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FREQUENTIST MODEL AVERAGING IN STRUCTURE EQUATION MODEL WITH
ORDINAL DATA

Shaobo Jin
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In practice, it is common that a best fitting structural equation model (SEM) is selected from a set
of candidate SEMs and inference is conducted conditional on the selected model. Such post-selection
inference ignores the model selection uncertainty and yields too optimistic inference. Using the largest
candidate model avoids model selection uncertainty but introduces a large variation. Jin and Ankargren
(Psychometrika 84:84–104, 2019) proposed to use frequentist model averaging in SEM with continuous
data as a compromise between model selection and the full model. They assumed that the true values
of the parameters depend on n−1/2 with n being the sample size, which is known as a local asymptotic
framework. This paper shows that their results are not directly applicable to SEM with ordinal data. To
address this issue, we prove consistency and asymptotic normality of the polychoric correlation estimators
under the local asymptotic framework. Then, we propose a new frequentist model averaging estimator and
a valid confidence interval that are suitable for ordinal data. Goodness-of-fit test statistics for the model
averaging estimator are also derived.

Key words: mean squared error, confidence interval, goodness-of-fit test, model selection uncertainty,
local asymptotic framework, pseudo maximum likelihood.

Structural equation models (SEMs) with ordinal data are widely used in social and behavioral
sciences. As many other statistical models, a common practice is to choose an optimal model
from a number of candidate models according to some criteria. A long-standing critique of model
selection is that the post-selection inference is often conducted in such a way that model selection
was never present. Because of the randomness in the data, themodel selection step is also stochastic
and ignoring such uncertainty yields too optimal inference. The reader is directed to Preacher and
Merkle (2012) and Lubke et al. (2017) for discussions on the consequences of ignoring model
selection uncertainty within SEM.

A well-known remedy to acknowledge the contribution of all candidate models is Bayesian
model averaging. Instead of purely relying on the optimal model, Bayesian model averaging com-
bines different candidate models together by a weighted average (Hoeting et al., 1999; Madigan
& Raftery, 1994). In the past decades, the interest on frequentist model averaging (FMA) has
grown exponentially in the statistics literature. The reader is directed to Fletcher (2018) for a long
list of FMA related references.

The main purpose of the paper is to generalize the FMA principle to SEMs with ordinal data.
Jin and Ankargren (2019) have applied the FMA technique to SEMs with continuous data, using
the likelihood-based FMAmachinery developed by Hjort and Claeskens (2003a). Similar to FMA
in the other context, they showed that FMA tends to produce a mean squared error (MSE) that
is lower than that of the full model if the population parameter value is small and is lower than
that of model selection if the population value is moderate. Hence, the FMA estimator is a robust
compromise between model selection and the full model in the SEM context. Since ordinal data
are often encountered in practice, it is of interest to extend the FMA technique for SEM with
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continuous data to SEM with ordinal data. As we shall see in the later sections, some results in
Jin and Ankargren (2019) need to be revised for ordinal data.

The rest of the paper is organized as follows. First, the results in Jin and Ankargren (2019) are
briefly reviewed. Second, the necessary modifications for the FMA estimator in ordinal SEM are
presented. Third, a simulation study is conducted to investigate the small sample properties of the
FMA technique. Fourth, FMA is applied to an empirical example as an illustration. A discussion
ends the paper.

1. Background

Consider the SEM

x∗ = �xξ + δx ,

y∗ = �yη + δy,

η = Bη + �ξ + ε,

where x∗ (px × 1) and y∗ (py × 1) are the vectors of continuous indicators, ξ and η are the
latent variables, δx , δy , and ε are the error terms. Here, �x and �y are the loading matrices, B
contains the linear effects among η, and � contains linear effects of ξ on η. The joint distribution
of x∗ and y∗ is assumed to be multivariate normal. Throughout the paper, � is used to denote the
model-implied covariance of the SEM, σ the vector of unique entries in �, and β the vector of
all free parameters needed to determine � (i.e., free parameters in �x , �y , B, �, var(ξ), var(δx ),
var(δy), cov(δx , δTy ), and var(ε)).

1.1. Brief Review of Jin and Ankargren (2019)

Jin and Ankargren (2019) investigated FMA in SEM where x∗ and y∗ are observed. In
order to clarify the modifications needed for ordinal SEM, their results are briefly reviewed in
this subsection. Suppose that there exist a number of candidate SEMs, indexed by s, in which
a full model that nests all other models and a narrow model that is nested in all other models
are well-defined. The vector β is partitioned into βT = (

θT , γ T
)
, where θ is contained in all

candidate models and γ = γ 0 is known in the narrowmodel. For candidate model s, the elements
in γ to be estimated are γ s = π sγ , where π s is a selection matrix. The candidate models are
fitted by maximum likelihood, i.e., minimizing FML(β) = n log |�| + ntr

{
S�−1

} − n log |S| −
n

(
px + py

)
, where n is the sample size, S is the sample covariance matrix, and tr {} is the matrix

trace of the enclosed matrix. Suppose that the parameter vector of interest is μ = μ (θ, γ ), which
is continuously differentiable in θ and γ . The FMA estimator of μ is μ̄ (c) = ∑

s csμ̂s , where
μ̂s is the estimator of μ in the candidate model s and the model weight vector c = {cs} lies in the
unit simplex {cs : ∑

s cs = 1, 0 ≤ cs ≤ 1}.
Jin and Ankargren (2019) assumed that β true = (

θT0 , γ T
0 + δT /

√
n
)T

is the true value of β,
where θ0 is the true value of θ , γ 0 + δ/

√
n is the true value of γ , and δ is the local parameter.

