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Preregular maps between
Banach lattices

David A. Birnbaum

A continuous linear map from a Banach lattice E into a Banach
lattice F 1is preregular if it is the difference of positive
continuous linear maps from £ into the bidual F" of P .
This paper characterizes Banach lattices B with either of the

following properties:

(1) for any Banach lattice E , each map in L(E, B) is
preregular;

(2) for any Banach lattice F , each map in L(B, F) is
preregular.

It is shown that B satisfies (1) (respectively (2)) if and: only
if B' satisfies (2) (respectively (1)). Several order
properties of a Banach lattice satisfying (2) are discussed and
it is shown that if B satisfies (2) and if B is also an

atomic vector lattice then B 1is isomorphic as a Banach lattice

to Zl(T) for some index set T .

1. Introduction

The following natural question arises in the theory of Banach
lattices: Given Banach lattices £ and F , is each map in the space
L(E, F) of continuous linear maps from E into F the difference of
positive (continuous) linear maps? It is known that if F is a C(X) for
X an extremally disconnected, compact Hausdorff space X or if E is an

AL-space and F has the monotone convergence property then the answer to
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this question is affirmative ([10], Chapter L, (3.7) and (3.8)). On the

2, 12) contains maps that are not the difference of

other hand, L(Z
positive linear maps, ([10], Chapter 4, (3.3)). Schlotterbeck [16] has

shown that if F is an AM-space or if FE is an AL-space then each map
in L(E, F) is the difference of positive linear maps into the bidual Ff'

of F .

The main goal of this paper is to characterize (in §3) Banach lattices

B with either of the following properties.

PROPERTY 1. For any Banach lattice E , each map in L(E, B) is

the difference of positive linear maps of E into B" .

PROPERTY II. For any Banach lattice F , each map in L(B, F) is

the difference of positive linear maps of B into F" .

The characterizations that we obtain indicate that such spaces are
similar to AM- and AL-spaces. In particular, we show that a Banach
lattice has Property I (respectively Property II) if and only if B' has
Property 1I (respectively Property I).

In §4, we study some order properties of a Banach lattice with
Property II. We also show that Lp[o, 1] , 1 < p < » , possesses neither

Property I nor Property II. Finally in 85 we show that with the additional

assumption that a Banach lattice G is an atomic lattice, G is

isomorphic as a Banach lattice to Zl(I‘) for some index set T whenever
G has Property II.

2. Preliminary material

For general terminology and notation concerning functional analysis we
refer the reader to [15]) while our reference for ordered locally convex

spaces will be [10].

By a map between Banach spaces we will always mean a continuous linear
map. A sequence in a Banach space is summable (respectively absolutely
summable) if it is unconditionally convergent (respectively absolutely

convergent).

A map from a Banach lattice E into a Banach space F is order

swnmmable if it maps positive summable sequences into absolutely summable

https://doi.org/10.1017/50004972700043835 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043835

Banach lattices 233

sequences. S+(E, F) denotes the space of order summable maps from E
into F . A map from a Banach space into a Banach lattice is majorizing if
its adjoint is order summeble. Majorizing maps can also be defined as maps
that take null sequences into order bounded sets; (see [16], Chapter 1,
and [4]).

A map from a Banach space E into a Banach space F is absolutely
summable if it maps summable -sequences into absolutely summable seguences.
The space of absolutely summable maps of E into F 1is denoted by
S(E, F) . A map between Banach spaces is absolutely majorizing (hyper-
majorizing in [16]) if its adjoint is absolutely summsble. The following
results characterize these types of maps. For proofs see [16], (3.5),

(3.6),and (3.7), or [61, (6.6), (6.7),and (6.8).

PROPOSITION 2.1. If E and F are Banach spaces and if
T € L(E, F) , then the following statements are equivalent:

(1) T <is absolutely swmmable;
(2) T' <4is absolutely majorizing;

(3) for every Banach lattice H and S € L(H,E), T oS is

order summable;

(4) for each S ¢ L[co, E) » T oS 1is order swnmable.

PROPOSITION 2.2. If E and F are Banach spaces and if

T € L(E, F) , then the following statements are equivalent:

(1) T <is absolutely majorizing;

(2) T' 4is absolutely swmmable;

(3) for every Banach lattice H and S € L(F,H) , S° T 4is
majorizing;

(4) for every S € L(F, Zl) » S °T is majorizing.

