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By incorporating the traditionally overlooked advective term in the wall-normal
momentum equation, a new momentum integral equation is developed for two-dimensional
incompressible turbulent boundary layers under arbitrary pressure gradients. The classical
Kármán’s integral arises as a special instance of the new momentum integral equation
when the pressure gradient is weak. The new momentum integral equation’s validity is
substantiated by direct numerical simulation data. Unlike the classical Kármán’s integral,
which is limited to predicting wall shear stress within mild pressure gradients, the new
momentum integral equation accurately computes wall shear stress across a broad range
of pressure gradients, even in the presence of strong adverse pressure gradients that lead to
flow separation. Moreover, a new pressure parameter βκ is introduced through examining
terms in the new momentum integral equation. This parameter naturally quantifies the
pressure gradient’s influence on turbulent boundary layers and offers guidance for applying
the classical Kármán’s integral. Additionally, to facilitate experimental determination
of wall shear stress under strong pressure gradients, an approximate integral equation
is proposed that relies solely on easily measurable variables. Validation against direct
numerical simulation data demonstrates that this simplified equation provides reasonably
accurate estimates of wall shear stress in turbulent boundary layers experiencing strong
pressure gradients.
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1. Introduction

Pohlhausen (1921), von Kármán (1921) and Gruschwitz (1931) pioneered integral analysis
of the momentum equation in boundary layer flows, leading to the discovery of the
momentum integral equation – a significant advancement in the field (see Schlichting
1979). The classic form of the momentum integral equation is expressed as follows (refer
to (8.32) in Schlichting (1979)):

τwall

ρ
≈ Ue

dUe

dx
δ1 + d(U2

e δ2)

dx
, (1.1)

where τwall is the wall shear stress, ρ is the fluid density, Ue is the mean streamwise
velocity at the boundary layer edge, δ1 is the mass displacement thickness and δ2 is the
momentum thickness. The momentum integral equation in the form of (1.1) was first
developed by Gruschwitz (1931), as noted by Schlichting (1979). However, in the literature,
(1.1) is often referred to as Kármán’s integral, for example in the books by Pope (2000)
and Kundu, Cohen & Dowling (2012).

The classical momentum integral equation, commonly employed in previous studies, is
derived under assumptions suitable for boundary layer flows with mild pressure gradients.
However, these assumptions break down for flows under strong adverse pressure gradients,
making Kármán’s integral ineffective in predicting wall shear stress, as demonstrated
in figure 1. The figure compares Kármán’s integral with the directly calculated wall
shear stress obtained from the direct numerical simulation (DNS) conducted by Coleman,
Rumsey & Spalart (2018). The DNS covers a family of boundary layer flows that contain a
small separation bubble. The pressure gradients were induced by a transpiration profile
Vtop(x) acting through a virtual parallel plane offset a fixed distance Y from the flat
no-slip surface. Each simulation consists of a well-developed entry region with a negligible
pressure gradient, followed by an adverse pressure gradient and then a favourable pressure
gradient. For evaluation, we consider Case C of simulations, which is accessible in the
NASA repository. Based on friction coefficient data, turbulent boundary layer separates
at x/Y ≈ −1.4 and subsequently reattaches at x/Y ≈ 0.4. Using pressure gradient data,
the favourable pressure gradient region begins approximately at x/Y ≈ 0.87 (see Coleman
et al. 2018).

Figure 1(b) illustrates the variation of the Rotta–Clauser pressure gradient parameter
βRC along the x direction. Widely employed in the investigation of turbulent boundary
layer under pressure gradient, βRC is defined as (δ1/τwall)(dP/dx) (Clauser 1954). In
regions under mild pressure gradients, where |βRC| � 10 (e.g. −13 < x/Y < −8 in the
DNS data), classical Kármán’s integral accurately predicts wall shear stress, as shown
in figure 1. However, in the presence of strong adverse pressure gradients, the traditional
Kármán’s integral proves inadequate for predicting wall shear stress.

