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Explosive dispersal of granular media widely occurs in nature across various length
scales, also enabling engineering applications ranging from commercial or military
explosive systems to the loss prevention industry. However, the complex particle-flow
coupling makes the explosive dispersal behaviour of particles difficult to control or even
characterize. Here, we study the central explosion-driven dispersal of dense particle
layers using the coarse-grained computational fluid dynamics—discrete element method
and present a comprehensive investigation of both macroscale dispersal behaviours and
particle-scale pattern formation. Employing three independent dimensionless parameters
that characterize the efficiency, homogeneity and completeness of explosive dispersal,
we categorize the dispersal behaviours into ideal, partial, retarded and failed modes,
and propose the corresponding thresholds. As the mass ratio of granular materials to
central pressurized gases (M/C) spans four orders of magnitude, the dispersal mode
transitions from ideal to partial, then to retarded and finally to failed mode. The transitions
of dispersal modes correspond to the particle—flow coupling regime crossovers, which
change from decoupling to weak, medium and finally to strong coupling as the dispersal
mode undergoes corresponding transitions. We proceed to develop continuum models
accounting for the shock compaction and the ensuing pulsation of the particle ring that
are capable of identifying the ideal dispersal mode from various dispersal systems. We
also provide insights into the origins of diverse particle-scale patterns that are strongly
correlated with macroscale dispersal modes and critical for the accurate prediction of
dispersal modes.
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Explosive dispersal of granular media, whereby the detonation of a central explosive or
sudden release of pressurized gases disperses densely packed particles to form dilute
particle clouds, occurs in a wide range of natural phenomena and engineering processes

+ Email address for correspondence: xuekun@bit.edu.cn

© The Author(s), 2023. Published by Cambridge University Press 959 Al17-1

@ CrossMark


mailto:xuekun@bit.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.117&domain=pdf
https://doi.org/10.1017/jfm.2023.117

https://doi.org/10.1017/jfm.2023.117 Published online by Cambridge University Press

K. Xue, L. Miu, J. Li, C. Bai and B. Tian

(Formenti, Druitt & Kelfoun 2003; Eckhoff 2009; Aglitskiy et al. 2010; Kuranz et al.
2018; Frost 2018). In volcanic eruptions, the explosive expansion of pressurized gases
through an initially concentrated dispersion of particles expels mixtures of pressurized
gases and fragments of magma within volcanic conduits (Marjanovic et al. 2018). For
various commercial and military explosive systems, such as fire extinguishing devices
using explosive dispersed dry powders (Klemens, Gieras & Kaluzny 2007), thermobaric
and fuel-air bombs (Frost, Goroshin & Zhang 2010; Frost et al. 2012), the explosive
dispersal of granular media and the ensuing mixing of particulate matter with air are of
particular importance to their reliable applications (Zhang et al. 2015; Bai et al. 2018;
Posey et al. 2021). Another prominent application involves blast mitigation by surrounding
the explosive with a layer of particles (Milne et al. 2014; Pontalier et al. 2018). The transfer
of heat and energy from explosives to the particles during shock compaction and the
ensuing gas—particle interaction significantly reduce the blast overpressure and impulse.

Considerable effort has been devoted to understanding the explosive dispersal process
of granular media, which involves complex multiphase coupling and spans a range of
scales (Frost et al. 2010; Rodriguez et al. 2013, 2014; Xue, Sun & Bai 2016; Osnes,
Vartdal & Reif 2017; Frost 2018; Kun et al. 2018; Xue et al. 2018; Carmouze et al. 2019;
Chiapolino & Saurel 2019; Fernandez-Godino et al. 2019; Mo et al. 2019; Koneru et al.
2020). In particular, most studies focus on the hierarchical jet-like structures observed in
cylindrical and spherical geometries (Frost et al. 2010; Rodriguez et al. 2013, 2014; Xue
et al. 2016; Osnes et al. 2017; Frost 2018; Kun et al. 2018; Xue et al. 2018; Carmouze
et al. 2019; Chiapolino & Saurel 2019; Fernandez-Godino et al. 2019; Mo et al. 2019;
Koneru et al. 2020). The origin and evolution of particle jetting have been extensively
investigated and found to be closely associated with the spatial distribution of disseminated
particles and the terminal velocities (Kandan et al. 2017; Loiseau et al. 2018; Pontalier
et al. 2018; Li et al. 2022), two prominent attributes relevant to pertinent applications.
However, some fundamental questions that are of much interest to engineering applications
remain left unaddressed. Specifically, how fast is dispersal completed? Are the dispersed
particles homogeneously distributed in space? Is any nontrivial proportion of particles not
expelled successfully? These three questions are critical to assessing three fundamental
attributes of explosive dispersal, namely, efficiency, homogeneity and completeness.
Since the explosive dispersal processes for systems with vastly varying scales and
structural parameters may occur on markedly different time and length scales, adequately
quantifying the key attributes is quite challenging, let alone properly characterizing
distinctly different explosive dispersal processes. Here, by identifying and understanding
the most significant events contributing to each respective attribute, we construct three
dimensionless parameters to categorize various dispersal processes into distinct dispersal
modes.

The complex particle-flow interaction plays an important role in the explosive dispersal
of particles, especially the formation of particle jetting (Xu et al. 2013; Osnes et al. 2017,
Carmouze et al. 2019; Chiapolino & Saurel 2019; Fernandez-Godino et al. 2019; Mo
et al. 2019; Koneru et al. 2020; Li et al. 2022). Based on particle resolved numerical
investigations, Xu et al. (2013) and Mo et al. (2019) observed that the microgas jets
that formed at the internal surface of the particle ring penetrated the particle layer
through gaps created by the inelastic collision between particles, generating high-speed
particle agglomerates. Recently, shock-driven multiphase instability (SDMI), a variant
of the classic Richtmyer—Meshkov (RM) instability, was reported to be responsible for
particle jetting in dilute systems (Osnes et al. 2017; Chiapolino & Saurel 2019; Koneru
et al. 2020). In contrast, another interfacial instability, shock-driven granular instability
(SDGI), is proposed to account for the jetting of shock-loaded dense granular interfaces
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(Li et al. 2022). Although these particle-flow interaction mechanisms provide important
insights into the physics underlying particle dispersal, they fail to incorporate the coupling
between the expanding ring as an entirety and the evolving central pressure field, which
governs the dynamics of the particle ring. One striking phenomenon resulting from
macroscale particle-flow coupling is the pulsation of the particle ring analogous to the
pulsation of the gas bubble generated in the underwater explosion (Wang et al. 2021). The
pulsation of the particle ring sustained by the central explosion, albeit rarely reported, is
essential to understand the overall dispersal behaviour of the particle ring. The emergence,
prevalence and waning of the particle ring pulsation must be understood based on
the varying particle-flow coupling regimes, which can be quantified by calculating the
characteristic time scale ratios of signature events.

As highlighted in many investigations involving shock/blast-driven particle-laden
compressible flows, understanding or even predicting the behaviour of these flows requires
knowledge of particle-scale phenomena, such as particle-particle collisions, particularly
in dense particle flows, shock-particle interactions and the coupling between particle
and flow jetting (Osnes et al. 2017; Sundaresan, Ozel & Kolehmainen 2018; Carmouze
et al. 2019; Chiapolino & Saurel 2019; Mo et al. 2019; Koneru et al. 2020; Tian et al.
2020). Thus, we conducted four-way coupled two-dimensional (2-D) Euler-Lagrange
simulations of the explosive dispersal of the particle ring wherein the denotation of
the cylindrical burster was simulated by the sudden release of pressurized gases in the
central gas pocket. A numerical protocol was established that allowed us to convert the
dispersal process driven by the central detonation to the equivalent process driven by the
pressurized gases and vice versa. Using this protocol, we performed a range of simulations
for dispersal systems with varying structures, including the energy of pressurized gases,
the mass of the particle ring, and the packing fraction of particles. Regardless, systems
with the same mass ratio of particles to central gases, M/C = myjyg/mg,s, display similar
dispersal behaviours, highlighting the role of M/C as one primary governing parameter.
We developed theoretical models based on the continuum assumption to account for the
shock compaction phase and the ensuing pulsation of the particle ring and to predict the
dispersal mode for a particular dispersal system. The combined models are capable of
identifying the ideal dispersal mode while falling short of recognizing the other three
modes, which require knowledge of grain-scale particle loosening mechanisms.

The paper is organized as described below. In § 1, the numerical method is presented,
followed by the description of the numerical setup in §2. A variety of macroscale
behaviours of dispersed particle rings are elaborated in § 3, which are characterized
using three prominent attributes and categorized into different modes. The macroscale
particle-flow coupling and its correlation with the dispersal mode are explored in § 4.
The dominant mesoscale dispersal structures are discussed in § 5. Finally, the results are
summarized in § 6.

1. Numerical method

Numerical simulations were performed based on coarse-grained compressible
computational fluid dynamics—discrete parcel method (CCFD-DPM), a coarse-grained
Euler-Lagrange numerical approach suitable for gas—particle flows in laboratory-scale
systems (Sundaresan et al. 2018; Tian et al. 2020). The CCFD-DPM approach tracks and
accounts for parcel-parcel contact interactions. Each parcel consists of multiple physical
particles with the same physical and kinetic properties. The number of real particles
that represent a computational parcel is quantified using a scaling factor called the super
particle loading, x, whose value is set based on the volume/mass fraction of the particles
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and computational memory available. For particle-gas systems, the value of x reported
in the previous literature ranges from 0(10") to 0(103) (Osnes et al. 2017; Koneru et al.
2020). In the present study, x is of the order of o(10").

For the gas phase, the volume-averaged governing equations ((1.1)—(1.3)) constructed
in the Eulerian frame are based on a five-equation transport model, i.e. a simplified form
of the Baer—Nunziato (B-N) model, which has been modified to account for compressible
multiphase flows ranging from dilute to dense gas—particle flows (Baer & Nunziato 1986):
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The gas volume fraction, velocity, density, pressure and total energy of the gas are
represented by ¢¢, ur, pr, Pr and Ef, respectively, where Ef = pref +0.5 uy uy. In
(1.1)=(1.3), () and”denote phase-averaged and mass-averaged variables, respectively, o, ;
and u, ; represent the density and velocity of parcel i, respectively, D), ; is the drag force
coefficient of parcel i and ¢, ; =w; s V), i/Vy is the contribution of parcel i to the weighted
particle volume fraction (w; s is the distributed weight that parcel i contributes to the
particle volume fraction in fluid cell f, and V), ; and V; are the volumes of parcel i and
the fluid cell, respectively).