Absolutely summable and absolutely majorizing maps can be factored

through Hilbert spaces ([16], (3.8)) and so are weakly compact.

We need the following four topologies on the tensor product E® F of

two Banach spaces E and F .

(i) E éﬂ F is the completion of ‘E @ F for the norm

https://doi.org/10.1017/50004972700043835 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043835

234 David A. Birnbaum

n n
nm;=infL; e My w= § x-®y.}-
.=l 1 1 'L"'—'l 1 1

(ii) E @E F 1is the completion of EQ® F for the norm

n

Il = swp{| 1 oo oy s et em lel =1, ep, Il = )
=1
n

where u = Z z; ® Y; is any representation of u € EQF .
i=1

(iii) E éo F 1is the completion of E @ F for the norm

n
|1, =iostus

| 1 el

n
llul = inf{ sup tu= ) =z, @y.} .
=1t

e.|=1 =1
Z

(iv) If E 1is also a Banach lattice with cone X then E @Iol F is

the completion of EF @ F for the norm

n
T u= Z z; @y, and xz, €K

1=1

lel) = inf{

n

Yoxdly

=1 ©°
for 7 =1, ...,n}.

Jacobs [4] has shown that T = Ty = T|0] = T, s that
E® F)' =S(E, F') , and that (EQ® F)' =5 (E, F') . Moreover, for
o o] +

maps T ¢ S+(E’, F) , the normof T in (E @lol F)' is given by

n n
ol "(T) = inf{M : z IITx‘LH < Msup z |(xi, x|
=1 1=1

for all finite sets {x s sees xn} c K} .
Iet E and F be Banach lattices with cones K and H

respectively. In E ® F define the projective cone Kp by

n
Kp = {121 x; ® y; ¢ % €K, Y, 3 H} . Then it is easy to see that for the

dual system <(F §|°| F, S+(E’, F')) , ip’ equals the cone of positive maps
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in S,(E, F') . It follows from the definition of the dual norm |o|’
that this latter cone is normal in S+(E', F') for the Iol '~topology.
Since this cone is also generating in S+(E', F') (£161, (2.2)), it follows
from [101, Chapter 2, (1.22), that Zp is normal and generating in -
E élOl F .

If E and F are Banach lattices and if T € I{E, F}) , then T is

regular (respectively preregular) if T is the difference of positive

linear maps of E into F (respectively E into F" ).
If E and F are Banach spaces and T € L(E, F) then T is
integral if the bilinear form bT defined on E x F' by

bT(x, y') =Tz, y")

is an element of (E ®€ F')' . Integral maps are both absolutely summable

and absolutely majorizing. For more information see [16], Chapter 3, or

[6], Chapters 5 and 6.

A Banach lattice F 1is an AM-space if z,y €F , x,y =20 , imply
that flovyll = llzll v llyll . A Banach lattice E is an AL-space if
z,y €E, z,y >0 imply that |lx+yll = [fzfl + llyll . If F is an
AL-space then F ®0 F=F @8 F for all Banach spaces E (for a proof of
this result see [6], (6.3)).

The following characterizations of AM~ and AL-spaces (see [16],
Chapters 1 and 4) are included so that we may compare them with our

results, Theorems 3.3 and 3.7.

PROPOSITION 2.3. The following statements about a Banach lattice E

are equivalent:
(1) E 1is isomorphic as a Banach lattice to an AM-gpace;
(2) every null sequence in E is majorized;

(3) every order summable map from E into a Banach space is
integral.

PROPOSITION 2.4. The following statements about a Banach lattice E

are equivalent:
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(1) E <s isomorphic as a Banach lattice to an AL-space;

(2) every positive summable sequence in E 1ig absolutely
summab le;

(3) every majorizing map from a Banach space into E 1is
integral.

If E 1is a Banach lattice and 0 = x € E we denote by Ex the

linear hull of the order interval [-x, x] with [-x, ] as unit ball.

If we order Em by restricting the order on Z then E:c is an AM-space.

3. Preregular maps

In this section we characterize Banach lattices with Property I or
Property II and show that Property I and Property II are dual to each

other.

