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Abstract
The early applications of Visual Simultaneous Localization and Mapping (VSLAM) technology were primarily
focused on static environments, relying on the static nature of the environment for map construction and localization.
However, in practical applications, we often encounter various dynamic environments, such as city streets, where
moving objects are present. These dynamic objects can make it challenging for robots to accurately understand their
own position. This paper proposes a real-time localization and mapping method tailored for dynamic environments
to effectively deal with the interference of moving objects in such settings. Firstly, depth images are clustered, and
they are subdivided into sub-point clouds to obtain clearer local information. Secondly, when processing regular
frames, we fully exploit the structural invariance of static sub-point clouds and their relative relationships. Among
these, the concept of the sub-point cloud is introduced as novel idea in this paper. By utilizing the results computed
based on sub-poses, we can effectively quantify the disparities between regular frames and reference frames. This
enables us to accurately detect dynamic areas within the regular frames. Furthermore, by refining the dynamic areas
of keyframes using historical observation data, the robustness of the system is further enhanced. We conducted
comprehensive experimental evaluations on challenging dynamic sequences from the TUM dataset and compared
our approach with state-of-the-art dynamic VSLAM systems. The experimental results demonstrate that our method
significantly enhances the accuracy and robustness of pose estimation. Additionally, we validated the effectiveness
of the system in dynamic environments through real-world scenario tests.

1. Introduction
As hardware computing power continues to advance, deep learning technologies have gradually tran-
sitioned from theory to practical applications. In this context, Visual Simultaneous Localization and
Mapping (VSLAM) technology has once again garnered unprecedented attention and research efforts.
VSLAM, as a crucial localization technique, is actively applied across various devices and domains,
including robotics, autonomous driving, assistive technology for the visually impaired, and augmented
reality. However, the presence of dynamic information in these application scenarios cannot be ignored,
posing a significant challenge. Despite the overall maturity of VSLAM frameworks and the emergence of
several high-precision and robust visual localization systems in the past two decades [1–3], it appears that
these outstanding systems have not fully addressed the challenges and impacts of dynamic environments
on visual localization.

Dynamic SLAM technology holds crucial significance in fields such as robotics and autonomous
vehicles. It helps these systems achieve precise localization and collision avoidance in dynamic envi-
ronments, thus enabling safer navigation. In the domains of intelligent surveillance, virtual reality, and
augmented reality, dynamic SLAM can be used to track human movements, object mobility, and user
positions in virtual environments, providing a more natural human–computer interaction experience.
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In industrial automation and logistics, dynamic SLAM is employed for real-time tracking of moving
materials or robots, ensuring the safety and efficiency of production processes. However, effectively
handling or harnessing dynamic information to improve the accuracy, robustness, and real-time capabil-
ities of visual localization is the primary challenge in implementing these applications. This is essential
for achieving greater autonomy and intelligence.

In such environments, the use of localization systems such as refs. [1–3] may be compromised by
the presence of irregularly moving dynamic objects. This is because conventional VSLAM or Visual
Odometry systems are typically based on maximum a posteriori estimation, which answers the ques-
tion, “Under what conditions am I most likely to have observed these landmarks?” In the dynamic
environment, actual observations may introduce landmarks associated with the unpredictable motion of
these objects, making it challenging for the system to differentiate between its own motion and that of
objects in the environment. This, in turn, affects the accuracy of localization results and can even lead
to significant deviations in the construction of the environmental map.

In this paper, to address the issue of poor localization performance in dynamic environments,
we delve into the unsolved problems and their essence. We propose a dynamic region segmentation
method based on point cloud relativity. The main idea can be divided into two parts: firstly, utilizing
the K-Means algorithm to cluster depth images, dividing them into multiple sub-point clouds, and
then calculating the sub-pose between each sub-point cloud and a reference frame. Simultaneously, we
introduce the concept of sub-point cloud dynamic–static relativity. By combining the dynamic–static
relativity of sub-point clouds and sub-pose information, we can effectively identify which sub-point
clouds belong to the dynamic point cloud. This process does not rely on epipolar geometry constraints
and does not require prior knowledge of the approximate camera pose. Secondly, considering that
motion is a continuous state, when new keyframes are inserted, we further refine the dynamic areas in
the keyframes using weighted historical observation data. This refinement process not only enhances
the system’s accuracy and robustness but also ensures the quality of the map. The SLAM method we
propose is called CPR-SLAM.

This paper makes the following main contributions:

1. Segmentation method based on point cloud relativity: The paper introduces a method based on
point cloud relativity for the segmentation of dynamic and static regions. This method has the
distinctive feature of independent segmentation, as it does not require consideration of cam-
era motion and eliminates the reliance on perspective transformations, which is a common
dependency in most existing algorithms.

2. Refinement of dynamic areas in keyframes: Through the use of weighted historical observation
data, the paper refines dynamic areas in keyframes about to be inserted, significantly enhancing
the system’s robustness and localization accuracy.

3. Integration with ORBSLAM2 Artal System: The segmentation method is integrated into the
ORBSLAM2 system, and evaluations and comparisons are performed using the TUM RGB-D
benchmark dataset. Experimental results demonstrate that this approach substantially improves
the robustness and localization accuracy of the ORBSLAM2 system.

The structure of the rest of the paper is as follows: Section 2 discusses related work, Section 3 provides
details of the proposed method, Section 4 elaborates on the experimental results, and Section 5 presents
conclusions and outlines future research directions.

