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Grain area as a statistical weight for polycrystal constituents
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ABSTRACT. By using recently developed automatic instruments for fabric and tex-
ture measurements on ice, both the c-axis orientation and area of the individual crystals
can be determined. Each grain can then be associated with its volume fraction, defined as
a function of its measured cross-sectional area, to describe the microstructure of a poly-
crystal. The relevance of this approach is studied using a three-dimensional microstruc-
ture obtained from the Potts model. In particular, the area weighting is compared to the
classical implicit equal weighting used by glaciologists, which assumes that all the grains
have the same volume fraction (discrete uniform distribution). Then, using the measure-
ments of c-axis orientation and crystal size performed on the North Greenland Icecore
Project (NorthGRIP) ice core, we compare area-weighted and equal-weighted fabrics.
All these comparisons are made with respect to the orientation tensor. According to the
ability of the Potts model to reproduce the ice microstructure, it is shown that using the
grain cross-sectional area to infer its volume fraction improves the description of the ac-

tual polycrystal fabric.

1. INTRODUCTION

This paper deals with the measurement of crystal orienta-
tion fabric and crystal area from ice thin sections. Stan-
dard thin-section measurements lead to orientation
densities in terms of the percentage of individual crystals
having various orientations. Kamb (1959) suggested, how-
ever, that interpretation of the observed fabric patterns
should logically deal with the relative volume of the vari-
ous orientations in the polycrystal. Kamb (1959) used the
Schmidt equal-area projection point diagram not only to
show the orientation of each crystal measured, but also to
indicate its approximate area. He replaced the classical
point of one orientation on the Schmidt diagram by three
symbols which indicated three different classes of grain
area. Because only a few, larger, grains were measured
manually, Kamb’s proposition did not become the Schmidt
diagram standard.

The use of some statistical parameters, such as the
strength of fabric or the orientation tensor (defined in Equa-
tion (10)), seems to complement the Schmidt diagrams, as it
gives a more quantitative description of the different fabric
patterns. Using automatic instruments for fabric and tex-
ture measurements on ice, it is easy to measure the cross-
sectional area of all the grains at the same time as their
orientation (Wang and Azuma, 1999; Wilen, 2000). There-
fore, following the idea of Kamb (1959), it seems natural to
use the area measured on the thin section as a statistical
weighting of the individual crystals. Note that in materials
science, fabric is traditionally defined in this manner, due to
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the automatic texture measurements developed earlier
(Kocks and others, 1959).

During the last 10 years, considerable effort has been de-
voted to the modelling of fabric evolution and induced ani-
sotropy of polycrystalline ice (Azuma and Goto-Azuma,
1996; Meyssonnier and Philip, 1996; Castelnau and others,
1998; Montagnat and Duval, 2000). Models relating micro-
structure to macroscopic behaviour have been developed
and have been used to reproduce the observed fabric in
some polar ice cores (Castelnau and others, 1998; Montag-
nat and Duval, 2000). Since the strain rates in polar ice are
very low, laboratory tests are not possible and the only way
to validate such models is to compare modelled and
observed fabrics by considering statistical parameters.
Therefore, one must try to obtain from the two-dimensional
(2-D) thin-section measurements the best description of the
actual ice fabric. We will show that the fabric description can
be improved by using the measured cross-sectional area of
the grain to infer its volume fraction.

The main assumption introduced is that the grain
volume can be determined from the measurement of the
2-D grain area, i.e. that the measured cross-sectional area
is the mean projected area of the grain. The bias introduced
by this assumption is difficult to quantify. For a polydis-
persed system of spheres, Underwood (1970) solved the
backward problem to pass from the distribution of a 2-D
section to the distribution of three-dimensional (3-D)
spheres, by performing the stereological transformation

_ XN

Ny = < (1)
7 Py Dj

where N is the number of grains having a diameter deter-
mined from grain volume in size class j and Dj is the diam-
eter determined from volume for size class j. The sum
> y N;}j, which represents the number per unit area of sec-
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tions in class size ¢ obtained from spheres of all possible sizes,
is a directly measurable quantity. The probability P; ; of a
thin section intersecting a sphere of diameter j to yield sec-
tions of diameter ¢ can be calculated analytically for a poly-
dispersed system of spheres (Underwood, 1970). Using
Equation (1) and 3-D computer simulations of grain
growth, Anderson and others (1989) showed that the grain-
size distribution obtained from the grain volume can be
inferred with excellent agreement with that obtained from
2-D area measurements when using a probability function
P;; derived for the pentagonal dodecahedron instead of the
sphere. Gay and Weiss (1999) argued that the most exact
method to derive true 3-D grain-growth kinetics from thin-
section analyses is to measure the exact (cross-sectional)
area of all the grains within the thin section.

