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Preregular maps between

Banach lattices

David A. Birnbaum

A continuous linear map from a Banach lattice E into a Banach

lattice F is preregular if it is the difference of positive

continuous linear maps from E into the bidual F" of F .

This paper characterizes Banach lattices B with either of the

following properties:

(1) for any Banach lattice E , each map in L(E, B) is

preregular;

(2) for any Banach lattice F , each map in L{B, F) is

preregular.

It is shown that B satisfies (l) (respectively (2)) if and- only

if B' satisfies (2) (respectively (l)). Several order

properties of a Banach lattice satisfying (2) are discussed and

it is shown that if B satisfies (2) and if B is also an

atomic vector lattice then B is isomorphic as a Banach lattice

to I (T) for some index set Y .

1. Introduction

The following natural question arises in the theory of Banach

l a t t i c e s : Given Banach l a t t i ce s E and F , i s each map in the space

L(E, F) of continuous l inear maps from E in to F the difference of

positive (continuous) l inear maps? I t i s known that i f F i s a C{X) for

X an extremally disconnected, compact Hausdorff space X or i f E i s an

A£-space and F has the monotone convergence property then the answer to
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2 3 2 D a v i d A . B i r n b a u m

t h i s question i s affirmative ([J0] , Chapter k, (3.7) and (3 .8 ) ) . On the

other hand, L[l , I ) contains maps that are not the difference of

pos i t ive l inear maps, ( [ / 0 ] , Chapter h, (3 .3) ) . Schlotterbeck [J6] has

shown that i f F i s an AM-space or i f E i s an AL-space then each map

in L{E, F) i s the difference of posit ive l inear maps into the bidual F"

of F .

The main goal of th i s paper i s to characterize (in §3) Banach l a t t i ce s

B with ei ther of the following propert ies .

PROPERTY I . For any. Banach l a t t i c e E , each map in L(E, B) i s

the difference of posi t ive l inear maps of E in to B" .

PROPERTY I I . For any Banach l a t t i c e F , each map in L(B, F) i s

the difference of posi t ive l inear maps of B into F" .

The characterizations that we obtain indicate that such spaces are

similar to AM- and AL-spaces. In par t i cu la r , we show that a Banach

l a t t i c e has Property I (respectively Property I I ) i f and only i f B' has

Property I I (respectively Property I ) .

In §4, we study some order properties of a Banach l a t t i c e with

Property I I . We also show that L [0 , l ] , 1 < p < <*> , possesses neither

Property I nor Property I I . Finally in §5 we show that with the additional

assumption tha t a Banach l a t t i c e G i s an atomic l a t t i c e , G i s

isomorphic as a Banach l a t t i c e to I (?) for some index set T whenever

G has Property I I .

2. Preliminary material

For general terminology and notation concerning functional analysis we

refer the reader to [J5] while our reference for ordered local ly convex

spaces wil l be [JO].

By a map between Banach spaces we wil l always mean a continuous l inear

map. A sequence in a Banach space i s summable (respectively absolutely

SKnmable) i f i t i s unconditionally convergent (respectively absolutely

convergent).

A map from a Banach l a t t i c e E in to a Banach space F i s order

sunrnable i f i t maps posi t ive summable sequences into absolutely summable
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sequences. S+(E, F) denotes the space of order summable maps from E

into F . A map from a Banach space into a Banach l a t t i c e i s majorizing i f

i t s adjoint i s order summable. Majorizing naps can also be defined as maps

that take nu l l sequences into order bounded s e t s ; (see [76], Chapter 1,

and [4] ) .

A map from a Banach space E in to a Banach space F i s absolutely

summable i f i t maps summable sequences in to absolutely summable sequences.

The space of absolutely summable maps of E in to F i s denoted by

S(E, F) . A map between Banach spaces i s absolutely majorizing (hyper-

majorizing in [76]) i f i t s adjoint i s absolutely summable. The following

resul t s characterize these types of maps. For proofs see [76] , (3 .5) ,

(3.6),and (3-7) , or [ 6 ] , (6 .6 ) , (6.7), and (6 .8) .

PROPOSITION 2 . 1 . If E and F are Banach spaces and if

T € L{E, F) J then the following statements are equivalent:

(1) T is absolutely summable;

(2) T' is absolutely majorizing;

(3) for every Banach lattice R and S e L(H, E) , T o S is

order summable;

(k) for each S € ^(c
0> &•) > T ° S is order summable.

