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1.  Introduction
The idea of this work originally arose from a question pertaining to a

laboratory experiment on circular motion in our departmental lab manual.
The experiment itself involves rotating a bob along a horizontal circle (Figure
1), where the tension in the string attached to the bob provides the centripetal
acceleration of the bob, the string itself passing through a smooth vertical
pipe. It is assumed that the rotation is fast enough for the effect of gravity to
be neglected and therefore the orientation of the part of the string between the
top end of the pipe and the bob can be taken to be horizontal. The above-
mentioned question enquires what happens to the speed of the bob in the case
that the bottom end of the string is hand-held and pulled slowly so that the
radius of the circular orbit decreases. The answer to the question is
straightforward. Either a work-energy argument or an argument involving the
conservation of angular momentum provides the same correct answer.
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FIGURE 1: The experimental configuration

In reality though, the portion of the string between the bob and the pipe
makes an angle with the horizontal, which renders the configuration a
classic conical pendulum [1, 2], referred to as such because the string traces
the surface of a cone with some apex angle .θ

The modified question we pose in this paper is this: we start with some
configuration  and  (Figure 1), where  is the length of the conical
pendulum. If the other end of the string is pulled through the pipe slowly
(quasi-statically) with the pipe itself fixed in place, then as  decreases, how
will the angle  change in the process?
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2.  The conical pendulum: basic analysis
In this section, we define certain quantities of significance as well as

present an analysis of the mechanics of the classic conical pendulum. As
shown in Figure 2, the length of the portion of the string between the bob
(point ) and the fixed top end of the pipe (point , referred to as the apex in
the rest of the paper) is , while the angle between that portion of the string
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and the vertical is . The vertical -axis and the horizontal -axis are chosen
as shown with the apex as the origin. The bob undergoes circular motion
with speed  along a horizontal circle of radius , with the centre (point )
of the circle located on the -axis. Since the bob is at a lower vertical level
than the apex, the value of the -coordinate of the bob will be negative.
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FIGURE 2: The conical pendulum: the geometry and coordinates

From the right-angled triangle , we write  and  in terms of  and : ABC x y r θ
x = r sin θ, (1)

and
y = −r cos θ. (2)
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FIGURE 3: The force vectors (the solid arrows) exerted on the bob.

In Figure 3, the two force vectors exerted on the bob are shown with the
two solid arrows: the vertically downward force of gravity  and the force
of tension  pulling on the bob in the direction along the string toward the
apex. The position vector  of the bob relative to the apex is also shown with
a hollow arrow in order to highlight the fact that it is directed exactly
opposite to the tension force . Also, in this portrayal commensurate with
Figure 2, where the plane of the page represents the vertical -plane
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containing the two force vectors, the horizontal direction represented by the
direction normal to the page and out of the page, i.e. the positive -direction,
is the direction of the instantaneous velocity of the bob.

z

Now the horizontal component of the tension force provides the centripetal
acceleration  [1] of the bob. Hence, from Newton's second law,(v2 / x)

T sin θ = M
v2

x
. (3)

At the same time, the vertical component of the tension force exactly
balances the vertically downward force of gravity. Hence we have

T cos θ = Mg. (4)
Using (1), (3) and (4), we derive for the speed of the bob:

v2 =
gr sin2 θ

cos θ
. (5)

3.  Quasi-static evolution: the work-energy approach
Now we consider the case where the other end of the string is pulled

quasi-statically through the frictionless pipe so that the length  of the
conical pendulum decreases accordingly. Since the process is quasi-static,
i.e. , the system can be treated as a perfect conical pendulum at
any point during the process.

r

|dr
dt | << v

According to the work-energy theorem, the change in mechanical
energy of the bob equals the external work done on it [1, 3]. Here the
mechanical energy is the sum of its kinetic energy  and its gravitational
potential energy . As for the work done on the bob, the two forces that
do the work are the tension force and the gravitational force. However, the
work done by gravity is already accounted for through the aforementioned
gravitational potential energy term. 

