B(X′, d′). So we conclude that B(f ) is a Y-Scott continuous
map.

Theorem 27. Let (X, d) be a quasi-metric space. Then (X̂, d̂) is the local Yoneda completion of
(X, d).

Proof. Let (X′, d′) be a local Yoneda-complete quasi-metric space, and f : X −→ X′ be a Y-
continuous mapping. For all A in X̂, there exists a unique (yA, rA) ∈ B(X′, d′) such that
clg(B(f )(A))= ↓(yA, rA) and rA = 0. Define a mapping f ∗ : X̂ −→ X′as follows:

∀ A ∈ X̂, f ∗(A)= yA.

Then f ∗ is well-defined.
Claim 1. f ∗ ◦ ζ = f .
Let x ∈ X. Then f ∗(ζ (x))= f ∗(↓(x, 0)). Since

clg(B(f )(↓(x, 0)))= clg({(f (y), s) | (y, s)≤d+
(x, 0)})= ↓(f (x), 0),

we have that f ∗(↓(x, 0))= f (x). Then f ∗ ◦ ζ = f .
Claim 2. f ∗ is a Y-continuous mapping.
To prove this claim, we show that B(f ∗) is Y-Scott continuous and then use Proposition 4.

Let (B1, r), (B2, s) ∈ B(X̂, d̂) satisfying (B1, r)≤d̂+ (B2, s). Then B1 + r ⊆ B2 + s, and thus B1 +
r − s⊆ B2. Therefore, B(f )(B1 + r − s)⊆ B(f )(B2), and so we conclude that clg(B(f )(B1 + r −
s))⊆ clg(B(f )(B2)). Since clg(B(f )(B1))= ↓(yB1 , 0), clg(B(f )(B2))= ↓(yB2 , 0), and clg(B(f )(B1 +
r − s))= clg(B(f )(B1))+ (r − s), we have that (yB1 , r − s)≤d′+ (yB2 , 0). Then d′(yB1 , yB2 )≤ r − s.
This shows that B(f ∗)(B1, r)≤d′+ B(f ∗)(B2, s).

Let (Ai, ri)i∈I be a translational complete directed family in B(X̂, d̂) satisfying
B(X̂,d̂)∨
i∈I

(Ai, ri)

exists. By Proposition 21, we have that
B(X̂,d̂)∨
i∈I

(Ai, ri)= (clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)),

∧
i∈I ri).

Next, we shall prove that

B(f ∗)(
B(X̂,d̂)∨
i∈I

(Ai, ri))=
B(X′,d′ )∨
i∈I

B(f ∗)(Ai, ri),
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that is, (f ∗(A),
∧

i∈I ri)=
B(X′,d′ )∨
i∈I

(f ∗(Ai), ri), where A= clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)). Since

(Ai, ri)≤d̂+ (A,
∧

i∈I ri) for any i ∈ I, we have that (f ∗(Ai), ri)≤d′+ (f ∗(A),
∧

i∈I ri) and
(f ∗(Ai), ri)i∈I is a directed set. Since (X′, d′) is a local Yoneda-complete quasi-metric space, we

have that
B(X′,d′ )∨
i∈I

B(f ∗)(Ai, ri) exists, denoted by (y,
∧

i∈I ri). Thus (y,
∧

i∈I ri)≤d′+ (f ∗(A),
∧

i∈I ri),

which implies d′+(y, f ∗(A))= 0.
Since (f ∗(Ai), ri)≤d′+ (y,

∧
i∈I ri), we have that (f ∗(Ai), ri − ∧

i∈I ri)≤d′+ (y, 0) for any i ∈ I.
From this, we may conclude

B(f )(Ai + ri − ∧
i∈I ri) ⊆ clg(B(f )(Ai + ri − ∧

i∈I ri))
= clg(B(f )(Ai))+ ri − ∧

i∈I ri
= ↓(f ∗(Ai), 0)+ ri − ∧

i∈I ri
= ↓(f ∗(Ai), ri − ∧

i∈I ri)
⊆ ↓(y, 0)

for any i ∈ I. Since B(f ) is a Y-Scott continuous mapping, it follows from Proposition 26 that
(B(f ))−1(↓(y, 0)) is a g-closed set. Hence, A= clg(

⋃
i∈I (Ai + ri − ∧

i∈I ri))⊆ (B(f ))−1(↓(y, 0)),
and thus clg(B(f )(A))⊆ ↓(y, 0). By the definition of f ∗, this implies ↓(f ∗(A), 0)⊆ ↓(y, 0), and
therefore, (f ∗(A), 0)≤d′+ (y, 0), which implies d′+(f ∗(A), y)= 0. Together with d′+(y, f ∗(A))= 0

from above, f ∗(A)= y follows. Therefore,
B(X′,d′ )∨
i∈I

(f ∗(Ai), ri)= (f ∗(A),
∧

i∈I ri). Hence f ∗ is a Y-

continuous mapping.
Claim 3. f ∗ is a unique Y-continuous mapping such that f ∗ ◦ ζ = f .
Suppose that there exists a Y-continuous mapping g : X̂ −→ X′ such that g ◦ ζ = f . Let C =

{A ∈ X̂ | f ∗(A)= g(A)}. Then C ⊆ X̂ ⊆ X̃ and �(X)⊆ C . Next, we shall prove that C satisfies
the Condition (∗). Let (Ai, ri)i∈I be a directed family in B(C , dH |C ×C ) with an upper bound

(B, s). By Propositions 20 and 21, we have that
B(X̃,d̃)∨
i∈I

(Ai, ri)= (A,
∧

i∈I ri) and A ∈ X̂, where

A= clg(
⋃

i∈I (Ai + ri − ∧
i∈I ri)). Obviously, (Ai, ri − ∧

i∈I ri)i∈I,� is a Cauchy weighted net in
B(X̂, d̂). Let Z ∈ X̂. Then, d̂(Ai, Z)≤ d̂(Ai,A)+ d̂(A, Z)≤ ri − ∧

i∈I ri + d̂(A, Z) for any i ∈ I, and
thus d̂(Ai, Z)− ri + ∧

i∈I ri ≤ d̂(A, Z) for any i ∈ I. Let s be an upper bound of (d̂(Ai, Z)− ri +∧
i∈I ri)i∈I . If s= +∞, then d̂(A, Z)≤ s. If s< +∞, then d̂(Ai, Z)− ri + ∧

i∈I ri ≤ s for any i ∈ I,
and thus d̂(Ai, Z)≤ s+ ri − ∧

i∈I ri for any i ∈ I. Hence, (Ai, ri + s)≤d̂+ (Z,
∧

i∈I ri) for any i ∈ I,
and so we conclude that (A,

∧
i∈I ri + s)≤d̂+ (Z,

∧
i∈I ri). This implies d̂(A, Z)≤ s. Therefore,∨

i∈I (d̂(Ai, Z)− ri + ∧
i∈I ri)= d̂(A, Z). By Lemma 2.6 (i) of Ng and Ho (2017), A is the d-limit

of (Ai)i∈I . Since f ∗ and g are Y-continuous, we have that f ∗(A)= f ∗( limd Ai)= limd f ∗(Ai)=
limd g(Ai)= g( limd Ai)= g(A). So we conclude A ∈ C . It follows from Proposition 24 that X̂ =
clL(�(X))= C , and therefore f ∗ = g.

Consequently, (X̂, d̂) is the local Yoneda completion of (X, d).
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