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We propose a novel nonlinear manifold learning from snapshot data and demonstrate its
superiority over proper orthogonal decomposition (POD) for shedding-dominated shear
flows. Key enablers are isometric feature mapping, Isomap, as encoder and, K-nearest
neighbours (KNN) algorithm as decoder. The proposed technique is applied to numerical
and experimental datasets including the fluidic pinball, a swirling jet and the wake behind
a couple of tandem cylinders. Analysing the fluidic pinball, the manifold is able to describe
the pitchfork bifurcation and the chaotic regime with only three feature coordinates.
These coordinates are linked to the vortex-shedding phases and the force coefficients. The
manifold coordinates of the swirling jet are comparable to the POD mode amplitudes,
yet allow for a more distinct and less noise-sensitive manifold identification. A similar
observation is made for the wake of two tandem cylinders. The tandem cylinders are
aligned and located at a streamwise distance which corresponds to the transition between
the single bluff body and the reattachment regimes of vortex shedding. Isomap unveils
these two shedding regimes while the Lissajous plot of the first two POD mode amplitudes
features a single circle. The reconstruction error of the manifold model is small compared
with the fluctuation level, indicating that the low embedding dimensions contain the
coherent structure dynamics. The proposed Isomap–KNN manifold learner is expected
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to be of great importance in estimation, dynamic modelling and control for a large range
of configurations with dominant coherent structures.

Key words: wakes, low-dimensional models, machine learning

1. Introduction

The chaotic nature of turbulent flows and their importance in physical and engineering
systems has motivated countless studies attempting to obtain simplified models for control
purposes in engineering applications. In particular, unbounded shear flows such as jets and
wakes have received unabated interest due to their importance for drag reduction, control
of unsteady loads, mixing enhancement, etc.

Despite their chaotic nature, such flows are characterized by recurrent flow patterns
that are typically referred to as coherent structures. The beauty of the coherent structures
has fascinated scientists since Leonardo da Vinci (Marusic & Broomhall 2021) and has
hinted at the possibility that the flow dynamics can be represented as a system evolving on
a low-dimensional attractor. Proper orthogonal decomposition (POD) (Berkooz, Holmes
& Lumley 1993), also called principal component analysis in statistics, has received
significant attention since it allows decomposing a flow field into orthogonal modes sorted
according to their contribution to the variance of the quantity to be analysed. One of
the most exploited advantages of POD in fluid mechanics is its capability to simplify
the Navier–Stokes equations into a system of ordinary quadratic differential equations
employing Galerkin projections (Noack et al. 2003). Low-order models obtained from
POD open a door to a vast space of applications such as flow control (Brunton & Noack
2015) and also crisp least-order models for bifurcations and interactions of coherent
structures (Deng et al. 2020).

A myriad of POD studies hint at low-dimensional manifolds describing turbulent shear
flows. In the case of oscillatory flows, two-dimensional manifolds have been identified
from laminar two-dimensional cylinder flows (Noack et al. 2003) to experimental turbulent
wakes behind finite cylinders at high Reynolds numbers (Bourgeois, Martinuzzi & Noack
2013). These manifolds are the cornerstone of mean-field Galerkin models. Even flows
with several frequencies may live on a mean-field manifold (Luchtenburg et al. 2009).
The pioneering POD model of Aubry et al. (1988) derives such a manifold for the
turbulent boundary layer from the Reynolds equations. For more complex flows, the
energy spectrum of POD typically reveals O(10) distinct most-energetic eigenvalues
associated with physically interpretable modes. This distinct spectrum is usually followed
by a steadily decreasing eigenvalue distribution with less interpretable and increasingly
fine-scaled modes. More rigorously, if states have finite variance, the covariance operator
for POD is positive trace class, hence compact, (see, e.g. theorem 4.1 in the book by Minh
& Murino (2017)) and so its non-zero spectrum consists of isolated eigenvalues that are
either a finite set or converge to 0 (see, e.g. theorem 6.8 in the book by Brezis (2011)). The
distinct POD mode amplitudes can be conceptualized as the conductors of a large ‘slaved’
turbulence orchestra (Callaham, Brunton & Loiseau 2022).

While the focus of POD is on obtaining reduced-order models optimal in terms of
energy, the field of statistical learning provides a vast number of tools for dimensionality
reduction (Franklin 2005). Multidimensional scaling (MDS), for instance, is based on
the singular value decomposition of the data distance matrix and allows representing a
dataset in a low-dimensional space preserving the distance between the snapshots in the
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From snapshots to manifolds – a tale of shear flows

high-dimensional space (Torgerson 1952; Kruskal 1964). Multidimensional scaling has
been used in fluid mechanics mainly for visualization purposes and effectively captures
some hidden features of the flows (Kaiser et al. 2014; Foroozan et al. 2021).

The capability of obtaining low-dimensional representations is tempting to identify
embedded manifolds of the flows under study. Manifold learning attempts to recognize
a low-dimensional surface, the manifold, near which the dataset actually resides. In
statistical language, the dataset can be described to lie on or near a manifold in a
low-dimensional space in which the manifold expresses some basic features of it. In
this sense the manifold is in fact the set of relations that connect snapshots to each
other. Interestingly, often high-dimensional systems appear to evolve on low-dimensional
manifolds, thus simplifying their modelling if the manifold can be identified. These
aspects pushed the development of the manifold learning techniques in the last decades.
Remarkable examples are locally linear embedding (Roweis & Saul 2000), isometric
mapping (Tenenbaum, de Silva & Langford 2000) and diffusion maps (Coifman & Lafon
2006).

