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Abstract

We study commutators in pseudo-orthogonal groups O,, R (including unitary, symplectic, and ordinary
orthogonal groups) and in the conformal pseudo-orthogonal groups G 0,, R. We estimate the number of
commutators, ¢(O,, R) and ¢(G 02, R), needed to represent every element in the commutator subgroup.
We show that c(0,,R) < 4 if R satisfies the A-stable condition and either » > 3 orn = 2 and 1 is the
sum of two units in R, and that ¢(G O,, R) < 3 when the involution is trivial and A = R¢. We also show
that ¢(02,R) < 3 and c(G 02, R) < 2 for the ordinary orthogonal group O,, R over a commutative ring
R of absolute stable rank 1 where either n > 3 or n = 2 and 1 is the sum of two units in R.

1991 Mathematics subject classification (Amer. Math. Soc.): 20G35, 20H25.

1. Introduction

For any group G, let ¢(G) be the least integer s > O such that every product of
commutators is the product of s commutators. If no such s exists, we set c(G) = oo.
The number ¢(G) has been studied extensively for various groups G. For a survey
of commutator results, see [7]. In [7], it was shown that ¢c(GL,R) < 2, where R is
a commutative ring of stable rank 1 and either n > 3 or n = 2 and 1 is the sum of
two units in R, In [8], You obtained a similar result for symplectic groups, showing
¢(Spy.R) <4 and c(GSpy,R) < 3 where R is a ring of stable rank 1 and #n > 3.

The main goal of this paper is to study commutators in pseudo-orthogonal groups
0, R (including unitary, symplectic, and ordinary orthogonal groups) and in the
conformal pseudo-orthogonal groups G O,, R and to estimate ¢(O,, R) and c(G O0,, R).
We show that if R satisfies the A-stable condition and eithern > 3 orn =2 and 1 is
the sum of two units in R, then ¢(O0,,R) < 4 and, when the involution is trivial and
A = R¢, then c(G 05, R) < 3. This result generalizes a previous result of [8]. We also
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show that ¢(0,,R) < 3 and c¢(G O, R) < 2 for the ordinary orthogonal group O,,R
over a commutative ring R of absolute stable rank 1 where eithern > 3 orn = 2 and
1 is the sum of two units in R.

We assume that an involution * : x + x* is given on an associative ring R with
1. Thus (x*)* = x, (x — y)* = x* — y*, and (xy)* = y*x* forany x, y € R. The
involution * also determines an involution of the ring M, R of all n by n matrices by
(xij)* = x;.

Let € be an element of the center of R such that ee* = 1. Set R, = {x — ex™ :
x € R}, R ={x € R : x = —ex*}. We fix an additive subgroup A of R with the
following properties:

(i) rArr C Aforallr € R;

(i) R.C A CR-.
Let A, denote the set {(aij)nxn : aij = —€aj; fori # jand a; € A}.

As in [1], we define

O0,R = {(i g) € GLy,R:a8"+eBy* =1, ap*, y§* € A,,},

and

I o\, .
G02nR = {(0 Cl> w W € OZnR,

Z aunit in the center of R with¢ A = Aand ¢ = ;*].

Setock=k+nifk <n,ck=k—nifk > n. Fora € R, define

Ly, +aE;; —a*Eyj i (I<i#j=<n),

Ly+aE;; —€a*Eyjoi (#0j,1<i<n n+4+1=<j<2n),
pij(a) = {4+ aE,; —€a*Esjoi (i #0j,n+1<i<2n, 1=<j<n),
by +ak; (I1=<i=0j<n, a €l),

L, +akE; ;i (n+1<i=0j<2n,acl)),

where E;; denotes the matrix with 1 in the ith row and the jth column and zeros
elsewhere. We denote by E O, R the subgroup of O,, R generated by the set of p;;(a)
witha € R.

A ring is said to satisfy the A-stable condition (see [3]) if when Ra + Rb = R,
then there is an x* € A such that R(a + xb) = R. If an associative ring R satisfies the
A-stable condition, we can show that the ring R = M, R of n by n matrices satisfies
the A,-stable condition; that is, if a, » € R’ with R'a + R'b = R’, thena + xb is
invertible for some x* € A, (see Lemma 6).
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When A = R (in which case O,, R is the ordinary symplectic group), the A-stable
condition is equivalent to the first Bass stable range condition. Some examples of
rings satisfying the A-stable condition can be found in (3, pp. 218-223].