2. Related work
In VSLAM within dynamic environments, two types of motion are observed in image sequences cap-
tured due to irregular camera movements: one is motion caused by the camera’s own motion, and the
other is motion induced by independently moving objects. Typically, these motions can be distinguished
using geometric-based methods and deep learning-based methods.
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Geometric-based approaches in dynamic SLAM typically employ multiview geometry theory such
as homography matrices and fundamental matrices to roughly estimate the camera’s own pose and
correct image distortions resulting from camera motion. These methods attempt to differentiate between
dynamic and static portions by analyzing the positional information of feature points or correspon-
dences in the image sequence. Motion caused by the camera’s own movement is usually compensated
for through pose estimation, while the remaining motion is considered to be caused by independently
moving objects. These methods have a certain level of maturity in traditional VSLAM but still face
challenges when dealing with rapid motion or a high number of dynamic objects.

Deep learning methods are increasingly being applied in dynamic SLAM. Deep learning can be used
to recognize prior dynamic objects, as it can learn from extensive data and identify targets. Using deep
learning network such as Convolutional Neural Networks (CNNs), known dynamic objects can be pre-
cluded, with most of the scene considered as static. This aids in compensating for image distortions
caused by camera motion more accurately using geometric methods. The advantage of deep learn-
ing methods lies in their adaptability to large-scale data, particularly when handling complex dynamic
scenes. However, the limitation of this approach is that it does not determine whether known objects are
in motion; it treats them all as dynamic objects. Note that the key to dynamic SLAM is the identification
of dynamic regions, not target recognition.

In summary, existing dynamic SLAM methods mostly rely on fake-static feature points, which are
feature points that are difficult to determine as truly stationary, to compensate for image distortions
caused by the camera’s own motion. However, some algorithms treat camera motion compensation and
dynamic region identification as two separate tasks. This approach does not depend on all the opera-
tions before camera compensation, making it more widely applicable in various scenarios. Therefore,
existing methods can be categorized into two main classes: those based on camera motion compensation
estimation and those based on non-camera motion compensation estimation.

2.1. Based on camera motion compensation estimation
In Zhang et al. [4], they used homography matrices to compensate for the image motion caused by the
camera’s own movement between two frames. They employed a differential approach to obtain the out-
lines of moving objects in the images and used the grayscale intensities of these outlines as weights
in a particle filter to track these moving objects. In Chen and his team’s work [5], they utilized the
homography matrix to create the illusion that the camera remained approximately stationary between
two adjacent frames. They then applied sparse optical flow within a Bayesian framework to compute the
probability values for each grid cell in the images, ultimately using these probability values to segment
dynamic regions. While these methods achieved good pose estimation results in dynamic environments,
their underlying assumption was that static regions occupied the majority of the image. To mitigate the
impact of the static region assumption on real-world environments in SLAM, many researchers have
explored more robust outlier elimination algorithms [6–8]. Sun et al. [9], in their work, replaced the tra-
ditional Random Sample Consensus (RANSAC) algorithm, a probabilistic iterative approach, with the
Least Median of Squares (LMED) algorithm [10]. The LMED algorithm can achieve results comparable
to RANSAC but is more robust, making it suitable for a broader range of real-world scenarios.

Over the past few decades, with the rapid advancement of deep learning technology, some meth-
ods that combine the advantages of deep learning have achieved satisfactory localization accuracy. For
example, in Chao et al. [11], SegNet [12], a lightweight semantic segmentation network, was used to
identify potential dynamic objects and remove feature points within their regions. This was combined
with RANSAC to calculate the fundamental matrix, and epipolar geometry constraints were used to
remove unstable feature points that were not recognized. In ref. [13], the authors used a similar approach
to DS-SLAM but focused on real-time performance by only recognizing dynamic regions in keyframes.
To prevent false negatives due to untrained objects in the images and camera rotations, the authors
clustered the depth information and calculated the mean reprojection error for each cluster to identify
dynamic regions. In ref. [14], the authors utilized the OpenPose network [15] for pedestrian detection
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and used epipolar geometry constraints to determine dynamic regions. This method relied on human
pose estimation for detecting potential dynamic objects and performed well indoors, where dynamic
objects are typically humans. In ref. [16], the authors employed the Mask R-CNN network [17] for
detection and, within a Bayesian framework, combined epipolar geometry’s epipolar line distance to
assign dynamic probability values to each feature point, achieving precise localization.

2.2. Based on non-camera motion compensation estimation
Since most current methods require consideration of camera compensation, any missed or failed detec-
tions prior to camera compensation can significantly reduce the system’s localization accuracy and
robustness. Many researchers have also started to focus on methods based on non-camera motion
compensation estimation. For example, in Dai et al. [18], they used a three-dimensional Delaunay trian-
gulation method to establish correlations between points and embedded this method into the front end of
ORBSLAM2 for dynamic object removal. This improvement enhanced localization accuracy compared
to the original system. Similar to ref. [18], Wang et al. [8] took a similar approach but, to enhance dif-
ferentiation, used Delaunay triangulation only for keyframes to construct connections between points.
They determined whether a point was dynamic by observing changes in distance between points in
three-dimensional space. For ordinary frames, object tracking was implemented using template match-
ing. While judging dynamic points based on relative positional information in three-dimensional space
is an ingenious method in ideal conditions, it needs to account for issues such as depth errors caused
by hardware limitations in RGB-D cameras. In Li et al. [19], they introduced an intensity-assisted itera-
tive closest point (ICP) approach. This method utilized edge point clouds in combination with intensity
values to assist in the nearest neighbor iteration process. It was employed to determine point cloud dis-
tance weights between ordinary frames and keyframes, serving as an indicator for detecting dynamic
targets. In ref. [20], the authors used DNN-base object detection to obtain dynamic objects and then used
foreground–background segmentation to preserve the background within the bounding boxes. Besides,
multi-sensor fusion is also one of the solutions to the problem. He et al. [21] integrated two sensors,
an Inertial Measurement Unit (IMU) and a stereo camera, using the IMU velocity as the camera’s own
motion velocity. Simultaneously, they estimated the velocity of image feature points. They designed
two filtering algorithms capable of effectively detecting dynamic feature points when moving objects
dominate the scene in real environments captured within the images.