The traditional dimensionality-reduction methods are structured on linear models and
thus fail in capturing the manifolds when a nonlinear structure is present in the data.
Turbulent flows exhibit a nonlinear behaviour which motivates the investigation of
nonlinear models for manifold learning. As reported by Gorban & Karlin (2005), manifold
learning falls in the field of model engineering, which attracts a wide interest among
physics, mathematics and engineering, as is also evident from the three-volume book on
model-order reduction by Benner et al. (2020a,b, 2021). For instance, autoencoders are
increasingly used in fluid mechanics as a nonlinear dimensionality reduction architecture
(Lee & Carlberg 2020). The fluid mechanics community has exploited the approximation
of the Koopman operator to obtain nonlinear embeddings of fluid flows (Mezic 2013;
Otto & Rowley 2021). Koopman modes are, for nonlinear dynamics, analogous to normal
modes in linear problems, provided that the nonlinear dynamics are represented in
the infinite-dimensional space of all possible observable measurements of the system.
Giannakis et al. (2018) reported an insightful application of Koopman eigenfunction
analysis on a complex three-dimensional flow such as a turbulent Rayleigh–Bénard
convection cell. However, the identification of finite-dimensional coordinate systems in
which the dynamics appear approximately linear remains an open challenge (Brunton et al.
2022). As shown by Morton et al. (2018) low-dimensional nonlinear dynamical models
can be able to predict the cylinder wake and eventually be employed for model predictive
control (resulting in simple, interpretable control laws).

Tenenbaum et al. (2000) have shown that the dimensionality reduction based on
geodesic distances can be a powerful tool in preserving the actual behaviour of nonlinear
datasets. This technique is referred to as isometric feature mapping, or Isomap. Despite the
importance of identifying the manifold dimension for the modelling, prediction, control
and understanding of fluid flows, surprisingly, the application of Isomap in fluid mechanics
is minimal. Tauro, Grimaldi & Porfiri (2014) successfully employed Isomap to identify
manifolds from flow-visualization data while others used it for combustion (Bansal,
Mascarenhas & Chen 2011), and design optimization (Franz et al. 2014). Recently Otto
& Rowley (2022) discussed the limitation of the linear methods in the case of selection
and placement of sensors in a flow field.

This manuscript introduces a framework of manifold learning as an encoder for
unbounded shear flows with a K-nearest neighbours (KNN) decoder. The input snapshots,
which can be obtained either from a simulation or an experiment, are encoded using
Isomap as the primary tool. The high-dimensional space transforms to a low-dimensional

955 A34-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
39

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1039


E. Farzamnik and others

space to identify the hidden embedding manifold of the dataset. In this new space, the
manifold is interpreted to unravel the relationship between the manifold low-dimensional
characteristics and the main features of the flow dynamics. We can reproduce the snapshots
in the high-dimensional space with a KNN decoder using this new, easy-to-understand
space and fast computing. This whole encoder–decoder model provides a robust
framework to analyse shear flows and then implement applications (such as designing flow
control systems) based on it.

Four datasets with different features have been used to investigate the framework’s
performance. The selected datasets vary from direct numerical simulations (DNS) of wake
flows to fully turbulent experimental datasets with measurement noise. The simulation
datasets are based on the wake of the fluidic pinball which in recent years has been shown
to be a suitable test-bed configuration to study general flow phenomena like bifurcations
and flow control (Deng et al. 2020). To study different flow regimes, the results from the
simulations at Re = 80 and Re = 130 are reported and discussed, allowing us to identify
the manifold learning capabilities both in a simpler bifurcation and in a more complex
chaotic environment. The first experimental dataset consists of particle image velocimetry
(PIV) measurements in a highly functional swirling jet configuration. This configuration
has a wide application in modern gas turbine combustors and aerodynamically stabilizes
lean premixed flames (Lückoff et al. 2017, 2021). Both the turbulent regime and the
measurement noise challenge the encoder–decoder framework. The last tested dataset
relates to the flow in the wake of two tandem cylinders. Tandem cylinders are characterized
by several working regimes depending on the streamwise cylinder distance. The proposed
dataset is at the intersection of two regimes, however, by using POD in a previous work,
Raiola, Ianiro & Discetti (2016) could not unveil a regime switch.

The paper is organized as follows: in § 2 after the introduction, a detailed description
of the developed framework is provided; the datasets and flow configurations employed
are described in § 3; the most important outcomes from the analysis using the
encoder–decoder framework are presented in § 4; and, finally, the conclusion and the
possible future steps have been put in § 5. Two appendices describe a criterion for the
choice of Isomap parameters and discuss possible criteria for the definition of the manifold
residual variance.

2. Isomap – KNN manifold learner

In this work, a manifold learner methodology for fluid data is developed. The proposed
approach consists of three steps. First, data is gathered either from simulations or
experiments. Second, the thus-obtained data is embedded into a low-dimensional space
using isometric feature mapping, Isomap, (Tenenbaum et al. 2000). This encoding part,
which is fully data-driven, is carried out with the aim of revealing a hidden manifold that
allows us to relate the new coordinates to physical features of the flow such as, for instance,
force coefficients. Finally, a decoding part that enables return to the high-dimensional
space and reconstructs the original flow field is developed. The proposed decoder is based
on KNN and linear interpolation. Figure 1 shows the three stages of our procedure, which
are described in detail in what follows.

Let us consider that N flow field snapshots have been observed, either from an
experimental setting or a simulation. Considering that each snapshot is a matrix of
P elements, the vectorized version of each snapshot is an observation (point) in the
high-dimensional space R

P, where each dimension (feature) contains information about
a point of the field. Let X ∈ R

N×P be the data matrix containing the stated information
and xi ∈ R

P be each of its rows, i.e. the flow fields for i = 1, . . . , N. The dataset in X is
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Figure 1. Encoder–decoder procedure: (a) obtaining flow field snapshots from simulations or experiments;
(b) encoder part, representing the Isomap method application on input snapshots to identify the embedding
manifold in low-dimensional space; (c) decoder part which reconstruct the flow field snapshots from
low-dimensional space coordinates.

complex by nature and being able to extract a meaningful small number of coordinates
that capture the main characteristics of the flow is challenging.