For fabric measurements, we need to consider orienta-
tions as well as grain-size. The actual volume of each iso-
lated grain cannot be determined from its 2-D area
measurement: for example, a plane section can intersect
the centre of a small grain, yielding an apparently large
grain, and the tip of a large grain, yielding an apparently
smaller grain (Anderson and others, 1989). As suggested by
Underwood (1970), there is a higher probability that a large
area represents a large grain than that a small area repre-
sents a small grain. The probability density function P(D)
(the continuous form of F;; in Equation (1)) can be cal-
culated for most of the theoretical grain shapes as a function
of the ratio D/ Dy, of the diameter D observed in the cross-
section to the diameter Dp,x of the volume. As shown by
Anderson and others (1989), P(D) is non-uniform and
shows a peak value for 0.8 < D/ Dp,x <1. From this statistic-
al result, one would expect a better description of the actual
fabric by using area weighting instead of equal weighting.

This paper explores the use of grain area to infer the
volume fraction it represents in the whole polycrystal
sample. First, using a 3-D Potts model, a numerical 3-D
polycrystal is built and the area weighting is compared to
the actual volume fraction. Then, using both numerically
simulated and natural fabrics, we give some order of magni-
tude of the influence on the fabric description of an area
weighting instead of an equal weighting. To conclude, we
discuss the pertinence of using the measured cross-sectional
area of the grain for a volume-fraction definition.

2. VOLUME-FRACTION DEFINITIONS

In what follows, three different definitions of the volume-
fraction distribution f,';, where k= 1..N, are compared: the
actual volume-weighted fraction distribution fy, the equal-
weighted volume-fraction distribution f{ and the area-
weighted volume-fraction distribution f'.

The actual volume-weighted fraction f,y of grain num-
ber k is defined as its volume V;, over the whole volume V
occupied by the N grains of the polycrystal. We can then
define the actual volume-weighted (VW) fraction by

=
I
<=

(2)

The volume cannot be measured using thin sections. The
simplest and most commonly used solution is then to assume
that all the grains represent the same volume fraction, that
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is to use an equal-weighted (EW) volume fraction defined
by

== (3)

Another solution, explored in the present paper, is to assume
that the volume fraction of a crystal is a function of its cross-
sectional area fraction measured on the thin section. Then,
the area-weighted (AW) volume fraction should be written

a

[— @)
Zn:l A/@

where Ay, is the cross-sectional area of the crystal £k and acis

an exponent. If the measured grain area in the thin section

is the mean projected area of the grain, we should have the

following relationship:

Vi = B4, (5)

where (3 is a coefficient that is a function of the grain shape.
For example, 3 = 4/(3+/7) for a sphere, and 5= 0.653 for a
truncated octahedron (Underwood, 1970, p.90). In the next
section, we study the sensitivity of the area weighting to the
exponent « and try to find an optimal value for this expo-
nent. Note that the coefficient (3 disappears from the defini-
tion of the area weighting and when a =0 Equation (4)
reduces to the equal weighting (Equation (3)).

By definition, each of the three volume-fraction distribu-
tions VW (Equation (2)), EW(Equation (3)) and AW
(Equation (4)) verifies the following inequalities and equa-
tion:

N
0<fi<l forallk and » fr=1, (6)
k=1

where b is V, 0 or o, respectively.

3. POTTS MODEL

To compare the constant and measurable volume-fraction
distributions (Equations (3) and (4) respectively) to the ac-
tual distribution (Equation (2)), a 3-D microstructure is
needed. Unfortunately, this kind of measurement cannot be
made; only a model can give the relevant information. In
the upper part of an ice sheet, the microstructure evolution
is governed by the normal grain-growth process (Duval and
Lorius, 1980). Anderson and others (1989) showed that a 3-D
Potts model (Potts, 1952) properly reproduces the topologi-
cal, kinetic, grain-size distribution and morphological fea-
tures of normal grain growth. In this model, the
microstructure is mapped onto a 3-D cubic lattice.

Also, contiguous voxels with the same label indicate a
single grain whereas a grain boundary lies between voxels
with different labels. Note that the number of grains in the
whole cube is much larger than the number of labels, since
two different grains, as long as they are not neighbours, can
have the same label. The time calculation increases with the
number of labels, and for the present application we choose
324 possible labels. This choice is in agreement with Ander-
son and others (1989), who argued that this number must be
large enough (>48) to avoid impingement of grains having
the same label.