An effort to extend Kármán’s integral equation was made by Coleman et al. (2018),
who integrated the x-momentum equation from the inflow station to an arbitrary location
x. The resultant mean integral–momentum balance consists of the conventional two terms
involving δ1 and δ2 in (1.1), as well as three additional terms that account for turbulence
effects and pressure variations within the boundary layer. While these additional terms
are often negligible under boundary layer assumptions, they become significant for flows
subject to strong adverse pressure gradients (see Appendix C in Coleman et al. (2018)).

In this work, we derive a general momentum integral equation that is applicable to
boundary layer flows under arbitrary pressure gradients. By removing the limitations of
the conventional momentum integral analysis, this new equation provides a more accurate
representation of boundary layer flows across a broader range of conditions.
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Figure 1. (a) Comparison between Kármán’s integral and the directly computed wall shear stress from the
DNS data of Coleman et al. (2018). (b) Variation of the Rotta–Clauser pressure gradient parameter along
the x direction. Vertical dashed lines indicate x positions with |βRC| = 10. The larger βRC values around the
separation region are shown in figure 3. The streamwise location is normalized by the simulation domain height
in the wall-normal direction, denoted as Y .

2. New momentum integral equation for boundary layer flows

The governing equations for a statistically two-dimensional incompressible turbulent
boundary layer flow are (e.g. Townsend 1956; Schlichting 1979; Pope 2000)

0 = ∂U
∂x

+ ∂V
∂y

, (2.1)

0 = −U
∂U
∂x

− V
∂U
∂y

+ ν
∂2U
∂x2 + ν

∂2U
∂y2 + ∂Ruu

∂x
+ ∂Ruv

∂y
− ∂

∂x

(
P
ρ

)
, (2.2)

0 = −U
∂V
∂x

− V
∂V
∂y

+ ν
∂2V
∂x2 + ν

∂2V
∂y2 + ∂Ruv

∂x
+ ∂Rvv

∂y
− ∂

∂y

(
P
ρ

)
. (2.3)

Here, U and V represent the mean velocity component in the streamwise x direction and
wall-normal y direction, respectively, while u and v denote the corresponding velocity
fluctuations. The fluid kinematic viscosity is denoted by ν. The kinematic Reynolds shear
stress is denoted as Ruv = −〈uv〉, and the kinematic Reynolds normal stresses in the
streamwise and wall-normal directions are denoted as Ruu = −〈uu〉 and Rvv = −〈vv〉,
respectively, with the angle brackets denoting the Reynolds averaging operator.

Based on the order-of-magnitude analysis and supported by the DNS data from Coleman
et al. (2018) (see Appendix A), the viscous terms and ∂Ruv/∂x term are higher-order ones

984 A64-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.207


T. Wei, Z. Li and Y. Wang

in the y-momentum equation (2.3). Consequently, the y-momentum equation (2.3) can be
approximated as follows:

0 ≈
(

−∂(UV)

∂x
− ∂V2

∂y

)
+ ∂Rvv

∂y
− ∂

∂y

(
P
ρ

)
. (2.4)

Integrating (2.4) along the y direction yields the pressure distribution within the boundary
layer as

P
ρ

= Pwall

ρ
+
(

Rvv − V2
)

−
∫ y

0

∂(UV)

∂x
dy. (2.5)

This equation is equivalent to (5.5.17) in the book of Tennekes & Lumley (1972). Taking
the derivative of (2.5) with respect to the x direction yields

∂

∂x

(
P
ρ

)
= d

dx

(
Pwall

ρ

)
+ ∂(Rvv − V2)

∂x
− ∂

∂x

(∫ y

0

∂(UV)

∂x
dy
)

. (2.6)

Substituting this result into the x-momentum equation (2.2) gives

0 ≈
(

−∂U2

∂x
− ∂(UV)

∂y

)
+ ν

∂2U
∂y2 + ∂Ruv

∂y
− d

dx

(
Pwall

ρ

)
+ ∂(Ruu − Rvv + V2)

∂x

+ ∂

∂x

(∫ y

0

∂(UV)

∂x
dy
)