Isometric feature mapping is a nonlinear dimensionality reduction technique that finds a
low-dimensional embedding of the data points that best preserve the geodesic distances
measured in the high-dimensional input space. In order to estimate these geodesic
distances, the shortest paths in a graph-connecting neighbouring points are employed.
These distances are then used as an input in classical MDS (Torgerson 1952) to construct
the low-dimensional embedding so that the Euclidean pairwise distances resemble those
in the neighbouring graph. Therefore, the Isomap algorithm runs as follows. First, the
Euclidean distances dX (i, j) between flow fields xi and xj, corresponding to the ith and
jth rows of X , are computed for all i, j = 1, . . . , N. Second, for i = 1, . . . , N, N k

X (i), is
defined as the set of the k closest observations to xi. Based on these neighbourhoods, the
neighbouring graph G is defined over these data points such that two nodes (flow fields) i
and j are connected by an edge of weight dX (i, j) if they are neighbours, i.e. there is an edge
between i and j if xj ∈ NX (i). Observe that G approximates the high-dimensional manifold
containing the observed data. See Appendix A for a discussion about the choice of the
number of neighbours k to build G. Third, the shortest paths between all pair of vertices in
G are computed, yielding dG(i, j) for all i, j = 1, . . . , N, using Floyd’s algorithm (Floyd
1962). Let DG be the matrix containing these shortest path distances. Finally, obtain the
low-dimensional embedding Γ ∈ R

N×p, p � P, using MDS. The new coordinates for the
N samples are then found so that their pairwise Euclidean distance resembles dG(i, j). This
is equivalent to finding Γ which minimizes the cost function

∥∥∥Γ Γ � − B
∥∥∥2

F
, (2.1)
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where B = −1
2 H�(DG � DG)H is the Gram matrix in the input space, with H = IN −

(1/N)1N being the centring matrix, IN the identity matrix of dimension N, 1N the all-ones
matrix of dimension N, � the Hadamard (element-wise) product and ‖·‖F the Frobenius
norm.

Fixing a dimension p for the low-dimensional embedding, the value of Γ minimizing
the quantity in (2.1) is the matrix made up of the p eigenvectors γ 1, . . . , γ p corresponding
to the p largest (positive) eigenvalues of the matrix Λ arising from the eigendecomposition
of B, namely B = VΛV� and Γ = V p.

The aforementioned Isomap algorithm admits the choice of other norms different from
the Euclidean, different ways of identifying the neighbours to construct G, other shortest
path algorithms or a non-classical approach to MDS. However, the choices made in our
methodology are motivated by the implemented version of Isomap in the RDRToolbox in
the R software (R Core Team 2020; Bartenhagen 2021), which has been used to carry out
our analyses.

In order to assess the performance of Isomap, Tenenbaum et al. (2000) proposed using
the definition of residual variance as in (2.2). Let DΓ be the matrix of Euclidean distances
between each pair of points in the low-dimensional embedding. Then, the residual variance
is defined as one minus the squared correlation coefficient between the vectorization of the
distance matrices DG and DΓ , yielding

1 − R2(vec (DG) , vec (DΓ )), (2.2)

where R2 refers to the squared correlation coefficient and ‘vec’ is the vectorization
operator. Observe that the result in (2.2) is a number between 0 and 1 which accounts for
the amount of information that remains unexplained by the low-dimensional embedding
of the original data. Therefore, the lower the value in (2.2) the better. For a discussion
about the definition of residual variance to assess the performance of Isomap against other
dimensionality-reduction methods such as POD we refer the reader to Appendix B.

In order to provide a decoder to create a correspondence between Isomap coordinates
γ1, . . . , γp and the ones in the high-dimensional space, namely R

P, we employ a purely
data-driven approach. Any flow field xi ∈ R

P has its low-dimensional counterpart yi ∈ R
p,

i = 1, . . . , N. Then, let f : R
p −→ R

P be the unknown mapping which transforms the
flow fields in the low-dimensional space onto the high-dimensional ones. To reconstruct
the flow field for any y ∈ R

p we assume that its K-nearest neighbours y(1), . . . , y(K) and
their high-dimensional counterparts, namely x(1), . . . , x(K), are identified. Therefore, the
reconstruction (or decoding) of y, denoted as x, can be obtained as a first-order Taylor
expansion starting from the nearest neighbour to be mapped back to the original space,
i.e. x(1), as

x = x(1) + (y − y(1))∇f (y(1))
�, (2.3)

where the gradient tensor in y(1), namely ∇f (y(1)) = (∂f /∂γ1(y(1)), . . . , ∂f /∂γp(y(1)))

is estimated assuming an orthogonal projection of the K − 1 directions provided by the
K-nearest neighbours in R

P to those in R
p. This is

⎡
⎣

x(2) − x(1)

. . .

x(K) − x(1)

⎤
⎦ �

⎡
⎣

y(2) − y(1)

. . .

y(K) − y(1)

⎤
⎦∇f (y(1))

�, (2.4)

which yields ∇f (y(1))
� = (�Y��Y )−1�Y��X if least squares minimization is used to

approximate it, and �X and �Y are the left-hand side and the first term in the right-hand
side of (2.4), respectively.
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Figure 2. Dataset configurations: (a) fluidic pinball; (b) tandem cylinders; (c) swirling jet (Reprinted from
Lückoff et al. (2021) with permission from Elsevier).

3. Datasets

In this section we describe the datasets that have been used to test our methodology. Three
configurations are considered, which yield different flow fields and regimes under both
experimental and simulation set-ups.

3.1. Fluidic pinball dataset
The fluidic pinball is a flow configuration consisting of three rotatable cylinders of equal
diameter D whose axes are located in the vertices of an equilateral triangle, as sketched
in figure 2(a). The triangle has a centre-to-centre side length 3D/2 and is immersed in a
viscous incompressible flow with a uniform upstream velocity U∞. The Reynolds number
for this set-up is defined as Re = U∞D/ν, where ν is the kinematic viscosity of the fluid.
The wake flow undergoes a set of interesting transitions at different values of the Reynolds
number. This allows exploration of reduced-order modelling and flow control strategies
in a wide range of scenarios. In the recently published literature, the fluidic pinball has
been used as a benchmark configuration for testing the mean-field modelling (Deng et al.
2020), cluster-based network modelling (Deng et al. 2022) and machine learning control
(Raibaudo et al. 2020; Cornejo Maceda et al. 2021).