The driving force for grain growth in polycrystalline
materials is the decrease of the total grain boundary energy
within the material (Ralph, 1990). In the Potts model, the
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Fig. 1. Variation over the 301 cross-sections of the optimal value
of the exponent in Equation (4) that minimizes the relative
error ( Equation (8) ). The line represents the average of Qopt
for the cross-sections.

grain boundary energy is defined in terms of the lattice
voxel energy

Np(p)
Ei(p)=J Z (1- 651'5]')7 (7)

where J is a positive constant, S; corresponds to the label of
the lattice 4, 6 is the Kronecker delta, and the summation is
made until the third-order neighbour, i.e. for p=3 and
N, =26. The kinetic of the boundary motion is simulated
by a Monte Carlo technique. A voxel is randomly selected,
and then a new label number for this voxel is randomly
sampled over the 324 possibilities. Then the change in
energy linked to this new label is calculated according to
Equation (7). Only new labels giving AE < 0 are accepted.

For the application, the polycrystal is a cube of 400
pixels on each side and the grain growth evolution is
stopped when the mean grain area over the horizontal 400
cross-sections is similar to that observed in natural thin sec-
tions (approximately 300 grains in a thin section).
Assuming the shapes of the modelled grains are similar to
those of a natural ice sample, one should expect from these
results an objective comparison of the three definitions of
the volume fraction. Note that results for the intermediate
steps, with more grains in each cross-section, are similar to
those presented in this paper.

In what follows, just as for a natural ice thin section, the
grains that intersect a boundary of the cube are discounted.
Only the 301 central cross-sections (from 50 to 350) are
studied and, on those, only the grains which are not cut by
the boundary. The average number of non-intersecting
grains per cross-section is 218, with a minimum of 179 and
a maximum of 259. There is a total of 2784 non-intersecting
grains in the 301 studied cross-sections.
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Fig. 2. Variation over the 301 cross-sections of the relative error
O (fi) for the AW distribution (Equation (4)) o= aqpt
(thick solid line ), oe = 5/2 ( solid line ), o« = 1.0 ( dotted line)
and the EW distribution ( Equation (3) ) ( dashed lines ). For
the thick dashed line, the smallest grains (volume <64
pixels) have been neglected for the calculation of ®(f 2)

4. COMPARISON OF THE VOLUME-FRACTION
DEFINITIONS

In each cross-section, we calculate the relative error of the
volume-fraction distribution, defined by

Ns 1 £ _ £V
o =y L ©
=1

where Nj is the number of grains in the cross-section, fz is
one of the two volume-fraction distributions EW
(Equation (3)) or AW (Equation (4)) and f,y is the actual
volume fraction VW (Equation (2)).

Using the AW distribution (Equation (4)), the minimiza-
tion of the relative error (Equation (8)) as a function of the
exponent  allows the calculation of the optimal value cps
in each cross-section. As shown in Figure 1, the optimal
value for the exponent « varies from 1.55 to 1.97, with an
average of 1.7 over the 301 cross-sections. For all the cross-
sections, the optimal value is greater than the theoretical
value of 3/2. In this simulation, the grain shape is isotropic
and we have verified that the results for the average of the
optimal exponent ayp are identical, whatever the direction
of the cross-sections.

Due to the large deformations undergone by polar ice,
the shape of crystals is not isotropic since they usually flat-
ten out as the depth increases (Gay and Weiss, 1999). There-
fore, one should expect to obtain different values of the
optimal exponent cyp¢ from vertical and horizontal thin
sections. Grains which have larger dimensions in the hori-
zontal plane than in the vertical plane will, on average,
overestimate the volume fraction determined by the area
measurements in a horizontal thin section, and under-
estimate it for a vertical thin section.

Figure 2 shows the variation of the relative error (Equa-
tion (8)) over the 301 cross-sections for the EW
(Equation (3)) and the AW (Equation (4)) with o= qqpt,
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Fig. 3. Relation between the actual volume fraction
1Y (Equation (2) ) and the AW fraction f2( Equation (4))
with o = 32 (circles) and the EW fraction ( Equation (3))
(crosses) for the grains of the cross-section number 200. The
line represents the equality fi = f,y T hus figure looks similar
Jor all the cross-sections.

a=3/2 and o= 1.0. The average of the relative error over
the 301 cross-sections of the AW is 59%, 63% and 109% for
0= Opt, o = 3/2 and o = 1.0 respectively. This large error of

2396 m
N =210

N =200

2633 m

N =212

about 60% must be compared to 1100% obtained for the
EW, which is approximately 18 times larger. As shown in
Figure 2, the variation of the relative error for the AW is
relatively constant, with a standard deviation of 4.5% for
opt and 6.0% for o= 3/2. For the EW, the standard devi-
ation of the relative error is much larger (100%) and some
peaks are seen on the curve. These are due to the presence of
a few very small (in volume) grains in the cross-section
leading to a very large error for those grains. If we exclude
these very small grains, by neglecting those with a volume
>64 pixels3, then the average relative error over the 301 sec-
tions decreases to 510%, still eight times larger than that
obtained for the AW with o = 3/2. Note that neglecting these
small grains does not affect the relative error obtained for
the AW since the actual volume fraction of a small (in
volume) grain is well approximated by its area weighting.