. (2.7)

Note that the term ν∂2U/∂x2 is neglected in the x-momentum equation (2.2) based on
Prandtl’s boundary layer theory applicable to thin boundary layers (see Schlichting 1979).
This work reaffirms the validity of this omission even in boundary layers with separation,
which are typically not thin. Integrating (2.7) from y = 0 to y = δe yields a general
momentum integral equation as

τwall

ρ
≈ −

∫ δe

0

∂U2

∂x
dy − UeVe − d

dx

(
Pwall

ρ

)
δe +

∫ δe

0

∂(Ruu)

∂x
dy

+
∫ δe

0

∂(V2 − Rvv)

∂x
dy +

∫ δe

0

∂

∂x

(∫ y

0

∂(UV)

∂x
dy
)

dy. (2.8)

The new momentum integral equation (2.8) can also be expressed as (see Appendix B
for details)

τwall

ρ
≈
(

Ue
dUe

dx
δ1 + d(U2

e δ2)

dx

)
︸ ︷︷ ︸

I

−
(

1
ρ

dPwall

dx
+ Ue

dUe

dx

)
δe︸ ︷︷ ︸

II

+
∫ δe

0

∂(Ruu)

∂x
dy︸ ︷︷ ︸

III

+
∫ δe

0

∂(V2 − Rvv)

∂x
dy︸ ︷︷ ︸

IV

+
∫ δe

0

∂

∂x

(∫ y

0

∂(UV)

∂x
dy
)

dy︸ ︷︷ ︸
V

. (2.9)

Notably, the first term I on the right-hand side of (2.9) corresponds to the classical
Kármán’s integral equation (1.1). Term II results from the difference between the wall
pressure gradient and Ue dUe/dx (or −d(Pe/ρ)/dx), term III arises from the Reynolds
normal stress term in the x-momentum equation, term IV includes the advective and
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Figure 2. Comparison of terms in the new momentum integral equation (2.9) and their summation with the
directly computed wall shear stress. The DNS data are from Coleman et al. (2018), displaying every 50th grid
point in the x direction for clarity.

Reynolds normal stress terms in the y-momentum equation and term V is from the
advective term in the y-momentum equation.

Figure 2 displays the terms in the new momentum integral equation (2.9) alongside the
directly computed wall shear stress using the DNS data from Coleman et al. (2018). The
figure highlights the new equation’s ability to accurately predict wall shear stress, even in
regions subjected to strong pressure gradients. Discrepancies and variations between the
predicted and observed wall shear stress values might stem from uncertainties linked to the
finite difference method used in computing derivatives of less than perfectly smooth data.
This issue becomes particularly significant when calculating the term involving ∂(UV)/∂x,
as it requires computing x derivatives twice.

The new momentum integral equation (2.9) facilitates the definition of dimensionless
parameters that characterize the pressure gradient’s impact. For instance, the commonly
used Rotta–Clauser pressure parameter βRC (Rotta 1950; Clauser 1954) can be interpreted
within the context of the momentum integral equation as the ratio between the wall shear
stress and the first component of term I on the right-hand side of (2.9) (or the first term on
the right-hand side of (1.1)):

βRC =
1
ρ

dP∞
dx

δ1

τwall

ρ

≈ −
Ue

dUe

dx
δ1

τwall

ρ

. (2.10)

Here, we introduce a new dimensionless pressure parameter by considering the ratio of
term II to term I on the right-hand side of (2.9):

βκ =
−
(

1
ρ

dPwall

dx
+ Ue

dUe

dx

)
δe

Ue
dUe

dx
δ1 + d(U2

e δ2)

dx

. (2.11)
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Figure 3. Newly defined pressure parameter βκ and the conventional βRC. The DNS data are from
Coleman et al. (2018).