DEFINITION. If E 4is a Banach space, then Zl[E'] will denote the

space of summable sequences in E with the norm

o«

- (z_, =" .
e({=,}) i n£1 [z, ="

Pietsch {14] has shown that Zl[E] is isomorphic to T @E E . If,

in addition, FE 1is a Banach lattice, then this isomorphism is an order

isomorphism where we consider the cone ( of positive summeble sequences
in Zl[E] and the closure ip of the projective cone in Zl @8 E . In

this case the norm

o0
e({z }) = s ) K=z, =]
n le'fl<t n=2 7
z'>0

is equivalent to the € norm.

LEMMA 3.1. If E +is a Banach lattice then [Zl[E], €) 1is a vector
lattice 1f and only if every summable sequence in E 1is the difference of

positive sumnable sequences. In this case, (Zl[E'], C) is a Banach
lattice.
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Proof. Necessity is clear, so suppose that for every {mn} € Zl[E] .

{xn} = {yn} - {zn} where {yn} and {zn} are positive summable
sequences. Since 0 = x; = yn , it easily follows that {x;} is summable.

+ +
Therefore, {xn} = {xn} and Zl[E] is a vector lattice.

When Z}[E] is a vector lattice, the € norm is clearly monotone on

the cone C and so Zl[E] is a Banach lattice by [81, (8.4).
EXAMPLES 3.2. 7% @L 21 is not a vector lattice. For if it were,

then every summable sequence in Zl would be the difference of positive

summable sequences. But then every summable sequence in Zl would be

absolutely summable (by Proposition 2.4) which would contradict the

Dvoretzky~Rogers Theorem.

If X is a compact Hausdorff space, then Zl[C(X)} is a vector
lattice. This is contained in Remarks 3.4, but can easily be shown
directly by noting that 2t @2 C(X) 1is order and topologically isomorphic
to C(X, Zl) , the space of continuous functions from X into Zl , and
that the cone of positive functions in C(X, Zl] is a lattice cone.

We now characterize Banach lattices with Property I.

THEOREM 3.3. If H <is a Banach lattice with cone K then the
following assertions about H are equivalent:

(1) every swmmable sequence in H 1is the difference of positive

summable sequences;
(2) (Zl @L H, Kp] is a vector lattice;

(3) H has Property 1, that is, every map from a Banach lattice
into H 1is preregular;

(%) each map in L{e,, H) is preregular;

(5) every order swmmable map from H into a Banach space is
absolutely summable.
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Proof. That (1) is equivalent to (2) follows from Lemma 3.1 and that

(3) implies (4) is clear.

(2) implies (3). Let Z be a Banach lattice and T € L(E, H)
Since H" is a Banach lattice all, positive linear maps from E into #"

are continuous ([703, Chapter 2, (2.16)),and so it suffices to show that

+
T : E > H" exists. To do this we must show that for each zx € E ,

x =2 0 , the set
k + k
Bp=yl (=) 2= ] =, @ €K for all n}
=1 n=1
has a supremum in H" ; (see [10], Chapter 2, Section 2, equation (9)).

By Lemma 3.1, Zl ®€ H 1is a Banach lattice and hence the map

¢ : A ®€ a1t ®e H defined by ¢({yn}) = {y:;} is continuous. Let

(e

A ®€ H > H be defined by ‘P({yn}) = Y, - Then Y is continuous,
=]

since

sup |1 (y,,y"
ly'fl<a 'n=2
swo L Ky, y"l
ly 'lI=1 n=1

¢o({y,})

I ({11

IA

For each 0 = x € E , define

1
Ax={{xn} € I7[E] : for some k , %, =0 for n = k+l ,

k
x =0 for all 7n and z x = .'x:} .
n =1 ™

Then for {:L‘n} € Ax N

E{xn} = sup Z <xn’ z' = =l .
z'lls1 n=1
x'>0
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Therefore, the set Ax is bounded in ! 58 E and hence the set

k
[P0 (187) ](4x) = (ﬂzl ()" : [} € Ax} -5

is topologically bounded in H . A standard argument using the
decomposition lemma shows that B:c is also directed (=) . By [10],

Chapter L4, (1.8), H" is boundedly order complete (tha.t is, every

topologically bounded, directed (<) subset has a supremum) and so B

has a supremum in H" .

(L) implies (5). Suppose that F is a Banach space, that T : H > F

is order summable and that S € L(co, H) . Then S = 5, - S2 where

OSSl, S, EL(G,H"] . Therefore, T"oS=T"°Sl-T"052 is

2
order summable and hence T" 1is absolutely summable by Proposition 2.1.