The numerical results of the fluidic pinball are investigated by employing a
software developed to study multiple-input multiple-output flow control by Noack

955 A34-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
39

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1039


E. Farzamnik and others

–5 0

0 20

Steady
symmetric

Periodic
symmetric

Chaos
symmetric

Case 1: Re = 80 Case 2: Re = 130

Periodic
asymmetric

Quasi-
periodic

asymmetric

40 60 80 100 120

5

Re1 Re2 Re3 Re4

10
x/D

y/
D

15 20

0

–0.5

–1.0

0.5

1.0

–6
–4
–2

0
2

4
6

U/U∞

–5 0 5 10
x/D

15 20

0

–0.5

–1.0

0.5

1.0

–6
–4
–2

0
2

4
6

V/U∞
(a) (b)

(c)

Figure 3. An example snapshot of the fluidic pinball at Re = 130 after subtracting the steady solution: (a) the
contour of the streamwise fluctuating velocity component U; and (b) the contour of the crosswise fluctuating
velocity component V, normalized with the upstream velocity U∞. (c) Transitions of different flow regimes
with varying Reynolds numbers.

& Morzyński (2017). Direct numerical simulations of the non-dimensionalized
incompressible Navier–Stokes equations are used to compute the two-dimensional viscous
wake behind the pinball configuration, where the variables are scaled with length D,
velocity U∞, time D/U∞ and density ρ. As shown in figure 2(a), the computational
domain [−6D, 20D] × [−6D, 6D], excluding the interior of the cylinders, is described by
a Cartesian coordinate system whose origin is located in the middle of the rear cylinders.
As the rotation of the cylinders is not considered in this study, a no-slip condition on the
cylinders, the far-field velocity U∞ and a no-stress condition applied at the outlet of the
domain are considered as the boundary conditions. The unsteady Navier–Stokes solver is
based on third-order fully implicit time integration using an iterative Newton–Raphson
approach and second-order finite-element method discretization on an irregular grid
structure with 4225 T6 triangles and 8633 vertices (Deng et al. 2020). In order to simplify
the distance calculation between snapshots, data is interpolated on a high-resolution
uniform grid containing a total of 77 679 points. The steady solution, used as the initial
condition at each corresponding Reynolds number, is calculated by the solver for the
steady Navier–Stokes equations in the same way. In figures 3(a) and 3(b), the fluctuating
streamwise and crosswise velocity field of an example snapshot at Re = 130 are shown
after subtracting the symmetric steady solution.

With increasing Reynolds number, the flow experiences a transition from a laminar
flow to periodic vortex shedding and finally to chaos (Deng et al. 2020). Five different
regimes have been identified, as summarized in figure 3(c). The transition from a steady
symmetric flow to a periodic symmetric vortex shedding occurs at Re1 ≈ 18 (following
a Hopf bifurcation (Andronov et al. 1971; Strogatz et al. 1994)). The symmetry of the
vortex shedding vanishes at Re2 ≈ 68 (pitchfork bifurcation (Strogatz et al. 1994)) thus
entering a periodic asymmetric regime, presenting as an asymmetric vortex shedding
with the base-bleeding jet deflected upward or downward. A secondary frequency
appears with a higher Reynolds number, and the flow experiences another transition to a
quasiperiodic asymmetric regime at Re3 ≈ 104 (Neimark–Säcker bifurcation (Kuznetsov
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& Sacker 2008)), where the jet oscillates with the lower frequency. Finally, at Re4 ≈ 115,
the flow enters into a chaotic symmetric regime with the jet oscillating randomly.

In this study, we focused on two different flow states at the selected Re, representative
of the two most complex flow states identified by Deng et al. (2022). At Re = 80 for
the periodic asymmetric regime, there exist a total of six invariant sets in the system
state space: three unstable steady solutions; one unstable limit cycle; and two stable
limit cycles, resulting from the primary Hopf bifurcation and the secondary pitchfork
bifurcation. The unsteady flow is continuously sampled into snapshots with a fixed time
step equal to 0.1. A time horizon is chosen long enough to ensure the flow data contain
the transient and post-transient dynamics from the unstable steady state to the asymptotic
state. The dataset at Re = 80 includes the snapshots from the simulations starting from the
symmetric steady solution and its mirror-conjugated snapshots for a time horizon of 1500,
as well as the snapshots from the simulations starting from the two mirror-conjugated
asymmetric steady solutions for a time horizon of 1000. In this case, it is able to ensure
that the dataset contains the complete manifold with six invariant sets. At Re = 130 for
the chaotic symmetric regime, three unstable steady solutions and one chaotic attracting
set can be found. The dataset considered at Re = 130 only contains the snapshots from the
simulation starting from the symmetric steady solution for a time horizon of 1500, since we
are interested in the transition from the unstable invariant set to the chaotic attracting set in
this case. For the present analysis we limited the total number of snapshots to be analysed
to 4000 for both Reynolds numbers. Snapshots are selected homogeneously from the whole
range of the simulation covering complete evolution of the flow field until the final limit
cycles. Therefore, simulations are performed at Re equal to 80 and 130, thus covering the
typical complex wake dynamics regime with multiple invariant sets and chaotic attracting
set.

3.2. Swirling jet dataset
Swirling jets have a wide variety of applications in modern gas turbine combustors
and aerodynamically stabilize lean premixed flames. In the present work we analyse an
experimental dataset obtained with stereoscopic PIV by Lückoff et al. (2021). Figure 2(c)
shows a schematic of the swirling nozzle and of the measurement domain employed in the
work by Lückoff et al. (2021). This configuration consists of a feeding line which provides
the mass flow rate to a jet issued from a swirling nozzle. The swirling flow is produced
using a radial swirl generator and the swirl number Sw, defined as the ratio of the axial
flux of tangential momentum to the axial flux of axial momentum, can range between
0 and 1.5. The nozzle exit has a diameter of D = 55 mm and has a centrebody at the
centre with diameter DCB = 35 mm thus the hydraulic diameter of the mixing tube has a
diameter of Dh = 20 mm. The Reynolds number is defined using the hydraulic diameter
and the experimental facility can provide jets with a Reynolds number in the range
[13 000, 32 000]. The present dataset has been generated for Re = 20 000 and Sw = 0.7.