In defining βκ , Kármán’s integral is used in the denominator rather than the wall shear
stress. This choice is driven by the challenge of accurately determining wall shear stress
in experimental studies. The variation of βκ in the DNS data by Coleman et al. (2018)
is depicted in figure 3. For comparison, the conventional Rotta–Clauser parameter is also
included in the figure. Near the inlet, where the mean pressure gradient is small, both
βRC and βκ approach zero. As observed in figure 2, as the wall shear stress approaches
zero (separation point), the left-hand side of (2.9) tends to zero, and terms I and II have
similar magnitudes but opposite signs. Therefore, in the region near separation, βκ is
approximately −1, as illustrated in figure 3.

Figure 1 shows a substantial region around the separation point where the wall
shear stress is approximately zero. Consequently, the Rotta–Clauser pressure parameter
exhibits significantly high magnitudes in these regions. In contrast, the range of the new
pressure parameter βκ is more confined. The two singular points in βκ correspond to the
zero-crossing of term I in (2.9) (refer to figure 2). Unlike the wall shear stress, the region
where term I approaches zero is much narrower.

3. Approximations of terms in the new momentum integral equation

Flow variables associated with terms I and II are relatively more accessible compared
with those in other terms. However, obtaining precise measurements to evaluate terms IV
and V accurately in experimental settings is extremely challenging. Therefore, deriving an
approximation for these terms becomes highly desirable for practical applications.

Figure 2 demonstrates that under mild pressure gradients, terms IV and V are negligible
(refer to Appendix C for an order-of-magnitude estimation). However, their magnitudes
become notably larger than the wall shear stress when the boundary layer encounters a
strong adverse pressure gradient. Thus, integrating both the advective and turbulence terms
of the y-momentum equation into the integral momentum analysis becomes imperative
for predicting wall shear stress accurately in turbulent boundary layer subjected to strong
pressure gradients.

Examining the DNS data from Coleman et al. (2018) reveals an empirical observation:
the profile shape of the sum of terms IV and V in (2.9) closely resembles that of term II.
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Figure 4. Approximation of the sum of terms IV and V in (2.9). The DNS data are from
Coleman et al. (2018).

Figure 4 demonstrates that this relationship can be approximated as∫ δe

0

∂(V2 − Rvv)

∂x
dy +

∫ δe

0

∂

∂x

(∫ y

0

∂(UV)

∂x
dy
)

dy ≈ 0.23
(

d
dx

(
Pwall

ρ

)
+ Ue

dUe

dx

)
δe.

(3.1)

To a large extent, as demonstrated in figure 4, the sum of terms IV and V in (2.9) can be
fairly approximated by (3.1), in spite of some noticeable discrepancies observed near the
rear and in the region of −2 < x/Y < 0.

Applying the approximate equation (3.1), the wall shear stress can be estimated as

τwall

ρ
≈
{

Ue
dUe

dx
δ1 + d(U2

e δ2)

dx

}
− 0.77

{
1
ρ

dPwall

dx
+ Ue

dUe

dx

}
δe +

∫ δe

0

∂Ruu

∂x
dy. (3.2)

In experimental studies, accurately measuring Pwall is feasible. Experimental
investigations utilizing particle image velocimetry can provide high-resolution
measurements of U and Ruu across a range of x locations. While obtaining accurate
measurements in the near-wall region is often challenging in experiments, determining δ1
and δ2 does not necessitate high-resolution measurements of U in this region, because the
thin near-wall region contributes minimally to the integral quantities. Therefore, obtaining
necessary data for approximate equation (3.2) is readily achievable in experimental studies.

Figure 5 presents the directly calculated wall shear stress alongside predictions from
the new momentum integral equation (2.9), the traditional Kármán’s integral and the
approximate equation (3.2). While discrepancies between the directly calculated and
approximated wall shear stress are evident within the range −2 < x/Y < 0 and near the
rear at x/Y > 2.5, overall, the approximate equation (3.2) demonstrates fairly accurate
predictions, particularly in the first half of the domain. The relatively large discrepancies
between the directly calculated wall shear stress and that predicted by the approximate
integral equation primarily stem from the use of empirical equation (3.1) to model the
summation of terms IV and V. Empirical equation (3.1) demonstrates poor estimation
in regions proximal to flow separation or during rapid changes in pressure gradients
(−2 < x/Y < 0) and towards the simulation domain’s end (x/Y > 2.5), where the
influence of outer flow boundary conditions could be significant. To establish the broader
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Figure 5. Comparison of directly calculated wall shear stress with predictions from the Kármán integral
equation (1.1), the new momentum integral equation (2.9) and the approximate equation (3.2). The DNS data
are from Coleman et al. (2018).
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–0.005
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II