We employ the Di Felice model combined with Ergun’s equation ((1.4)—(1.7)) to
calculate D, (Felice 1994), which considers the effects of both the particle Reynold
number, Re),, and the particle phase volume fraction, ¢, and has been widely used in
particle-laden multiphase flows:

3 lur — up i
D= y =, (1.4)
P Spp/l)f p
24 8.33% 4 0.0972Re, if ¢y < 0.8
Ca=—— o , (1.5)
Rep - .
fbase¢f if ¢f >0.8
14 0.167Re) %7 if Re, < 1000 16
P = 0.0183Re,, if Re, > 1000 '
¢ =3.7—0.65exp[—4(1.5 — logjgRe,)*]. (1.7)

In (1.4) and (1.5), Cy is the dimensionless coefficient of the drag force and r), is the particle
radius. For dense particle flows (¢r < 0.8), (1.4) reduces to the original Ergun equation.
Otherwise, C; takes the form of Stokes’s law multiplied by a factor of fj4s., Which varies
with Re), as indicated by (1.6) and (1.7).
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The particle phase is represented by discrete parcels whose motion is governed by
Newton’s second law ((1.8) and (1.9)):

du, ; 1 1
Bl = Dy iy —wpi) — — V(P + — Y Fey, (1.8)
dr Pp m, I
dx,
f = up,, (1.9)

where u;, ; and x,, ; denote the velocity and displacement of parcel i, respectively, and F ¢ ;;
represents the collision force between parcels i and j.

A four-way coupling strategy was adopted to account for the momentum and energy
transfer between gases and particles. Specifically, the particle drag force and the associated
work were incorporated into the momentum and energy equations of the gas phase as the
source terms. The particle parcels are driven by the pressure gradient force, drag force
and collision force between parcels (1.8). A soft sphere model, which is represented by a
linear-spring dashpot model, was employed to model the collision force between parcels.
Hence, F ¢ j consists of a repulsive force and a damping force:

Fcij = knpdn — VYn,plinijs (1.10)

where k, , and y, , are the stiffness and damping coefficients of parcels, respectively,
and 8, and u, ; are the overlap and difference in the normal velocity between parcels in
contact, respectively. Here, y, p is a function of the parcel restitution coefficient ¢,:

2lneg,

Ynp = ——F/—m7m—
V72 +1ng,

The weighted essentially non-oscillatory (WENQO) scheme was used to reconstruct
the primary flow variables and solve the equations governing the gases. A Riemann
solver proposed by Harten, Lax and van Leer was used to obtain the intercell fluxes.
The third-order Runge—Kutta method was applied for time integration. The equations
describing the parcel velocity and position were discretized using the velocity-Verlet
algorithm. Bilinear/trilinear interpolation functions were adopted to calculate the particle
volume fraction and source terms on the Eulerian grids, as well as the fluid variables
on Lagrangian parcels (Liu, Osher & Chan 1994). Numerical details of CCFD-DPM are
available in our previous publication (Tian et al. 2020). The CCFD-DPM framework
introduced the variable A and has been validated in several benchmark experiments
involving shock-driven particle-laden flows (Tian et al. 2020), such as experiments
performed by Rogue et al. (1998), which investigate shock dissipation through particle
curtains; the experiments conducted by Britan & Ben-Dor (2006), which assess both the
gaseous and solid pressures inside particle columns impinged head on by shocks; and the
experiments assessing shock-induced interfacial instability of granular media (Kun et al.
2018).

Notably, for dispersal systems where a central burster is enclosed by ductile or brittle
particles, the deformation and/or fracture of particles and the sintering between particles
are inevitable for particles adjacent to the burster. These phenomena may well affect the
ensuing dispersal, particularly for systems with thin particle shells. Since the current
CCFD-DPM framework does not account for these particle-scale phenomena, we must
be aware of the scenario in which the simulations and the related discussions are valid,
namely, either the explosive sources are so mild that the particle-scale phenomena are
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Figure 1. (a) A quarter of the two-dimensional numerical configuration wherein the central gas pocket is
enclosed by a particle ring consisting of polydispersed computational parcels. Inset shows the zoomed-in
arrangement of particle packing. (b) Distribution of the structural parameters, Pg, h, ¢o as well as the
resulting M/C for dispersal systems which are to be numerically investigated. Here, % is the ring thickness,
h= Rout,O _Rin¢0~

negligible, or particles are composed of materials with a combination of high compressive
strength, high toughness and moderate/high hardness. Otherwise, the particle-scale
phenomenon may cause the actual dispersal to deviate from that predicted by the
framework in which these particle-scale phenomena are excluded.

2. Numerical set-up

The two-dimensional (2-D) configuration shown in figure 1(a) serves as an archetypical
system to investigate the explosive dispersal behaviour of particle rings. Instead of the
burster used in the explosive dispersal experiment, the numerical simulations employ a
high-pressure gas pocket with a radius of Rgss o filled with air to disperse the enclosing
ring consisting of 2-D disks with varying packing fractions, ¢g. For the investigated
dispersal systems described below, the initial radius and temperature of the gas pocket
remain constant, Ress 0 =20 mm and T = T,y =298 K, respectively, while the initial
pressure Py varies. The radius expansion algorithm is used to generate the particle packing
with a given ¢¢ in an annular domain with the inner and outer radii of R;, ¢ and Ry, 0,
respectively. A population of disk-like parcels with artificially small radii ensure no parcel
overlap is randomly created within the specified domain. Then, all parcels are expanded
until the specified parcel size distribution and desired packing fraction are both satisfied.
The real 2-D particle has a diameter of 100 pwm, while the diameter of the parcel uniformly
ranges from 360 to 780 pwm to avoid potential crystallization during shock compaction.
Due to the use of computational parcels, the collision distance must be modified in the
same manner as the parcel diameter. A random but homogenous arrangement of parcels is
achieved, as shown in the zoomed-in inset of figure 1(a), where the parcels are coloured
according to the local Voronoi packing fraction, ¢, voro. The parcel has a density of

2500kg m~3, which is the same as the real particles. The restitution coefficient, ¢, is
set to 0.6, which accounts for the energy dissipation inside the parcel; the normal stiffness
of contacts between parcels is set to 2 x 10’ Nm™!.

Evidently, a host of structural variables characterize the dispersal system and play
a role in the resulting dispersal behaviour with varying levels of relative importance.
Instead of performing a conventional parametric study, we focus on their combined effects
manifested by one single dimensionless parameter, the mass ratio, M/C, which defines
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the energy imparted to the confining materials per unit mass. Previous studies have
accentuated the fundamental role played by the M/C in explosive dispersal by correlating
the initial expansion velocity of disseminated particles with the M/C (Loiseau et al. 2018;
Pontalier et al. 2018). The structural variables denoted in figure 1(a) all contribute to the
mass ratio M/C, as expressed in (2.1):

2 2 2 2
M/C _ J-l:(Rout,O - Rin,0)¢0pp _ (Rout,O - Rin,0)¢0'OPRTO ’ 2.1)

2 2
TcRgaspgas RgasPO

where R is the specific gas constant of air, R = 288.7 J/kg/K. The mass ratio clearly does
not reflect the nature of various explosive sources with vastly different specific energies.
Hence, two dispersal systems with the same M/C but different explosive sources, for
instance, the burster and the pressurized gas pocket, will undoubtedly exhibit distinct
dispersal behaviours. In Appendix A, we propose a mass ratio conversion between
systems with different explosive sources based on the energy equivalent principle whereby
the dispersal behaviours exhibited by the systems with explosive sources other than
pressurized gases are incorporated into the dispersal mode classification framework
proposed in § 3.3.

As illustrated in figure 1(b), by varying the values of Py, R,u:,0 and ¢o, the mass ratio
M/C for the simulated dispersal systems ranges from 9.7 to 6800, as marked in figure 1(b),
spanning four orders of magnitude. Three different values of ¢¢, namely, 0.5, 0.6 and
0.65, were used to represent loose, dense and densest random packings, respectively.
Notably, the packing fraction values presented throughout this work are those of the
equivalent three-dimensional (3-D) packings derived from the conversion between the
packing fractions in the 2-D and 3-D packings proposed by Borchardt-Ott (2012):

o = 02595 + 22D =00 e~ 0.2595) 2.2)
A 0.2146 — 0.0931 "~ B ‘
Hence, the 3-D particle packing fractions ¢3.p = 0.5, 0.6 and 0.65 correspond to the 2-D
particle packing fractions ¢>.p =0.77, 0.83 and 0.86, respectively. For each M/C, at least
three systems with different combinations of Py, Ry, and ¢ were constructed to assess
the variability of the results. In total, we performed explosive dispersal simulations for 70
different systems with 20 different values of M/C. For clarity, the system is labelled with
four symbols, M/C, Py (in units of bar), the thickness of the ring (4 = Ryu;,0 — Rin,0, in
units of mm) and ¢y.

3. Results
3.1. Macroscale dispersal behaviour

A space-time (R—f) diagram showing the spaciotemporal variations in the particle packing
fraction ¢,(R, 1) was constructed using the circumferentially averaged ¢, to understand
the overall explosive dispersal behaviour of the particle ring. Figure 2(a—d) displays
four typical R—t diagrams for systems with different M/C values. Upon the release of
pressurized gases, an incident shock wave impinges on the inner surface of the particle ring
(the dynamics of shocks are illustrated in figure 3a), resulting in a compaction front (CF)
traversing the particle bed. Across the CF, ¢ immediately jumps to ¢comp, the packing
fraction of the compacted particles. A rarefaction wave (RW) reflects off the external
surface of the particle ring upon the arrival of the CF, resulting in a discernible decrease in
¢, in its wake. The dynamics of CF and the ensuing RW are sufficiently recognized in the
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Figure 2. R—t diagrams of the ¢, of particle rings in the dispersal system (a) 9.7-245-10-0.5,
(b) 103.7-100-30-0.6, (c) 1024-20-50-0.6 and (d) 4875-20-140-0.6. (¢) R—t diagrams of the volumetric strain
rate &, in particles in the dispersal system 494-200-140-0.6. CF, compaction front; RW, rarefaction wave. The
white and pink dashed lines indicate the boundaries delimiting the particle cloud, IPF and OPF, and dense core
band (CB), IScp and OScp, respectively.
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Figure 3. (a) Temporal variations in ¢, v, for typical dispersal systems. (b) Scaled temporal variations in
®p,ave Tor the same systems shown in panel (a) wherein the time is scaled by #,.