The measurement domain is located at the nozzle exit to analyse the flow in the
combustion chamber. The combustion chamber is a cylinder with an inner diameter of
DCCh = 200 mm and a length of LCCh = 300 mm and is made of quartz glass to enable
flow measurement using time-resolved stereoscopic PIV. For the present dataset, 2183
snapshots were captured at a frame rate of 2500 f.p.s. The stereoscopic PIV system consists
of a Nd:YLF diode pumped laser, which is synchronized with two high-speed CMOS
cameras at 1024 × 1024 pixels image resolution. One camera was mounted perpendicular
to the streamwise field of view and one was mounted with an angle of 40◦ to the
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measurement plane. The two camera views were aligned using a multilevel calibration
target. A laser light sheet of approximately 1 mm thickness was generated to illuminate
the measurement area. For PIV seeding, heat-resistant solid titanium dioxide (TiO2)
particles of a nominal diameter of 2 µm were introduced to the flow far upstream using
a brush-based seeding generator. The acquired particle snapshots were processed using a
commercial PIV software which employs a correlation scheme with multigrid refinement.
The final window size was set to 16 × 16 pixels with an overlap of 50 % in combination
with spline-based image deformation and subpixel peak fitting. Finally, the estimated
velocity fields were filtered for removing outliers, which were always less than 1 %. The
velocity at the actuators outlet has been measured using hot-wire sensors. The reader can
refer to the work by Lückoff et al. (2021) for further details on the measurement set-up and
PIV image processing.

The main coherent structure in this kind of flow is a helical structure known as the
precessing vortex core (PVC) (Syred 2006), which is generated due to a global self-excited
instability (Müller et al. 2020). Although the origin of the PVC is well understood, its
impact on combustion performance, especially flame stability, is still a matter for study.
The existence of a dominant coherent structure in this flow encourages the idea that
manifold learning can be successfully implemented to study the behaviour of the PVC
under different conditions.

3.3. Tandem cylinders dataset
The third dataset employed in this work consists of flow field measurements in the wake
of tandem cylinders near a wall. The data refer to the work by Raiola et al. (2016);
the experimental configuration is summarized here for completeness. As sketched in
figure 2(b), this configuration consists of two equal cylinders located in a cross-flow which
are separated by a ratio of L/D denoted as the longitudinal pitch ratio (with L being the
longitudinal distance between two cylinders centres and D the diameter of the cylinders
equal to 32 mm). Both cylinders are placed at a similar distance to a wall with a ratio of
W/D denoted as the wall gap ratio (with W being the distance of the cylinders from the
wall). The wind-tunnel velocity U∞ is set constant and equal to 2.3 m s−1 in order to
achieve a Reynolds number of 4900, based on cylinder diameter (Raiola et al. 2016). In
this study, the longitudinal pitch ratio is set to L/D = 1.5 and the wall gap ratio is set to
W/D = 3.

An ensemble of 1800 flow field snapshots is employed for the present study. Velocity
field measurements are performed with digital planar PIV. Di-ethyl-hexyl-sebacate
(DEHS) droplets of approximately 1 µm diameter are employed to seed the flow. The
acquisition is performed at 10 Hz with a TSI PowerViewTM Plus 2MP Camera (with an
array of 1600 × 1200 pixels) with a spatial resolution of approximately 7.2 pixels mm−1.
The light source employed is a Big Sky Laser CFR400 ND:Yag (230 mJ pulse−1,
pulse duration 3 ns). Image quality is improved by removing laser reflections and
illumination background (Mendez et al. 2017). The interrogation strategy employed is an
iterative multistep (Soria 1996) image deformation (Scarano 2001) algorithm, with a final
interrogation window size of 16 × 16 pixels, with 50 % overlap resulting in a final vector
spacing of approximately 0.035D. Outlier vectors are identified with the universal median
test by Westerweel & Scarano (2005) on a 3 × 3 vector kernel using a threshold equal to
2. Outliers are replaced with a distance-weighted average of valid neighbours.

While Raiola et al. (2016) reported that a gap ratio of W/D = 3 is sufficient to
have negligible wall-interaction effects, three main flow behaviours in the wake of
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tandem cylinders can be identified based on the Reynolds number and the distances
between the two cylinders. Zdravkovich (1997) classified the flow around tandem cylinders
with identical diameters into three major regimes (extended body; reattachment; and
coshedding), depending on the longitudinal pitch ratio. At low longitudinal distance
(L/D < 1.5), the vortex shedding for the upstream cylinder is suppressed, and the system
acts as a unified bluff-body, which is categorized as the extended body regime or
single bluff-body regime. By increasing the longitudinal distance (1.5 < L/D < 4), the
flow starts to show a more complex behaviour which mainly can be characterized by
the reattachment of the separated free shear layers from the upstream cylinder on the
surface of the downstream cylinder. This regime is referred to as the ‘reattachment’
regime. Furthermore, by increasing the longitudinal distance, both cylinders feature the
typical characteristics of the von Kármán vortex street. This regime is often defined the
‘coshedding’ regime. Alam et al. (2018) report the existence of a transitional L/D range
between the reattachment and coshedding regimes also referred to as ‘critical’ or ‘bistable’
flow spacing. While it can be argued that a similar bistable regime should occur also
between the extended body and the reattachment regimes, Raiola et al. (2016) did not
identify such a feature for L/D = 1.5. This dataset appears to be especially suited to
discover whether nonlinear manifold learning could unveil such a kind of bistable regime.

4. Results

This section presents and discusses the performance of the proposed encoder–decoder
algorithm. The first subsection is dedicated to the performance of the encoder part. We
discuss its strengths in unravelling the physical characteristics of the flows distilling the
manifolds. In the second subsection, the decoder’s ability to reconstruct the original flow
fields from the obtained low-dimensional coordinates is analysed.

4.1. Encoder’s capabilities
In this section, the embedding manifolds obtained from Isomap are presented for the
datasets described in § 3.

In order to compute the dimensionality of the datasets at hand, the residual variance
as defined in (2.2) is obtained for each number of dimensions. The choice of p is then
made based on the elbow method following Tenenbaum et al. (2000). The dimension
beyond which the residual variance experiences negligible variation can be identified as
the true dimensionality of the dataset. This method is also widely used to compute the
proper number of the clusters in the clustering techniques (Kaufman & Rousseeuw 1990).
The ‘true’ dimensionality is the proper place in a trade-off between the simplicity of the
embedded manifold and the loss of information due to truncation.