Hence, the true values of σ and μ are σ true = σ
(
β true

)
and μtrue = μ

(
β true

)
, respectively. The

framework that the true value is drifted in a n−1/2 neighborhood is known as the local asymptotic
framework. In contrast, the standard asymptotic framework refers to the case where all true values
are free of n. The local asymptotic framework is a popular choice to study FMA. The reader is
directed to Hjort and Claeskens (2003b) for the reasons of using the local asymptotic framework.
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Suppose that n−1∂2FML
(
β0

)
/∂β∂βT converges in probability to 2J f ull , where β0 =

(
θT0 , γ T

0

)T
and J f ull can be partitioned to

J f ull =
(
Jθθ Jθγ

JT
θγ Jγ γ

)
.

Let M and N be the random variables such that

− 1

2
√
n

∂FML
(
β0

)

∂β
−

(
Jθγ

Jγ γ

)
δ

d→
(
M
N

)
.

For fixed weights, Jin and Ankargren (2019) derived that

√
n

(
μ̄ − μtrue

) =∂μ0

∂θT
J−1

θθ M + W

{

δ −
(

∑

s

csK (s)

)

K−1D

}

+ OP

(
n−1/2

)
, (1)

where μ0 = μ
(
θ0, γ 0

)
, W = ∂μ0

∂θT
J−1

θθ Jθγ − ∂μ0
∂γ T , K−1 = Jγ γ − JT

θγ J
−1
θθ Jθγ , K s =

(
π sK−1πT

s

)−1
, K (s) = πT

s K sπ s , and D = δ − K JT
θγ J

−1
θθ M + KN 1. To estimate c, the

limit of nE
(
μ̄ − μtrue

)T (
μ̄ − μtrue

)
is minimized, which is equivalent to minimizing

Q (c) =
∑

s

cs tr
{
�1K (s)WT

}
+ 1

2

∑

s

∑

t

csct tr
{
WK (s)�2K (t)WT

}
, (2)

subject to the unit simplex, where �1 = −WδδT K−1, and �2 = K−1 + K−1δδT K−1.
In the spirit of Hjort and Claeskens (2003a) and Liu (2015), Jin and Ankargren (2019) also

proposed a confidence interval for μi , the i th entry in μ, which is given by

[
μ̄i − ûi√

n
− z1−α/2

κ̂i√
n
, μ̄i − ûi√

n
+ z1−α/2

κ̂i√
n

]
, (3)

where ûi is the i th entry of the vector Ŵ
(
δ̂ − δ̃

)
with δ̃ = ∑

s ĉs K̂
(s)

K̂
−1

δ̂, z1−α/2 is the 1−α/2

quantile of the standard normal distribution, and κi is (i, i)th entry of the covariance matrix of
∂μ0

∂θT
J−1

θθ M − WD with κ̂i being its estimator.

1.2. Ordinal Data Model

In the ordinal SEM, the ordinal counterparts x and y are observed, which are obtained
by discretizing x∗ and y∗. In the ordinal data model, the diagonal entries in � are assumed
to be 1. Accordingly, � is a polychoric correlation matrix. In practice, a multi-step proce-
dure is commonly used to fit an ordinal SEM. First, the polychoric correlation matrix and its
asymptotic covariance matrix are estimated. Second, the least squares fit function FLS (β) =
n

(
ρ̂ − σ (β)

)T V̂
(
ρ̂ − σ (β)

)
is minimized, where ρ is the vector of unique polychoric correla-

tion coefficients and V is some weight matrix.

1For the purpose of presentation, the notations in Jin and Ankargren (2019) are modified. J f ull , M, and N here
corresponds to J f ull/4, M/2, and N/2 in Jin and Ankargren (2019).
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In the current study, we will extend Jin and Ankargren (2019) to SEM with ordinal data.
Since both FML and FLS can be viewed as distance functions between ρ and σ , many results
from Jin and Ankargren (2019) still hold. However, as we shall explain in the next section, some
modifications are also needed, due to the choice of V .

2. Frequentist Model Averaging Estimator

2.1. Polychoric Correlation Estimation

Throughout the paper, we estimate the polychoric correlation coefficients using the two-
step procedure of Olsson (1979). First, the thresholds are estimated from the univariate standard
normal distribution. Second, the correlation coefficient is estimated conditional on the estimated
thresholds. Estimation of the polychoric correlation matrix and its asymptotic covariance matrix
has been extensively studied (e.g., Jin & Yang-Wallentin, 2017; Jöreskog, 1994; Monroe, 2017;
Muthén, 1984) within the standard asymptotic framework. For example, Jöreskog (1994) showed
that

√
n

(
ρ̂ − σ 0

) d→ N (0,ϒ) , (4)

where σ 0 = σ
(
β0

)
and ϒ is the asymptotic covariance matrix.

We still assume that the thresholds are not locally drifted. However, the true values of the
polychoric correlation coefficients depend on n. To the best of our knowledge, none of the above
mentioned studies on polychoric correlations are conducted under the local asymptotic framework.
Further, the polychoric correlation estimator from the two-step procedure is a pseudo-maximum
likelihood estimator (Gong & Samaniego, 1981), making the results in Hjort and Claeskens
(2003a) not directly applicable. For these reasons, we establish consistency and asymptotic nor-
mality of the polychoric correlation estimators in this subsection. For ease of presentation, all
regularity conditions and mathematical proofs are placed in the online appendix.

Theorem 1. Under the regularity conditions stated in the online appendix, ρ̂
p→ σ 0.