III

–0.15II

Figure 6. Relation between term III and term II in the new momentum integral equation (2.9). The DNS data
are from Coleman et al. (2018).

applicability of the approximate equation, additional evaluation using more experimental
and simulation data of turbulent boundary layer flows under pressure gradients is
necessary.

Figure 6 shows a remarkable similarity between the shapes of terms II and III on
the right-hand side of the new momentum integral equation (2.9). Intriguingly, a better
correlation in their shapes is observed when the x axis is shifted. The origin of this shift
is presently unclear. Nevertheless, figure 6 suggests that the magnitude of term III can be
estimated as a fraction of term II:

∫ δe

0

∂Ruu

∂x
dy ∼ O

(
0.15

(
1
ρ

dPwall

dx
+ Ue

dUe

dx

)
δe

)
. (3.3)
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Thus, the wall shear stress can be estimated as

τwall

ρ
∼
(

Ue
dUe

dx
δ1 + d(U2

e δ2)

dx

)
(1 + βκ − cβκ), (3.4)

where c is a factor of about 0.38 for the DNS data of Coleman et al. (2018). For small
|βκ | � 0.1, the classical Kármán’s integral provides accurate prediction of the wall shear
stress, but its validity diminishes at larger values of βκ .

4. Discussion

Turbulent boundary layer flows under pressure gradients, especially adverse ones,
find extensive applications in aircraft, ships, wind turbines and various fluid systems.
Understanding their behaviour is crucial, significantly influencing system performance
and energy efficiency. Extensive research, theoretical, experimental and numerical (Rotta
1950; Clauser 1954; Townsend 1956; Stratford 1959; Mellor 1966; Mellor & Gibson
1966; Skote, Henningson & Henkes 1998; Castillo & George 2001; Bobke et al. 2017;
Kitsios et al. 2017; Coleman et al. 2018; Maciel et al. 2018; Devenport & Lowe 2022;
Subrahmanyam, Cantwell & Alonso 2022), has focused on unravelling turbulent boundary
layers under pressure gradients. Accurate determination of wall shear stress remains
pivotal in this study.

Wall shear stress is a fundamental parameter in the analysis of wall-bounded flows. It
serves to quantify the drag experienced by a surface and plays an essential role in the
scaling and comprehension of flow dynamics. Several methods, as reviewed by Winter
(1979), Haritonidis (1989), Naughton & Sheplak (2002) and Tavoularis (2005), have been
employed to directly measure or infer wall shear stress. However, obtaining an accurate
determination of wall shear stress remains a challenge in practical applications.

The integral of the mean momentum equation offers a theoretical approach to indirectly
determine wall shear stress (or friction coefficient Cf = 2τwall/U2

e ) given all pertinent
terms are accurately measured. For example, Ligrani & Moffat (1986) employed the
momentum integral equation to determine wall shear stress on sand grain roughness
by measuring mean streamwise velocity and Reynolds shear stress profiles at various x
stations. Brzek et al. (2007) utilized closely spaced streamwise measurements of δ2 to
determine wall shear stress in zero pressure gradient turbulent boundary layers. However,
directly applying the momentum integral equation often involves streamwise gradient
terms that are challenging to acquire with the necessary precision from experimental data.

Mehdi et al. (2014) developed an integral method based on the triple integration of
the mean momentum equation. By replacing streamwise gradient terms with total stress
gradient terms in the wall-normal direction, they determined Cf using experimental data
of mean velocity and Reynolds shear stress acquired at only one streamwise location.
Given the inherent difficulty in measuring Reynolds shear stress very near the wall, they
employed a fitting technique based on the expected shape of the total shear stress profile
to smooth the experimental data and obtain the gradient.