On the other hand, as shown in Figure 3 for the cross-
section number 200, we verify that the smaller the area of
the grain the more uncertain is the volume-fraction esti-
mate using the AW (Equation (4)). One way of reducing
the relative error (Equation (8)) should be to neglect the
smallest grains in the cross-section. If the grains for which
the area is <1% of the maximum area in the cross-section
are neglected, the main relative error (Equation (8)) de-
creases from 63% to 55% for o= 3/2. If we neglect grains
with area <10% of the maximum area the error is 37%,
but for each of the 301 cross-sections the number of studied
grains is then lower than half the total number of non-inter-
secting grains.

It is then necessary to choose a percentage value below
which the smallest grains are neglected, with a compromise

1873 m

N =211

2840 m
N =150

Fig. 4. Schmuidt diagrams of eight NorthGRIP fabrics. The circle area is proportional to the corresponding cross-sectional grain

area.
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Fig. 5. Variation over the 301 cross-sections of the diagonal terms of the orientation tensor for the VW fabric @V ( thick line ), the
AW fabric a®? ( solid line) and the EW fabric a® ( dashed line ). The straight lines represent the value of the actual orientation
tensor a” calculated on the whole polycrystal. The results are presented for one particular simulation of the isotropic fabric set (a)
(@), = Gy, = @y, = 1/3) and the anisotropic fabric set (b) (@Y, = 70,3, =20 and Gy, = 0.10).

between the number of grains studied and the accuracy of
their area providing a good approximation of the volume
fraction. Nevertheless, the mean relative error is still very
large and, for simplicity, one should use all the measurable
areas. On the cross-section number 200, about 2% of the
grains have an area <4 pixels, and they would certainly
not have been measured in a real ice thin section. Figure 3
also shows the equal compared to the actual volume-frac-
tion distribution.

According to these first results, the relative error on the
volume fraction estimated by the area measurements is
large (approximately 60%), but it is more than one order
of magnitude lower than that obtained using EW. For this
simulation, the value of the optimal exponent « is found to
be about 1.7, but as shown previously, the theoretical value
o = 3/2 leads to similar results. In what follows, the value of
the exponent o is fixed at its theoretical value o = 3/2 and we
now study the influence of the area weighting on the fabric
description.

5. INFLUENCE ON FABRIC DESCRIPTION

The fabric of a polycrystal consisting of N crystals is defined
by the N orientations of its grains weighted by the volume
fraction that they occupy in the whole polycrystal. Since the
ice single crystal is hexagonally symmetric about its ¢ axis,
its orientation in space can be described by using only the c-
axis unit vector c¥, perpendicular to the crystal basal plane.

The direction of the c-axis unit vector is defined by two
angles in the global reference {frame { R} linked to the poly-

https://doi.org/10.3189/172756504781830349 Published online by Cambridge University Press

crystal (or to the thin section): the colatitude 6 and the
longitude ¢t The definition of c* in the fixed reference
frame { R} is given by

= (cos y, sin b, sin @, sin 6, cos Qk)T, (9)

where ()T denotes the transpose.

Using the above notation, the fabric of a sample is
defined in terms of the N c-axis orientations (c*) and the
N volume fractions (). In what follows, a fabric will be de-
noted AW, EWor VW fabric when f,t is determined using fp
from Equation (3), f,i’/ ? from Equation (4) or the actual
weighting f,y from Equation (2), respectively.

In the present study, we compare the results obtained
from two categories of fabrics.

The first category is composed of artificial (numerically
obtained) fabrics constructed from different associations
of the volume-fraction distribution calculated from the
2784 non-intersecting grains and 2784 c-axis orienta-
tions. In order to have a statistical treatment of the
results, many random simulations of the 2784 c-axis
orientations were produced for both isotropic and aniso-
tropic fabrics.