R—t diagram of the volumetric strain rate &, in particles (the calculation of &, is presented
in Appendix B), as plotted in figure 2(e).

Despite similar early-time shock compaction phases, systems with different M/C
ratios proceed with distinctly different late-time dispersal phases. The ring in system
9.7-245-10-0.5 undergoes persistent expansion, while particle shedding progressively
disintegrates the ring from inwards to outwards (figure 2a). In contrast, as shown in
figure 2(b), the ring in system 103.7-100-30-0.6 remains densely packed during expansion,
which strikingly proceeds to undergo noticeable contraction accompanied by significant
outbound particle jetting commencing from the outer surface (see the inset in figure 2b).
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The contraction observed in system 103.7-100-30-0.6 becomes more pronounced in system
1024-20-50-0.6, wherein a densely packed core band (CB) not only survives the entire
contraction but also embarks on a second expansion (figure 2c¢). The internal and external
surfaces of the densely packed CB, IScp and EScp are defined such that the packing
fraction of bulk enclosed by IScp and EScp remains above 0.3. Only 5 % of the volume
of particles resides inside the inner particle front (IPF) and another 5 % resides beyond
the outer particle front (OPF). The trajectories of the IPF, OPF, IScp and OScp are
superimposed in figures 2(c) and 2(d).

At the onset of the second expansion of the CB, inbound particle jetting initiated
from the IScp occurs (figures 2¢ and 2d). In contrast to the internal particle shedding
during the first ring expansion, as observed in system 9.7-245-10-0.5 (figure 2a), where
the loose particles still move outwards, the particles entrained by the inbound particle
jets travel inwards, eventually moving to the central area. The relatively short-lived
CB in system 1024-20-50-0.6 becomes enduring in system 4875-20-140-0.6 and we
observe multiple pulsations of CB with decreasing amplitudes (see figure 2d). Notably,
inbound and outbound particle jetting occur at each contraction-to-expansion and
expansion-to-contraction turning point, respectively. Particle shedding, and inbound and
outwards particle jetting are elaborated in § 5.

3.2. Characterization of dispersal behaviour

The diverse dispersal behaviours of particles shown in figures 2(a)-2(d) lead to a
fundamental question: Can we properly characterize and classify the diverse dispersal
processes? This question is critical for adequately evaluating the dispersal process and
tailoring the dispersal systems for a specific application. In this section, we aim to address
this question by establishing a unified characterization framework.

Unarguably, efficiency is among the most important properties of the dispersal process
from an engineering perspective. The time required for the packed particles to be dispersed
into a dilute state, 74, is a useful indicator of the dispersal efficiency, although 74 scales
with the length scale of the system. Here, the dispersed ring is referred to as dilute when the
average particle volume fraction in the annular region delimited by IPF and OPF, ¢, 4y, is
less than 0.1. Figure 3(a) plots the variations in ¢, 4. in several typical dispersal systems.
Notably, one or more kinks are commonly observed in ¢, 4v.(?) curves, which are caused
by the sudden deflections of IPF or OPF due to the burst of inbound or outbound particle
jetting. As expected, systems with an increased M/C, due to heavier particle rings, smaller
input energies or both, take more time to be dispersed to the nominal dilute state. As
indicated in figure 4(a), t4;s increases logarithmically with the M/C and approaches infinity
when the M/C is greater than 2000. For systems with an M/C of 0(103), ®p,ave does not
reach 0.1 during the computational time. Hence, 74, was determined by extrapolating the
®p,ave(t) curves, as described in Appendix C.

We instead use a dimensionless parameter £ as the efficiency indicator by scaling ;s
with the characteristic time of the ring expansion, fying, & = t4is/tring, to properly evaluate
the efficiency of dispersal processes in systems with varying M/C values. Here, ., is the
time it takes the ring to expand to twice the initial diameter, namely, #,i,g = Rour,0/Vour.
with V,,; representing the initial surface expansion velocity of the ring. The M/C
dependence of f,;,¢ is plotted in figure 4(b). Figure 3(b) depicts the variations in ¢, gye
with scaled time #/t,;,g, with significantly reduced deviations observed between ¢ qye(?)
curves for different systems. Figure 5 shows the variation in § with M/C, and the error bars
represent the variability between systems with different combinations of Py, R,,;.0 and ¢o.
For values less than a threshold mass ratio (M/C)s ~ 2500, & randomly fluctuates below 10.
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Afterwards, £ increases above 10 and approaches infinity towards the upper limit of the
M/C range. Therefore, the dispersion is at least one order slower than the ring expansion.
For efficient dispersal, the dispersion should be completed during the time scale of ring
expansion, leading to the criterion for the efficiency:

£ < 10. (3.1)

Another issue that is equally important is the spatial concentration of the dispersed
particles, which is strongly affected by the emergence of densely packed CB, as shown
in figures 2(c) and 2(d). If the CB survives for the entire dispersal time, t4;5, the bulk of
particles will adhere inside the narrow CB, although the nominal dilute state has been
achieved. This dispersal process, albeit efficient, is highly inhomogeneous. Figure 4(c)
presents the variation in fgense With M/C, which is fitted by an exponential function
asymptotically approaching infinity. Rings in the systems with an M/C ratio larger than
1600 undergo slowly decaying pulsation and eventually dwell in an annular region located
not far from its initial position, leading to an infinite #4.,s.. The derivation of ?4,,;. for the
systems with the enduring CB is described in detail in Appendix C. The ratio between the
CB survival duration to the dispersal time, which is defined as « = fgepse/tgis, produces a
homogeneity indicator. The M/C dependence of « plotted in figure 5 shows a similar trend
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with £(M/C). Here, k remains below unity until M/C exceeds a threshold, (M/C), ~ 500,
beyond which k increases above unity, substantially increases with M/C and eventually
approaches infinity at the upper limit of the M/C range. A homogeneous dispersal does
not allow the presence of the CB at the end of the dispersal. Accordingly, the criterion for
homogenous dispersal is expressed as follows:

Kk < 1. 3.2)

In addition to efficiency and homogeneity, a third issue related to dispersal completeness
becomes prominent, as a non-trivial proportion of particles is observed to dwell in
the central area, as shown in figures 2(c¢) and 2(d). The incompleteness of dispersal
is conspicuously the undesired outcome for most applications. Therefore, the extent of
dispersal completeness should be regarded as one of the essential dispersal properties.
The volume fraction of particles eventually residing inside the central region, x, is
a suitable measurement of the completeness. Estimating x in systems where inbound
particle jetting has not yet ceased during the computational times received special attention
(a detailed description of the estimation method is provided in Appendix C). Figure 5
shows the variation in x with M/C. The x(M/C) curve exhibits a plateau below 0.1 as
M/C increases from O(10%) to O(10?) until M/C reaches a threshold, M/C)y ~250. A
substantial increase in x(M/C) ensues, accompanied by strong fluctuations between 0.3
and 0.6. Complete dispersal is expected for a minimum fraction of particles residing in
the central area at the end of dispersal. We thus set the criterion for complete dispersal as
follows:

x <0.1. (3.3)

Notably, the M/C thresholds corresponding to the three criteria are in the sequence of
M/C)y <(M/C),e <(M/C)g. Specifically, (M/C)g is one order larger than (M/C), and
M/C),.
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3.3. Classification of the dispersal mode

With the aid of the criteria for the efficiency, homogeneity and completeness of explosive
dispersal, diverse dispersal behaviours are classified into four distinct modes, namely:
(i) an ideal dispersal that satisfies all three criteria for efficiency, homogeneity and
completeness ((3.1)—(3.3)); (ii) partial dispersal that satisfies the criteria for efficiency
and homogeneity but fails to meet the criterion for completeness; (iii) retarded dispersal
that only meets the criterion for efficiency; and (iv) failed dispersal that meets none of the
three criteria. The classification of various dispersal processes in the parameter space of
&, k and x 1is illustrated in figure 6, where the symbols representing the dispersal systems
are rendered according to the respective M/C value. As the M/C increases from O(10°) to
0(101), to O(10%), and finally to O(10%) and higher, the dispersal mode transitions from
ideal to partial, retarded and finally to failed, highlighting the dominant role played by the
M/C in determining the dispersal mode. In explosive dispersal experiments using bursters
as explosion sources, the retarded and failed dispersal modes are rarely observed because
the maximum (M/C),y, in the reported experiments rarely reaches the order of 0(10%)
(Loiseau et al. 2018; Pontalier er al. 2018), which is equivalent to (M/C)g,s (gases at
ambient temperature) of the order of O(10°) (see Appendix A) and most likely corresponds
to the ideal or partial dispersal modes.

We should be fully aware that the order of magnitude rather than the actual values of
the M/C thresholds, (M/C); (i=&, k, x), indicated in figure 5, serves as the preliminary
guide for the design or evaluation of the dispersal system. The phase map constructed in
the parameter space shown in figure 6 provides a more reliable and refined framework.
However, the calculation of &, k and x for a specific dispersal system requires knowledge
of the whole dispersal process, which is often inaccessible or only accessible in hindsight.
Therefore, the correlation between the structure of the dispersal system and the resulting
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dispersal mode must be established, which requires an in-depth understanding of the
physics governing the transitions between different dispersal modes.

4. Analysis
4.1. Macroscale particle-flow coupling

The dynamics of the particle ring driven by the central pressurized gases are primarily
governed by the complex coupling between particles and central flows. Figures 7(a)-7(d)
present the space—time (R—t) diagrams of the pressure fields for the systems shown in
figures 2(a)-2(d), where the circumferentially averaged gas pressure is used to plot the
R—t diagrams. Similar to the dispersal behaviour of particle rings, the central flow field
undergoes a two-stage evolution. The first stage, coinciding with the shock compaction
phase of the ring, is dominated by the reciprocation of shock fronts between the centre
and the inner surface, as evident in figure 7(a). Each incident shock invokes a CF
traversing the particles, which is discernible in figure 2(e). The reciprocation of shock
fronts becomes invisible after the significant expansion of the inner surface of the ring.
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Figure 8. (@) Fluctuations of the centre of mass of CB in terms of Rcp(f) and the pressure in the centre,
P¢(R=0). (b) Temporal variation in mass fraction of gases retained inside the gas pocket, y, in the system
1024-20-50-0.6 and 4875-20-140-0.6. (c) Radial profiles of pressure across the thickness of ring at three
sequent contraction-to-expansion transitions in the system 4875-20-140-0.6. The dotted lines in panels (a) and
(b) indicate the overall temporal variations in the averaged Rcp, peak P, and peak x.