PROPOSITION 2.2. If E and F are Banach spaces and if

T € L{E, F) , then the following statements are equivalent:

(1) T is absolutely majorizing;

(2) T' is absolutely summable;

(3) for every Banach lattice H and S (. L(F, H) , S ° T is

majorizing;

(h) for every S e L{F, I ) , S ° T is majorizing.

Absolutely summable and absolutely majorizing maps can be factored

through Hilbert spaces ([76], (3-8)) and so are weakly compact.

We need the following four topologies on the tensor product E ® F of

two Banach spaces E and F .

(i) E ® F is the completion of E ® F for the norm

https://doi.org/10.1017/S0004972700043835 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043835


234 Davi d A. Bi rnbaum

{ ? ||*.||||w.|| : u = I x. ®y.) .Hull = inf

(ii) E § F is the completion of E ® F for the norm

p{| Iwll = s u p { | I < x i t x ' X y i , w '> : x 1 (E\ | | x ' | | £ ! , » ' € F', l l j / ' l l =

where u = £ x. ® y. i s any representation of u € E ® F .

( i i i ) F, ® F i s the completion of E ® F for the norm

C II n I, n

u|| = inf| sup̂  I J x^l l^ l l l : u= J ^

(iv) If F, i s also a Banach l a t t i c e with cone K then E ®i i F i s

the completion of E ® F for the norm

INi = inf-M x *A\y.
"̂•/ '̂

' . and x.^ ^

for £ = 1, . . . . n\ .

Jacobs [4] has shown that x 5 T 5 T| I S T , that

[E ® o F) ' = S(E, F') , a n d t h a t [E ® , , F) ' = S+(E, F') . M o r e o v e r , f o r

maps T £ S+(E, F) , the norm of T in [E ®I • F) ' i s given by

\ o \ ' ( T ) = i n f - f t f : I I I 2 V B . I I S W s u p J | < x . , x 1 >|
*. i=i i=l

for a l l finite sets {x, . . . , x } c KY .

Let E and F be Banach lattices with cones K and H

respectively. In E ® F define the protective cone K by

K = •{ y x. ® y. : x. (. K, y. i H> . Then i t is easy to see that for the
P \.-i=± i T- i i' )

dual system (E ®i i F, S+(E, F')> , K ' equals the cone of posit ive maps
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in S+(E, F') . I t follows from the definit ion of the dual norm \o\'

that t h i s l a t t e r cone i s normal in S+(E, F') for the |a | ' - topology.

Since th is cone i s also generating in S+(E, F') ([16], (2 .2 ) ) , i t follows

from [J03, Chapter 2, (1.22), that K i s normal and generating in

If E and F are Banach lattices and if T f L{E, F) , then T is

regular (respectively preregular) if T is the difference of positive

linear maps of E into F (respectively E into F" ).

If E and F are Banach spaces and T i L(E, F) then T is

integral if the bilinear form fo_ defined on E x F' by

bT{x, y') = <Tx, y')

i s an element of [E §i£ F') ' . Integral maps are both absolutely summable

and absolutely ma,}orizing. For more information see [76], Chapter 3, or

[6 ] , Chapters 5 and 6.

A Banach l a t t i c e E i s an AM-space i f x , y € E , x, y > 0 , imply

that \\xvy\\ = ||a;|| V ||i/1| . A Banach l a t t i c e E i s an 4L-space i f

x, y € E , x, y > 0 imply that ||aM-y|| = |M| + \\y\\ . I f F i s an

•dL-space then E §i< F = E ®< F for a l l Banach spaces E (for a proof of

this result see 161,'(6.3)).

The following characterizations of AM- and Ak-spaces (see [16],

Chapters 1 and k) are included so that we may compare them with our

results, Theorems 3.3 and 3.7.

PROPOSITION 2.3 . The following statements about a Banach lattice E

are equivalent:

(1) E is isomorphic as a Banach lattice to an AM-spaae;

(2) every null sequence in E is majorized;

(3) every order summable map from E into a Banach space is

integral.

PROPOSITION 2.4. The following statements about a Banach lattice E

are equivalent:
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(1) E ie isomorphic as a Banaah lattice to an AL-space;

(2) every positive eurmable sequence in E is absolutely

summable;

(3) every majorizing map from a Banach space into E is

integral.

If E is a Banach lattice and 0 S a; € E we denote by E the

linear hull of the order interval [-a;, x] with [-x, a:] as unit ball .