Theorem 1 shows that ρ̂ remains a consistent estimator of σ 0 under the local asymptotic
framework. The following theorem shows asymptotic normality.

Theorem 2. Under the regularity conditions stated in the online appendix,
√
n

(
ρ̂ − σ true

) d→
N (0,ϒ), where ϒ is the same as the covariance matrix in (4).

Theorem 2 shows that the estimator of the asymptotic covariance matrix under the standard
asymptotic framework is also valid under the local asymptotic framework. The implication is
that the estimated asymptotic covariance matrix can simply be extracted from the standard SEM
packages. Theorem 2 also shows that the mean of the limiting distribution of

√
n

(
ρ̂ − σ 0

)
is

nonzero under the local asymptotic framework. In contrast, the mean of the limiting distribution
of

√
n

(
ρ̂ − σ 0

)
is zero under the standard asymptotic framework.

2.2. Frequentist Model Averaging: From Continuous Data to Ordinal Data

Since both FLS and FML can be viewed as distance functions between ρ and σ , the expansion
(1) still holds if FML is replaced by FLS when obtaining J f ull , M, and N . However, Jin and
Ankargren (2019) derived the weight estimation criterion (2) and the confidence interval (3)
under the assumption that M and D are independent, which holds for observed multivariate
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normal data. Regarding ordinal SEM, it is shown in the appendix that the joint distribution of M
and N is multivariate normal with mean 0 and covariance matrix

H
def=

(
∂σ 0

∂βT

)T

VϒV
∂σ 0

∂βT
. (5)

Consequently,

cov
(
M, DT

)
=

(
∂σ 0

∂θT

)T

VϒV
(

∂σ 0

∂γ T

)
K −

(
∂σ 0

∂θT

)T

VϒV
(

∂σ 0

∂θT

)
J−1

θθ Jθγ K , (6)

which depends on the choice of V . Commonly used V includes V = I in unweighted least
squares (ULS; Muthén, 1978), the inverse of diagonal elements ofϒ in diagonally weighted least
squares (DWLS; Muthén et al., 1997), and V = ϒ−1 in weighted least squares (WLS; Browne,
1984). If WLS is used, then cov

(
M, DT

) = 0 and the results in Jin and Ankargren (2019)
remain applicable. However, if ULS or DWLS is used, M and D are not necessarily independent.
Consequently, modifications are needed.

2.3. Weight Estimation

It is shown in the online appendix that, in the context of ordinal SEM, minimizing the limit of
nE

(
μ̄ − μtrue

)T (
μ̄ − μtrue

)
is equivalent to minimizing Q (c) given in (2), but with modified

�1 and �2 as

�1 =∂μ0

∂θT
J−1

θθ

(
var (M) J−1

θθ Jθγ − cov
(
M, NT

))
− WδδT K−1,

�2 =JT
θγ J

−1
θθ var (M) J−1

θθ Jθγ + var (N) − 2JT
θγ J

−1
θθ cov

(
M, NT

)
+ K−1δδT K−1,

where the covariance matrix of M and N is shown in (5).
In practice, the unknown population values (e.g., �1, �2, K (s), and W ) are replaced by

their estimators from the candidate models, yielding the estimator Q̂ (c) of Q (c). Then, ĉ, the
estimator of c, is obtained byminimizing Q̂ (c). Similar to Jin andAnkargren (2019), the unknown
population values can be consistently estimated from the full model, except δ. Hjort and Claeskens
(2003a) and Liu (2015) showed that δ can only be asymptotically unbiasedly estimated and
suggested to estimate it from the full model as δ̂ = √

n
(
γ̂ f ull − γ 0

)
, where γ̂ f ull is the estimator

of γ from the full model. It is an unbiased estimator of δ but a biased estimator of δδT . Jin and
Ankargren (2019) showed that, for SEM with continuous data, δ̂ remains an unbiased estimator

of δ and δ̂δ̂
T − K is an unbiased estimator of δδT . It is shown in the online appendix that, for

SEM with ordinal data, δ̂ is still an unbiased estimator of δ, but an unbiased estimator of δδT

becomes δ̂δ̂
T − Ĝ Ĥ Ĝ

T
, where G =

(
−K JT

θγ J
−1
θθ K

)
.

2.4. Model Averaging Confidence Interval

In the spirit of Hjort and Claeskens (2003a) and Liu (2015), we conjecture that there is joint
convergence in distribution of ĉ and all μ̂s such that

√
n

(
μ̄

(
ĉ
) − μtrue

) − Ŵ
(
δ̂ − δ̃

)
d→ ∂μ0

∂θT
J−1

θθ M + W (δ − D) . (7)
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The reader is directed to the online appendix for a heuristic proof of the joint convergence. From
(7), the FMA confidence interval for μi is still of the form (3) for SEM with ordinal data. In Jin
and Ankargren (2019),

cov

(
∂μ0

∂θT
J−1

θθ M − WD
)

= ∂μ0

∂θT
J−1

θθ

(
∂μ0

∂θT

)T

+ WKWT .

In an ordinal SEM, the covariance matrix of ∂μ0

∂θT
J−1

θθ M − WD should be computed using (6),

due to nonzero cov(M, DT ). Similar to weight estimation, the confidence interval in Jin and
Ankargren (2019) remains applicable if WLS is used.