Thereafter, the rapid expansion of the ring induces the overexpansion of the central gases,
leading to a substantial decrease in pressure and eventually the reversal of the pressure
gradient direction. Subject to the inwards directed pressure gradient forces, the expanding
ring decelerates and tends to implode, which subsequently promotes the recovery of the
pressure in the central gas pocket. Once the central pressure is increased above the ambient
pressure, the outwards directed pressure gradient forces are restored across the thickness
of the ring. The pinching ring subsequently gains outwards momentum, with a second
expansion likely ensuing. This macroscale particle—gas coupling is adequately manifested
by the synchronization between the pulsation of the particle ring and the fluctuation of the
pressure inside the gas pocket, as plotted in figure 8(a), which share the same frequency
with a 1/2 phase difference.

The pulsation of the particle ring resembles the pulsation of a gas bubble in the
scenario of an underwater explosion (Wang et al. 2021). In contrast to the enduring
bubble pulsation in the underwater explosion, which slowly loses momentum mainly
due to the weak viscous dissipation inside the water, the particle ring only sustains a
limited number of pulsation cycles as a result of quickly weakening particle—gas coupling.
Multiple causes should be considered. The inelastic collision and friction between particles
modestly dissipate the kinetic energy of the ring, acting similar to the viscosity of fluids.
Nevertheless, the net gas flow-out associated with the gas infiltration plays a major role in
diminishing the particle-flow coupling. As indicated in figure 8(b), only 66 % and 38 %
(mass fraction) of gases are retained in the gas pockets at the first expansion—contraction
transitions in systems 4875-20-140-0.6 and 1024-20-50-0.6, respectively. Notably, the
gases flow into the gas pocket when the central pressure becomes negative (i.e. below
ambient pressure). Thus, the x 45 fluctuates in sync with the central pressure but decreases
in the long term, indicating net gas loss over time. Consequently, the overall central
pressure decreases with increasing damping fluctuation. The pressure difference between
the central gas pocket and the ambient gas outside the CB is accordingly quickly
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Figure 9. Illustrations of two particle-flow decoupling mechanisms. (a) Fast expanding DB escapes the central
flows with negative Py. (b) DB prematurely disintegrates into the dilute particle cloud which cannot confine
the central gases.

normalized, as indicated by the flattening of the radial profiles of pressure across the
thickness of the ring, as shown in figure 8(c), substantially reducing the primary driving
forces of particles, namely, the pressure gradient forces and drag forces.

Two other important mechanisms are responsible for dissolving the particle—flow
coupling, as illustrated in figure 9. As shown in figure 9(a), the initial impulse imparted to
the particle ring is sufficiently strong to enable the expanding ring to quickly break away
from the influence of the central flows. Likewise, the central gas pocket barely experiences
the presence of the ring. This scenario occurs in systems with an M/C of the order of

0(10°) (see figures 2a and 7a). However, the particle—gas coupling is sustained only if the
ring, more precisely the densely packed CB, continues to provide sufficient confinement
for the gas pocket. Once the CB disintegrates, the central gases thrust out, terminating
particle—gas coupling (figure 90).

Different mechanisms dominate particle—gas coupling in different dispersal systems,
leading to markedly varying degrees of particle—gas coupling. Here, we classify
particle—gas coupling into decoupling, weak coupling, medium coupling and strong
coupling regimes. In the decoupling regime, rings are only subjected to the initial impetus
imparted by the central pressurized gases and thereafter evolve on their own (see figures 2a
and 7a), which normally occurs in systems with an M/C of the order of 0(10%). In the
weak coupling regime, the innermost layers of particles accumulate in the centre due to
the negative overpressure (below the ambient pressure) inside the gas pocket, while the
bulk of particles are dispersed into the outer space. This phenomenon is illustrated in
figures 2(b) and 7(b). As more particles are influenced by the central negative pressure
and accumulate in the centre, the particle—gas coupling is classified as medium. In the
medium coupling regime, the contraction of the particle ring is a solitary event since the
densely packed CB disintegrates during ring contraction, as shown in figures 2(c) and 7(c),
which often leads to abnormally high proportions of undispersed particles. In contrast, the
strong particle—gas coupling results in the persistent pulsation of the ring, more strictly
speaking, the densely packed CB, as shown in figures 2(d) and 7(d).

Obviously, in the decoupling and weak particle-gas coupling regimes, only the
minimum fraction of particles accumulates in the centre. However, in the medium and
strong particle—gas coupling regimes, a non-trivial proportion of particles is hurled into the
centre during each contraction-to-expansion transition. The dispersal accordingly becomes
incomplete. The most disastrous scenario occurs when the ring disintegrates during the
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contraction, and hence, the majority of particles shift inwards and collide with each other
in the centre, leading to singularly high values of x. The emergence of the worst scenario
accounts for the significant fluctuation of the y (M/C) curve beyond (M/C), and the large
variability in data among different systems with the same M/C values (see figure 5).
However, the strong particle-flow coupling entails an inhomogeneous dispersal since the
bulk of particles is generally located in an annular band where the pulsating CB eventually
stops. A high concentration annular region is formed in this region.

4.2. Characterization of macroscale gas—flow coupling

The degree of particle—flow coupling depends on the relative importance of the
characteristic times associated with the flow evolution inside the central gas pocket and
the dynamics of the particle ring. The central flow evolution is represented by the temporal
variation in the central pressure, which is a function of the initial state, the equation
of state (EOS) of gases and the evolution path. We employ the time required by the
overpressure in the centre to transition from positive (above) to negative (below the
ambient pressure), #,,, as the characteristic time of flow evolution. In § 3.2, we introduce
two characteristic times, fyyg and Zgense, for the dynamics of the dispersed particle ring.
For rings experiencing medium or strong particle—gas coupling, ring pulsation is the third
defining event. Thus, we introduce a third characteristic time, #ying, exp-con, at which the
first expansion-to-contraction transition occurs. The derivation of #iug exp-con from the
trajectory of the centre of mass of the CB is presented in Appendix C. Figures 10(a) and
10(b) plot the variations in #,, and #,ing exp-con With the M/C. In contrast to the moderate
increase in f,, in the range of 1-6 ms throughout, #iug exp-con remains infinity due to
the absence of ring contraction until the M/C exceeds a critical value, (M/C). ~ 350. At
values greater than (M/C)cy, tring, exp-con plunges to the order of 0(10") as M/C increases
to the order of O(10%), and varies between 10 and 16 ms thereafter.

The degree of the gas—flow coupling can be quantitively evaluated by determining the
relative importance of three pivotal events of ring dynamics with respect to the flow
evolution, specifically the ratios between tying, fring,denses tring,exp-con 10 tpr, Which are
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Figure 11. M/C dependences of dimensionless parameters [7, §2 and ¥. The critical M/C corresponding to
the transitions between the decoupling, weak, medium and strong coupling are indicated by (M/C) 7, (M/C)y
and (M/C)gq,, respectively.

denoted by 1, §2 and ¥, respectively:

t .
m=""% (4.1)
Ipr
P tring,dense ’ (4‘2)
Ipr
U = tring,exp—con ‘ (4‘3)
Ipr

Figure 11 shows the variations in I7, §2 and ¥ with increasing M/C. Both IT and 2 show
a semiexponential dependence on M/C when M/C increases from 0(10%) to 0(10%). In
contrast, ¥ plummets from infinity when M/C is less than (M/C),, to the order of 0(109),
and plateaus between 3 and 2 as M/C increases to the order of O(10°). The convergence of
¥ combined with the infinite value of £2 indicates that a consistent particle-flow coupling
pattern emerges towards the upper limit of M/C.

The particle-gas decoupling regime requires the ring expansion to be faster than the
evolution of the central pressure, leading to

n<1. (4.4)

In the weak particle-flow coupling regime, ring expansion begins to be affected by the
negative pressure in the overexpanded central gas pocket, while the effect of the flow is
not sufficient to induce ring contraction as a whole. In this regime, #;ing, exp-con 1 at least
one order higher than 7,,. The criterion for weak particle-flow coupling is

I71>1, v > 10. (4.5a,b)

The medium particle-flow coupling requires a single round of ring contraction,
suggesting that the dense CB only survives the first expansion—contraction cycle.
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Figure 12. Categorization of the particle—flow coupling regimes for various dispersal systems in the parameter
space of I, §2 and ¥. Dispersal systems classified into different coupling regimes are denoted by symbols with
distinct shapes. Symbols are coloured according to the M/C of the corresponding system.

Thus, tring,exp-con and tring dense sShould be of the same order as #,,, which is expressed
as follows:

v~ 0(0%, £~ o010%. (4.6a,b)

The strong particle—flow coupling regime is embodied by an enduring dense CB whose
survival time far exceeds the time scale of the flow evolution. The corresponding criterion
is

2 > 10. 4.7

For the group of dispersal systems studied here, the M/C thresholds corresponding to
the transitions of the decoupling and weak, weak and medium, and medium and strong
coupling regimes are (M/C) ~ 100, (M/C)y ~ 350 and (M/C)g ~ 800, respectively. As
argued in § 3.3, the M/C thresholds delimiting different particle—flow regimes derived
from one group of dispersal systems should be applied with caution to another group with
different granular materials or different explosion sources.

Employing the criteria listed in (4.4)—(4.7), the dispersal systems studied here are
classified into different particle-flow regimes in the parameter space of I1, ¢ and £2,
as shown in figure 12. As the M/C increases from 0(10%) to O(10%) over three orders of
magnitude, the particle-flow regime experiences the crossover from decoupling to weak,
then to medium and finally to strong coupling.