If we order E by restricting the order on E then E is an AM-s-p&ce.
x x

3. Preregular maps

In this section we characterize Banach lattices with Property I or

Property I I and show that Property I and Property II are dual to each

other.

DEFINITION. If £ is a Banach space, then i}[E] will denote the

space of summable sequences in E with the norm

Ik'IISL n=l n

Pietsch 1141 has shown that T^iE] is isomorphic to I1 § E . If,

in addition, E is a Banach lat t ice, then this isomorphism is an order

isomorphism where we consider the cone C of positive summable sequences

in I [E] and the closure K of the projective cone in I ® E . In

this case the norm

x'>0

is equivalent to the e norm.

LEMMA 3 .1 . If E is a Banach lattice then (lX[E], c) is a vector

lattice if and only if every summable sequence in E is the difference of

positive suvmable sequences. In this case, [l [E], C) is a Banach

lattice.
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Proof. Necessity is clear, so suppose that for every {x } S. I [E] ,

{x } = {y } - {z } where {y } and {z } are positive summable

sequences. Since 0 S x 2 y , i t easily follows that \x } is summable.

Therefore, {x } = {x } and I [E] is a vector la t t ice .

When I [E] is a vector la t t ice , the e norm is clearly monotone on

the cone C and so Z1[i?] is a Banach lattice by [8], (8.1+).

EXAMPLES 3.2. I1 ® I1 is not a vector lat t ice. For if i t were,

then every summable sequence in I would he the difference of positive

summable sequences. But then every summable sequence in I would be
absolutely summable (by Proposition 2.1+) which would contradict the
Dvoretzky-Rogers Theorem.

If X is a compact Hausdorff space, then I [C{X)] is a vector
la t t ice . This is contained in Remarks 3-It, but can easily be shown

1 °"
directly by noting that I 0 C(X) is order and topologically isomorphic

to C[X, I J , the space of continuous functions from X into I , and

that the cone of positive functions in C[x, I ) is a lattice cone.

We now characterize Banach lattices with Property I .

THEOREM 3.3. If H is a Banach lattice with cone K then the
following assertions about H are equivalent:

(1) every summable sequence in H is the difference of positive
summable sequences;

(2) \l ® H, K \ is a vector lattice;
I e P)

(3) H has Property 1, that is, every map from a Banach lattice
into H is preregular;

CO each map in L{cQ, H] is preregular;

(5) every order summable map from H into a Banach space is
absolutely summable.
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Proof. That (l) is equivalent to (2) follows from Lemma 3.1 and that
(3) implies (k) i s clear.

(2) implies (3). Let E be a Banach latt ice and T € L(E, H) .
Since H" is a Banach lat t ice all, positive linear maps from E into H"
are continuous [CO], Chapter 2, (2.l6)),and so i t suffices to show that

T : E -»• H" exists. To do this we must show that for each x d E ,
x > 0 , the set

B~ = \ I lTx ) : x = I x , x (. K for all n)
X W n n=l n n >

has a supremum in H" ; (see VO], Chapter 2 , Sec t ion 2 , equat ion ( 9 ) ) .

By Lemma 3 . 1 , T- ®£ H i s a Banach l a t t i c e and hence t h e map

<i> : I ® H -*• I <3' H def ined by <j)({w }) = \y } i s cont inuous . Let

GO

i> : I1 &_ H •*• H be defined by ty[{y }) = V y . Then ijj i s continuous,
E n n=l n

since

U{{y\)\\ = sup y <;

5 sup

For each 0 5 x € # , define

/!„ = •|{x } € ^ [S] : for some k , x = 0 for n 2: k+1 ,
SC y 71 Yl

x 2 0 for all n andn
k i

n=l '

Then for {x } € A ,
ft X

? { x } = s u p I < x x ' > = llxll .
W I I* ' | | «1 n = l "
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Therefore, the set A i s bounded in I ® E and hence the set
ZE E

k ^ t
Tx } : \x \ € A } = B

:=1 " " * ' *

is topologically bounded in H . A standard argument using the

decomposition lemma shows that B i s also directed (-) . By [JO],

Chapter U, (1 .8) , fl" i s boundedly order complete (that i s , every

topologically bounded, directed (S) subset has a supremum) and so B^

has a supremum in H" .

(h) implies (5). Suppose that F i s a Banach space, that T : B -*• F

i s order summable and that S € L[o , H) . Then S = S - S where

0 < S , 5 € L(a H") . Therefore, T" o S = T" o S - T" o S2 i s

order summable and hence T" i s absolutely summable by Proposition 2 . 1 .