For a subset S of R, we denote by J(S) the intersection of all left maximal ideals of
R which contain S. We say a sequence ay, @i, . - . , 4, in R can be shortened if there
are o, ty, ... ,th_yin Rsuchthata, € J(ay + to@,, ... ,an_1 + ti_1ay).

If every sequence containing n+1 elements in R can be shortened, we say that the
ring satisfies the asr(n) condition. When 7 is the least integer such that R satisfies the
asr(n) condition, we say that »n is the absolute stable rank of R, denoted by asr(R) = n
(see [5]). In general, the stable rank of R (denoted by sr(R)) is less than or equal to
the absolute stable rank of R (see [5]).

EXAMPLES. (See [5]):
(i) If R # 0is semilocal, then asr(R) = sr(R) = 1.
(ii) If R is commutative and the maximal spectrum of R is Noetherian of finite

dimension 7, then any module-finite R-algebra A has absolute stable rank at
most n+1.

We denote by B* (respectively B ) the subgroup of O,, R consisting of the matrices
o

of the form ( 0 a€'> (respectively (Z a’(")_l)) where « is an n by n upper (respect-
ively lower) triangular matrix and ¢* € A, (respectively a*8 € A,). The subgroup
of B* (respectively B~) formed by the above matrices such that the diagonal entries
of « are 1 is denoted by U+ (respectively U ). We use the symbol I5(,_;) & OxR to
denote the subgroup of 0, R formed by the matrices

1

o 2 , where (a
1 14

y 8

g) € Osz.

In Section 2, we obtain two decomposition results involving B* and B~ or U™ and
U-.

PROPOSITION 1. Assume that R satisfies the A-stable condition. Then every matrix
0 € E O,,R can be written in the form

(i) YA, where Y arein BT and A, isin B™,
(1) Y Ai¥ad,, where Yr; are in U™t and A; are in U~

Therefore any matrix 0 € E Oy, R is similar to the product YA, where r is in BT
and A isin B™.
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PROPOSITION 2. Assume that n > asr(R) + 2. Then every matrix 0 € O,,R can be
written in the form

(1) YA 601V, where yr; are in BY, Ay is in B™, and 6, € Iy,_1y ® OyR for

k =asr(R) + 1,
(i1) YA 01¥ah,, where W are in U*, A; are in U™, and 8, € Ly,_yy ® OxR for
k = asr(R) + 1.

Therefore any matrix 0 € O,, R is similar to the product  A0,, where ¥ isin B, A
isin B~,and 0, € Ly,_1, ® OxR. If R is commutative and * is the trivial involution,
the conclusions of (i) and (ii) hold also for k = asr(R).

We also obtain the following corollary to Proposition 2.

COROLLARY 3. For the ordinary orthogonal group, assume ast(R) < 1 for a
commutative ring R, and n > 2. Then every matrix 6 € E O,,R can be written in the
form

(1) YA 1Y, where ; are in BY and A, isin B™,

(i1) YA Yoy, where Y, are in Ut and A; are in U™,

Therefore any matrix 8 € E O,, R is similar to the product A, where  is in BY
and Aisin B™.

In Section 3, we will use Propositions 1 and 2 and Corollary 3 to prove the following
results.

THEOREM 4. Let R be a commutative ring with 1 satisfying the A-stable condition.
Assume that either n > 3 orn = 2 and 1 is the sum of two units in R. Then
(1) c(EOy;R) <4, hence c(0,R) < 4,
(i1) when the involution is trivial and A = R¢, c(GO,,R) < 3.

THEOREM 5. Let R be a commutative ring with 1 of absolute stable rank 1, and let
02, R be the ordinary orthogonal group. Assume that eithern > 3orn =2 and 1 is
the sum of two units in R. Then

(i) c(EOyR) <3, hence c(O,R) < 3,
i) c(GOyR) <2.

2. Preliminary results

LEMMA 6. If R satisfies the A-stable condition, then R' = M, R satisfies the A,-
stable condition.
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PROOE. Leta, b € R’ with R'a + R'b = R’. Our problem is to find £* € A, such
that a + ¢b € GL,R. If we replace (Z) by (8 n(f_l) (Z) with n € GL,R and
na* € A,, we obtain an equivalent problem.