If (7) holds, the interval (3) that accounts for cov(M, DT ) attains the nominal level
asymptotically. Another valid confidence interval is the one from the full model, given by[
μ̂i, f ull − z1−α/2κ̂i/

√
n, μ̂i, f ull + z1−α/2κ̂i/

√
n
]
, where μ̂i, f ull is the estimator of μi from the

full model. Various studies (e.g., Ankargren & Jin, 2018; Kabaila & Leeb, 2006; Wang & Zhou,
2013) have shown that the FMA confidence intervals of the form (3) can be asymptotically equiv-
alent to the confidence interval from the full model. In the likelihood context, Wang and Zhou
(2013) proved that

μ̄
(
ĉ
) − W

(
δ̂ − δ̃

)
/
√
n =μ̂ f ull + oP

(
n−1/2

)
, (8)

and showed that the equivalence holds for all FMA confidence intervals suggested by Hjort and
Claeskens (2003a). Since least squares are used in SEM with ordinal data, their results cannot
be directly applied here. Nevertheless, it is shown in the online appendix that (8) still holds in
ordinal SEM. Hence, the FMA confidence interval (3) remains asymptotically equivalent to the
full model interval. The implication is that the small sample realizations of (3) may be different
from the full model interval, but they will be similar to each other when the sample size is large.

2.5. Goodness-of-fit Test

Consider the case where μ = β, i.e., we want all parameters (expect the thresholds) to be
accurately estimated. In practice, it is often of interest to test the overall fit of a hypothesized
model. The full model goodness-of-fit test can be interpreted as testing whether the full model
decomposition of the population covariance matrix evaluated at the full model estimator fits the
data well. Since FMA aims to combine different models, the population covariance matrix is
generally decomposed according to the full model, but evaluated at the FMA estimator. Hence, it
is important to test whether the full model evaluated at the FMA estimators fits the data well (Jin
& Ankargren, 2019). For this reason, a goodness-of-fit test for model averaged SEM with ordinal
data is proposed here.

A residual-based test statistic is

TFMA =
⎛

⎝√
n

(
ρ̂ − σ̄

) +
∂σ

(
β̂ f ull

)

∂βT
Ŵ

(
δ̂ − δ̃

)
⎞

⎠

T

V̂

⎛

⎝√
n

(
ρ̂ − σ̄

) +
∂σ

(
β̂ f ull

)

∂βT
Ŵ

(
δ̂ − δ̃

)
⎞

⎠ ,

where σ̄ = σ
(
μ̄

(
ĉ
))
. The asymptotic property of TFMA is shown in following theorem.

Theorem 3. Letμ = β. Suppose that the regularity conditions in the online appendix hold. Then,
TFMA = T f ull + oP (1), where T f ull = n

(
ρ̂ − σ̂ f ull

)T V̂
(
ρ̂ − σ̂ f ull

)
is the test statistic for the

full model.
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The assumption that μ = β plays an important role in the proof of the theorem. It is certainly
the case that some applications may be only interested in a subset of β. In such a case, Theorem
3 is not guaranteed to be applicable. A different test statistic is proposed by Jin and Ankargren
(2019) for SEMwith continuous data. Both test statistics adjust the fit function (FML or FLS), but

with different adjustments. The adjustment
∂σ f ull

∂βT W
(
δ̂ − δ̃

)
is used in TFMA, since W

(
δ̂ − δ̃

)

is also the adjustment term in the FMA confidence interval (3).
Since TFMA is asymptotically equivalent to T f ull , we can define the Satorra and Bentler

(1994) mean-scaled statistic and mean-variance adjusted statistic as

TFMA−SB−m = r

tr
(
�̂FMA

)TFMA and TFMA−SB−mv =
tr

(
�̂FMA

)

tr
(
�̂

2
FMA

)TFMA,

respectively, where r is the difference between the number of unique polychoric correlation
coefficients and the number of parameters and

�FMA =tr

{(
I − ∂σ 0

∂βT
LV

)T

V
(
I − ∂σ 0

∂βT
LV

)
ϒ

}

with

L =
(

∂μ0

∂θT
J−1

θθ + WK JT
θγ J

−1
θθ

)(
∂σ 0

∂θT

)T

− WK
(

∂σ 0

∂γ T

)T

.

TFMA−SB−m can be approximated by a Chi-square distribution with r degrees of freedom and

TFMA−SB−mv can be approximated by aChi-square distributionwith
[
tr

(
�̂FMA

)]2
/tr

(
�̂

2
FMA

)

degrees of freedom. The fit indices such as robust RMSEA, CFI, and TLI (Brosseau-Liard &
Savalei, 2014; Brosseau-Liard et al., 2012) can also be defined accordingly.

3. Simulation Study

In this section, a simulation study is conducted to compare the finite sample properties of
FMA with the full model estimation and model selection.

3.1. Simulation Design

The population model is a four-factor SEM, where

�x = �y =
(
1.0 0.95 0.9 0 0 0
0 0 0 1.0 0.95 0.9

)T

,

var(ξ) =
(
0.7 0.3
0.3 0.7

)
, B =

(
0.0 0.0
b21 0.0

)
, � =

(
0.5 γ12
γ21 0.45

)
,

Under the local asymptotic framework, we let γ12 = γ0 + δ/
√
n, γ21 = γ0 + 0.75 · δ/

√
n, and

b21 = γ0 + 0.5 · δ/
√
n, where γ0 = 0 and δ = 1501/2ζ , with ζ being seven equidistant values
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between 0 and 0.30 at the step size 0.05. The covariance matrices of δx and δy are set to be
diagonal, of which the diagonal elements make the marginal variances of x∗ and y∗ be 1. The
distribution of x∗ and y∗ is assumed to follow amultivariate normal distribution. These population
models are similar to those of Jin and Ankargren (2019), with minor changes of the true values.
var(ε) is set to be a diagonal matrix, and its diagonal elements are 0.45 and 0.5 if the narrow
model is the data generation process (ζ = 0). For other values of ζ , the diagonal elements are
chosen such that the reliability of the measurement models remains the same as the ζ = 0.