I t follows from Propositions 2.1 and 2.2 tha t T i s absolutely summable.

(5) implies (2). I f F i s a Banach space, then

[H ®a F] ' = S(H, F) = S+(H, F) = [H ® | O | F) ' .

Since a and |crj are both norm topologies i t follows that a = \a\ .

Hence, in par t i cu la r ,

\a\ ~ a ~ e

1 ~

Therefore, by the discussion in §2, the cone K i s generating in I ®e H

and so the l a t t e r space is a vector l a t t i c e .

This completes the proof of Theorem 3.3-

REMARKS 3.4. ( i ) I t follows from the proof of Theorem 3-3 that i f

H i s boundedly order complete (for example, i f H i s a dual Banach

l a t t i c e and sa t i s f ies any of the conditions of Theorem 3-3) then each map

in L(E, H) i s regular and so L(E, H) i s a vector l a t t i c e for every

Banach l a t t i c e E .

(2) If H i s an AW-space then H has Property I I . This follows

from [JO], Chapter h, (3 .7) , and the fact that H i s isomorphic as a

Banach l a t t i c e to a C[X) for a stonean space X .
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(3) In Theorem 3.3, (2) is equivalent to (3) in more general
circumstances. In particular, if H is a Frechet lattice such that H'

p

is barrelled or such that H is "boundedly order complete then this
equivalence holds. If {H } is a sequence of such spaces with Property I

00

then one can show that ~| \ H is also a Frechet lattice with Property I .

Therefore, ~| ["̂ (-̂  ) » where each X is a compact, Hausdorff space, is
M = l

an example of a Frechet lat t ice with Property I .

(k) If H i s a nuclear Frechet latt ice then I1 $ H = I1 <§> H

which equals the space of absolutely summable sequences in H ([74]). The
1 ^la t te r space is a vector lattice and so I ® H is a vector la t t ice .

Since H' is barrelled, i t follows that H has Property I .

(5) The characterization in Proposition 2.3 of an AM-sp&ce indicates
that a Banach lat t ice with Property I is similar to an i4A?-space.

We now show that Properties I and II are dual to each other.

PROPOSITION 3.5. A Banach lattice B has Property II (respectively
Property 1) if and only if its dual B' has Property I (respectively
Property I I j .

Proof. B has Property I I implies B' has Property I . Suppose that

E i s a Banach l a t t i c e and that T i L(E, B') . Then T' : B" •+ E' and

the map S = T'{„ : B ^ E' i s regular,since B has Property I I .

Therefore, S' : E" -*• B' i s regular. I f x € E and y € B then

< 5 ' x , y> = <x, Sy> = < x , T'y > = <Tx, y) .

Therefore, S'I„ = T and hence 2* is regular.
it

B' has Property I implies B has Property I I . Suppose that E is a
Banach lat t ice and that T d L(B, E) . Then 2" :£'-»• S' is regular and
so T" : B" -»• S" is regular. Therefore, T = 2"'| is preregular.

B has Property I implies B' has Property I I . We first show that
every majorizing map into S' is absolutely majorizing. Let E be a
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B a n a c h s p a c e a n d 5 € L(E, B') b e m a j o r i z i n g . T h e n S' : B " •+ E' i s

o r d e r s u m m a b l e a n d s o T=S'\Z3: B+E' i s o r d e r s u m m a b l e a n d h e n c e
D

absolutely summable since B has Property I. Therefore, T' : E" •*• B' is

absolutely majorizing and so, by Proposition 2.2, R o 2" is majorizing

for all R € L(B', I1) . Hence, {R°T') |ff = R o ( T ' L ) is majorizing.

Since this is true for all R t L(B', I ) , Proposition 2.2 implies that

2"'I- = S is absolutely majorizing.

ti

We now show that B" has Property I. This will imply that 5' has

Property II by an earlier part of this theorem. By Theorem 3-3 it is

enough to show that '-(CQ>
 B") i s a vector lattice and to do this it

suffices to show that the projective cone in a ® B' is normal. Since

e ©^ B' = B' ®v c ,this is equivalent to showing that L(B', I1) is a

vector lattice. So, let T € L(B', I ) . To see that T+ exists in

L[B', I1) let x € B' , x > 0 , and let B' be the linear hull of

[-x, x] with unit ball [-X, x] . Let I : B' •*• B' be the inclusion map.

cc
Since B' i s an i4Af-space and I is a posit ive map, I i s majorizing and

«c

hence absolutely majorizing by what we have just proved about B' .