More recently, Volino & Schultz (2018) introduced an integral equation to determine
wall shear stress without making assumptions about the shape of the mean velocity profile
or relying on fitting experimental data to expected functions. Their approach involves
transforming the integral equation into wall coordinates, separating terms dependent on
streamwise gradients from those that are not. Although this method requires mean velocity
and Reynolds shear stress profiles from at least two streamwise stations, it significantly
diminishes reliance on streamwise gradients. Moreover, their methodology does not
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Figure 7. Components of the second term II in (2.9) alongside the directly computed wall shear stress. The
DNS data are from Coleman et al. (2018).

require data from very near the wall to determine wall shear stress. Their evaluation across
diverse experimental and numerical datasets showcased the close agreement between the
wall shear stress determined through their method and that obtained in the original studies.

In previous applications of the momentum integral for predicting wall shear stress, the
advective terms in the y-momentum equation (2.4) were typically neglected, resulting in
an approximation of the pressure as (see e.g. Rotta 1962)

P
ρ

≈ Pwall

ρ
+ Rvv, traditional analysis. (4.1)

At the boundary layer edge, where Rvv ≈ 0, the pressure is approximated as Pe ≈ Pwall.
Moreover, in the conventional analysis, it is typically assumed that −∂(P/ρ)/∂x|e ≈
Ue dUe/dx. In essence, the second term II on the right-hand side of the new momentum
integral equation (2.9) is assumed negligible in traditional analyses (Townsend 1956; Rotta
1962).

Figure 7 shows the second term II of (2.9) alongside its two components and the directly
computed wall shear stress from the DNS data of Coleman et al. (2018). The figure
indicates that when the pressure gradient is small, term II in (2.9) is negligible. However,
in the presence of strong pressure gradients, term II becomes significant, greatly exceeding
the magnitude of the wall shear stress. This highlights the crucial role of term II on the
right-hand side of the new momentum integral equation (2.9) in predicting wall shear
stress under strong adverse pressure gradients. Consequently, in experimental studies of
turbulent boundary layers under such conditions, accurate measurement of wall pressure
distribution is imperative and should not be approximated from Ue(x) measurements.

The new momentum integral equation (2.9) exhibits a close connection to the mean
integral–momentum balance equation formulated by Coleman et al. (2018). However, our
approach differs in two main aspects. Firstly, while Coleman et al. (2018) integrated the
mean x-momentum equation along the x direction, our derivation is conducted at a fixed
x location, akin to the conventional momentum integral analysis. Secondly, we leveraged
the y-momentum equation to represent P as a function of Pwall, Rvv , V2 and UV (refer to
(2.5)), which further clarify the pressure variation’s influence.
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5. Summary

This study reveals the primary causes of the classical Kármán integral’s failure in
predicting wall shear stress accurately within turbulent boundary layers subjected to
strong pressure gradients. Specifically, in the presence of strong adverse pressure
gradients, the advective terms in the wall-normal momentum equation can significantly
alter pressure distribution across the boundary layer. Consequently, the conventional
approximation −∂(P/ρ)/∂x ≈ Ue dUe/dx, typically employed in traditional analysis,
becomes erroneous.

By incorporating the y-momentum equation’s advective terms and retaining the often
neglected Reynolds normal stress term in the x-momentum equation, we derive a more
general momentum integral equation for wall shear stress calculation. Importantly, the
classical Kármán’s integral emerges as a special instance under minimal or zero pressure
gradient conditions. The new momentum integral equation’s predictive precision for wall
shear stress within turbulent boundary layers is substantiated by its excellent agreement
with DNS data. This agreement spans a wide range of pressure gradients, including
even severe adverse pressure gradients that lead to flow separation. Additionally, the new
momentum integral equation can be used to assess the quality of numerical simulations of
turbulent boundary layers under strong pressure gradients.