The above-mentioned methods are built upon traditional VSLAM systems and successfully break the
strong assumption of a “static environment” in traditional VSLAM. However, they still have some lim-
itations. Methods based on deep learning have limited categories for object recognition, high hardware
requirements, and poor real-time performance and require predefined prior knowledge of target objects.
Moreover, whether based on deep learning or geometric methods, most algorithms require accurate
camera compensation before recognizing motion regions to achieve good localization accuracy. Some
methods also struggle with non-rigidly moving objects. Under these layers of assumptions, the system’s
applicability and robustness are significantly restricted, and its accuracy is reduced.

3. Proposed method
3.1. Problem statement
In this subsection, we provide a brief introduction to the difference between traditional VSLAM and
VSLAM in dynamic environments. The VSLAM problem aims to estimate the camera’s own poses and
landmarks by minimizing reprojection errors:

T∗, x∗ = arg min
T ,x

m∑
i=1

n∑
j=1

wij(
∥∥zij + Vij − h(Ti,i−1, xj)

∥∥2
) (1)

In q. (1), T∗ and x∗, respectively, represent the optimal pose and the landmark point. w(∗) represents
a robust kernel function. h(∗) denotes the process of projecting landmark points xj from the previous

https://doi.org/10.1017/S0263574724000754 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000754


Robotica 5

Figure 1. How dynamic feature points interfere with the analysis graph in traditional SLAM. Inside
the quadrilateral are the two-dimensional points on the image, while outside are the three-dimensional
points.

frame i− 1 to the current frame i through pose transformation Ti,i−1 into the image coordinate system.
zij is the observation of the j landmark point in the i frame, which represents the pixel values of the
feature point indicated by xp and xq in Fig. 1. Vij denotes the velocity of motion from landmark point Xq

to Xq
′
, introduced by the irregular movement of the object, but it is not considered in traditional VSLAM.

If Vij is not estimated or removed, the tartget function Eq. (1) will result in associating the feature point
that should correspond to xp with xq

′
. Incorrect data association will lead to optimizing Eq. (1) in the

wrong direction. Therefore, we need to eliminate the impact of Vij on Eq. (1) before the pose estimation
or integrate Vij into Eq. (1) in a way that contributes positively.

3.2. Method overview
Figure 2 illustrates an overview of our system. Our method serves as a front-end preprocessing step for
the ORBSLAM2 system Artal, filtering out dynamic regions to reduce incorrect data associations. The
system’s input requires RGB and depth images of the current frame for point cloud generation. Once
processed, the current frame is temporarily stored in the system as a reference frame and will not be
processed again.

The dynamic recognition module employs clustering algorithms to cluster the entire point cloud
into multiple sub-point clouds. Then, it calculates the relative degree between these sub-point clouds
in conjunction with the reference frame’s point cloud. Finally, it generates dynamic regions based
on this relative degree. Feature points within these regions will not be used for camera pose
estimation.

Additionally,in ORBSLAM2 Artal, keyframes represent the most representative frames in a
sequence, helping to reduce redundancy in adjacent frames. They are crucial as they store map informa-
tion, and subsequent optimizations are based on keyframes rather than ordinary frames. Thus, we have
implemented a keyframe refinement module based on the tracking characteristics of ORBSLAM2. This
module further refines the dynamic regions of keyframes using weight-based historical observation data.
This approach mitigates the issue of reduced map point generation in keyframes due to false positives,
ensuring the system’s robustness and accuracy.
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Figure 2. The overview of CPR-SLAM. The gray box is the original ORBSLAM2 framework. Before
the pose estimation, we add a dynamic region recognition module to remove dynamic feature points, as
indicated by the blue box. For keyframes, we refine them using historical observation data, as shown in
the yellow box.

3.3. Sub-point cloud construction
In dynamic environment, point cloud is mixed with noise generated by moving objects, so traditional
ICP cannot be carried out directly. In order to enable the point cloud to recover part of the ability
to calculate the pose transformation, we need to minimize the point cloud P into a sub-point cloud
{B1, B2, . . . , BK} ∈ P.

Inspired by ref. [22], to acquire geometric information from the environment and ensure real-time
performance of the system, we adopted the data acquisition form of lidar to generate point clouds Pd

for the current frame. We sampled with intervals of u= 4 rows and v= 4 columns in pixels to acceler-
ate the construction of KD tree, striking a balance between obtaining rich geometric information and
maintaining real-time performance.