Proposition 2.2 thus implies that T ° I is majorizing. It follows that

T ° J([-x, x]) = T([-x, x]) is bounded above in I1 (see [16], (1.5)).

Therefore, T exists and is necessarily continuous. Since T was chosen

arbitrarily in L[B' , I1) , it follows that L{B' , I1) is a vector

lattice.

B' has Property II implies B has Property I. Suppose that £ is a

Banach lattice and T € L(E, B) . Then T' : B' •*• E' is regular and so

T" : E" -»• B" is regular. Therefore, T"\E = T is preregular.

COROLLARY 3.6. If H is a Banach lattice with Property I then

L(E, H") is an order complete vector lattice for any Banach lattice E .

Proof. This follows from Proposition 3.5, (3.1*) of Chapter k in ['0],

and the fact that there is a positive continuous projection from H"" into

H" .
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THEOREM 3.7. If G ie a Banaah lattice then the following

assertions about G are equivalent:

(1) for any Banaah lattice F , the closure of the protective

cone K is normal in G® F ;

(2) K is normal in G® c j

(3) G has Property II., that is, every map from G into a Banach

lattice is preregular;

(U) L[G, I ) is a vector lattice;

(5) every majorizing map from a Banach space into G is

absolutely majorizing.

Proof. That (l) implies (2), and that (2) is equivalent to (h) is

clear. If (2) holds then L{c , G') is a vector lattice and so G' has

Property I by Theorem 3.3. Therefore, G has Property II by Proposition

3.5. (3) easily implies (l) by [J0], Chapter 2, (1.22), and so (l), (2),

(3), and (U) are equivalent.

Suppose that (3) holds, that E is a Banach space, and that

T : E -*• G is majorizing. Then T' : E' -*• G' is order summable and hence

absolutely summable since G' has Property I. Therefore, T is

absolutely majorizing and hence (5) holds. Finally, if (5) holds then one

can show that L[G, I ) is a vector lattice in a manner similar to the

latter part of the proof of Proposition 3.5- This completes the proof.

We remark that Proposition 2.k and Theorem 3.7 show that a Banach

lattice with Property II has a characterization similar to that of an

AZ/-space.

4 . Order p r o p e r t i e s of a Banach l a t t i c e wi th P r o p e r t y I I

PROPOSITION 4 . 1 . A Banach lattice G with Property I I has o{G, G')

compact order intervals.

Proof. Let x > 0 in G . Since G i s an 4A*-space, the inclusion

map I : G •*• G i s majorizing, hence absolutely majorizing by Property I I .
x

T h e r e f o r e I([-x, x ] ) = [-x, x] i s o(G, G') compact i n G .
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DEFINITIONS. A sequence {x } in a Banach space E i s called weakly

GO

summable if 5! |<x , x'>| < °° for all x' (. E' .
n=l n

It follows from the fact that weakly bounded sets in E are norm

bounded that if {x } is a weakly summable sequence then

||x'||51 M=l

is finite. Note that {x } is summable in E if i t is weakly summable

and the net {{a: } : a is a finite subset of N] , where N is the set

of natural numbers, converges to {x } _ for the e-topology on I [E] .

For more details see [12], Chapter 1.

A Banach lattice has the monotone convergence property if the f i l ter

of sections of every directed (-) topologically bounded subset converges

to i t s supremum.

PROPOSITION 4.2. For a Banach lattice E the following statements

are equivalent:

(1) E has the monotone convergence property;

(2) every positive weakly summable sequence is summable;

(3) every increasing, topologically bounded sequence converges

to its supremum.

Proof, ( l) implies (2). Let {x } be a positive weakly summable

sequence in E . For each finite subset a of N ,

x = sup ( 7 x , x' )

5 sup ][ <x , x'> £ e({x }) < » .

x'>0

Therefore < £ x : a is a f ini te subset of N> i s a topologically

bounded, directed (s) subset of E and so converges by the monotone

https://doi.org/10.1017/S0004972700043835 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043835


244 David A. Birnbaum

convergence property. Hence {x } is summable.

(2)- implies (3). Let {x } be an increasing, topologically bounded

sequence in E . Without loss of generality we can assume that . x 5 0

for all n . Define y = x - x , (where x,= 0 ) . Then

n n w1 * 0 '
y = x - x , (where x , = 0 ) .
n n w-1 *• 0 '

k k
1 y-m~ 1 x - x = xv a n d s o f o r 0 £ x ' £ £ ' we have that

n=l « = 1 n M " 1 K

< fsup llx l|]||x'|| <« .