Consider the first column of the matrix (a, b)’. Since R satisfies the A-stable
condition, R has stable rank 1. Thus we may find a suitable matrix n, € GL,R
and replace (a, b)' by diag(n,, nf') (a, b)' such that b;; and the first column of a
form a unimodular vector. By the hypothesis there is an x* € A such that (a;; +
xby, ay, ... ,a,) is unimodular. We multiply b;; by x € A* and add xb;, to ay;.
Again, replacing (a, b)' by diag(n., n;_') (a, b)', we may assume thata;; = 1, a =
... =a, = 0, that is, we have

1 u

ay |0 a
(b)_ x x|’

v bl

where a,, b;, and b; — vu are n — 1 by n — 1 matrices. Note that the matrix (a, *,
b, — vu)' is unimodular. In this matrix, we can add multiples of the n-th row to the
(n + Dth through (2n — 1)th rows without changing a,. Thus we can assume that
(ay, by — vu)' is unimodular.

Then we can use induction on n to complete the proof. When n = 1, it is trivial.
Assume it is true for n—1. Then there is an x} € A,_, such that a; + x,(b; — vu) €

GL,_R. We can take x; = (g )?*) € A, such that the first n by » block in
1
1 u
1 X2 0 a
0 I * *
0 b1 — vu
lies in GL, R, and thus we’re done.
B

PROOF OF PROPOSITION 1. (i) Let 8 = (;’f a) € EO,,R. By Lemma 6, there is

g* e A, suchthatn =a 4+ ¢y € GL,R and n*y € A,. Then

I ¢\ (e B _(n B+ _( I O\(I (B+&Hn*\(n O
0 IJ\y ) \y & J \ynt IJ\O I 0 )"

By [7, Theorem 1], n = y;A},;, where the v/ are upper triangular matrices in GL, R
and A} is a lower triangular matrix in GL,R. Then

@ B\_ (v o \(t 0\[(¥ @)_
(y 5>_<0 w;“') <w2 A’{“)(o ;-,)—x/flxlwz.
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(ii) The proof is similar, using the factorization 7 = ¥;A{¥;A; from Lemma 9 of

(4].

LEMMA 7. ([5]). For any ring R and positive integer n, ast(R) < n if and only
if for every sequence ay, ay, ... ,a, in R, there are ty,t,... ,t,_1 in R such that
R(l + han) + R(aO + thn) +-o 4+ R(an—l + tn-—lan) = Rfor every hinR.

LEMMA 8.
(1)
1 1
2n In-l n In—l 2n
[] et . =[], | [T puto.
j=nt1 j=2 J=n+1
X In—l X In—l
(i)
1 1
- In—l X - - In—l X -
npn+l,j(*) 1 = l—[le(*) 1 I—[pn+l.j(*>~
j=1 Jj=2 Jj=l1
In—l In—l
PROOF OF PROPOSITION 2. (i)Letv = (ay, ... ,a,, by, ... , b,)" be the first column
of 8. Since sr(R) < asr(R) < n—1, we can find a matrix § = diag(n,, nf[) € Bt
suchthata,, ... ,a,-1, b1, ..., b, in 8v form a unimodular vector.

Suppose that ¢, b, + Z,'.': (cia; + cib;) = 1. Multiplying the equation by 1—a,
on the left and replacing v by [—[,':11 Paoi((1 = ay)c)) ]_[:':_1] 0ni (1 = ay)ci)v, we get
a, =1+ xb, for some x € R.

Since asr(R) < n-2, by Lemma 7 there exist t; € R such that R(1 + kb)) +
2:21 R(a; + ;b)) = R. Replacing v by ]_[:';21 Dins1(t)v, we have R(1 + hb)) +
3"~ Ra; = R forevery h in R.

Since a, = 1+xb,, Ra,+ Rb, = R, there exist y, y, € R suchthat y,a, + »,b, =
—a; + 1 + hb,. Replacing v by p;,,(y2)v, we get Y ;_, Ra; = R.

There exists a n, € GL,R such that diag(n,, n;_l)v = (1,0,...,0,%,...,%).
Then multiplying v by [1>2,,, pi.1(*) , we get v = (1,0, ..., 0).

Summarizing this procedure, we have
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2n n—1 n—1
[T o009 diag(na, 05 01,20 (2) [ | 0101 G0) [ | om0 (%) diag(ms, m3 )09
=2 i=1

i=n+1

where (j /;3) € Oy,-1yR, and hence we can write 6 as

1
2n
_ (7N 0 o B —1
0= (0 7)34) Y3 I_I Pi1(*) 1 4 s

i=n+1
where

n—1 n—1
Y3 = diag(mz, 13 ) [ | Prot (9 [ | Pinss (0)p1.20(—y2) diag(n;*, n3) € BY,

i=1 i=2

Yy = ﬁpli(*) ﬁpl.ai(*) € BT,
i=1 i=1

0 . _ . _
and (r(;; nZ'l> = diag(n; "', n3) diag(n; ", n3).
Applying induction on n, we may assume that
1
o ﬁ Iat n/ !
= III3A‘19 '/f4,
y )
where ¥;, ¢, are in B*, A} isin B, and 6’ € I,y & Ox R, where k = asr(R)+1.
Writing ¥; as
1 1
I, X1 ns