To avoid the defect that the point cloud only has geometric information, the point cloud intensity
value is assigned during the voxel filtering of the point cloud. It not only improves ICP performance
(Section 3.5), but also the accuracy of calculating the dynamic and static correlation of the sub-point
cloud is ensured (Section 3.5). When assigning intensity values to the point cloud, we also perform
further downsampling and remove a certain degree of noise points and outliers. We calculate the average
grayscale value of all points within a cube of side length l= 0.05 meter as the intensity value of the
point cloud. Additionally, we use the centroid calculated from the points inside the cube to represent the
geometric position of that region Gi, as in

IGi =
∑
x,y∈Gi

I(x, y) (2)

IGi is the intensity values of the i-th cube Gi, and I(x, y) denotes the gray value of pixel point coordinate
(x, y).

What is more, due to hardware limitations of RGB-D cameras, depth value errors follow a quadratic
growth with distance [23]. Objects farther from the camera occupy a smaller portion of the field of
view, resulting in fewer unstable feature points dominated by them, which has a smaller impact on
camera motion estimation. To ensure the accuracy of dynamic object recognition, it is necessary to
obtain precise point cloud position information. We need to eliminate unstable depth regions. Based on
the noise model of depth cameras [24] and empirical values obtained through experiments, when the
depth value exceeds 6 m, we set the depth value of the corresponding point in the depth image to 0.

Due to the original depth from RGB-D cameras, multiple layers or holes can appear in the point cloud
structure. We use Moving Least Squares smoothing [25] on the point cloud. Fig. 3 shows a side view
of a point cloud of a planar wall. Due to camera hardware limitations and external factors, depth val-
ues become inaccurate, resulting in an irregular surface with irregularities in the point cloud. However,
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Figure 3. The three-dimensional visualization results of the smoothed point cloud and the unsmoothed
point cloud are shown.

through point cloud smoothing, we can observe that the point cloud is closer to the true position infor-
mation of the point cloud in the real environment. Additionally, point cloud smoothing significantly
improves the accuracy of point cloud registration.

After this process, we obtain high-quality point cloud data, and then we use the K-Means clus-
tering algorithm to cluster the point cloud into the empirical value K = 10 sub-point clouds B=
{B1, B2, . . . , BK}.

3.4. Reference frame
In our experiment, we found that when the camera and the object move in approximately the same
direction or speed, the algorithm is degraded. To minimize this affect, we take the previous σ frames
of the current frame as the reference frame. We cannot set σ to be too large; otherwise, the accuracy of
static and dynamic correlation estimation will decline due to the large environmental difference. In our
experiment, frame updates are faster than keyframes. Thus, σ = 5 for the keyframes, while σ = 2 for the
frames.

3.5. Estimation of sub-point cloud pose
In a dynamic environment, there are two types of sub-point clouds: dynamic sub-point clouds and static
sub-point clouds, both of which change with the camera’s motion. In this scenario, all static sub-point
clouds will undergo the same rigid transformation as the reference point cloud and exhibit motion oppo-
site to the camera’s movement direction. Conversely, each dynamic sub-point cloud will have its unique
motion and will not follow the same rigid transformation pattern.

In this subsection, we describe how to calculate the transformation matrix by registering each sub-
point cloud {< Pj

src(i), Ij
src(i) >}j∈(B),i∈Bj of the source point cloud with the target point cloud Ptgt of the

reference frame, the transformation called the sub-pose. Pj
src(i) represents the i-th point in the j-th sub-

point cloud in the sub-point cloud B. Ij
src(i) represents intensity value of the i-th point in the j-th sub-point

cloud in the sub-point cloud B. In the process of processing, the sub-point cloud is a small part of the
source point cloud. It will fall into the local optimal solution, resulting in the wrong identification of
dynamic region, if traditional ICP is used. Inspired by the work in Li et al. [26], we adopted a registration
estimation method that combines grayscale information with ICP and traditional ICP. Grayscale ICP
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utilizes the point cloud’s grayscale values as intensity information for point correspondence, effectively
avoiding the problem of getting stuck in local minima during local area matching. To reduce compu-
tational complexity, we use grayscale ICP for registration in the initial iterations. Once grayscale ICP
iterations are completed, we then employ traditional ICP for further refinement to obtain more pre-
cise point cloud registration results. This strategy aims to ensure registration accuracy while effectively
controlling computational costs. Grayscale ICP is an iterative approach that estimates the optimal pose
matrix by minimizing the weighted Euclidean distance between the target point cloud and the source
point cloud. The specific process is as follows.

3.5.1. The initial pose
According to ORBSLAM2’s constant velocity model,

T̂ = (TpreTlast)
−1Tref (3)

Tpre represents the increment of pose transformation between the last two adjacent frames in the world
coordinate system, Tlast the camera pose of the last frame, and Tref the pose of the reference frame. The
initial pose can effectively prevent falling into the local optimal solution and accelerate the iteration
speed.

3.5.2. Search the corresponding points
Search the corresponding points between the sub-point cloud Pj

src(i) and the target point cloud according
to the initial pose. The nearest neighbor search seeks α = 10 nearest point as candidate point {ci}αi=0,
calculates their matching degree and finally selects the highest degree S(i, k) as corresponding point
P̃tgt(c∗).

S(i, k)= arg max
k∈c1,c2,...,cα

w(rG(k))w(rI(k)) (4)

rG(k)= ‖�TPj
src(i)− Ptgt(k)‖ (5)

rI(k)= ‖Ij
src(i)− Itgt(k)‖ (6)

�T is the incremental matrix for each iteration. rG( ∗ ) is geometric residuals. rI( ∗ ) is intensity residuals.
w( ∗ ) is weight conversion function.