4.3. Correlation between the dispersal mode and particle—flow coupling
The explicit correspondences between the dispersal modes and the particle—flow coupling
regimes are illustrated in figure 13. The particle—gas decoupling regime guarantees an ideal

dispersal mode, while the strong particle—flow coupling regime is necessary for a failed
dispersal mode. The dispersal mode tends to be ideal towards the lower limit of the weak

959 A17-18


https://doi.org/10.1017/jfm.2023.117

https://doi.org/10.1017/jfm.2023.117 Published online by Cambridge University Press

Explosive dispersal of granular media

F'y
Mmc

. | !
Failed |
dispersion I )

(MIC), = 2500

Retard
dispersion

(MIC), =500 | e —

—
340-60-50-0.6

Partial
dispersion

(MIC) =250

Ideal
dispersion

L e i Bkl R R |

Weak Medium Strong M/C

Decoupling coupling coupling coupling

(MIC); =100 (M/C), =350 (M/C),, =800

Figure 13. Phase diagram of the dispersal modes and the particle—flow coupling regimes along the M/C axis,
illustrating the correspondence between them. The phase boundaries are determined via the criterion for the
respective dispersal mode or particle—flow coupling regime and specifically intended for the group of dispersal
systems investigated in the present work.

coupling regime. The retarded dispersal mode occurs in the upper limit of the medium
coupling regime. The partial dispersal mode likely occurs towards either the upper limit
of the weak coupling regime or the lower limit of the medium coupling regime.

The correspondence between the dispersal modes and the particle-flow coupling
regimes provides a plausible approach to either predicting the dispersal mode for
an available system or engineering the system for the desired dispersal mode. More
specifically, if the correlations between the structure of the dispersal system and the
dimensionless parameters [1, §2 and ¥ are established, we are able to predict the
particle—flow coupling regime and proceed to estimate the resulting dispersal mode.
Conversely, the particle-flow coupling regime corresponding to a specified dispersal mode
sets the range limits for I7, £2 and ¥, which in turn place constraints on the structure of
the dispersal system.

Since I1, §2 and ¥ are ratios between tying, tring, denses tring,exp-con and f,,, respectively,
modelling these characteristic times as a function of a variety of structural parameters is
among our priorities. The first and third parameters are associated with shock compaction
and the first contraction of the ring, during which the bulk of particles likely remains
densely packed such that pressure diffusion alongside gas infiltration is the dominant
particle-gas coupling mechanism. The second characteristic time Zying, dense inVOlves
particle shedding and multiple inbound and outbound jetting, whose mechanisms are far
from well understood, as addressed in § 5. Hence, our main task in the next section is
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to predict #,, tying and tying exp-con by modelling the particle ring as a coherent granular
medium rather than the collection of discrete grains.

4.4. Prediction of the particle—gas coupling regime

Predicting the 1/, t/ing and tying exp-con for different dispersal systems requires modelling
of the shock compaction phase and the subsequent pulsation of the particle ring, which
involve distinct mechanisms and are accounted for separately. The final state of the
shock-compacted ring sets the initial condition for the ring pulsation model.

The shock compaction and ring pulsation models both regard the particle ring as a
compressible porous medium whose total mass is retained throughout. The transmitted
shock through the particles is minimal and negligible due to the relatively high packing
fraction (¢¢ > 0.5). The driving forces of particles are the pressure gradient forces and
drag forces across the thickness of the particle ring, F'vp and Fgyg (units N kgfl), which
are established by the diffusional pressure field (Britan & Ben-Dor 2006). Since the flow
velocity relative to the particles depends on the local pressure gradient dictated by the
Darcy and Forchheimer laws (Britan & Ben-Dor 2006), F g4, is proportionate to Fyp, as
shown in (4.8):

1 - d)pF 1 —¢, VP,
VP = — -
¢p ¢P Pp

Note that the direction of Fyp is opposite to that of the pressure gradient VP,, which
may be directed either inwards or outwards depending on whether Pg is greater than or
less than the ambient pressure P,,;,,. The deduction of (4.8) is presented in Appendix D.
Meanwhile, the gases flow out of or flow into the central gas pocket via gas infiltration
through particles. By ignoring the nonlinear term, the Darcy law prescribes the gas
flow-out or flow-in rate as follows:

(4.8)

F drag =

k
mg = 2n,ogRl~n;VPg, 4.9)

where p, and p are the instantaneous gaseous density and viscosity inside the central
gas pocket, respectively, and the permeability & is a function of the packing fraction ¢,
described by the Ergun equation (Felice 1994):

1 =9)

= . 4.10
150 ¢2 7 (4.10)

The value of pg evolves with the volumetric variation of the central gas pocket and the
cumulative mass flux as follows:

RiZnO k ! P
Py = Po0 s +2;/0 R—iVPgdt. (4.11)
L.

in

The gases in the central gas pocket are assumed to undergo isothermal expansion:
Py = pgRTy. (4.12)

Once pg is determined using (4.11), the central gaseous pressure P, is estimated. We then
calculate the gaseous temperature using the ideal gas EOS and the corresponding viscosity

with the Sutherland model.
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4.4.1. Shock compaction model

The shock compaction model aims to predict the kinetic energy imparted to the particle
rings at the end of shock compaction. The schematic representation of the geometry
considered in the model is shown in figure 14, where a CF propagates at a velocity
of Veomp. The packing fraction jumps from ¢¢ to ¢wmp (Pcomp = 0.68) across the CF,
while the partlcles about to be compacted by the CF gain the velocity of ucomp(mep)
where R.opp 1s the radius of the CF. In a cylindrical geometry, the mass conservation in
the annular compacted band requires the particle velocity and acceleration, ucemp(R) and
Ucomp(R), to satisfy (4.13) and (4.14), respectively:

VinR;
Mp,comp(R)= ”;? m’ (4.13)
VieRin  VE (VinRin)?
ttp,comp(R) = —";e T T Winktin)” ”}Q 3’”) , (4.14)

where Vj, is the velocity of the inner surface, also the particle velocity here,
Vin = ttcomp(Rin). At the CF,

VinRin
up,comp(Rcomp) = , (4.15)
Rcomp
. ViRin Vo, VoR;
iy, comp(Reomp) = mn o (4.16)
'p,comp \LXcomp Rcomp Rcomp Rgomp
The Veomp and Vj, should meet the Rankine-Hugoniot condition:
VeompR
Vin _ Y compftcomp (1 _ ¢0 ) ‘ (4‘17)
Rin ¢comp

The momentum balance of the annular compacted band shown in figure 14 is calculated
using (4.18):

Rmmp(t)
ppd’comp / itp,comp (RR dR = _ppd)oup,comp (Rcomp) VcompRcomp
in (1
Rcomp ) Rcomp )
+ pp¢comp / FVP(R) -RdR + pp¢comp / Fdrag(R) -RdR. (4-18)
Rin (1) Rin(f)

The first term on the right-hand side of (4.18) arises from the growing mass of the
compacted band. The second and third terms on the right-hand side of (4.18) represent the
total pressure gradient force and the total drag force exerted on the compacted band with a
cross-section of unit area. As a first-order estimation, we assume a linear pressure gradient
across the thickness of the compacted band:

vpP Py — Pump
Fyp=—— = 8" "am
Pp Pp (Rcomp —Rjp)

Substituting equations (4.13)—(4.17) and (4.19) into (4.18) yields
Rcomp + ¢c0mp Rin _ 2:| _ Pg - POl (Rcamp + 1) '
Rin ¢comp - ¢0 Rcomp ¢comp Pp 2 Rin

(4.19)

Vin(Rcomp - Rin) + Vii |:
(4.20)

Equation (4.20) describes the evolution of V;, with the initial condition of V;, = 0
and Reomp =R;, at t=0. The integration of V;, results in Vj, and Viypy (4.18), whose
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Figure 14. Schematic representation of the wedge volumetric element with unit cross-sectional area taken
into consideration in the (a) shock compaction and the (b) ring pulsation model. Inset in panel (b) shows
the numerically derived compression curve and the fitting curve for the particle packings investigated in the
present work.

integrations in turn yield R;;, and Reppp. Equations (4.10)—(4.20) constitute the complete
formulations of the shock compaction model, which can be solved numerically as
elaborated in Appendix E.

The trajectories of the inner surface and CF in the dispersal system 4875-20-140-0.6 are
plotted in figure 15(a) against their counterparts derived from simulations, showing quite
good agreement. We also compared the predicted velocities of the ring outer surfaces at
the end of the shock compaction phase, Vi pre, and the simulation results, Vouz, pum, in a
variety of dispersal systems in figure 15(b). A good consistency is evident, supporting the
reliability and accuracy of the shock compaction model in terms of predicting the shock
compaction dynamics of particles in the radial geometry.

4.4.2. Ring pulsation model

After shock compaction, the particle ring undergoes the pulsation phase and itself is
allowed to dilate or shrink, which entails varying ¢, capped by ¢comp. Figure 14(b)
illustrates the force balance of a representative wedge element during the ring pulsation
phase. Inside the wedge, a representative volume element (A) with inner and outer radii
of R and R+ dR is subjected to two body forces, Fyp and Fyqg, and two surface forces
exerted by the particles in contact with the inner and outer surfaces of A, Fiyner and Foyzer-
Both Fiyper and Foyep arise from the granular pressure, Pg,,, namely, Fiper = Pgrq - R and
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Figure 15. (a) Trajectories of the ring inner surface and the compaction front in the system 4875-20-140-0.6
predicted from the shock compaction model (R pre, Rcr pre) and derived from the simulations (Rin,num.
RcF num)- (b) Comparison of the velocities of ring outer surface at the end of the shock compaction phase
predicted from the shock compaction model, Vs pre (empty symbols), and derived from the simulations,
Vout.num (solid symbols).

Fouter = Pgra - (R+ 8R). The force balance of A is described in (4.21):
pp¢pR5RVA = /Op(prVPR(SR + pp¢deng5R + PgraR — Pgra (R+68R), (4.21)

where V4 is the acceleration of A. After substituting equation (4.8) into (4.21), (4.21)
reduces to

. VP, P
Vp=——2% - (4.22)
Ppbp  PpPpR
The mass conversation of the particle ring requires
2 2
_ (Rout,O - Rin,0)¢0 (4.23)

RS
(Rou — R3)
A reasonable assumption is a steady diffusional pressure field achieved across the

thickness of the ring, which yields the pressure gradients at the inner and outer surface
of the ring (Morrison 1970):

2 2
—P
VP, (Rin) = pamb—g’ (4.24)
2Pg (Rout - Rin)
2 2
p - P
VPy(Rous) = 5508 (4.25)

2Pamb (Rout - Rin) .