Although the new momentum integral equation exhibits robust accuracy in predicting
wall shear stress within turbulent boundary layers under arbitrary pressure gradients, its
direct application in experimental practices faces challenges due to the difficulty and
impracticality of accurately measuring V and Rvv in experiments. To address this, we
introduce an empirical approximate equation for wall shear stress estimation, relying
solely on easily measurable variables like Pwall, U and Ruu. Despite the use of fewer
data measurements, the resulting wall shear stress estimation demonstrates reasonable
agreement with DNS data in turbulent boundary layers experiencing strong pressure
gradients.

Furthermore, a novel dimensionless parameter, βκ , is defined based on the new
momentum integral equation to quantify the influence of pressure gradients on turbulent
boundary layers. Our findings reveal that βκ remains close to zero in regions of
weak pressure gradients but surpasses O(1) in regions under strong pressure gradients.
Consequently, the predictions of the classical Kármán’s integral lose reliability in regions
with a substantial magnitude of βκ – such as the |βκ | � 0.1 observed in this study.
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Appendix A. Force distribution in the y-momentum equation

Figure 8 illustrates the contributions of various force terms in the mean y-momentum
equation (2.3) at five different x locations in the DNS of Coleman et al. (2018).
Near the inlet (x/Y = −10) or near the simulation domain outlet (x/Y = 6), where the
pressure gradient is weak, the figure confirms the force balance between −∂(P/ρ)/∂y
and ∂(Rvv)/∂y, as assumed in the traditional integral analysis. However, at x/Y = 0 or
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Figure 8. Distribution of the four forces in the y-momentum equation (2.3) at (a–e) different x stations:
advective force (Fadv), viscous force (Fvis), turbulent force (Ftur) and pressure force (Fpre). Blue circles denote
advective force, often overlooked in traditional analyses of turbulent boundary layer flows. The DNS data are
from Coleman et al. (2018).
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Figure 9. Variation of maximum magnitude of forces in the y-momentum equation. The DNS data are from
Coleman et al. (2018).

x/Y = 4, where the pressure gradient is stronger, figure 8 shows that the advective force
becomes increasingly important in maintaining the balance of the y-momentum equation,
invalidating the approximate pressure equation (4.1) used in the traditional momentum
integral analysis.

To further underscore the impact of advective terms in the balance of the y-momentum
equation under pronounced pressure gradients, Figure 9 presents the variation of
maximum force magnitudes along the x direction. In regions with mild pressure gradients,
such as near the inlet or outlet of the simulation domain of Coleman et al. (2018), the
maximum magnitudes of turbulent and pressure forces dominate, while the advective force
remains negligible. However, within the region spanning −4 � x/Y � 4, characterized
by strong pressure gradients, the maximum magnitude of the advective force becomes
comparable to those of the pressure and turbulent forces. This highlights the critical role
of the advective force in accurately estimating the y-momentum equation under strong
adverse pressure gradients, in contrast to the conventional analyses that often overlook its
significance.
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Appendix B. Derivation of the momentum integral equation

The sum of the first two terms in (2.8) can be expressed as follows:

−
∫ δe

0

∂U2

∂x
dy − UeVe

= −
(

d
dx

∫ δe

0
U2 dy − U2

e
dδe

dx

)
− UeVe

= −
(

d
dx

[U2
e (δe − δ1 − δ2)] − U2

e
dδe

dx

)
−
(

−Ueδe
dUe

dx
+ Ue

d(Ueδ1)

dx

)

= Ue
dUe

dx
δ1 + d(U2

e δ2)

dx
− Ue

dUe

dx
δe. (B1)

Note that by definition
∫ δe

0 U2 dy = U2
e (δe − δ1 − δ2). The mean wall-normal velocity at

the boundary layer edge has been found to be Ve = −δe dUe/dx + d(Ueδ1)/dx (see Wei
et al. 2023).