An example of residual variance as a function of the number of selected dimensions is
reported in figure 4(a) for the case of the wake of the pinball at Re = 80 and Re = 130. For
the lowest Reynolds number, it can be seen that three dimensions are sufficient to describe
the bulk of the variance since the resulting residual variance for dimensions higher than
three remains approximately the same. Note that due to its definition, the residual variance
might not be monotonically decreasing with an increasing number of coordinates; for
more details the reader is referred to Appendix B. On the other hand, truncating at three
dimensions at Re = 130 appears to still be acceptable although it induces a larger error in
terms of explained variance.

It must be remarked that, from now on, we are limited in plotting the projection of the
manifold on the first three dimensions; nonetheless, the number of dimensions needed to
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Figure 4. Isomap and POD results for the pinball datasets. (a) Residual Variance: blue, Re = 80; black, Re =
130. (b) Perspective view of the Isomap embedded manifold of Re = 80: purple, symmetric steady solution;
green, flipped symmetric steady solution; red, asymmetric upward steady solution; blue, asymmetric downward
steady solution. (c) Perspective view of the Isomap embedded manifold of Re = 130. (d) Perspective view of
the POD embedded manifold of Re = 130.
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represent accurately the manifold might be larger, depending on the complexity of the
dynamics.

4.1.1. Fluidic pinball
Figure 4(a) shows the residual variances of the pinball configuration dataset for Re =
80 (blue) and p = 1, . . . , 10. For this configuration, the chosen value of k is equal to 8;
for more details about the choice of k the reader is referred to Appendix A. The elbow
is attained for p = 3 which is considered to be the true dimensionality of this problem.
The residual variance is approximately the same for p > 3, thus, it can be argued that
the manifold of input data, embedded in a higher-dimensional state space, has three key
dimensions.

The same procedure has been done for the Re = 130 case, employing k = 12. The
residual variance (see the black curve in figure 4a) decreases monotonically for an
increasing number of dimensions and is already below 20 % after three-dimensions
(p = 3). However, the residual variance value at p = 3 increases by increasing the
Reynolds number to higher values and entering the more chaotic regimes. This indicates
that in the chaotic regime the ‘true’ dimensionality is higher due to the arising of
a more complex dynamics. Therefore, it is reasonable to expect that, for increasing
Reynolds number, the number of dimensions needed to explain the bulk of the variance
should increase. This behaviour is not surprising, and it is observed in virtually all
dimensionality-reduction techniques.

In terms of manifold shape, both for Re = 80 and 130, the data lies on a paraboloid
(figures 4b and 4c accordingly) with the first two coordinates (γ1 and γ2) being
representative of the periodic vortex shedding and the third coordinate being representative
of a shift-mode characteristic of the transient dynamics from the onset of vortex shedding
to the periodic von Kármán wake, analogously to what was found for the cylinder wake
by Noack et al. (2003). A similar paraboloid shape is reported for the fluidic pinball at
Re = 30 by Deng et al. (2020). It is remarkable that, when analysing all the solutions at
Re = 80, the manifold correctly identifies the first unstable limit cycle for the symmetric
unsteady solution and is able to identify the differences between the asymmetric upward
and downward limit cycle. As well for Re = 130, the chaotic nature of the data shows
a less smooth manifold, which still reveals the characteristic paraboloid shape. When
employing POD and plotting the first three temporal modes, similar shapes could be
obtained although less clear, especially at Re = 130, as evident from the comparison of
figures 4(c) and 4(d). Plotting the POD results at Re = 80, the resulting manifold shows a
similar behaviour as depicted in figure 4(b) and thus it is omitted for the sake of brevity.

Although the dimensions identified by Isomap do not necessarily have a physical
meaning, it is a useful exercise to establish whether there exists some correlation between
such coordinates and relevant flow quantities. Figure 5(a) shows a clear correlation
between the drag coefficient and the coordinate γ3. This correlation is expected, since
we observed that the third coordinate is representative of the shift mode. Some pairs of
coordinates are related to higher-order harmonics of the flow, as is the case for γ1 − γ2,
γ4 − γ5, and γ6 − γ7. Interestingly enough, if we extend the analysis to higher-order
coordinates, it is possible to identify a high degree of correlation between the γ8 and the lift
coefficient CL, as shown in figure 5(b). Although these interpretations are case-sensitive
and can be affected by changes in the flow configuration and starting conditions in
the Isomap algorithm, we have identified situations in which some coordinates in the
low-dimensional space could be related to the main flow features. While it is outside of the
scope of this paper to assess the interpretability of the coordinates identified by Isomap,
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Figure 5. Relation between the coordinates of the embedded manifold and the force coefficients for the
fluidic pinball at Re = 80: (a) the drag coefficient (CD) versus third coordinate; (b) the lift coefficient
(CL) versus eighth coordinate; purple, symmetric steady solution; green, flipped symmetric steady solution;
red, asymmetric upward steady solution; blue, asymmetric downward steady solution.

we spotlight the possibility of the existence of such a kind of correlation. This could be a
powerful catalyst for the extension of the encoder–decoder framework presented here, and
it will be object of future study.

4.1.2. Swirling jet
In the more challenging experimental case of the swirling jet, the same encoder procedure
based on Isomap using k = 8 has been carried out. Here POD and Isomap performance as
encoders is compared.

Figure 6(a) shows the residual variances of Isomap (black dots) and POD (green
triangles), which is measured as stated in Appendix B, for different numbers of
dimensions. In this case, the values of residual variance are significantly larger compared
with those in the simulation cases studied before, most likely due to the turbulent nature
of the flow and possibly due to measurement noise in the experimental data. It is worth
noting that the residual variances of Isomap are lower than those of POD for all the
dimensions depicted, thus indicating that Isomap is a better manifold learner in this case to
preserve the geometry of the high-dimensional dataset. To investigate this advantage, we
can compare the resulting embedding in both cases for three dimensions, which accounts
for a reasonable amount of residual variance. Figures 6(b) and 6(d) show the encoded data
by Isomap, whereas figures 6(c) and 6(e) illustrate the POD results, respectively. Although
for both methods the general shape of the embedded manifold is similar to a hollow
cylinder, the one obtained by Isomap shows a more clearly defined shape. Furthermore,
the diameter of the hollow cylinder in POD is smaller and less circular with more spread
points. Thus, the Isomap encoding provides a more helpful base to interpret the manifold
and eventually relate the low-dimensional coordinates to the physical features of the flow.