Following the weighting conversion function based on t-distribution of a student [27], and we also
assume that the two residuals obey t-distribution. Therefore, The weight conversion function can be
expressed as

w= v− 1

v+ r(∗)−μ(∗)
σ (∗)

(7)

μ(∗) = Middle
k∈c1,c2,...,cα

{r(∗)(k)} (8)

σ (∗) = 1.4268 Middle
k∈c1,c2,...,cα

{r(∗)(k)−μ(∗)} (9)

v is the degree of freedom of the t-distribution, and we set it to 5. μ(∗) represents the median of geometric
or intensity residuals; also σ (∗) is variance.

3.5.3. Calculate the gain �T
Calculate the gain �T to minimize the sum of the global Euclidean distances, as in

�T =
∑

i

∥∥TT∗Pj
src(i)− P̃tgt(c∗)

∥∥ (10)
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Figure 4. In figure (a), a correct point cloud matching schematic is shown, where each point has a
unique corresponding point. In figure (b), there is a case where one point corresponds to multiple points,
which often occurs in edge point clouds.

3.5.4. Update
Add the computed increments to the optimal pose transformation matrix. Update T∗ as

T∗ ←�TT∗ (11)

All sub-point clouds can be registered according to the above method to obtain {TBi}Ki=0. This method
can reduce the possibility of falling into local solution effectively and can improve the accuracy of each
point correctly matching corresponding points.

3.6. Correlation degree estimation
We will get the transformation matrix {TBi}Ki=0 to transform the source point cloud and estimate the
degree of correlation between each block sub-point cloud. Find the nearest point Ptgt(j) of the i-th point
P̂j

src(i) and calculate its euclidean distance. In order to prevent a point from being matched to multiple
points, show as Fig. 4, an additional intensity value is used as a penalty to find the corresponding point.
Cumulative scores of all points are averaged as the score of the correlation degree:

R(j)= 1

m

m∑
i=0

(
∥∥∥P̂j

src(i)− Ptgt(j)
∥∥∥+ ∣∣∣Î j

src(i)− Itgt(j)
∣∣∣ ) (12)

m is the total number of the sub-point cloud. P̂j
src(i) is the i-th point in a transformed point cloud. It

is obtained by the source point cloud through the pose transformation matrix TBj of the j-th sub-point
cloud, as follows:

P̂j
src← PsrcTBj (13)

3.7. Reject dynamic region
If there are sub-point clouds with the same motion (e.g., static sub-point clouds with only camera
motion), it can be estimated from the transformation matrix that the source and target point clouds
are approximately coincident. Therefore, based on the poses of the sub-point clouds in space, dynamic
and static sub-point clouds can be effectively distinguished. To sum up, we divide all sub-point clouds
into two groups: the dynamic correlation group and the static correlation group.

Since the score {R(j)}j∈K varies, we find it difficult to use a fixed threshold to determine the state of the
sub-point cloud. To some extent, this is similar to a binary classification problem in machine learning.
Using the mean absolute error [28] as a dynamic threshold to distinguish between dynamic and static
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sub-point clouds yielded remarkable results. The threshold value is as follows:

ε=μ+ 1.4826Mid{R(j)− ∂}Kj=0 (14)

∂ =Mid({R(j)}Kj=0) (15)

μ= 1

K

k∑
i=1

R(i) (16)

K is the number of cluster. The threshold can effectively distinguish which point clouds belong to static
point clouds: {

R(i) < ε R(i) ∈ S
R(i) > ε R(i) ∈D

(17)

S represents static sub-point group, while D belongs to dynamic sub-point group. All point clouds
belonging to D group will be projected onto the camera plane to generate mask. Since point clouds
only occupy one-pixel space on the camera plane, we need to draw a circle centered on the projection
point and fill it. In the end, we obtain dynamic masks through morphologic geometry. The feature points
in the mask will not be included in the pose estimation of the camera.

3.8. Keyframe refinement
Due to the influence of degraded environment, the sub-point cloud is false negative (static recognition
becomes dynamic). Besides, from the experiments, we found that this method can partially mitigate
the drawbacks of a fixed number of clusters. We combine the characteristics of ORBSLAM2 that the
map points generated by the keyframes will determine the tracking performance of the subsequent ordi-
nary frames. We will use multiple observations from regular frames; it is the dynamic region mask
generated by the dynamic recognition module from regular frames, to refine the dynamic regions gen-
erated by keyframes. In fact, when there is new keyframe insertion, we take the previous N frame
masks as historical observation data rather than all of them. Estimate the weight of pixel points as
follows:

ω(I(x, y))=
N+1∑
i=0

Ii(x, y)

255
ρ (18)

Ii(x, y) is the pixel with coordinates (x,y) of the i-th data observation. ρ is the weight of pixel. Since
keyframes are refined, their credibility is higher than that of frames, so the ρ for keyframes is 3. In
contrast, for ordinary frames, ρ = 2. In our experiment, N is set to 6. The plus one denotes the cur-
rent keyframe; we want to ensure that all dynamic objects can be recognized. We do not consider
the keyframes generated between the first N frames, because the environmental change between the
keyframe and the reference frame is relatively large, which is easy to misdetect. When the pixel weight
is τ times greater than the weight of total observation, we regard it as a dynamic pixel:{

ω(I(x, y)) < τ (N + 1)ρ I(x, y)= 0
ω(I(x, y)) > τ (N + 1)ρ I(x, y)= 1

(19)

It is worth noting that τ = 0.6 exhibited the best performance in our experiments. This value indicates
the proportion of historical observation dataset where motion was detected in certain areas. In the
experiment, it was found that the feature points are easy to generate on the edge of the object, and those
are unstable. Hence, the mask generated by the refined keyframe will be properly expanded so that
the edge points will not participate in the pose estimation process of the camera. It is summarized in
Algorithm 1.
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Algorithm 1 Keyframe refinement algorithm
Require: The previous N historical dynamic mask frames F
Ensure: Refined dynamic regions mask
1: Create a mask and a weight matrix fw of the same size as the mask.
2: for each f ∈ [F] do
3: if f == Keyframe then
4: p=3
5: else
6: p=2
7: end if
8: for each fi ∈ [f ] do
9: Normalize a dynamic region mask of frame f .