The Leibniz integral rule can be applied to derive the following expressions:∫ δe

0

∂(Ruu)

∂x
dy = d

dx

∫ δe

0
Ruu dy − Ruu|y=δe

dδe

dx

≈ d
dx

∫ δe

0
Ruu dy, (B2)

∫ δe

0

∂(V2 − Rvv)

∂x
dy = d

dx

∫ δe

0
(V2 − Rvv) dy − (V2

e − Rvv|y=δe)
dδe

dx
, (B3)

∫ δe

0

∂

∂x

(∫ y

0

∂(UV)

∂x
dy
)

dy = d
dx

∫ δe

0

(∫ y

0

∂(UV)

∂x
dy
)

dy − dδe

dx

∫ δe

0

∂(UV)

∂x
dy

= d
dx

∫ δe

0

(∫ y

0

∂(UV)

∂x
dy
)

dy

− dδe

dx

{
d

dx

∫ δe

0
(UV) dy − (UeVe)

dδe

dx

}
. (B4)

Appendix C. Estimations of the terms III, IV and V in (2.9)

For a zero pressure gradient turbulent boundary layer, it is generally agreed that
Reynolds normal stresses like Ruu and Rvv scale with the friction velocity (see e.g.
Pope 2000). Moreover, the mean wall-normal velocity at the boundary layer edge can
be approximated as Ve ≈ uτ (uτ /Ue)H12, where H12 = δ1/δ2 is the shape factor (Wei &
Klewicki 2016, 2023). Therefore, a rough estimation of the order of magnitudes for terms
III and IV can be expressed as∫ δe

0

∂Ruu

∂x
dy ∼ O

(
u2
τ

δe

Lx

)
� u2

τ , (C1)

∫ δe

0

∂(V2 − Rvv)

∂x
dy ∼ O

(
u2
τ

(
uτ

Ue

)2
δe

Lx

)
− O

(
u2
τ

δe

Lx

)
� u2

τ , (C2)
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Figure 10. The pressure difference between the edge and wall, along with the integrals of Ruu, Rvv and V2.
The DNS data are from Coleman et al. (2018).

where Lx is a characteristic length scale in the streamwise direction, much larger than the
boundary layer thickness in a zero pressure gradient turbulent boundary layer. Moreover,
it can be shown that the term ∂(UV)/∂x ∼ O(H12 u2

τ /Lx), which is smaller than the
term ∂Rvv/∂y in (2.4). Consequently, terms III, IV and V in (2.9) would be negligible
for turbulent boundary layer under zero or mild pressure gradients. This estimation is
substantiated in figure 2, where it is evident that terms III, IV and V exhibit similar orders
of magnitude and are significantly smaller than the wall shear stress in regions under small
pressure gradients.

In experimental studies, calculating terms II, III and IV in (2.9) from measurements is
nearly impossible due to limited data in the x direction. To assess the effects of pressure
gradients on these terms, one can use the variation of the integrals

∫ δe
0 Ruu dy,

∫ δe
0 Rvv dy

and
∫ δe

0 V2 dy in the x direction to estimate the magnitudes of their derivatives. For
instance, figure 10, using DNS data, shows the pressure difference between the edge
and wall, along with the integrals

∫ δe
0 Ruu dy,

∫ δe
0 Rvv dy and

∫ δe
0 V2 dy plotted against

streamwise locations x. For dimensional comparison, the pressure difference is multiplied
by δe. The figure confirms that, in regions characterized by mild pressure gradients, Ruu
and Rvv demonstrate similar magnitudes, while the integral of V2 is notably smaller (see
(C2)). Under strong pressure gradients, either adverse or favourable, figure 10 displays
similar orders of magnitudes for the integrals of Ruu, Rvv and V2, which are smaller
than the pressure difference term. Moreover, these terms, in general, exhibit more gradual
variations in the x direction compared with the pressure term’s variability. This tendency is
consistent with the comparable magnitudes of terms III and IV, both of which are smaller
than the magnitude of term II, as illustrated in figure 2.

Examining (2.4), it is evident that term V in the new momentum integral equation
(2.9) originates from a portion of the advective terms in the y-momentum equation. It
is reasonable to estimate its magnitude to be comparable to that from ∂V2/∂y. Hence, the
magnitude of term V is expected to be similar to that of term IV, as shown in figure 2.
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