This is true for a l l k so that the sequence \y } is weakly summable and

CO

hence summable by (2). Since E is complete, £ y exists, that is,
n=l n

the sequence {a;"} converges to some x C E , and x = sup{x } since the

cone in E is closed.

(3) implies ( l ) . Assume that E does not have the monotone

convergence property. Then there exists a topologically bounded, directed

(S) net {x : a U ) such that a > 3 if and only if x > x. and such

that {x } does not converge. Hence there is a 6 > 0 such that there is

no a_ € A with the property that llx -xo|| < 6 for all a, 3 > â  . Let0 dp u

an € A and choose a. > a. such that ||x -x || > — . Now choose
1 d. 1 CX2 Oil 2

O.- > 0t_ such that ||x -x || 2 — . Continuing in this way we get a

monotone increasing, topologically bounded sequence \x \ that does not
n'

converge.

PROPOSITION 4.3. A Banaeh lattice G with Property II has the

monotone convergence property.

Proof. Let \x } be a weakly summable positive sequence in G . By

(1.3-5) in [72], (X x ) is summable for each {X } € c and so we can
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GO

define a map T : c •*• G by 2"({X }) = \ X x . T is continuous since
n=l

sup y X x = sup sup ( I X x , x 1 )
H{XM}||<1 «n=l " M | 1 | | {XJ | | a Hx'llsi ' W n n X |

00

£ s u p I | < x x ' > |

21 i s positive since {x } is posi t ive, and hence T i s majorizing since

a i s an 4M-space. Therefore, by Property I I , T i s absolutely

majorizing and hence weakly compact.

Let V be the unit ba l l in a . Then T(U) i s weakly re la t ive ly

compact and contains the net A = \ £ x : o is a f in i te subset of N> .

Hence every subnet of A contains a convergent subnet which necessarily

must converge to sup/1 ( [ ' 0 ] , Chapter 2, (3.1))- By a standard property

of net convergence th is implies that A converges to supX for a(G, G')

and hence for the norm topology of G by [70], Chapter 2, (3 .^) . I t

follows that {x } is summable and so G has the monotone convergence

property by Proposition U.2.

In an j4L-space every summable sequence i s absolutely summable. A

Banach l a t t i c e with Property I I has a weaker property. In order to

describe th is property we need the following defini t ions.

DEFINITIONS (see [ /3]) . A sequence {x } in a normed space E i s

CO

c a l l e d {weakly) psimruble (p > l ) i f £ | < x , x ' > | ^ < » f o r a l l

x ' € E' . {x } i s called absolutely p-surrmable i f I \\x ||^ < °° . A
n=l

continuous l inear map T from a normed space E into a normed space F

i s called absolutely p-swmable i f T maps p-summable sequences into

absolutely p-summable sequences.

PROPOSITION 4.4. Every positive summable sequence in a Banach
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lattice G with Property II is absolutely 2-summable.

Proof. Let {x } be a positive summable sequence in G , l e t

CO

x = 2. x , and consider the /4M-space G . The sequence [x } i s
n=l x n

weakly summable in G . For, l e t a € G' , a > 0 . Then

fe k
I | < x , a)\ = I <xn, a>

M = 1 n = l

k

~ \ 1 Xy,' a ) - (x> a ) •
Vi '

S i n c e k i s a r b i t r a r y i t f o l l o w s t h a t j[ | < x , a > | < °° a n d s o { x } i s
n = l n n

weakly summable in G . Therefore {x } i s 2-summable in G .

Consider the inclusion map I : G -*• G . As we have seen before in

Proposition ^ . 2 , J i s absolutely majorizing and hence J can be factored

through a Hilbert space H , that i s , there exist continuous l inear maps

J : G •*• H and / „ : H -*• G such that the following diagram commutes;
•L 2C 2

By [ 5 ] , (U.3), J i s absolutely 2-summable. Therefore I i s absolutely

2-summable and so {i~(x ) } = {x } is absolutely 2-summable in G .