10: fi = fi/ 255
11: Calculate the weights for all pixels.
12: fw = fw + fi ∗ p
13: end for
14: end for
15: Construct the dynamic region mask based on the weights.
16: for each w(i) ∈ [fw] do
17: if w(i) <τ∗(N + 1)∗p then
18: mask(i) = 0
19: else
20: mask(i) = 1
21: end if
22: end for
23: return mask

4. Experiment
4.1. Overview
Validate the validity of our approach on the TUM dataset, which is widely used to evaluate VSLAM. We
integrated the dynamic area identification approach into ORBSLAM2 and used ORBSLAM2 as a base-
line to demonstrate our improvements. Initially, we assessed the outcomes of various modules presented
in this paper. Subsequently, we compared our results with exceptional dynamic VSLAM approaches,
encompassing geometric and deep learning methods. Finally, we demonstrated the effectiveness and
performance of our method using an RGB-D camera in real-world scenarios.

4.2. Dataset
In the TUM dataset, we selected four highly dynamic sequences fr3/walking (termed as fr3/w) and two
low dynamic sequences fr3/sitting (termed as fr3/s), denoted with a “∗”. Each sequence contains RGB
images and corresponding depth images with size 640×480. Ground truth poses are provided by a high-
precision pose capture system. Within the TUM dataset, fr3/w involves two individuals moving around a
table along with other object movements. fr3/s depicts two individuals sitting on chairs with slight limb
movements. The camera operates in four distinct motion states indicated by suffixes: static (indicating
slight camera motion that approximates stillness), translation along three axes (xyz), rotation along
principal axes (rpy), and movement along a hemisphere with a 1 m diameter (half). These sequences
pose significant challenges, often experiencing environmental degradation, such as instances where the
camera moves in the same direction as people. In some sequences, over half of the camera’s field of
view is occupied by moving objects. Parameters required for the experiments are specified in Section 3.
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Figure. 5. A wheeled robot.

4.3. Evaluation metrics
The evaluation metrics commonly used for assessing camera pose estimation errors are the Root Mean
Square Error (RMSE) and Standard Deviation (SD) of the Absolute Trajectory Error (ATE), which
indicate the global trajectory consistency. Additionally, Relative Pose Error (RPE) consists of relative
rotation (m/s) and relative translation (◦/s), indicating the drift per second in odometry. To mitigate
algorithmic variability and obtain quantitative results with practical reference value, multiple sets of
experiments were conducted on all experimental data, and the median value was used as the final result.
Except for the method proposed in this paper, other evaluation data are from the corresponding papers,
“–” meaning that the original data is not public.

4.4. Experimental equipment
As shown in Fig. 5, all experiments are conducted on an Nvidia Jetson AGX Orin embedded platform
with a 12-core v8.2 64-bit CPU and 32 GB of memory, running Ubuntu 20.04 and Robot Operating
System (ROS). It is important to note that GPU acceleration was not used for data processing in the
experiments. In real-world scenarios, a Realsense D455i camera was used as the RGB-D sensor to cap-
ture image and depth information. In addition, OptriTrack, show in Fig. 6, is a motion capture system
consisting of nine cameras. The average error of OptriTrack calibration is 0.646 mm. We used mark
points to create a camera rigid body and then obtained the actual camera trajectory. The power bank is
used to supply power to the Jetson AGX Orin. In the experiment, a laptop is used as a monitor.

4.1.1. Performance of dynamic area identification
Dynamic region recognition plays a crucial role in the accuracy of front-end data association of VSLAM.
The qualitative results are shown in Fig. 7. Each sequence provides two illustrative images for visual
analysis. As shown in Fig. 7, the proposed method has high accuracy in dynamic region detection. In
Fig. 7 (a), it can be accurately identified even if only a small head is moving. In addition, the deep
learning-based method is very sensitive to camera rotation, which often leads to missing detection.
Figure 7 (c, h, i) fully shows that our detection method has certain anti-interference ability to camera
rotation. Figure 7 (j) shows a person dressed in black is pulling a chair, and the chair is transformed
from static to dynamic, which cannot be recognized by the untrained network. Surprisingly, the method
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Figure. 6. The OptriTrack equipment.

Figure 7. Qualitative results of dynamic target detection. For each sequence, two results are provided
as visualization. The same column is the recognition result of the same sequence. The first row and the
third row are the tracking feature point results. The second row and the fourth row are the dynamic
region mask.

proposed in this paper can quickly recognize the chair as a dynamic area, avoiding missing detection of
dynamic objects.