1
2Mv2

Mgy

Hence, at the end, for a differential change  in the length of the
pendulum, we write using the work-energy theorem:

dr

d (1
2Mv2 + Mgy) = −T dr, (6)

where the right-hand side of the above relation is the work done by the
tension. It is worth noting that  during the pulling of the string, since
 decreases in the process. However, the analysis we present below holds

perfectly for  as well, i.e. when the string is quasi-statically released
instead of pulled and  increases as a result.

dr < 0
r

dr > 0
r

Dividing both sides of (6) by , we write:dr

1
2

M
dv2

dr
+ Mg

dy
dr

= −T. (7)

Differentiating both sides of (5) with respect to , we obtainr

dv2

dr
=

d
dr (gr sin2 θ

cos θ ) = g
sin2 θ
cos θ

+ gr
dθ
dr

d
dθ (sin2 θ

cos θ ) .

https://doi.org/10.1017/mag.2024.16 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.16


108 THE MATHEMATICAL GAZETTE

Completing the derivative with respect to  in the last term on the right-hand
side of the above relation, we obtain after simplifying:

θ

dv2

dr
= g

sin2 θ
cos θ

+ gr
dθ
dr

sin θ (2 + tan2 θ) . (8)

At the same time, differentiating both sides of (2) with respect to , we
obtain

r

dy
dr

= − cos θ + r
dθ
dr

sin θ. (9)

Lastly, we rearrange (4) to give:

T =
Mg

cos θ
. (10)

Putting (8), (9) and (10) in (7), we obtain after simplification:

r
dθ
dr

(3 cos θ + sec θ) + 3 sin θ = 0.

Rearranging this gives

3 cot θ dθ +
dθ

sin θ cos θ
+

3 dr
r

= 0.

Then integrating, we get:

3 ln (sin θ) + ln (tan θ) + 3 ln ( r
r0

) = 0, (11)

where  is a constant.r0

We can now rearrange (11) to write

(sin3 θ) (tan θ) r3 = c1,
or

r3 = c1
cos θ
sin4 θ

. (12)

The above relation relates  to  for the conical pendulum in the course
of its quasi-static evolution, where the positive constant  depends on initial
conditions.

r θ
c1

4.  The torque-angular momentum approach
In this section, we attempt to apply the principle that the net torque on a

particle is equal to the rate of change of its angular momentum [1, 3]. In
particular, we consider the angular momentum of the bob about the fixed
apex , for which we refer to Figure 3. Since the position vector of the bob
about the apex is , the net torque on the bob is given by

.

A
r�

τ� net = r� × T� + r� × Mg�
Since the vectors  and  are in opposite directions, the cross product

 is zero. As for the torque of the force of gravity, since both  and
lie in the  (vertical) plane, the cross product  will be perpendicular

r� T�
r� × T� r� T�

xy r� × Mg�
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to that plane, and therefore directed horizontally (specifically, in the
negative -direction, as per Figure 3). What is worth emphasising is that this
fact, namely that the net torque on the bob will be directed purely
horizontally and therefore will have no vertical component, will be true at
each and every point in time. This implies that the vertical component of the
angular momentum of the bob about the apex  will remain unaltered during
the quasi-static evolution of the conical pendulum.

z

A

Now, if the unit vectors in the positive ,  and  directions are ,  and
respectively, then, referring back to Figure 3, we can write the following
vector expressions:

x y z xˆ yˆ zˆ

r� = xxˆ + yyˆ , (13)
and

v� = vzˆ . (14)
Remembering that the angular momentum is defined as , we
obtain using (13) and (14),

L� = r� × Mv�

L� = (xxˆ + yyˆ ) × Mvzˆ = −Mvxyˆ − Mvyxˆ .
The above expression elucidates the fact that the absolute value of the
vertical ( ) component of the angular momentum is . However, as we
inferred above already, this vertical component of the angular momentum
must remain unaltered. Hence we have

y Mvx

Mvx = const.,
or

vx = const.,
or

v2x2 = const. (15)
Using (5) and (1) in (15), we obtain

(rsin2 θ
cos θ ) r2 sin2 θ = const.,

or

r3sin4 θ
cos θ

= const.,

or

r3 = const.
cos θ
sin4 θ

,

thus corroborating (12).

5.  A quartic surface emerges
It turns out that we can go even further with (12). 
We rewrite (12) as

r3 sin3 θ = c1
r cos θ
r sin θ

.
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From which, using (1) and (2), we obtain

x3 = c1
(−y)

x
,

or
y = c2x

4, (16)
where  is a negative constant. c2

Equation (16) is a neat, quartic equation, which, when rotated about the
-axis, produces the surface of revolution which contains the bob of the

conical pendulum during its quasi-static evolution.
y

Figure 4 presents the plot of (16) with the example value of the constant
 chosen to be . Several configurations of the conical pendulum during

its quasi-static evolution, along with the corresponding positions of the bob
on the quartic contour, are shown.
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FIGURE 4: The vertical projection of the surface of revolution containing the bob
described by the quartic equation (16), with the value of the constant  taken to be c2 −1
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