It follows from Propositions 2.1 and 2.2 that I is absolutely summable.
(5) implies (2). If F 1is a Banach space, then
(#e, F' =5, F) =58 F) = @# B F)'.

Since O and IGI are both norm topologies it follows that o = |0| .

Hence, in particular,

1,5 1 _ . 41
H@lolz_ﬁ@oz_y@ez.

Therefore, by the discussion in §2, the cone Ep is generating in Zl ée H
and so the latter space is a vector lattice.
This completes the proof of Theorem 3.3.

REMARKS 3.4, (1) It follows from the proof of Theorem 3.3 that if
H is boundedly order complete (for example, if H is a dual Banach
lattice and satisfies any of the conditions of Theorem 3.3) then each map
in ‘L(E, H) 1is regular and so L(E, H) is a vector lattice for every
Banach lattice F .

(2) 1If H is an AM-space then H has Property II. This follows
from [10}, Chapter 4, (3.7), and the fact that H is isomorphic as a

Banach lattice to a ((X) for a stonean space X .
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(3) In Theorem 3.3, (2) is equivalent to (3) in more general

circumstances. In particular, if H is a Fréchet lattice such that H/

B
is barrelled or such that H is boundedly order complete then this

equivalence holds. If {Hn} is a sequence of such spaces with Property I

(o]
then one can show that | I Hn is also a Frechet lattice with Property I.
n=1

o0
Therefore, | l C(Xn) , Where each Xn is a compact, Hausdorff space, is
n=1

an example of a Fréchet lattice with Property I.

(k) If H is a nuclear Fréchet lattice then 1 ®e =11 @_ﬂ H
vwhich equals the space of a@bsolutely summable sequences in H ([14]). The
latter space is a vector lattice and so Zl 56 H is a vector lattice.

Since Hé is barrelled, it follows that H has Property I.

(5) The characterization in Proposition 2.3 of an AM-space indicates

that a Banach lattice with Property I is similar to an AM-space.
We now show that Properties I and IT are dual to each other.

PROPOSITION 3.5. 4 Banach lattice B has Property II (respectively
Property I) if and only if its dual B' has Property I (respectively
Property II).

Proof. B has Property II implies B' has Property I. Suppose that
E 1is a Banach lattice and that T € L{(E, B') . Then T' : B" » E' and
the map S = T'IB : B+ E' is regular,since B has Property II.

Therefore, S' : E" + B' 1is regular. If z € E and y € B then
(S'x, y) =z, Sy) ={x, T'y) =(Tz, y) .

Therefore, S']E =T and hence T 1is regular.

B' has Property I implies B has Property II. Suppose that £ 1is a
Banach lattice and that T € L(B, E) . Then T' : E' + B' 1is regular and
so T" : B" » E" is regular. Therefore, T = T"|B is preregular.

B has Property I implies B' has Property II. We first show that

every majorizing map into B' is gbsolutely majorizing. Let E be a
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Banach space and S € L(E, B') be majorizing. Then S§' : B" + E' is

order summable and so I = S'lB : B+ E' is order summable and hence

absolutely summable since B has Property I. Therefore, T' : E" > B' is

ebsolutely majorizing and so, by Proposition 2.2, R o T' is majorizing
for all R € L(B', Zl] . Hence, (ROT')|E =Ro (T']E] is majorizing.
Since this is true for all R € L(B', 2%) , Proposition 2.2 implies that
T'IE =S is absolutely majorizing.

We now show that B" has Property I. This will imply that B' has
Property II by an earlier part of this theorem. By Theorem 3.3 it is

enough to show that L(co, B") is a vector lattice and to do this it
suffices to show that the projective cone in co @% B' is normal. Since

, @% B' = B' @% e, ,this is equivalent to showing that L(B', Zl) is a

vector lattice. So, let T € L(B', Zl) . To see that T exists in
L(8', 1) 1let z €B', 20, and let B! be the linear hull of
[-x, ] with unit ball [-z, ] . Let I : B, > B' be the inclusion map.
Since B; is an AM-space and I is a positive map, I is majorizing and

hence absolutely majorizing by what we have just proved about B' .

Proposition 2.2 thus implies that T o I is majorizing. It follows that

T o I([-z, x]) = T([~x, z]) is bounded sbove in I' (see [161, (1.5)).
Therefore, T+ exists and is necessarily continuous. Since T was chosen

arbitrarily in L(B', Zl) , it follows that L(B', Zl) is a vector

lattice.