We fix the number of categories to be five and consider two sets of threshold values. In the
first set, the probabilities of belonging to each category are 0.24, 0.41, 0.22, 0.1, and 0.03, which
is the moderate asymmetry setting in Rhemtulla et al. (2012). In the second set, the probabilities of
belonging to each category are 0.52, 0.15, 0.13, 0.11, and 0.09, which is the extreme asymmetry
setting in Rhemtulla et al. (2012). We also take the sample sizes that are used in Rhemtulla et al.
(2012), i.e., n = 150, 350, and n = 600. The number of replications is set to 10, 000.

Four candidate models are considered in the current study, corresponding to the free param-
eters in B and �. Model 1, the narrow model, assumes b21 = γ12 = γ21 = 0. Model 2 frees γ12
but assumes b21 = γ21 = 0. Model 3 freely estimates γ12 and γ21, but assumes b21 = 0. Model
4, the full model, freely estimates b21, γ12 and γ21. Hence, only the full model is the true model
if ζ �= 0. To estimate the local parameter δ, the unbiased estimator δ̂ = √

n
(
γ̂ f ull − γ 0

)
is used

for simplicity. The parameter of interest is defined to be the vector of free parameters in the full
model, excluding the thresholds.

In order to examine the effects of the local asymptotic framework, data are also generated
from the standard asymptotic framework, where γ12 = ζ , γ21 = 0.75ζ , and b21 = 0.5ζ . The
local asymptotic framework coincides with the standard asymptotic framework when n = 150
but is different when n = 350 and n = 600.

The methods considered here include FMA, full model, and model selection. Three imple-
mentations of FMA will be considered. The first implementation, denoted by FMAord, is the
ordinal data FMA proposed in the current study by accounting for cov(M, DT ). The second
implementation, denoted by FMAordcont, uses the weight estimation method and confidence
interval from Jin and Ankargren (2019) (i.e., treating cov(M, DT ) = 0), but ordinal data are still
treated as ordinal. Comparing FMAord with FMAordcont allows us to examine the consequence
of ignoring a nonzero cov(M, DT ). It is of interest to see whether ordinal data can be treated as
continuous in the context of FMA, since it is common that the applied researchers treat ordinal
data as continuous. Hence, the third implementation, denoted by FMAcont, treats ordinal data
as continuous and directly uses the results from Jin and Ankargren (2019). Since least-squares
are used, information criterion is not used for model selection. Rather, we start with whether the
narrow model fits the data well by the robust RMSEA (Brosseau-Liard et al., 2012) from lavaan
(Rosseel, 2012). In the current simulation, an RMSEA no higher than 0.05 is an indication of a
good fit. If the narrow model does not fit the data well, Model 2 is under investigation. If Model
2 does not fit the data well, Model 3 is under investigation. If Model 3 does not fit the data well,
the full model is chosen.

All candidate models are estimated in lavaan (Rosseel, 2012) using DWLS. The FMA
estimator, confidence interval, and test statistics are programmed in R Core Team (2020). The
code can be retrieved from the online appendix.

3.2. Simulation Results

It is likely to encounter non-convergence or Heywood cases when estimating the candidate
models. The candidate models that are not converged or have non-positive definite covariance
matrices are regarded as inadmissible. The inadmissible candidate models are removed from
further analysis. If either the narrowmodel or full model are inadmissible, the corresponding FMA
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replication is also considered as inadmissible. Further, outliers are encountered in the current
simulation. For simplicity, replications with MSE values that are twice higher than the 99%
sample percentile are considered as possible outliers and are removed from further analysis.
When n = 150, at most 0.4% and 1.2% replications are removed if the thresholds are moderately
asymmetric and extremely asymmetric, respectively. When n = 600, at most 0.02% replications
are removed. Hence, the percentage of inadmissible solutions are not tabulated here.

To compare the finite sample performance of FMA with model selection and the full model,
we compute the normalized MSE, defined as the average of MSE of some method relative to the
infeasible minimum MSE across all candidate models, i.e.,

1

R

R∑

r=1

MSE
(
μ̂r − μtrue

)T (
μ̂r − μtrue

)
at iteration r

Minimum MSE of all admissible candidate models at iteration r
,

with R being the number of replications. We also compute the average of absolute bias
p−1 ∑p

i=1 |median of
{
μ̂i,r − μi,true; r = 1, · · · R} |, where μ̂i,r is the estimate of μi at iter-

ation r , μi,true is the i th entry in μtrue, and p is the number of parameters. Both the normalized
MSE and the averaged bias for moderately asymmetric thresholds are illustrated in Fig. 1. The
pattern when n = 600 is similar to n = 350 and the pattern for extremely asymmetric thresholds
is similar to that for moderately asymmetric thresholds. Hence, they are not reported here due to
space limitation. The conclusions that we can draw from Fig. 1 are similar to those in Jin and
Ankargren (2019). FMAord tends to yield a lower normalizedMSE than the full model, especially
when the parameter value is small. Model selection performs well with the lowest normalized
MSE when the parameter value is low, whereas it performs the worst when the parameter value
is large. This is due to the fact that RMSEA often picks the correct model if the narrow model is
the true model, and that RMSEA often implies that a too simple model fits the data well enough.
As expected, the cost of MSE reduction is the inclusion of bias. Nevertheless, the induced aver-
aged bias is generally low (Fig. 1), comparing with model selection. It is also seen from Fig.
1 that FMAord tends to have a slightly lower normalized MSE but a higher absolute bias than
FMAordcont. A lower normalized MSE is in line with our expectation, since FMAord aims to
minimize the correctly derived asymptoticMSE. Further, FMAcont has a higher normalizedMSE
and a higher absolute bias than FMAord and FMAordcont. Results not presented here show that
the normalized MSE and the absolute bias of FMAcont are even higher when the thresholds are
extremely asymmetric.