4.1.2. Performance of keyframe refinement
We will verify whether keyframe refinement can improve the local accuracy of the system. As Table I
shows, the overall effect of Fr3/s/xyz and Fr3/s/half for low dynamic sequences is not significantly
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Table I. Comparison of RMSE of the Absolute Trajectory Error (ATE). The
(O) is the original keyframe processing, and the (R) is refined keyframe. The
best results are highlighted in bold (m).

CPR-SLAM(O) CPR-SLAM(R)
Sequences RMSE SD RMSE SD
Fr3/s/xyz 0.01205 0.00624 0.011153 0.005607
Fr3/s/half 0.024131 0.012465 0.022458 0.008376
Fr3/w/xyz 0.021017 0.010958 0.015896 0.008477
Fr3/w/rpy 0.097156 0.04675 0.053872 0.034805
Fr3/w/half 0.090516 0.036837 0.048676 0.022027
Fr3/w/static 0.019846 0.014781 0.010117 0.005508

Figure 8. The green box is the historical observation result of multiple frames.

improved, but for both high dynamic sequences, it is. One reason is that the clustering algorithm will
cluster them together when moving objects and some static objects are close to each other. The other
one is environment overfits, it is a common problem with most geometric-based methods. The histor-
ical observation data can remedy the appearance. It makes the keyframe generate more stable static
landmarks, which is well shown in Fig. 8.

4.1.3. Performance of visual localization
In order to reflect that our method improves the local performance of ORBSLAM2 in dynamic environ-
ment, we present the RMSE and SD of ATE in Table II, which are more able to illustrate the robustness
and stability of the system.

In Table II, CPR-SLAM can improve the performance of most highly dynamic sequences by an order
of magnitude, up to 98.36% for RMSE and 98.43% for SD. The results show that the method signifi-
cantly improves the local accuracy and system robustness of ORBSLAM2 in dynamic. Unfortunately,
CPR-SLAM has shown a slight decrease in performance in the low dynamic sequence Fr3/s/xyz, with a
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Table II. Comparison of RMSE of the Absolute Trajectory Error (ATE). The best results
are highlighted in bold (m).

ORBSLAM2 CPR-SLAM Improvement
Sequences RMSE SD RMSE SD RMSE SD
Fr3/s/half 0.024680 0.012773 0.022458 0.008376 8.12% 34.42%
Fr3/w/xyz 0.970147 0.5400 0.015896 0.008477 98.36% 98.43%
Fr3/w/rpy 0.886919 0.445926 0.053872 0.034805 93.92% 92.19%
Fr3/w/half 0.720781 0.297471 0.048676 0.022027 93.24% 92.59%
Fr3/w/static 0.474953 0.246455 0.010117 0.005508 97.86% 97.76%

Figure 9. Comparison with the actual trajectory. The red line indicates the difference between the
estimated trajectory and the ground truth. A shorter red line indicates higher localization accuracy.

22.91% increase in RMSE compared to ORBSLAM2. This decrease was attributed to occasional false
negatives in the method, resulting in a reduction in the number of feature points and an uneven distri-
bution. In practice, ORBSLAM2 is still unable to effectively eliminate dynamic points in most cases;
therefore, we can obtain more accurate camera’s pose estimation after identifying dynamic areas. In
order to provide a more intuitive sense of the algorithm’s performance, we utilize the ground truth pro-
vided by TUM and a trajectory plotting program to generate trajectory plots, as shown in Fig. 9. The
algorithm presented in this paper not only avoids significant frame loss but also closely follows the real
trajectory.

4.1.4. Comparison with state of the arts
We compare our results with state-of-the-art dynamic VSLAM, based on the geometric approach: PC
[18], SPW [19], and StaticFusion [29]. Based on deep learning, methods like KMOP-VSLAM [14],
Detect-SLAM [30], and EM-fusion [31] are popular in the industry. These excellent methods adopt
different dynamic detection algorithms, making them of certain comparative value. The results of ATE
are presented in Table III, while the results of RPE are summarized in Tables IV and V.
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Table III. Comparison of RMSE of the Absolute Trajectory Error (ATE). The best results
are highlighted in bold. ∗ indicates learning-based methods. We use the results published
in their original papers when applicable (m).

Static- KMOP- Detect- EM- CPR-
Sequences SPW PC Fusion SLAM∗ SLAM∗ Fusion∗ SLAM(Our)
Fr3/s/xyz 0.0397 0.0091 0.0397 – 0.0201 0.037 0.0111
Fr3/s/half 0.0432 0.0235 0.040 – 0.0231 0.032 0.0224
Fr3/w/xyz 0.0601 0.0874 0.127 0.019 0.0241 0.066 0.0158
Fr3/w/rpy 0.1791 0.1608 – 0.049 0.2959 – 0.0538
Fr3/w/half 0.0489 0.0354 0.391 0.176 0.0514 0.051 0.0486
Fr3/w/static 0.0261 0.0108 0.014 0.032 – 0.014 0.0101

Table IV. Comparison of RMSE of the Relative Pose Error (RPE) in translational drift.
The best results are highlighted in bold (m/s).

KMOP- Static- CPR-
Sequences SPW PC SLAM fusion SLAM(Our)
Fr3/s/xyz 0.0219 0.0134 – 0.0397 0.0175
Fr3/s/half 0.0389 0.0354 – 0.040 0.0322
Fr3/w/xyz 0.0651 0.1266 0.026 0.127 0.0239
Fr3/w/rpy 0.2252 0.2299 0.065 – 0.0782
Fr3/w/half 0.0527 0.0517 0.07 0.391 0.0870
Fr3/w/static 0.0327 0.0141 0.033 0.014 0.0139

Table V. Comparison of RMSE of the Relative Pose Error (RPE) in rotational drift. The
best results are highlighted in bold (◦/s).