By substituting equations (4.23)—(4.25) into (4.22), we obtain the formulae for the
accelerations of the innermost and outermost volume elements (A;, and A,y;), VA,-,, and
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VA()Mf:

. (Rour + Rin) Pé - Pczlmb Rout

Zpp— i _ <_ - 1) Pora |- (4.26)
Pp (Rout,O - Rin,O)d)o 2Pg Rin

) R R; Pz _ p? R:

Vo, = — Rowt Rin) §__amb (1 - ) Py | “.27)

out 2 2 2P 8

Pp (Rout,O - Rin,O)qﬁ0 amb out

The granular pressure, Pg,, which reflects the compression resistance of the granular
medium, arises from the energy stored in elastic—plastic layers around each grain contact
point. The value of Pg,, as a function of the solid volume fraction o can be determined by
differentiating the configuration energy B(«), as shown in (4.28) and (4.29) (Richard et al.
2010):

(I — ) log(l — ) + (1 +log(l — o)) (a — ep)

B(a) = a|:_(1 — o) log(1 — «p) :| ifoag <a <1

’

0 otherwise
(4.28)
dB(a) Be)\" V"
Po = app 9o = —anap,(log(l —a) +1) Y ifog<a <1
0 otherwise
(4.29)

The positive parameter «¢ in (4.28) and (4.29) corresponds to the solid volume fraction
when the granular pressure is zero. Parameters a and n are also characteristic of a
particular powder and, more precisely, of its response during quasistatic loading. By
fitting the numerically derived compression curve of glass beads, as shown in the inset
of figure 14(b), in the solid volume fraction range of 0.6—0.68, the fitting parameters are
determined to be ag = 0.61, a =500 and n = 1.004. Notably, the variations in « consist of
the contributions from both ¢, and p, since a = (¢, pp)/pp.0, Where p, o is the initial
material density of grains. At the pressure investigated in this paper, the material density
of grains barely changes, p, = pp 0. Hence, « in (4.28) and (4.29) is equivalent to ¢,,.

Equations (4.10)—(4.12) and (4.26)—(4.29) constitute the complete formulations of
the ring pulsation model, which is solved numerically using the method presented
in Appendix E. Figures 16(a)-16(c) compare the predicted and simulation-derived
trajectories of the centre of mass of CB (Rcg,pre and Rcp nuum), central pressure (Pg e
and P ,,m) and mass fraction retained in the gas pocket (x g pre and X g jum) for system
4875-20-140-0.6, respectively. The predicted Rcp(t), Pg(f) and x,(¢) curves all exhibit
fluctuating characteristics and long-term convergence resembling those observed in the
simulations (see figures 8a and 8b). Although the fluctuations in the amplitudes of the
Rcp(r) and Py (1) curves are overestimated, the predicted fluctuation periods are consistent
with those derived from the simulations, which lends credence to the capacity of the ring
pulsation model to predict #,, and tying,exp-con-

Figures 17(a)-17(c) show the prediction errors of tyiug, tpr and tying exp-con for dispersal
systems with M/C spanning three orders of magnitude. Here, the prediction error ¢;
(i =tring, tpr and tying exp-con) is defined as &; = |tfre - tfiml/tfim, where lfre and tfim
represent the theoretical predictions and numerical results averaged over systems with
the same M/C but varied combinations of structural parameters, respectively. As shown
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Figure 16. Comparisons of the temporal variations of (a) the centre of mass, Rcp, (b) the central pressure,
Py (R=0), and (c) the mass ratio retained inside the gas pocket, y, predicted from the ring pulsation model
(dashed lines) and results derived from simulations (solid lines) in system 4875-20-140-0.6. Note that the final
states of ring and central gases predicted by the shock compaction model serves as the initial state for the ring
pulsation model.
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Figure 17. Prediction errors of (a) tying, (b) tpy and (¢) tring,exp-con for systems with M/C spanning over four
orders of magnitude. The variation in numerically derived ting exp-con With the M/C is also coplotted in
panel (¢).

in figure 17(a), the prediction errors of #,j,, vary within 30 %. The prediction errors of
tyr decrease from in excess of 40 % to less than 20 % as the M/C increases from o(10h)
to 0(10%) (see figure 17b). The predicted fying exp-con also shows good agreement with
the simulation results when the M/C is greater than (M/C)y, as indicated in figure 17(c).
However, due to the lack of a particle shedding mechanism, the ring pulsation model fails
to account for yiug, exp-con approaching infinity when M/C is less than (M/C)y, as observed
in the simulations.

Figures 18(a) and 18(b) plot the variations in the predicted /7 and ¥, respectively, with
the M/C over three orders of magnitude. Although the threshold (M/C)y signifying the
transition from the weak to medium particle-flow coupling regimes cannot be properly
identified since the predicted ¥ (M/C) curve remains less than 10 throughout, we can
readily determine the threshold (M/C) from the predicted /71 (M/C) curve in which the
decoupling regime is differentiated from other regimes. The predicted (M / C)’ge (~280) is
quite close to that deduced from simulations, (M/ C)%’”NIOO. Therefore, the combination
of the shock compaction and ring pulsation models shows a high prediction accuracy
for the decoupling regime. If a particular dispersal system is predicted to be within the
particle—flow decoupling regime, an ideal dispersal mode is guaranteed.
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Figure 18. Comparisons of variations in theoretically predicted and numerically derived (a) IT and (b) ¥
with increasing M/C.

Although the shock compaction and ring pulsation models do not explicitly incorporate
the M/C, the range of structural parameters, including Po, pg,0, Rin,0, Rour,0, $0 and pp,
included in the models are integral parts of the M/C, as calculated using (2.1). Hence,
the shock compaction and ring pulsation models reveal the underlying mechanisms by
which the M/C influences the imparted energy during the shock compaction phase and
the energy transfer between the centre flows and particle ring during the subsequent ring
pulsation phase, respectively.

5. Discussion

The inability of the combined shock compaction and ring pulsation models to predict
dispersal modes other than the ideal dispersal mode arises from their failure to account for
particle stripping from the bulk. The stray particles that lose contact with neighbouring
particles do not provide sufficient confinement to the central gases or experience pressure
gradient forces. Macroscale particle—flow coupling is not valid for stray particles. The stray
particles are thereafter referred to as loosened particles. The particle loosening mechanism
and rate critically affect the extent and sustainability of the macroscopic particle—flow
coupling, thereby altering the fundamental properties of the dispersal process. Here, we
focus on addressing the origins and initiations of different particle loosening events. The
respective modelling process should be a future pursuit.

As evidenced in the R— diagrams of ¢, in different dispersal systems (figures 2a-2d),
three primary particle loosening events are initiated at different phases of ring dynamics:
(1) particle shedding initiated from the internal surface immediately after shock
compaction; (ii) outbound particle jetting initiated from the external surface upon the onset
of the first ring contraction; and (iii) inbound (outbound) particle jetting initiated from
the internal (external) surface upon contraction-to-expansion (expansion-to-contraction)
transitions after the first ring contraction. Figures 19(a)-19(c) show the morphological
evolutions of the dispersed ring dominated by different particle loosening events. The
first event generates a diffusive dilute particle layer textured by inwards protrusions
(figure 19a). In contrast, the second event produces a number of well-defined particle
jets with sharp cusps (figure 19b). Despite resembling shapes with the jets formed in the
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Figure 19. Morphological evolutions of the dispersed rings dominated by (a) the internal particle shedding,
(b) the external particle jetting and (c) the bidirectional particle fingering. Panels (a), (b) and (c) are extracted
from systems 103.7-200-50-0.6, 1024-20-50-0.6 and 4875-20-140-0.6, respectively.

second event, the finger-like jets arising from the third event, either inbound or outbound,
are much coarser, with blunt heads (figure 19¢). These three particle-loosening events are
referred to as internal particle shedding, external particle jetting and bidirectional particle
fingering, respectively.

The internal particle shedding illustrated in figure 19(a) dominates the dispersal process
in the ideal dispersal mode. Figure 20(a) plots the growth of internal particle protrusions,
Ishedding, defined by the average perturbation amplitude of the multimode internal surface,
and the volume fraction of particles constituting the protrusions, @spedding, in system
103.7-200-50-0.6. The [spedding and associated @gpedding both remain minimal until the first
shock impingement after the shock compaction, #;,, ~ 1 ms, highlighting the important
role played by the shock impingement in the initiation of the internal particle shedding.
Figure 20(b) depicts the pressure fields at the instant immediately after 7;,,,. The pressure
inside the grooves of the perturbed inner surface is significantly increased due to the
shock focusing at this site. If the ring is divided into a series of wedge elements, the
wedge with the concave inner surface is pushed by the stronger pressure gradient forces
and consequently moves faster than that with the bulged inner surface, as illustrated in
figure 20(c). As a result, the minute cusps of the rough inner surface evolve into detectable
protrusions. Afterwards, the protrusions consisting of loosened particles lag behind the
bulk of the ring due to the lack of efficient pressure gradient forces. Meanwhile, more
particles migrate from the bulk to the roots of the protrusion. In this manner, the internal
particle shedding initiated from the inner surface progresses towards the outer surface. A
complete account of shock-induced particle shedding is presented in our previous article
(Li et al. 2022).

The external particle jetting illustrated in figure 19(b) is widely observed in all dispersal
modes except the ideal dispersal mode. Figure 21(a) plots the growth of the external jet
length, ljs 0x, defined by the average perturbation amplitude of the multimode external
surface, and the temporal variation of the external surface velocity, V,,;, in system
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Figure 20. (a) Growth of internal particle protrusions, [seqding, and the temporal variation in the volume
fraction of particles constituting the protrusions, ¢gedding. Top left inset in panel (a) is the R—t diagram of
P, with the indication of f;;,; bottom right inset in panel (a) illustrates the definition of [sseqqing. (D) Pressure
contour at the instant just after #;,;, superimposed by isobaric lines (white lines) and the disturbed inner surface
(black line). (¢) Illustration of the internal particle shedding mechanism initiated by the shock focusing upon the
grooves of the rough inner surface. All plots in panels (a) and (b) are derived from the system 103.7-200-50-0.6.