EXAMPLE 4 .5 . lP[O, l ] , l < p i » , does not have Property I I . For

p = °° th i s follows immediately since L [0, 1] does not have the monotone

convergence property. For p < °° we consider two cases. F i r s t assume

tha t p > 2 . Let \E } be a sequence of disjoint sets of positive

measure. Let <f> (x) be that positive multiple of the character is t ic

function of E such that
j |ij> ( x ) p = 1 . Choose a sequence {a }
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r 2 v P
such that a > 0 , 2, a = °° > a n d 1 " < °° • Then the series

n n=l n=l n

00

\ a <j) (x) converges unconditionally in L [0, l ] but

2/p

I Ha • (xJa • (
n=l w = l

f lv»w

= I «2 = » •
-• wn=\

Hence lr[O, l ] cannot have Property I I by Proposition h.k.

Now assume that 1 < p - 2 and l e t a be such that — + — = l .

p q

Suppose on the contrary that £r"[0, l] does have Property II. Let

T : I •*• I be a nonregular map (see [70], pp. 171-172). We note that for

2 v
r > 1 , I is isomorphic to the complemented subspace of L [0, l]

generated by the Rademacher functions and, moreover, this isomorphism sends

the nth unit vector in I into the nth Rademacher function in L [0, l]

(see [9]). So, let S : I2 -*• Lq[0, l] be this isomorphism and let

R : L"[Q, l] •+ I be a continuous projection. Then the map T can be

factored as

where I i s the continuous, positive injection of £ [0, l ] into

lP[O, l ] which exists since q > p . Since we are assuming that lP[O, l ]

has Property I I , T o R i s a regular map and S i s a regular map by

Proposition 3.5- Hence T=ToRoIoS i s regular, a contradiction.

5. The atomic case

DEFINITIONS. A posi t ive element x in a vector l a t t i c e i s called an

atom if 0 £ y < x implies that y = ax for some a € [0, l ] . An order
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complete vector la t t ice E is called atomic if the band generated by the

atoms is equal to E .

The Tp spaces, 1 £ p < <*> , are examples of atomic lat t ices.

In this section we prove that if G is a Banach lattice with Property

I I , and, in addition, G is atomic, then G is isomorphic as a Banach

lat t ice to I (F) for some index set F .

Firs t , suppose that G is any Banach lat t ice with Property II and

that \x } is a positive summable sequence in G that is disjoint; that

i s , x Ax = 0 for n # m . Define the functional x1' on L.H.fx^}

(where L.H. denotes linear hull) by

where, of course, a = 0 for all but a finite number of n . Then x'

is continuous on L.H.{x } since

1 m'" m

= y a x \\\ = I a xIII n " I II II n n

the next to last equality resulting from the fact that the x 's are

disjoint. I t follows that each x' can be extended to a continuous linear

functional x ' of norm 1 on X = L.H.Ix } .rn n

I f we def ine z = x /\\x || , then {z , x ' } i s a b io r thogona l system

( t h a t i s , < 3 , x ' > = 6 ) i n X . Moreover, {z } i s an uncond i t iona l

oo

basis for X such that if £ a z is convergent in X then

oo

r 2
> a < » . To see t h i s define U on AT by

„_, n m
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m
if (i*\ ~~ i C **• ' p i ? i* f y

m n=l n "

V is continuous since x1 is continuous for each n and if
m n

I anzn € h.E.{zn} = L.H.{xn} then

\r n nil

Since U [z ) = s_ i t follows that ||y II = 1 . It now follows from [7],

Corollary 3, p. 31, that {z } is a basis for X .

oo

I f x Z X and x = 7 a s t h e n a = < x , x 1 > f o r a l l n and so
nil n n n n

oo

x = \ <x, x'>a . Then the disjointness of the z 's and continuity of
n=l

00

t h e l a t t i c e o p e r a t i o n s i m p l y t h a t | x | = £ l ^ x , x ' ) | 2 . H e n c e , g i v e n

6 > 0 there exists an nQ such that

n=nQ

If a is any finite subset of N such that a is disjoint from

{l, 2, ..., nQ] then

111 "• *«"J * 1.1 "- *»"*«

< 6 .

i0
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H e n c e , £ <x, x'>z c o n v e r g e s u n c o n d i t i o n a l l y t o x , £ | < x , s: '>|j3
«=1 n n n=l n n

c o n v e r g e s u n c o n d i t i o n a l l y t o | x | , and i t f o l l o w s from P r o p o s i t i o n k.k

t h a t

I ||<x, i ' ) z ||2 = 5" ||cx z ||f^ n n" f; " „ nii

5 7 la
L I

I2
I <

We make use of these results in the following proposition.