-1

In—l 77;

and applying Lemma 8, we can write 6 as (8 ng_.) YsA30 s, where Yrs = ((I) ?) ,

Ay = (CIZ (1)) and Vg is in B*.
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By decomposing n as ¥;Asns¥s, where the ,;(X;) are upper (lower) triangular
matrices, 0 € I, & G L, R, and rearranging these matrices, we obtain 6 = | 16,y,,
where ¢; arein BT, Aisin B™, and 8, € L,y @ Oy R with k = asr(R) + 1.

In the case where R is commutative and * is the trivial involution, the result can be
improved by [5, p. 539].

(ii) Follows easily from Lemma 9 of [4] and (i).

REMARKS. (i) If necessary, we can make ¥, € U" and X, € U~ by including the
diagonal entries in v,

(ii) If R is commutative and asr(R) < 1, we can write 0 € O,,R as 6,yr, where
6, € O,R and ¥ € EOy,R.

PROOF OF COROLLARY 3. (i) By Proposition 2, it suffices to show the result for
EO4R. From [7], we know that any matrix in E, R can be factored as a product of
an upper triangular matrix, a lower triangular matrix, and an upper triangular matrix.
The exact sequence

1 > 2 0N (2 OV, ol B Rx E,R— EOR — 1
0 :z 0 :z

allows us to obtain the conclusion.
(ii) Follows easily from Lemma 9 of [4] and (i).

3. Proof of the main results

To prove Theorems 4 and 5, we need the following three lemmas.

LEMMA 9. Let R be a commutative ring with 1 and n > 1. Suppose that 0 isin U

and T = ( 0 e ) € Oy,R. Then there is a k in U™ such that k~'0m« is of the

12n—1 O
form

(O €*

1 0 a

a

Uclay, ... ,a,) = 1o | @ en.
1 —€*af —€'a; --- a,
1 0
\ 1 o)
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0 o
Let {e), ..., e,} be the standard basis of R” and let n = (e;, wey, ... ,w" e)),

(o °)
where w = apu, u = I .
n—1

-1
Then the matrix (77 nE)l) isin U™ and (77 0) on ('7 0 ) = 6, has the

PROOF. Write 8 in the form (a p )

0 0 n* 0 n'
form
(O iy Cip - €y €
1 . Cy Cp o € O
01 o 1 Cpt Cp2 ¢ Can 0 R
1 0 0O --- 0
1 0
\ 1 0
where the matrix
i1 Ci2 -+ Cip
Cy Cxp -+ C2p
y=1. . .| €A
Cm Cn2 te Cnn

Then we can write 6, as ({) }I/) s which is similar to 7 (I y) = 0’', where

0 1
(0 0O --- 0 ¢
1 0 ¢y Ciz r Cin
Cyu Cxn -+ C2p
o = 1 0
1 Cnl Cn2 ot Cnn
1 0
\ L 0/

i—1 oj
V= n Pij (Z Ck.k+aj—i) fl Poj.j (Z Cl—l,l—l) .
k=1 1=2

i<0j,2<i<n—1,n+3<j<2n oj=2
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0 1 ..
Then v~10'v = Uc(a,, ... ,a,),and k = " o Y)visin U*.
0 »n 0 1

LEMMA 10. Let R be a commutative ring with 1, x the trivial involution, and A =
A for any unit € R. Suppose that 6 € O,,R forn > 1isin Bt with diagonal entries

dy, ... ’dn’dl_l’ ’dn—l €GL R, = (10 8) € 05, R. Then there is a matrix
2n—1
I 0 o .
n= 0 21 ¥ € GOy, R, where i isin B, such that u '0nu = Uc(a,y, ... ,a,).

PROOF. 67 has the form

(* cee ok * * edl\
d, x* * 0
0
or = d, * * * 0
0 4' 0 --- 0 0
0 * d;' ©
\ 0 % - % d' 0)

Let B = diag(dy, didy, ..., dydy---dy, d;, dy'd!, ..., d7" - -dy'd"), and take
z=d,---d, ThenbyLemma9, u~!87'97Bu issimilarto the matrix Uc(ay, . . ., a,),

I 0
where u = 0 z1)

LEMMA 11. Let R be a commutative ring with 1. Then

(1) Uc(by,...,b) "Uclay,...,a,) =[],_, piam(a; — b)) where a,, b, € A*,
(ii) Whenn > 3, then 1_[:':11 0i2:(a;) Puonla,), where a, € A*, can be written as a
product of two commutators, and when a, =0, it is a commutator,
(iii) When n = 2 and 1 is the sum of two units in R, then ﬂ,'.'z_ll Pi20(a;) Pnan(@n),
where a, € A*, can be written as a product of two commutators,
(iv) Foranya € Oy R, a™ is similar to o*.