To investigate the coverage probability, the probability of covering γ11 = 0.5 when the
thresholds are moderately asymmetric is used as an illustration in Table 1. It is seen that the
model selection interval is generally accurate when the narrow model is the true model, but is
greatly undercoveredwhen the full model is the truemodel. It is also seen that the FMAord interval
performs similar to the full model interval, which is close to the nominal coverage probability
95%. These observations are also in line with the findings in Jin and Ankargren (2019). Further,
FMAordcont yields a lower coverage probability than FMAord, suggesting that it is important
to account for the correlation between M and D when constructing confidence intervals. It is
interesting to see that the coverage probability of the FMAcont interval is close to 95% when
the thresholds are moderately asymmetric. However, the coverage probability of the FMAcont
interval tends to be lower than 95% when the thresholds are extremely asymmetric.

Regarding the goodness-of-fit tests, we only consider the full model, FMAord, and FMAord-
cont. FMAcont is not considered since the Chi-square test derived in Jin and Ankargren (2019)
requires normally distributed data and no robust corrections are derived yet. Table 2 tabulates the
empirical rejection rate of themean-scaled statistic and themean-and-variance adjusted statistic at
the significance level 0.05 when the thresholds are moderately asymmetric. Results for extremely
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Figure 1.
Normalized mean squared error (MSE) and averaged absolute bias of model selection (black square), the full model (red
dot), FMAord (green triangle), FMAordcont (blue diamond), and FMAcont (cyan dot) (Color figure online).

asymmetric thresholds show similar patterns. Hence, they are not reported here. Since the full
model is correctly specified, we expect the empirical rejection rate to be approximately 0.05.
It is seen that the FMA goodness-of-fit test statistic performs similar to the goodness-of-fit test
statistic of the full model, which is in line with Theorem 3 that the goodness-of-fit test statistics
are asymptotically equivalent. Comparing the mean-scaled statistic with the mean-and-variance
adjusted statistic, the latter tends to have a better size. It is also seen that FMAord and FMAord-
cont often yield similar empirical sizes, indicating that the effect of cov(M, DT ) is minor when
it comes to the goodness-of-fit tests.

4. Empirical Example

In this section, an empirical example is analyzed as an illustration. In order to study the
supplier–customer relationship, Selnes and Sallis (2003) sampled 780 Scandinavian companies
that have more than 50 employees. A total of 665 of them participated in the study. A total of
315 dyads in the sense of supplier and customer are identified. Selnes and Sallis (2003) used
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Table 1.
Coverage probabilities of covering γ11 = 0.5 of different methods at the nominal level 95%.

Framework n Method ζ

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Moderately asymmetric thresholds
Local 150 Model selection 0.92 0.89 0.83 0.75 0.72 0.76 0.81

Full model 0.92 0.92 0.93 0.92 0.92 0.93 0.93
FMAord 0.92 0.93 0.93 0.93 0.93 0.93 0.93
FMAordcont 0.84 0.84 0.84 0.84 0.84 0.84 0.84
FMAcont 0.93 0.93 0.93 0.93 0.94 0.94 0.94

600 Model selection 0.94 0.92 0.84 0.72 0.55 0.38 0.30
Full model 0.94 0.94 0.94 0.94 0.94 0.94 0.94
FMAord 0.94 0.94 0.94 0.94 0.94 0.94 0.94
FMAordcont 0.86 0.86 0.86 0.86 0.86 0.85 0.85
FMAcont 0.93 0.93 0.93 0.93 0.94 0.94 0.94

Standard 600 Model selection 0.94 0.84 0.55 0.30 0.53 0.80 0.85
Full model 0.94 0.94 0.94 0.94 0.94 0.94 0.94
FMAord 0.94 0.94 0.94 0.94 0.94 0.94 0.94
FMAordcont 0.86 0.86 0.86 0.85 0.85 0.85 0.85
FMAcont 0.93 0.93 0.94 0.94 0.94 0.94 0.93

Extremely asymmetric thresholds
Local 150 Model selection 0.92 0.90 0.85 0.76 0.71 0.70 0.73

Full model 0.93 0.93 0.93 0.93 0.93 0.93 0.93
FMAord 0.93 0.93 0.93 0.93 0.93 0.93 0.93
FMAordcont 0.86 0.86 0.85 0.85 0.85 0.85 0.86
FMAcont 0.90 0.90 0.91 0.91 0.91 0.91 0.91

600 Model selection 0.95 0.93 0.87 0.77 0.62 0.45 0.32
Full model 0.95 0.95 0.95 0.95 0.95 0.95 0.95
FMAord 0.94 0.95 0.95 0.95 0.95 0.95 0.95
FMAordcont 0.86 0.86 0.86 0.86 0.86 0.86 0.86
FMAcont 0.88 0.88 0.88 0.89 0.89 0.89 0.90