B' has Property II implies B has Property I. Suppose that E 1is a
Banach lattice and T € L(E, B) . Then T' : B' - E' is regular and so
7" : E" > B" is regular. Therefore, T”|E = T 1is preregular.

COROLLARY 3.6. If H <s a Banach lattice with Property I then
L(g, H") is an order complete vector lattice for any Banach lattice E .

Proof. This follows from Proposition 3.5, (3.4) of Chapter L4 in [10],
and the fact that there is a positive continuous projection from H"" into
H” .
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THEOREM 3.7. If G is a Banach lattice then the following
assertions about G are equivalent:

(1) for any Banach lattice F , the closure of the projective
cone Kp 18 normal in G@n F ;

(2) Kp 18 normal in G®1r e i

(3) G has Property 11, that is, every map from G into a Banach
lattice ig preregular;
(b) e, Zl] 18 a vector lattice;

(5) every majorizing map from a Banach space into G 1is

absolutely majorizing.

Proof. That (1) implies (2), and that (2) is equivalent to (k) is
clear. If (2) holds then L(co, G') 1is a vector lattice and so G' has

Property I by Theorem 3.3. Therefore, G has Property II by Proposition
3.5. (3) easily implies (1) by [10], Chapter 2, (1.22), and so (1), (2),

(3), and (4) are equivalent.

Suppose that (3) holds, that E 1is a Banach space, and that
T : E>G is majorizing. Then T' : E' » G' 1is order summable and hence
absolutely summable since G' has Property I. Therefore, T is

absolutely majorizing and hence (5) holds. Finally, if (5) holds then one

can show that L(G, Zl) is a vector lattice in a manner similar to the

latter part of the proof of Proposition 3.5. This completes the proof.

We remark that Proposition 2.4 and Theorem 3.7 show that a Banach
lattice with Property II has a characterization similar to that of an

AL-space.

4. Order properties of a Banach lattice with Property II

PROPOSITION 4.1. A Banach lattice G with Property II has o(G, G')

compact order intervals.
Proof. Iet =0 in G . Since Gx is an AM-space, the inclusion
map I : Gx + G 1is majorizing, hence absolutely majorizing by Property II.

Therefore I([-x, x]) = [-x, z] is o(G, @') compact in G .
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DEFINITIONS. A sequence {x,} in a Banach space E is called weakly

oo
summable it ] [(z,, ') <o for all z' €E'
=1 -

It follows from the fact that weakly bounded sets in E are norm

bounded that if {xn} is a weakly summable sequence then

o©
e(fz,) = sw I [z, 2]
" lz' s =1 7
is finite. DNote that {zn} is summable in E if it is weakly summable

and the net {{xn}néo

: 0 is a finite subset of N} , where N is the set
of natural numbers, converges to {xn}:=1 for the e-topology on Zl[E] .
For more details see [12], Chapter 1.

A Banach lattice has the monotone convergence property if the filter
of sections of every directed (<) +topologically bounded subset converges

to its supremum.

PROPOSITION 4.2. For a Banach lattice E the following statements
are equivalent:

(1) E has the monotone convergence property;
(2) every positive weakly summable sequence is summable;

(3) every increasing, topologically bownded sequence converges

to its supremum.

Proof. (1) implies (2). Let {mh} be a positive weakly summable

sequence in E ., For each finite subset ¢ of N ,

|50 o, €L o )
nés flz'll<1 ‘néo ™

x'>0

a0
< suwp ) (z , z') < e({zn}) <o,
lz'|<1 n=1
x'>0

Therefore { Y z : 0 is a finite subset of N} is a topologically
né€c

bounded, directed (<) subset of E and so converges by the monotone
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convergence property. Hence {xn} is summable.

(2) implies (3). Let {z ]

sequence in E .

Without loss of generality we can assume that . x

be an increasing, topologically bounded

=20
n

for all 7n . Define Yy, =%, ~ z 1 (where z, = 0 ). Then
If k
y, = ) x -x =x, and so for 0 = x' € E' we have that
= TN I G S
k
ry o 1y < H
Iy 20 = (20 5 Dl
n=1
= (sup Nl lle'h < o .
n
This is true for all k so that the sequence {yn} is weakly summable and
oo
hence summable by (2). Since E is complete, z Y, exists, that is,
n=1
the sequence {x;} converges to some & ¢ E,and x = sup{xn} since the

cone in £ is closed.