KMOP- Static- CPR-
Sequences SPW PC SLAM fusion SLAM(Our)
Fr3/s/xyz 0.8466 0.5792 – 0.92 0.5676
Fr3/s/half 1.8836 0.8699 – 2.11 1.1058
Fr3/w/xyz 1.6442 2.7413 0.689 2.66 0.6593
Fr3/w/rpy 5.6902 4.6327 1.105 – 1.6467
Fr3/w/half 2.4048 0.9854 1.595 5.04 1.8926
Fr3/w/static 0.8085 0.3293 0.627 0.38 0.3255

Table III shows that the algorithm proposed in this paper achieves leading results in multiple test
sequences. Although it lags behind in Fr3/w/rpy and Fr3/w/half under high dynamics, the overall local-
ization accuracy results are still quite competitive. From Tables IV and V, it can be observed that the
algorithm proposed in this paper demonstrates satisfactory results, indicating that the algorithm pre-
sented in this paper exhibits high stability. In particular, the SPW method also uses point cloud to detect
the moving region, and CPR-SLAM has better performance among the indexes in the Tables III–V. The
comparison results are consistent with Fig. 10. It can be seen that our algorithm has fewer red lines.

4.1.5. Performance of real environment
It is verified that the method proposed in this paper also has superior performance in the real environ-
ment. We will conduct the evaluation in two ways. Experiment A involves the camera being stationary,
while Experiment B utilizes a OptriTrack pose capture device to obtain real-time robot poses.
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Figure 10. Comparison of the CPR-SLAM and SPW trajectory with the ground truth. The SPW result
is from the original paper. The red line indicates the difference between the estimated trajectory and the
ground truth. The shorter the red line, the more precise the estimated trajectory.

4.5.1.1. Experiment A. In experiment A, the robot was kept stationary to observe the performance of
the SLAM system, particularly whether it would erroneously identify itself as moving due to dynamic
objects in the environment, leading to trajectory drift. What is more, we used the Realsense D455i
depth camera as a sensor to design a scene in a real environment where a person dressed in black is
walking casually indoors with a yellow doll. The recognition results of dynamic objects are shown in
Fig. 11. In Fig. 11(b), a person is moving with a bear, and the upper limb is moving slowly. The dynamic
module of the sub-point cloud can well identify the moving object without setting the prior information
of the moving object in advance. The REMS of ATE of CPR-SLAM is 0.00299m. On the contrary,
because ORBSLAM2 does not further process the dynamic object, the REMS of ATE is 0.05155m. In
Fig. 11(a,c), it appears that the ground is also being recognized as a dynamic object. According to our
analysis, this may be due to overfitting as a result of a fixed number of clusters. Anyway, the method
proposed in this paper is an order of magnitude higher than the localization accuracy of ORBSLAM2.
4.5.1.2. Experiment B. In experiment B, we used the OptriTrack device to capture the real-time position
of the robot, with the capture rate set at 30 Hz in this experiment. In the scene Fig. 12, a person is pushing
a chair with a box while moving around, and the robot is performing irregular movements. The trajectory
results for Experiment B are depicted below Fig. 13, where we will compare it with ORBSLAM2 and
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Figure 11. Experiment A of RGB-D camera in real environment. Our method divides dynamic regions
well. The first row is the tracking result of feature points, and the second row is the mask of dynamic
regions.

Figure 12. Experiment B: a person is pushing a chair with a box while moving around.

DynaSLAM [32]. As indicated in the legend, the black line represents the true trajectory captured by
OptriTrack, the blue line represents the trajectory of ORBSLAM2, the green line represents the trajectory
of our proposed method, and the red line represents the trajectory of DynaSLAM. It is evident that
only the algorithm proposed in this paper maintains positioning accuracy within an acceptable range,
while the other two exhibit varying degrees of drift. DynaSLAM, although also designed for dynamic
environments, relies on deep learning and does not proactively label dynamic objects as such in the
experiment. This inability to distinguish dynamic objects contributes to pose drift. Furthermore, this
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Table VI. The module runtime in the CPR-SLAM. Including sub-point cloud construc-
tion, correlation degree estimation, and keyframe refinement (ms).

Module Sub-cloud cons. Correlation degree est. Keyframe ref. Total
CPR-SLAM 30.8237 81.7497 10.2575 212.579

Figure 13. Experiment B: the trajectory results.

method is not real time, so in our experiment, the rosbag play rate was reduced to 0.3 times the original
speed to allow DynaSLAM to process each frame as comprehensively as possible. On the contrary, CPR-
SLAM demonstrates satisfactory performance in terms of both real-time processing and the recognition
of both unknown and known dynamic objects.

5. Conclusion
In this paper,we proposed a dynamic VSLAM system CPR-SLAM based on ORBSLAM2. Our approach
effectively segments dynamic areas by optimizing point cloud data to obtain sub-point clouds and intro-
ducing the concept of sub-poses. By combining the information from sub-point clouds and sub-poses,
we successfully achieve the effective segmentation of dynamic areas. The proposed method yields sat-
isfactory results on popular dynamic datasets. However, the processing of point cloud information in
CPR-SLAM requires a substantial amount of computational resources and has redundant information,
as shown in Table VI. Therefore, our future research will focus on reducing computational complexity
by dimensionality reduction from three dimensions to two.
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