PROOF. (i) is a direct calculation.
(ii) By the identity 0, 2,(a,) = Pn.nt1(=an)[Pm1 (1), P1.041(an)], we can show

n—1 n-1
1—1 Pi20(a;) P20 (Gn) = r[ Pi2n (@) p12n(€*ay)c,
i=l i=1
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. n— L. 0
where c¢ is a commutator. But p, 5,(a; + €*a;) I—L':zl Pion(a;) is similar to <8 n*_l)

1
where n = (O 11)) ,andv = (a; + €*a}, a, ... ,a,_1)". Whenn -- 3, we can find

an invertible matrix «,_; € E,_ R such thatk,_ — I € E,_R (see [7]). So

=[5 D)6 1)

n—

X pian{a;) is a commutator.
1 (a+¢€*a3)
0 1

ator. Write 1 = u; + u», b = a, + €*a;. Then as in [2],

-5 9)-6 )]

1

where u = (k,-, ~— I)"'v. Then p; 2,(a; + €*a}) []

i=

(iii) Proceed as in (ii). It suffices to show that n = ( ) 1S a commut-

(iv) This follows directly from the observation that o™
0 I,

el, 0)°
PROOF OF THEOREM 4. (i) By Proposition 1, in this case every matrix 6 € EO,, R =

[EO:,R, EO0y,R] = [03,R, O0,,R] can be written as ;A YA, where y; are in U*
and A, are in U~. Moreover,

= ¢,a*¢; ", where ¢, =

0 = V1Y = Yacihs = aYsrs = (Usm) (T A) = YA

where ¢, = w;‘x,wzx;l, ¥ = Y3m, A = A3, and 7 is defined as before.

By Lemmas9and 11, wehave t 'yt = Uc(ay, ... ,a,), o Ao = Uc(by, ...,
b,) for some 7,w € EO,R, where a,,b, € A*. By Lemma 11, there is some
¢ =T1i, pian(a; — b;) suchthat t™'y7 = 0™ 'A7'w¢, s0

¥ =tw A lwgtr™!
and
vr=to Aot A =gt e o A  wst T A = st [t T e AT

Since £ can be written as a product of two commutators by Lemma 11, we see that
6 = cy3c3¢4¢s. SO c(EO2,R) < 4 and ¢(0,,R) < 4.

(ii) By Proposition 1, in this case every 8 € EO,,R = [GO»R,GO,,R] is
similar to the product ¥;A;, where v, is in B* and A, is in U~. Then yA, =
(Ym)(r~'A) = YA, where n is defined as before. Then by Lemma 10, there exists
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1 € GOy Rsuchthat tyyr~' = Uc(ay, ... , a,), and there exists w € O,, R such that
wiw ' =Uc(by, ... .b).

Continuing as in the proof of part (i), we obtain 8 = c|c,c3, where the ¢; are
commutators. Hence ¢(G 0,,R) < 3.

PROPOSITION 12. Let R be a commutative ring with 1 and n > max{asr(R)+ 1, 3}.
Then

(i) c(0R) <4+ c(OxR), where k = asr(R),
(i1) when % is the trivial involutionand A = R, thenc(G O,,R) < 3+c¢(GOxR),
where k = asr(R).

PROOE. Similar to the proof of Theorem 4 after Proposition 2 is applied to the
decomposition of 8 € O, R.

PROOF OF THEOREM 5. (i) Notethat £O,,R ={EO,,R, EO,,R] ={0,,R, 0., R}
= [GOwR, GO, R] for n > 2 in this case (see [6] and Remark (ii)). Applying
Corollary 3 to the decomposition of 0 € EQ,,R, we can write 6 as y A Y,A,,
where Y; are in U* and A; are in U~. In this case, A = 0, hence a, = 0 in the
companion matrix Uc(ay, ... ,a,). Then by Lemma 11, ¢ in the proof of Theorem
4 is a commutator. Thus we have 8§ = c¢,;c;c; where the ¢; are commutators. So
¢(EO0y,R) <3 and c(0,,R) < 3.

(ii) Similar to the proof of (i) and Theorem 4(ii).
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