Standard 600 Model selection 0.95 0.87 0.62 0.32 0.33 0.62 0.78
Full model 0.95 0.95 0.95 0.95 0.95 0.95 0.95
FMAord 0.94 0.95 0.95 0.95 0.95 0.95 0.94
FMAordcont 0.86 0.86 0.86 0.86 0.86 0.86 0.86
FMAcont 0.88 0.88 0.89 0.90 0.90 0.90 0.91

a subset of this data set to study how the learning capacity of supplier–customer relationship
can be promoted by management. Recently, Sallis (2018) used another subset with 303 dyads
to study the effect of relationship flexibility to relationship performance. Two five-factor models
under consideration are shown in Fig. 2, which are simplified from Sallis (2018). The narrow
model omits the paths from Goal congruence to Relationship performance and Environmental
uncertainty to Relationship performance, whereas the full model also estimates such two paths.
The sample size remained after deleting missing values is n = 266. All indicators are measured
on the 7-point Likert scale. They are aggregated into a 3-point Likert scale that is close to the
3-category extreme asymmetry setting in Rhemtulla et al. (2012). The focus parameter is defined
to be the vector of all free parameters needed for the model-implied covariance matrix.

Table 3 tabulates the estimated effects ofGoal congruence and Environmental uncertainty on
Relationship performance, Coordination effort, and Flexibility. Model selection chooses the nar-
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Table 2.
Empirical rejection rate of the goodness-of-fit test statistics at the significance level 0.05, when the thresholds are moder-
ately asymmetric.

Framework n Method ζ

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Mean-scaled statistic
Local 150 Full model 0.133 0.126 0.123 0.115 0.115 0.111 0.109

FMAord 0.141 0.134 0.133 0.128 0.127 0.125 0.123
FMAordcont 0.141 0.133 0.132 0.124 0.125 0.122 0.120

350 Full model 0.103 0.101 0.099 0.099 0.095 0.092 0.088
FMAord 0.106 0.104 0.102 0.105 0.101 0.098 0.094
FMAordcont 0.106 0.104 0.101 0.103 0.099 0.096 0.092

600 Full model 0.092 0.092 0.090 0.092 0.091 0.085 0.084
FMAord 0.093 0.094 0.091 0.094 0.093 0.089 0.088
FMAordcont 0.093 0.093 0.091 0.093 0.092 0.087 0.086

Standard 350 Full model 0.103 0.099 0.098 0.092 0.088 0.086 0.083
FMAord 0.106 0.102 0.103 0.097 0.095 0.092 0.090
FMAordcont 0.106 0.102 0.102 0.095 0.093 0.090 0.088

600 Full model 0.092 0.090 0.091 0.084 0.081 0.079 0.078
FMAord 0.093 0.091 0.093 0.088 0.085 0.083 0.082
FMAordcont 0.093 0.091 0.092 0.086 0.084 0.081 0.081

Mean-and-variance adjusted statistic
Local 150 Full model 0.068 0.065 0.061 0.060 0.059 0.057 0.057

FMAord 0.069 0.066 0.064 0.063 0.062 0.061 0.062
FMAordcont 0.068 0.066 0.062 0.061 0.060 0.060 0.060

350 Full model 0.058 0.056 0.059 0.057 0.055 0.052 0.052
FMAord 0.059 0.057 0.060 0.058 0.056 0.054 0.054
FMAordcont 0.059 0.057 0.059 0.058 0.056 0.053 0.052

600 Full model 0.054 0.054 0.054 0.054 0.052 0.051 0.050
FMAord 0.055 0.054 0.055 0.055 0.053 0.053 0.051
FMAordcont 0.054 0.054 0.054 0.054 0.053 0.052 0.051

Standard 350 Full model 0.058 0.056 0.056 0.053 0.049 0.048 0.048
FMAord 0.059 0.057 0.058 0.054 0.053 0.051 0.050
FMAordcont 0.059 0.057 0.057 0.054 0.050 0.050 0.049

600 Full model 0.054 0.054 0.052 0.050 0.048 0.048 0.049
FMAord 0.055 0.055 0.053 0.051 0.050 0.051 0.052
FMAordcont 0.054 0.054 0.053 0.051 0.049 0.049 0.050

row model, since it yields satisfactory fit indices. Nevertheless, all FMA implementations assign
non-ignorable weights to the full model, which can be seen from the estimates of the path Goal
congruence to Relationship performance: 0.33 (=0.027/0.083) for FMAord, 0.42 (=0.034/0.083)
for FMAordcont, and 0.70 (=0.067/0.083) for FMAcont. FMAord and FMAordcont produce sim-
ilar point estimates, which can be largely different from those produced by FMAcont. This is in
line with our observations from Fig. 1 in the simulation study that FMAcont can be much more
biased than FMAord and FMAordcont. Despite similar point estimates, it is also seen that the
FMAordcont intervals are generally nested in the FMAord interval, which may lead to a lower
coverage probability that we observed in the simulation study. Further, the fit indices and the
confidence intervals of the full model are similar to those of FMAord, which is in line with our
theoretical results.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 15:18:32, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1142 PSYCHOMETRIKA

Enviromental
uncertainty

EU1

EU2

1

Goal
congruence

GC2

GC2

GC2

1

Relationship
performance

RP1

RP2

RP3

1

Coordination
effort

CE1 CE2

1

Flexibility

F1 F2 F3

1

Figure 2.
Path diagonal of the seller example. The dashed lines are present in the full model but is omitted in the narrow model.