1024-20-50-0.6. The onset of destabilization of the external surface is signified by the
substantial increase in /i, that coincides with the beginning of the deceleration of the
external surface. This observation seems to suggest a Rayleigh—Taylor instability (RTI),
which occurs as a heavy fluid decelerates into a light fluid (Kun ez al. 2018). However,
debate persists regarding whether the shock-loaded granular medium can be treated as
a one-phase material on the bulk scale since the coupling between the solid grains and
interstitial fluids is far from complete and in equilibrium (Han, Xue & Bai 2021). Previous
studies have found that the generally accepted viscoplastic constitutive equations are
inadequate to describe the behaviour of granular media in the wake of shocks on the bulk
scale (Han et al. 2021). Hence, the RTI does not provide the definite answer to the origin
of the external jetting.

Here, we attempt to provide insights into the particle-scale physics governing external
jetting. Figure 21(b) shows the evolution of the granular velocity fields, u,(R,0), during
shock compaction (1.04 ms), rarefaction propagation (1.28 ms) and the development
of external jets (14.76 ms) in system 1024-20-50-0.6. The most striking finding is the
presence of profuse localized high-velocity clusters. These clusters, which already emerge
during shock compaction, albeit diffusive and inconspicuous, are significantly increased in
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Figure 21. (a) Growth of external jet length, /i ex (left y axis), and the temporal variation of the external
surface velocity, Vi, (right y axis). Inset in panel (a) illustrates the derivation of ljer,ex. (b) Granular velocity
fields, u,(R.,0), during the shock compaction (1.04 ms), the rarefaction propagation (1.28 ms) and the fully
developed external jetting (14.76 ms). (c) Circumferential variations of u,(0) in the outmost layer at different
times. Plots in panels (a)—(c) are derived from results in the system 1024-20-50-0.6.

strength and size during the rarefaction propagation phase. The circumferential variations
of u, in the outer layers with a thickness of 100d, at different times are plotted in
figure 21(c) to quantify this trend. During the propagation of the rarefaction wave, a
prominent regularly fluctuating pattern of u,(6) emerges from the scattering distribution
of uy,(6) formed at the end of shock compaction. The fast-moving clusters in the outermost
layers thrust through the external surface, forming jet-like protrusions, as suggested at the
top of figure 21(b).

The heterogeneities exhibited in the velocity fields (figure 215) may be attributed to
the heterogenous momentum transmission channelled by the force chain network intrinsic
to the granular media (Majmudar & Behringer 2005; Clark et al. 2015; Tadanaga et al.
2018). Extensive studies have revealed the highly heterogeneous strain/flow fields and
intense granular temperature arising from complex force chain structures (Clark et al.

959 A17-29


https://doi.org/10.1017/jfm.2023.117

https://doi.org/10.1017/jfm.2023.117 Published online by Cambridge University Press

K. Xue, L. Miu, J. Li, C. Bai and B. Tian
() (©)

u, ’26 ms u

18 ms

Grooves

External jets

4
)

High velocity - ox External ﬁriéers Tm
fclus_terrs i g
s e L=
i £ : )
# &
¥ 4
siiiimaris| 26 - TG ‘l”‘? it 4

Figure 22. Pressure contour in the system 1024-20-50-0.6 at r = 18 ms superimposed by particles (white dots),
the internal and external surfaces of CB (white dashed lines). (b,c) Mophologies of dispersal ring at (b) t =22.4
and (c) 26 ms wherein the particles are coloured according to the instantaneous particle velocities.

2015; Huang et al. 2016; Tadanaga et al. 2018; Xue et al. 2018; Mo et al. 2019). However,
to our knowledge, no investigation has been reported concerning the augmentation
and coarsening of heterogeneities with the aid of rarefaction relaxation, which closely
correlates with the wavelength selection mechanism of the resulting jets and is worth
further investigation.

Bidirectional fingering normally occurs in retarded and failed dispersal modes.
Examining the R-r diagram of ¢, in system 4875-20-140-0.6 (figure 2d) and the
morphological evolution of the corresponding ring (figure 19¢), we ascertain two
striking characteristics of the bidirectional fingering: (i) at each expansion-to-contraction
(contraction-to-expansion) transition of the ring, a batch of finger-like protrusions are
catapulted from the external (internal) surface; and (ii) a new generation of fingers always
bud between the neighbouring fingers from the previous generations. In contrast to the
filamentary external jets, the bidirectional fingers adopt a mushroom-like shape featuring
a flared head and an elongated stem.

Figures 22(a) and 22(b) present the pressure field and particle velocity field in
system 1024-20-50-0.6 before the second expansion-to-contraction transition of the ring,
respectively. As shown in figure 22(a), fully developed external jets arising from the
prior external jetting create a highly undulated external surface and grooves form between
adjacent jets with bulged bottoms. For a particle ring with non-uniform thickness, the
pressure gradient becomes non-uniform circumferentially. As illustrated in figure 23, a
stronger pressure gradient develops across the necks of the ring aligned with the grooves.
Consequently, the grooves gain higher velocities than the jet bottoms. As the inwards
directed pressure gradient forces occur, the bulged bottoms of jets reverse the moving
direction first while the grooves continue to expand outwards, as suggested in figure 22(b).
A large chunk of particles eventually is catapulted from the groove, leaving a finger-like
protrusion in the wake, as shown in figure 22(c). As the newly born fingers grow upwards,
new grooves in between these fingers are generated, precipitating the formation of the
next generation of fingers. The same mechanisms also account for the inbound fingering
occurring at the contraction-to-expansion transitions. Figure 23 illustrates the mechanism
governing the initiation of bidirectional fingering.

An understanding of the physics governing the initiation and evolution of various
particle loosening events provides an opportunity to properly model the particle loosening
rate and the dynamics of loosened particles, which should consider particle—flow
coupling on the microscale and the macroscale. For internal particle shedding, microscale
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Figure 23. Schematic of the initiation of bidirectional fingering due to the circumferential non-uniform
pressure gradients.

particle—flow coupling refers to the interaction between reciprocating shocks and particles.
The strength of the first incident shock after shock compaction determines the internal
particle shedding rate. Due to the strongly decayed incident shocks after the shock
compaction phase, the internal particle shedding becomes trivial for systems with an
M/C of the order of O(10%). For external jetting, the number of jets is associated with
the heterogeneity of the granular flows, which arises from particle-scale momentum
transmission. Regarding bidirectional fingering, the proportion of ejected particles
correlates with the circumferential variabilities of pressure gradients resulting from the
undulating inner and outer surfaces. Therefore, the complex dispersal structures are the
products of particle—flow coupling relations on both the macroscale and microscale.

6. Conclusions

In the present study, we reveal a remarkable variety of dispersal behaviours and
hierarchical structures in explosive dispersed particle rings. Diverse dispersal processes are
classified into four dispersal modes in terms of three fundamental attributes. Transitions
between distinct dispersal modes are accounted for based on the prevailing macroscale
particle—flow coupling. The phase diagrams of the dispersal mode and particle—flow
coupling have been mapped in the space of the mass ratio, which is selected as one
of the foremost important parameters. The combination of the continuum-based shock
compaction and ring pulsation models is capable of predicting the dynamics of the ring and
the central flow evolution at early time points, thereby successfully identifying the ideal
dispersal mode. In addition, the theoretical models reflect the complex effects of the mass
ratio, which incorporates the contributions of various structural parameters. By properly
considering the particle loosening mechanisms, we expect that the modified models will
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allow the predictions of all dispersal modes, paving the way for the design and optimization
of dispersal systems for specific engineering demands.
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Appendix A. Conversion of M/C between systems with different explosive sources

Two dispersal systems with different explosive sources are considered equivalent if the
kinetic energies imparted to the surrounding materials per unit mass are identical. In this
appendix, we derive the conversion of the M/C between systems with pressurized gases
(air) and burster as explosive sources based on the energy equivalence principle. Several
methods have been proposed to estimate the energy of explosion (Eg,y) provided by the
pressurized gas pocket with initial pressure, Py, density, po, and volume, V4. The Brode
equation is presumed to more closely predict the potential explosion energy near to the
explosion source or near the field (Crowl 2003). Thus, we adopted the Brode equation
(A1) to predict the maximum value of Eg,; as follows:

Py— P, Veas  PoVoas
Egas _ (Po amb) 8as 0 (gas’ (A1)
y—1 y—1

where P, is the ambient pressure that is far less than Py and y is the ratio of the specific
heat. The energy equivalence principle leads to the following equation:

Mexp€exp Py Vgas

= ; (A2)
Mying,exp (y — l)mring,gas

where mey,, Mying exp and Mying oqs are the mass of the burster, the particle ring enclosing
the burster and the gas pocket, respectively, and &y, is the Gurney energy of the burster.
The mass ratio based on the mass of pressurized gases, (M/C)g;, is calculated using (A3):

Mying Mying. oasRT|
(M/C)gas = ring.gas _ Mring.gasft10 . (A3)
Vgaspgas VgasP 0

Substituting (A3) into (A2) leads to the correlations between (M/C)gqs and (M/C)exp:

gexp(y —1

(M/C)exp = RT, ) (M/C)gas = K(Sexp: To) (M/C)gas~ (A4)

If the initial temperature of the pressurized gases is set as the ambient temperature,
To =289 K, the burster is TNT, ey = 2805 kJ kg_l, and the proportional coefficient
between (M/C)eyp and (M/C)gqs is K = 13. Thus, the mass ratio of the dispersal system
with the TNT burster is one order of magnitude larger than the equivalent dispersal systems
using pressurized gases (To = T,p) as the explosive source.
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Appendix B. Calculation of the volumetric strain rate of the particle phase

The volumetric strain rate &, is calculated from the velocity field of the particle phase.
Green—Lagrangian strain rates are calculated from spatial derivatives of the incremental
velocity field as follows:

. du

Exx = a

. v

. 1 8u+8v
Exv=—|—+ —
Y2 lay  ox

where u and v are the x and y components of the particle phase velocity averaged over
particles inside one fluid cell. The volumetric strain rate &, is calculated as the divergence
of the velocity field. For the 2-D configuration, &, = &, + &,,.

Appendix C. Determination of characteristic times

In this appendix, we present a detailed account of the method used to determine the
characteristic times associated with the ring dynamics, namely, s, tgense and tying, exp-cons
as well as the mass proportion left in the centre, x. The definitions of 74, fgense and
x are presented in § 3.2, while the definition of #iug exp-con 1 provided in § 4.2. Here, we
introduce the methods for deriving these variables when they cannot be determined during
the computational times.