(3) implies (1).
convergence property.
(2) net {xa :a €4}

Assume that E does not have the monotone
Then there exists a topologically bounded, directed
such that

o=B if and only if x, > &, and such

B

that {xa} does not converge. Hence there is a 6 > 0 such that there is

no o, € A with the property that llza-xell <§ for all a, B= o

0]

>
al € A and choose a2 al
o, > o, such that |z -z | = )
3 2 a3 o2 ~ 2

[
— D e
such that |z , X 1” z5 -

0 Let

Now choose

. Continuing in this way we get a

monotone increasing, topologically bounded sequence {xa } that does not
n

converge.

PROPOSITION 4.3. 4 Banach

monotone convergence property.

lattice G with Property II has the

Proof. let {xn} be a weakly summable positive sequence in G . By

(1.3.5) in [12], (Anxh) is summable for each {An} € c, and sowe can
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«©

define amap T : ¢, =+ G by T({A }] = Z Ax . T is continuous since
0 n n=1 nn
«© (e -]
sup ” I Az ” = sup sup < I Az, x'>|
A Hise Me= 770 A Fiist flzlls2 e P

- -]

= sw ) |z, 2"
flx'l<1 n=1

€lix <o,
(=,
T 1is positive since {zn} is positive,and hence T is majorizing since

2 is an AM-space. Therefore, by Property II, T 1is absolutely

majorizing and hence weskly compact.

let U be the unit ball in ey - Then T(U) is weakly relatively

compact and contains the net 4 = z z, 0 is a finite subset of N} .
€0

Hence every subnet of A4 contains a convergent subnet which necessarily
must converge to supd ([10], Chapter 2, (3.1)]. By a standard property
of net convergence this implies that 4 converges to supAd for o(G, G')
and hence for the norm topology of G by {10], Chapter 2, (3.4). It

follows that {zn} is summeble and so G has the monotone convergence
property by Proposition L.2.

In an AL-space every summable sequence is absolutely summable., A
Banach lattice with Property II has a weaker property. In order to

describe this property we need the following definitions.

DEFINITIONS (see [73]). A sequence {xn} in a normed space E is

called (weakly) p-swmmable (p = 1) if ] |(xn, =P <o for all
n=1
z' €E' . {:cn} is called absolutely p-swmmable it | Il:cnllp <eo, A
n=1

continuous linear map T from a normed space E into a normed space F
is called absolutely p-swmmable if T maps p-summable sequences into

absolutely p-summable sequences.

PROPOSITION 4.4. Every positive summable sequence in a Banach
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lattice G with Property 11 is absolutely 2-summble.

Proof. Iet {a:n} be a positive summable sequence in G , let

[+
x = z xn , and consider the AM-space Gx . The sequence {xn} is
n=1
weakly summable in G.'z: . Por, let a € G:;: , a>=0 . Then
) =)
Kz , a}| = (z , a)
n=1 s
(3
= x , a) =(x, a’
n=1 n
(o]
Since k 1is arbitrary it follows that ) |(:x:n, a)l <= and so {xn} is
n=1

weakly summable in Gx . Therefore {xn} is 2-summable in G.’z: .

Consider the inclusion map I : G.'z: -+ G . As we have seen before in

Proposition L.2, I is absolutely majorizing and hence I can be factored
through a Hilbert space H , that is, there exist continuous linear maps

Il : G:c + H and I2 : H~> G such that the following diagram commutes;
.

N /é

H

By [5]1, (4.3), I, is absolutely 2-summable. Therefore I 1is absolutely

2-summable and so {I[xn)} = {a:n} is absolutely 2-summable in G .

EXAMPLE 4.5. P[0, 1] , 1 <p < , does not have Property II. For

-]
p = © this follows immediately since L [0, 1] does not have the monotone
convergence property. For p <= we consider two cases. First assume

that p >2 . Let {En} be a sequence of disjoint sets of positive

measure., Let d)n(:z:) be that positive multiple of the characteristic

1
function of En such that f |¢n(:c)|p =1 . Choose a sequence {an}
0
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] <

such that a =20 , z a2 = o , and 2 & < o . Then the series
i n=1 " n=1 "

0
Z an¢n(x) converges unconditionally in Lp[O, 1] but
n=1

2/p

(=]

I llae, ()P

) .
|a o (x)lp
=1 n=1 IO nn

n
I~ 8

s 2
nZl an -

Hence P[0, 1] cannot have Property II by Proposition k. h.