PROPOSITION 5.1. Suppose that G is a Banach lattice with Property

II and that {x } is a positive, disjoint, summable sequence in G . If

X = L.H.{x } is complemented in G then {x } is absolutely swmable.

Proof. Let P be a continuous projection of G onto X . By the

considerations preceding the statement of this proposition, we can define a

map T : X •*• I2 by

OO

y <x x')z
=1 n n

A simple application of the Closed Graph Theorem shows that T i s

continuous (since convergence implies coordinate convergence in X and in

I ) . Let R : I •*• L [0, l ] be the isomorphism that sends e into the

nth Rademacher function <f> . If S = R o T o p , then S : G + ^ [ O , l ]

and S(x ) = ||x l|((> . Moreover, since G has Property I I , S i s a

regular map and hence S i s order summable. Therefore, the posit ive

sequence {x } gets mapped into the absolutely summable sequence

{||x ||<J> } . Since ||(f> || = 1 , i t follows that
L

I ii* ii = y hi* u < ~
n=l " n=l " n n"

and so {x } is absolutely summable.

COROLLARY 5.2. Suppose that G is a Banach lattice with Property II
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and that {x } is a positive, disjoint, sunmable sequence of atoms in G .

Then {x } is absolutely Burnable.

Proof. First note that in Banach lattices E with the monotone

convergence property the closure of a lattice ideal is a band. For, let L

be a lattice ideal in E and let x > 0 be an element of the band

generated by L . Then x = sup{# € L : 0 S y < x} . The set

{y € L : 0 - y - x} is directed (-) , and so by the monotone convergence

property its filter of sections converges to x . Therefore x is in the

closure of L .

If we now consider our original sequence {x } then L.H.{x } is a

k
l a t t i c e i d e a l i n G . F o r i f 0 £ j / 5 £ a x , t h e n a 5 0 a n d

k
u = ii A > a x

n=l n n

= VI A [ c t X V O t i C V » , . V C t x l

= I 6 x d L.H.{x } ,
nil n n

since each x is an atom. Therefore X = L.H.{x } is a band in G and

so is complemented in G by [JO], Chapter 2, (U.9). The result now

follows from Proposition 5.1.

THEOREM 5.3. If G is an atomic Banach lattice with Property II

then G is order and topologically isomorphic to the Banach lattice I (V)

for some index set T .

Proof. By Zorn's Lemma there exists a maximal, disjoint collection

{z : a i A] of atoms of norm one. G is equal to the band generated by

the [s } and, since L.H.{z } is a lattice ideal, if x > 0 in G then

x = svp{y € L.H.JzJ : 0 5 y < x} .

By the monotone convergence property the filter of sections of

{y € L.H.{s } : 0 S y S x} converges to x and so, since G is a Banach
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space, there exis ts a sequence {y } € L.H.fg } such that y •* x . I t

follows for each x 5: 0 in G , and hence for each x in G , that x

i s in the closure of the l inear hu l l of a countable number of the {z } .

Then, by the methods s imilar to those used in the remarks preceding

Proposition 5 . 1 , i t is easy to see that {z : a € A} i s an unconditional

bas is for G and for each x i G , x = \ a z where a l l but a
a<L4 a a

countable number of the a ' s are zero. Moreover, i t follows from
a

Corollary 5.2 tha t \ a z is absolutely suramable and so \ \a \ < » .

Hence we may define a map T : G •* I (A) by T{zA = e , where e i s

the oth unit vector in I (T) . T i s clearly a posi t ive , one-to-one,

onto map. The continuity of T follows from the Closed Graph Theorem and

the fact tha t in G and in I {A) convergence implies coordinate

convergence. Hence T i s an isomorphism by the Open Mapping Theorem.

COROLLARY 5.4. Suppose that G ie a Banach lattice with Property

I I . If G has atoms then G has a aomptemented subspaae that is order

isomorphio to an Z (D for some index eet T .

Proof. Let G^ be the band in G generated by the atoms and le t

P : G -*• G.. be the canonical, posit ive, continuous band projection. Let F

be a Banach l a t t i c e and T € '-(ff,, F) . Then T ° P i s preregular and so

T = T ° P o I i s preregular where I : G. •*• G i s the inclusion map.

Therefore, G. has Property I I . The result now follows from Theorem 5-3<.

COROLLARY 5.5. T? , i < p < ° » has neither Property I nor Property

I I .

We conjecture that any Banach l a t t i ce with Property I I i s isomorphic

as a Banach l a t t i c e to an A£-space.
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