Figures 24(a) and 24(b) show the ¢gpe(f) for systems 2048-20-81-0.6 and
4875-8.5-91-0.5, respectively. For system 2048-20-81-0.6, although ¢,.(f) does not
decrease to 0.1 during the computational time, a detectable decreasing trend
persists. Extrapolating the decreasing tail of ¢,p.(f) using the fitting function
Gp.ave = 0.01412t798955 " we determine the time at which ¢ () falls below 0.1,
tgis = 113.5 ms. In contrast, ¢4.(?) for system 4875-8.5-91-0.5 converges to a steady value
after the first few fluctuations, which arises from the pulsation of the ring, as revealed
in §4.1. The convergence of ¢g.(f) to a steady value suggests failed dispersal. The
corresponding 74 approaches infinity.

Figures 25(a) and 25(b) show the temporal variations in the mass proportion retained
in the dense core band (CB), xcp(?), in systems 2048-20-81-0.6 and 4875-8.5-91-0.5,
respectively. The disintegration of DB coincides with the diminishing of x cp. Both x cp(?)
curves exhibit a few fluctuations before converging to a steady value, which indicates an
enduring DB. These systems assume an infinity of 7.

The #,ing, exp-con 15 determined from the trajectory of the centre of mass of the DB, Rpp(1),
as shown in figure 8(a). For systems with a small M/C, as shown in figures 2(a) and
2(b), the DB disintegrates before the expansion-to-contraction transition. Consequently,
Iring,exp-con 1N these systems assumes infinity.

The value of y is calculated from the mass (or volume) of particles residing in the centre
at the end, which can be readily determined for systems whose dispersal is completed
during the computation times. In contrast, the internal fingering has not ceased for systems
with large M/C values, such as systems 2048-20-81-0.6 and 4875-8.5-91-0.5, during the
computation times, allowing an increasing number of particles to accumulate in the centre.
We plot the temporal variation in the volume proportion of particles inside the inner
surface of the DB, x (), for system 2048-20-81-0.6 in figure 26 to predict the total mass
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Figure 24. (a) Extrapolation of ¢, 4. for the system 2048-20-81-0.6. (b) Temporal variation in ¢, 4. for the
system 4875-20-140-0.6.
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Figure 25. Temporal variations in x cp for the system (a) 2048-20-81-0.6 and (b) 4875-20-140-0.5.

of particles that eventually accumulate in the centre. By extrapolating the plateauing tail
of x (¢), we obtain a converged value of x (¢) when ¢ approaches infinity, x =0.3.

Appendix D. Relation between the pressure gradient force

The diffusive pressure field in the wake of the transmitted wave propagating through
particles is dominated by the shock-induced gas flows through particles. Ergun developed
a nonlinear model to account for the pressure drop associated with the infiltration-flow
behaviour, as shown in (D1):

Pg¢p |ug - up|

VP =150
- ¢P dP

2
1
Hsfp (ug — up) +1.75

_— (uy — uy), (D1)
(1 —¢p)2d? £
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Figure 26. Extrapolation of x for the system 2048-20-81-0.6.

where (g, pg and u, are the dynamic viscosity, density and velocity of gases, respectively.
In the case in which the compaction front exceeds the reach of the diffusive pressure field,
the particle volume fraction ¢, = ¢comp. Otherwise, the pressure gradient curve becomes
piecewise since ¢, = ¢comp for compacted particles and ¢, = ¢¢ for particles beyond the
compaction front. The first term on the right-hand side represents the linear dependence
on the velocity difference, while the second term introduces a nonlinear dependence.
Equation (D2) incorporates both the Darcy and Forchheimer mechanisms. The pressure
gradient force exerted on particles per unit mass, Fy p, becomes

¢5 1
Fyp=—VP/p, = 1508 "7 (g — up) + 1.75

L & ¢p |”g - up|
pp (1= ¢p)* dy

ppl—¢p dp

< (ug — up).

(D2)
Note that units of Fy p are m s~ 2.
The drag force of particles is calculated using the Di Felice model combined with
Ergun’s equation, as expressed in (D3):
1 of luy — up|
—ur —uy) + 1.715———— - (ur — uy,). D3
d]%( Lf p) o dp ( Lf p) ( )

Fdrag = 150ﬂ ¢p

ppl—p

By comparing the formulations of Fyp (D1) and Fy,, (D2), a relationship exists between
Fyp and Fpqy:

Fyp. (D4)

14

Appendix E. Numerical solutions of the theoretical models

In this appendix, we present the iterative algorithm for numerically solving the shock
compaction and ring pulsation models introduced in § 4.4. As a method to differentiate
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the same variables in different models, we use subscripts ¢ and p to denote variables in the
shock compaction and ring pulsation models, respectively. The superscript j represents the
Jjth time step.

For the shock compaction model, the initial condition (j=0) corresponds to the
impingement of the incident shock on the internal surface of the ring. Thus, we obtain
the following equations:

0 0
mep c= Rm c’ (El)
Vine = 0. (E2)
Substituting equations (E1) and (E2) into (4.20) leads to the initial velocity of the internal
surface:
Po,o— P —
Vl(zl = 2,0 0 (¢comp ¢0) . (E3)
Pp ¢O¢comp
By substituting equation (E3) into (4.17), we obtain the initial velocity of the compaction
front:
Po,o— P
Vgomp .= ( 2,0 0) ¢comp ' (E4)
' Pp ¢O(¢comp - ¢0)

Below, We present the time marchmg scheme for the shock compaction model. Here,

R,Jntl (R] comp, c) 18 uPdated USIHg Rm C(mep c) and V. in, L( comp, L) as described in (ES) and
(E6):

RIL =Rl +V] Ar (ES)

ch—gr}q) c Rcomp c + Vcomp cAt (E6)

where At is a sufficiently small-time interval estimated by the time required for the

compaction front to reach the external surface in the simulation. Then, we update pé],,c
by accounting for the volumetric increase in the gas pocket and the mass outflow due to
the infiltration effect (E7):

. 2 .
J
(Rin,c) pé,ck

P = pl —5 + 25 VP] AL (E7)
s ) ; J 8¢
(Rijz_l) MRin,c
In (E7), VP .c 1s approximated by the linear gradlent between the internal surface and
the compactlon front, VPi, c = (P e.c — Pamb)/ (mep c R{n ). Here, Pg ¢ 1s updated
by assuming an isothermal expansion (E8)
PEJ = Py RT". (ES)

After substituting R R’ comp,c and V.

in.co into (E9), we obtain the acceleration of the

l}’lC

internal surface at the j + 1 time step, {: 61
1 1 j+1 j+1
Vj+] _ 1 P?_c — Py Rc-:;mp c +1) = (V‘i )2 Rlc-gmp,c + ¢Comp Rin,c _9
m,c Rlcj;;}zp,c _ Rll:i‘ 2¢wmppp Rll:i e RZ:i Dcomp — Po R](j)_rilp,c
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Vj+1

which leads to in.c

J+1 J 1

Vin,c Vm c + Vm cdt (ElO)

and V{:?,Lnip,c should satisfy the Rankine—Hugoniot condition (4.17) and be updated by
(E11):

]-H i+1
Vj+1 . tn cRin c¢00mp (E11)
comp,c — .
R] comp, c(¢comp ¢O)

Equations (E5)—(E11) are solved iteratively until the compaction front arrives at the
external surface, Reomp (tcomp) = Rour,0, Where teomp represents the end time of the shock
compaction model.

The thermodynamic state of the central gases and the state of the particle ring at 1 = tcopp
set the initial conditions for the ring pulsation model:

Pg,p = Pg,c([comp)s pg,p = pg,c(tcomp), R?np = Rin,c(tcomp)

Vin,c(tcomp)Rm,c(tcomp) (E12)

Rout 0

VQ = in,c(tcomp)a VO

in,p out:sP

Substituting equation (E12) into (4.26) and (4.27) yields the accelerations of the internal
and external surfaces, V9 . and V0 ((E13) and (E14)), which serves to calculate the

n out,c
velocities of the internal and external surfaces in the ring pulsation model, respectively:

Rouo +R),) [ @) =P, (R |
in’p out, in,p g.p - amb a(;tt,O 1 Pgm , (E13)
(Rout 0 in,O)d)O/OP ZP&[’ Rin,p |
0 (Rout o+ Rm p) (ng ) Pzzzmb R?n,p 0
Vom’p 2P0 R —1 Pgm (E14)
(Rout 0 in,O)d)O'OP 8P out,0
In (E13) and (E14), P gm » is calculated using (4.28) and (4.29) with & = ¢comp-

Now, we present the time marching scheme for the ring pulsation model. Here,

Ri:;(R’ ut,p) 18 updated using Rmp(R ut,p) and mp(ngyp), as described in (E15) and
(E16):
j+1
Ry, =R, + Vi AL (E15)
Rimt - Rout + Vb]utAt’ (E16)

where At is a sufficiently small time interval estimated from the simulation-derived 7.

The updated pé,}l in the ring pulsation model is similar to that in the shock compaction
model:

R/ i (2
pg;l _ j (Rip, i’)z k] 'Og][’[pamb (Pg]p) ]At, (E17)
(Ri:p) 2I‘LR1n N Pé’ P(ROWP Rm p)

where the second term on the right-hand side of (E17) represents the mass loss due to gas
infiltration with VP3 , at the internal surface calculated using (4.24). The Pf;rpl is updated
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by assuming an isothermal expansion as follows:
PP = ot IRTY, (E18)
and Pfrral is updated by recalculating d,ﬂ based on the mass conservation:

(RS, — (RY, )71
(R — R

in,p

Pl = (E19)

Substituting ¢ into (4. 28) and (4.29) yields Pt
After substituting Rm » R, Pf;pl and P! ¢ra 1nto (E20) and (E21), we obtain v/ and

in p
+1
VJout,p:
i+1 +1 j+1
in, 1 i+1 gra |
" [7 (Rout 0 in,0)¢0'017 ZPQ_P Ri:t_,p
j+1 j+1 j+1
41 (Rlout Rin p) (P] ) amb Ri'n,p i+1
V(mt,p = R T 1 P{gra s (EZI)
( out,0 in,O)d)OPP ZPfg,p R]out,p
which in turn serve to update V{:l andV{,:ftl
J+l S+l
Vit =V + VI AL (E22)
j+1 j+1
Vi = Voup + Vot p Al (E23)

Equations (E15)—(E23) are solved iteratively until presumably the expansion-to-contraction
of the ring occurs, V,,; <0.
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