[l

Now assume that 1 < p =2 and let q be such that + %-= 1.

-

Suppose on the contrary that Lp[O, 1] does have Property
2 2

I. Let

T : 1° > 1° be a nonregular map (see [10], pp. 171-172). We note that for

r
r>1, 72 is isomorphic to the complemented subspace of L [0, 1]

generated by the Rademacher functions and,moreover, this isomorphism sends
the nth unit vector in 72 into the #nth Rademacher function in Lr[O, 1]
(see {9]). So, let S : 2 » 00, 1] be this isomorphism and let

R : Lp[o, 1] » 12 be a continuous projection. Then the map T can be

factored as

2L, 2

ST

1o, 11 L Plo, 11 & 22

where I is the continuous, positive injection of Lq[O, 1] into

P[0, 1] which exists since q 2 p . Since we are assuming that Plo, 1]
has Property II, T o R is a regular map and S is a regular map by

Proposition 3.5. Hence T =T o Ro I oS 1is regular, a contradiction.

5. The atomic case

DEFINITIONS. A positive element &« in a vector lattice is called an

atom if 0 =y < x implies that y = axr for some a € (0, 1] . An order
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complete vector lattice F is called atomic if the band generated by the
atoms is equal to E .,
The Zp spaces, 1 = p <« , are examples of atomic lattices.

In this section we prove that if (¢ 1is a Banach lattice with Property

II, and, in addition, G 1is atomic, then G is isomorphic as a Banach
lattice to Zl(T) for some index set I .

First, suppose that G is any Banach lattice with Property II and

that {xn} is a positive summsble sequence in G that is disjoint; that
is, ® Az =0 for n #m . Define the functional x”" on L.H.{xn}

(where L.H. denotes linear hull) by
(ats T, )= ol

where, of course, Otn = 0 for all but a finite number of =n . Then ac”'l

is continuous on L.H.{xn_} since

e T 0,

oz |
la |z | = (DEENEN
[I2 el = [ o,

the next to last equality resulting from the fact that the :cn's are

1}

>

disjoint. It follows that each x';l can be extended to a continuous linear

functional .'z:"'l of norm 1 on X = L.H.{:cn} .

. - E .
If ve define z .'z:n/ll:z:nll , then {zn, xn} is a biorthogonal system

(that is, (zn, :x:"n) = Gnm ) in X . Moreover, {zn} is an unconditional
oo

basis for X such that if z anzn is convergent in X then
n=1

T 2

2 a <o _, To see this define U on X by

n=1 m
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m
- '
U (x) = ) (z,, x)z, , = €X.
n=1

Um is continuous since xé is continuous for each »n and if

) @z € L.H.{z } = LH.{z | then

”Um(z anzn]” = nzl OI'nzn"
) nzl |an|zn = ”z lanlzn”
= I2 uhzn“ )

Since Uﬁ(zm) =z, it follows that ”Um” =1 . It now follows from [7],

Corollary 3, p. 31, that {zn} is a basis for X .

Lo ]
If ©€X and x= } &z then o ={x, x') for all n and so
nn n n
n=1
e o]
z= 3 (z, m;>zn - Then the disjointness of the 2 's and continuity of
n=1
o 2]
the lattice operations imply that |z| = } [z, xé)|zn . Hence, given
=1
§ >0 there exists an n, such that
| 1
Y Ke, 2z | <5 .
e n' ' *n

o]

If o is any finite subset of N such that o is disjoint from

{1, 2, ..., no} then

" Y K, x;)|zn

” y (x, x;)zn“
neo nec

1A

@©
'
ungb (ERENRIEN

<$
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-] o
Hence, ) f{z, x')2_ converges unconditionally to zx , I Kz, =]z
nn n '“n
=1 n=1
converges unconditionally to |x| , and it follows from Proposition 4.k
that
! Iz, 2z I<= § oz |
el n “n nep M

o

I laf?<a,
n=1 n

1A

We make use of these results in the following proposition.

PROPOSITION 5.1. Suppose that G is a Banach lattice with Property
II and that {xn} is a positive, disjoint, summable sequence in G . If
X = L.H.{xnf is complemented in G then {xn} is absolutely summable.