5. Conclusion and Discussion

In this study, FMA is generalized to the SEM with ordinal indicators. We showed that one
assumption in Jin and Ankargren (2019), namely cov(M, DT ) = 0, is violated in SEM with
ordinal data. Hence, the results in Jin and Ankargren (2019) for SEM with continuous data
need to be revised for SEM with ordinal data. To this end, we derived the correct criterion
function for weight estimation, and the valid confidence interval for SEM with ordinal data. To
evaluate the global fit, a mean-scaled test statistic and a mean-variance adjusted test statistic
are proposed. In the simulation study, we showed that the ordinal data cannot always be treated
as continuous, since FMAcont can yield much more biased estimators. We also showed that
FMAordcont generally yields similar point estimators to FMAord. However, the FMAordcont
interval can be undercovered. Hence, FMAord is still preferred.

Similar to FMA for SEM with continuous indicators, FMA does not uniformly dominate
model selection nor the full model in our simulation. The same phenomenon has also been
observed in various other models (e.g., Wan et al., 2014; Wang and Zou, 2012; Yang, 2003). This
is a general issue for FMA, which is closely related with the combination puzzle (Claeskens et al.,
2016) in the forecasting literature. The asymptotic MSE that we aim to minimize is derived under
the assumption that the weights are fixed. However, the weights are generally random, if they
are estimated from data. Since the uncertainty in the random weights is not accounted for when
computing the asymptotic MSE, there is no guarantee that the FMA estimator will be dominating
(Claeskens et al., 2016). Nevertheless, as Jin and Ankargren (2019) suggested in the context of
SEM with continuous indicators, FMA is a robust compromise between model selection and the
full model. Estimators followed by model selection can be unstable (Breiman, 1996) and neither
the bias nor the MSE are necessarily bounded (Leeb & Pötscher, 2005). The full model estimator
is often unstable (Hjort &Claeskens, 2003a) due to the presence of small parameters. FMA, on the
other hand, tends to produce a robust MSE also for SEM with ordinal indicators. Future research
is needed to provide guidelines on this matter.

The confidence interval considered in this paper is the Hjort and Claeskens (2003a) type,
which is asymptotically equivalent to the full model confidence interval. Various other model-
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Table 3.
Estimated effects of the latent exogenous latent variables on the endogenous latent variables of the supplier–customer
relationship example.

Method Path Estimate
From To

Model selection Goal congruence Rel. performance -
Coordination effort 0.471 (0.250, 0.691)
Flexibility 0.349 (0.150, 0.548)

Env. uncertainty Rel. performance -
Coordination effort 0.518 (0.259, 0.777)
Flexibility 0.467 (0.229, 0.706)

Full model Goal congruence Rel. performance 0.083 (−0.225, 0.391)
Coordination effort 0.470 (0.240, 0.700)
Flexibility 0.352 (0.147, 0.556)

Env. uncertainty Rel. performance 0.165 (−0.276, 0.605)
Coordination effort 0.528 (0.253, 0.803)
Flexibility 0.463 (0.221, 0.705)

FMAord Goal congruence Rel. performance 0.027 (−0.225,0.391)
Coordination effort 0.471 (0.237,0.696)
Flexibility 0.350 (0.145,0.554)

Env. uncertainty Rel. performance 0.054 (−0.275,0.605)
Coordination effort 0.521 (0.261,0.810)
Flexibility 0.466 (0.227,0.710)

FMAordcont Goal congruence Rel. performance 0.034 (−0.167,0.333)
Coordination effort 0.471 (0.288,0.647)
Flexibility 0.350 (0.206,0.494)

Env. uncertainty Rel. performance 0.068 (−0.209,0.538)
Coordination effort 0.522 (0.295,0.774)
Flexibility 0.465 (0.274,0.662)

FMAcont Goal congruence Rel. performance 0.067 (−0.079,0.268)
Coordination effort 0.456 (0.260,0.649)
Flexibility 0.270 (0.122,0.414)

Env. uncertainty Rel. performance 0.131 (−0.056,0.428)
Coordination effort 0.471 (0.247,0.710)
Flexibility 0.387 (0.207,0.571)

Env. uncertainty = Environmental uncertainty. Rel. performance = Relationship performance. The fig-
ures in the parentheses are the 95% confidence intervals. For the narrow model, CFI=0.997, TLI=0.997,
RMSEA=0.030. For the full model, CFI=0.997, TLI=0.996, RMSEA=0.032. For FMAord, CFI=0.997,
TLI=0.996, RMSEA=0.032. For FMAordcont, CFI=0.997, TLI=0.996, RMSEA=0.032. The reported fit
indices are robust indices of Brosseau-Liard et al. (2012) and Brosseau-Liard and Savalei (2014).

averaging confidence interval have also emerged in the literature, such as (Fletcher andDillingham
(2011), Fletcher and Turek (2011), and Turek and Fletcher (2012)). Their properties have been
investigated by Kabaila et al. (2016), Kabaila et al. (2017), and Kabaila (2018). Nevertheless,
it is difficult to outperform the full model confidence interval (Kabaila et al., 2016). Wang and
Zou (2012) suggested the use of the full model interval since it is computationally easy and
the FMA interval does not offer a major improvement. Following these suggestions, both the
full model interval and the FMA interval will offer valid inference in practice. Even if the point
estimator is taken from one candidate model, Jin and Ankargren (2019) still suggested to use the
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full model interval or the FMA interval to take the selection uncertainty into consideration. The
same suggestion applies to the SEM with ordinal data.

One limitation of the proposed goodness-of-fit statistic is that the focus parameter μ ought to
be the vector of all free parameters in �, an assumption needed for Theorem 3. If μ �= β such as
μ = (I−B)−1�, we can still obtain valid FMAestimate μ̄ and construct valid confidence intervals
for μ. However, the proposed test statistic is not guaranteed to be asymptotically equivalent to
the full model test statistic. Further studies will be devoted to the model evaluation for a general
parameter vector of interest.
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