4.1.3. Tandem cylinders
Regarding the tandem cylinder dataset, figure 7(a) shows that an appropriate number
of dimensions in terms of the residual variance for both Isomap (black dots) and POD
(green triangles) is two. Furthermore, as in the previous case, Isomap outperforms POD
in terms of residual variance. As in the swirling-jet case discussed above, the Isomap
results in figure 7(b) show a clearer manifold compared with the one obtained by POD
(figure 7c). Furthermore, it also shows some separate groups of snapshots related to some
physical features of the flow while the manifold resulted from POD ultimately fails to
capture this behaviour of the system. Setting the number of groups to three, the results
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Figure 6. Resulted manifold from Isomap and POD for the swirling jet case. (a) Residual variance:
green, POD; black, Isomap. (b) Three-dimensional Isomap. (c) Three-dimensional POD. (d) Top view, Isomap.
(e) Top view, POD.

of the classification in the polar coordinates are shown by means of different colours
in figure 7(b). The flow fields of each group close to the γ1 = 0 line are plotted in
figures 7(d)–7( f ) from the outer group (Group 1) to the inner one (Group 3), as the
representative of each group. We investigate each group by looking at these representative
snapshots, which are highlighted with larger, numbered symbols in figure 7(b). As we
move outward from the centre (γ1 = γ2 = 0), the distance between two consecutive
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Figure 7. Resulted manifold from Isomap and POD for the tandem cylinders case. (a) Residual variance:
green, POD; black, Isomap. (b) Isomap grouped embedding manifold: red, Group 1; black, Group 2; blue,
Group 3. (c) Proper orthogonal decomposition. (d–f ) Sample snapshots for Groups 1, 2 and 3 corresponding to
the points labelled as 1, 2 and 3 on the manifold in panel (b).

vortices in the wake decreases, and the vortices appear less intense. In other words,
moving from the groups from the outer part to the inner one, a transition between two
different vortex shedding regimes is found which is conjectured to correspond to the
bluff-body regime and the reattachment regime of the tandem cylinders. As described
in § 3.3, previous studies suggest that this configuration of the flow lies on the bluff-body
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Case Re N P p k K Average NMSE

Pinball 80 4000 17 266 3 8 6 2.10
Pinball 130 4000 17 266 3 12 6 7.25
Tandem cylinders 4900 1800 30 414 2 3 4 37.50
Swirling jet 20 000 5396 26 004 3 8 6 41.05

Table 1. Manifold representation errors by using 70 per cent of the dataset as training dataset.

regime, as most of the snapshots in the low-dimensional space classify in the outer and
middle groups, and the results of our encoding procedure are consistent with previous
studies done by using POD (Raiola et al. 2016). However, Isomap can capture that even in
this configuration, some behaviour of the next regime can coexist with the dominant one,
suggesting that we cannot define a specific number for L/D as the classifier of the flow
regimes, and by increasing L/D the flow smoothly changes its behaviours.

4.2. Decoder’s performance
This section assesses the quality of the decoder approach described in § 2. The normalized
mean squared error (NMSE) in a test set of observations T is computed as

NMSE = 1
|T |

∑
x∈T

‖x − x̂‖2

‖x‖2 , (4.1)

where x̂ is the decoder’s reconstruction of the flow field x ∈ R
P.

Table 1 shows the average NMSE obtained for the different cases studied (last column),
namely pinball for Re = 80 and Re = 130, the swirling jet flow and the wake of tandem
cylinders. The sample data has been split into 70 % training and 30 % testing. The number
of neighbours considered in Isomap (k) and the number of neighbours considered in the
decoding stage (K) are reported in the sixth and seventh columns, respectively. The first
column in table 1 depicts the case study, the second the value of Re, the third the number of
samples, fourth the number of features in the high-dimensional space and fifth the number
of dimensions considered for Isomap. Note that the NMSEs reported in table 1 are actually
representation errors, i.e. the error incurred when reconstructing the original datasets by
means of our encoder–decoder methodology. These representation errors show that the
decoder has an excellent performance on the simulation datasets and has a reasonably good
performance on both turbulent experimental datasets. Figure 8 compares reconstructed and
actual snapshots for a random point in the test subset. As expected from the reported errors,
the differences between the two snapshots in the pinball case are hardly noticeable. In
the case of the tandem cylinders, although there are some noticeable differences between
reconstructed and actual snapshots, the general behaviour of the flow is well preserved in
the reconstructed snapshots.

To investigate further the decoder performance, a comparison using as input
low-dimensional coordinates resulting from Isomap and POD has been carried out. The
NMSE of the Isomap decoder is calculated using the same 70 % training dataset. The
reconstruction NMSE with POD modes is calculated as the reconstruction error employing
the first two or three modes, depending on the true dimensionality p of the dataset.
Results are summarized in figure 9 and show a clear superiority of the KNN decoder

955 A34-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
39

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1039


E. Farzamnik and others

0.5

1

2

3

4

1.5
x/D

y/D

–6

–2

–4

0

4

2

6

y/D

2.5 3.5

0

0.5

–0.5

–1.0

1.0

U/U∞

0.5

1

2

3

4

1.5
x/D

2.5 3.5

0

0.5

–0.5

–1.0

–5 0 5 10 15 20

1.0

U/U∞

0

0.5

–0.5

–1.0

1.0

U/U∞

–6

–2

–4

0

4

2

6

–5 0 5 10 15 20

0

0.5

–0.5

–1.0

1.0

U/U∞(a) (b)

(c) (d)

Figure 8. Reconstructed flow field using KNN decoder on the embedded manifold of the Isomap.
(a) Reconstructed, pinball Re = 130. (b) Actual, pinball Re = 130. (c) Reconstructed, tandem cylinders.
(d) Actual, tandem cylinders.
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Figure 9. Reconstruction Error of Isomap versus POD: blue, Isomap; red, POD.

in all the cases except for the tandem cylinders. In this case, the performance of the two
methods is similar, due to the rather small size of the input experimental dataset and to
the sparsity of the manifold leading to large errors for isolated points, as expectable from
figure 7(b).