Proof. Let P be a continuous projection of G onto X . By the

considerations preceding the statement of this proposition, we can define a
map T : X ~ 12 by

o
7| ) =z, xzz | = {{x, ')}
n=1 non n
A simple application of the Closed Graph Theorem shows that T is
continuous (since convergence implies coordinate convergence in X and in
Z2

12 ). let R : *’Ll[o, 1] be the isomorphism that sends e, into the

nth Rademacher function ¢n . If $=RoToP,then S : G~ Ll[o, 1]
and S(xn) = ”xn”¢n . Moreover, since G has Property II, S is a

regular map and hence S 1is order summable. Therefore, the positive

sequence {xn} gets mapped into the absolutely summable sequence

{”xn”¢n} . Since ”¢n”Ll =1 , it follows that

(o]

It = 1|l le,

n=1

<

and so {xh} is absolutely summable.

COROLLARY 5.2. Suppose that G +is a Banach lattice with Property II
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and that {xn} is a positive, disjoint, swmable sequence of atoms in G .

Then {xn} is absolutely summable.

Proof. First note that in Banach lattices E with the monotone
convergence property the closure of a lattice ideal is a band. For, let L
be a lattice ideal in £ and let x = 0 be an element of the band
generated by L . Then z = sup{ly €L : 0 =y <z} . The set
{y €L : 0=y =2} is directed (<), and so by the monotone convergence
property its filter of sections converges to x . Therefore x is in the

closure of L .

If we now consider our original sequence {xn} then L.H.{xh} is a

k
lattice ideal in ¢ . For if 0 <y = ) @ ,then o >0 and

n=1

k

y=y A Z @z
n=1
= A V .o V
y (al:zl v ooz, akmk)

roz ) v aeyz) v v agr)

1

k
nzl Bz, € L.H.{xn} 5

1
since each xn is an atom. Therefore X = L.H. xn is aband in G and

so is complemented in G by [10], Chapter 2, (4.9). The result now

follows from Proposition 5.1.

THEOREM 5.3. If G 4is an atomic Banach lattice with Property 11
then G 1is order and topologically isomorphic to the Banach lattice ALY
for some index set T .

Proof. By Zorn's Lemma there exists a maximal, disjoint collection

{za o € A} of atoms of norm one. G 1is equal to the band generated by

the {z,}] end, since L.H.{z,} is a lattice ideal, if x =0 in G then
z = suply € L.H.{za} :0<y=<gx}.

By the monotore convergence property the filter of sections of

{y € L.H.{za} : 0 <y =z} converges to x and so, since ¢ is a Banach
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space, there exists a sequence {yn} € L.H.{za} such that yn >z . It

follows for each £ =2 0 in G , and hence for each x in G , that =

is in the closure of the linear hull of a countable number of the {za}
Then, by the methods similar to those used in the remarks preceding

Proposition 5.1, it is easy to see that {za : o € A} is an unconditional

basis for G and for each x €G , x = Z a2, where all but a
€A

countable number of the aa's are zero. Moreover, it follows from

Corollary 5.2 that Z a z_ is absolutely summable and so 2 la | <.
aea *° asa

Hence we may define a map 7 : G > Zl(A) by T(za) = ea , Where e, is
the oth unit vector in Zl(T) . T is clearly a positive, one-to-one,
onto map. The continuity of 7T follows from the Closed Graph Theorem and

the fact that in G and in Zl(A) convergence implies coordinate

convergence. Hence T 1is an isomorphism by the Open Mapping Theorem.

COROLLARY 5.4. Suppose that G is a Banach lattice with Property
II. If G has atoms then G has a complemented subspace that i{s order

tgomorphic to an Zl(I‘) for some index set T .

Proof. Let Gl be the band in G generated by the atoms and let
P : 'G > Gl be the canonical, positive, continuous band projection. Let F
be a Banach lattice and T € L(Gl, F) . Then 7 o P 1is preregular and so
I'=ToPoI is preregular where I : Gl -+ G 1is the inclusion map.

Therefore, Gl has Property II. The result now follows from Theorem 5.3,

COROLLARY 5.5. 7P, 1 <p < o has neither Property I nor Property
II.

We conjecture that any Banach lattice with Property II is isomorphic

as a Banach lattice to an AL-space.
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