This argument is further confirmed by performing a parametric study reducing the size
of the dataset for the pinball test case at Re = 80. Reducing the dataset size to the 1/2,
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1/4 and 1/8 of the original data set size leads to an increasing NMSE equal to 10 %, 15 %
and 43 %.

5. Conclusions

In this paper we have developed an encoder–decoder framework based on manifold
learning techniques to tackle the problem of understanding shear flows. The proposed
manifold learner is Isomap and it is coupled with a KNN-based decoder. We show
that flows which can be described with a limited set of coherent structures are suitable
candidates for manifold learning. In the applications proposed in this manuscript we
have chosen phenomena whose snapshots correctly sampled all the events defining the
system ‘clock’, i.e. jet and wake flows in which the measurement domain samples the
evolution of the main vortical features. We have shown that Isomap correctly identifies
the true dimensionality of a given dataset and that the manifolds unravelled using the
Isomap encoder are representative of meaningful physical quantities and are suitable for a
reduced-order modelling of shear flows. The pure physics-uninformed results in the fluidic
pinball case also have a correlation with physical properties like vortex-shedding phases
or the force coefficients and open ground to use this technique to model wake flows and
design flow-control systems.

We have shown that when handling experimental cases with complex behaviour,
despite the presence of acceptable measurement noise, the new encoder–decoder tool
outperforms the classical dimensionality-reduction techniques like POD in terms of clarity
and interpretability of the identified manifolds, and it is less sensitive to experimental
noise. In such cases, not only the identified manifolds are more reliable, but they also distil
some physical information that POD is not able to catch, including the coexistence of the
two shedding regimes and transition between them in the case of the wake of two tandem
cylinders.

Finally, the developed decoder proved to have outstanding capabilities in reconstructing
the original flow fields from the identified manifold, allowing for the instantaneous
identification of the flow state with applications to closed-loop flow control.

The proposed manifold learner may significantly reduce the dimension of the state
space as compared with POD expansions with similar representation error, particularly for
transient flows. Hence, the autoencoder methodology may be used for full-state estimation
and control design. For both tasks, every unnecessary coordinate acts as a noise amplifier
and constitutes a danger for the system to get ‘off track’. The authors actively pursue this
direction.
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Appendix A. Selection of the number of neighbours k in Isomap

As discussed in § 2, selecting a proper number of neighbours k to construct the
neighbouring graph G in Isomap is a crucial decision. The unknown geodesic distances
between every pair of observations in the high-dimensional manifold are approximated
by the shortest paths distances between the corresponding nodes in the graph G, which
depends on k. On the one hand, a too small k may cause a splitting of the manifold
into disjoint ones and thus losing its real structure. On the other hand, if k is too large
then points which are far according to the real geodesic distance may become close by
using its approximation by their shortest path in G due to an undue number of connections
(edges) and/or the existence of holes in the manifold. This phenomenon is known as short
circuiting.

Different approaches have been proposed in the literature to cope with the selection of
k in Isomap. In this work, we follow the methodology presented by Samko, Marshall &
Rosin (2006) to determine a valid range of values [kmin, kmax] to perform the search. The
lower bound of the interval, kmin, is selected as the smallest k so that the neighbouring
graph G is connected. Regarding the upper bound, kmax, the largest value of k is picked so
that the following equation holds:

2E
N

� k + 2, (A1)

where E is the number of edges and N is the number of nodes in G. Once the valid range
of k is found, Samko et al. (2006) propose to pick k ∈ [kmin, kmax] so that the residual
variance is minimum.

In all our studies in § 4 using any value in the valid range selected this way results in a
low residual variance. We refer the reader to figure 10 for an illustration of the impact of
the choice of k on the residual variance for the pinball dataset for Re = 130.

Appendix B. Different approaches to define the residual variance

There exist numerous approaches to assess the fits provided by different dimensionality
reduction techniques. Regarding Isomap, the so-called residual variance as stated in (2.2)
is the common choice.

Regarding POD, the classical definition of residual to assess its performance is given by

1 −

p∑
j=1

var(aj)

P∑
j=1

var(aj)

, (B1)
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Figure 10. Residual variance of Isomap embedding to three-dimensional space versus different Isomap k, for
pinball dataset Re = 130 with the valid range of Isomap’s k according to Samko et al. (2006).
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Figure 11. Different methods for defining residual variance: (a) pinball, Re = 80; (b) pinball, Re = 130;
(c) swirling jet; (d) tandem cylinders. Colour codes: black, (2.2); red, POD (B1); blue, POD (B2); green,
POD (B3).

where ‘var’ stands for the variance and aj are the mode amplitudes, j = 1, . . . , P.

The ways of measuring the fits in Isomap and POD given by (2.2) and (B1) are not
comparable. In order to evaluate Isomap and POD up to the same standard, Tenenbaum
et al. (2000) proposed to replace the geodesic distances approximated by DG in (2.2) by the
pairwise Euclidean distances in the input high-dimensional space, DX , where the element
in row i and column j in DX is ‖xi − xj‖2, i, j = 1, . . . , n. Then a related definition of
residual variance for POD is

1 − R2(vec(DX ), vec(DZ )), (B2)
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where DZ is the matrix of Euclidean distances considering the retained principal
components and R2 refers to the squared correlation coefficient.

Nevertheless, the definition of residual variance in (B2) does not capture the ability of
POD of reproducing the geodesic distances in the high-dimensional space. To do so, a
different but related proposal to measure the residual variance for POD combines (2.2)
and (B2) as

1 − R2(vec(DG), vec(DZ )). (B3)

Finally, we point out that the residual variance as defined in (2.2), (B2) and (B3) may not
decrease strictly when the number of dimensions increases. In other words, the correlation
between a distance matrix obtained from a set of points in R

d, Dd, and another distance
matrix, D, does not necessarily decrease if the distance between the embedded points in
R

d−1 by dropping one of the dimensions, Dd−1, is considered instead.
Figure 11 shows the values for the different definitions of residual variances presented

in this work in each of the case studies in § 4 for different numbers of dimensions. The
black line corresponds to (2.2), the red one is (B1), the blue is (B2) and the green is (B3).
For all the dimensions considered, the residual variance of Isomap surpasses POD using
definitions (2.2) and (B2).
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