The second category contains eight fabrics measured
with an automatic ice fabric analyzer from eight depths
of the North Greenland Icecore Project (NorthGRIP)
ice core (Wang and others, 2002). For each measurement,
around 200 crystals were arbitrarily selected to obtain
the c-axis orientations. The c-axis orientation results
were combined with microstructural results by match-
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Fig. 6. Cumulative probability distributions of the diagonal terms and the norm of the absolute error tensor ( Equation (11) ) for the
AW fabrics (solid lines) and the EW fabrics (dashed lines ). The results for two sets of simulations of the c-axus orientations are
represented: isotropic set defined by @\, = Qyy = Gys = 1/3 (thin lines), and anisotropic set defined by a); = 0.70,
Qg9 = 0.20, and d;% = 0.10 (thick lines ). The number of data for each set is then 1000 simulations X 301 cross-sections.

ing the crystal positions on image to superimpose the
microstructural information of the crystals selected for
the c-axis measurements (Wang and Azuma, 1999).

Figure 4 shows the Schmidt diagrams of the eight North-
GRIP fabrics. The area of the circles on the Schmidt dia-
grams is proportional to the measured cross-sectional area
of the grains. The eight NorthGRIP fabrics cover a large
range of types: quasi-random (depth 148 m), girdle-type
(depth 2040 m), equal girdle and cluster tendencies (depths
1328, 1873 and 2396 m) and cluster-type (depths 806, 2633
and 2840 m). From these measurements, both the orienta-
tion and the area of approximately 200 crystals were deter-
mined. In order to estimate the pertinence of the grain-size
as a weight, we now compare the results obtained w1th equal
weights f? (Equation (3)) and area weights fk (Equa-
tion (4)).

As suggested by Woodcock (1977), a good way to charac-
terize the essential features of an orientation distribution is
to use the orientation tensor a’ defined as:

N

Zfbc ®cF,

k=1

(10)

where b is either V, 3/2 or 0 and cF is given by Equation (9).
In the symmetry reference frame, @’ is a diagonal matrix
whose diagonal non-zero terms are the three eigenvalues.
The three base vectors of this symmetry reference frame
are the eigenvectors of @’. Note that the number of grains
N in Equation (10) is the number of grains in a given cross-
section, and only for b = V' can it be the total number of
grains in the whole polycrystal. In the latter case, the orien-
tation tensor will be noted @V , which is the actual orienta-
tion tensor of the whole polycrystal (all the non-intersecting
grains).

In what follows, the different fabrics are compared using
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the orientation tensor defined by Equation (10). In each of
the 301 cross-sections, we define the absolute error tensor ¥

Zfbckck_z ka;s"

where Nj is the number of grains in a cross-section and fz 18
one of the two volume-fraction distributions (Equation (4)
or (3)). Each component of ¥ in Equation (11) corresponds
to the absolute difference on the same component between
the orientation tensor calculated using the volume-weighted
fabric in the cross-section and that using either the AW or
the EW fabric.

For the first category of fabrics, we built two sets of 1000
random simulations of the c-axis orientations by imposing
fixed values of the orientation tensor components calculated
for the whole polycrystal: a fabric with @)} = @y, = @33 =
1/3 (termed the isotropic fabric set) and a fabric with a pre-
ferential orientation le = 0.70, d¥2 = 0.20 and d¥3 =0.10
(termed the anisotropic fabric set). For both sets, the non-

@i(f) = (11)

diagonal terms of @V are equal to zero and therefore the
diagonal terms are the eigenvalues with @), = 1.

Trom a technical point of view, the calculation of the
orientations to obtain the desired orientation tensor is done
by first initializing them with a random distribution, and
then moving them such that the difference between the
desired and the calculated orientation tensors is minimum.
That is, find the distribution (0t)x) which minimizes

UG, 1) = (@ — a3,)’, (12)

1=

—_
.
Il
—_

where d}; are the components of the imposed orientation

tensor and azj the components of the calculated orientation
tensor defined by Equation (10). This minimization problem
is solved by using the conjugate gradient method.

Figure 5 shows the evolution of the diagonal terms of the
orientation tensor (Equation (10)) over the 301 cross-sec-
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Table 1. Average of the orientation tensor diagonal terms for
the 1000 simulations of the isotropic set defined by
ay, = ay, = d}fg = 1/3 and the anisotropic set defined by
ay, = 0.70, ay, = 0.20, and ay; = 0.10

Isotropic set

b <a, > <ahy > < ah; >

14 0.335 0.334 0.331
32 0.335 0.334 0.331

0 0.330 0.330 0.340

Anisotropic set

b <a > <adhy > < ah; >

14 0.742 0.176 0.081
32 0.743 0.175 0.081

0 0.587 0.251 0.162

tions for the VW, AW and EW fabrics for one particular ran-
dom simulation of the isotropic and anisotropic fabric sets.
As shown in Figure 5a, for the isotropic fabric, it is not pos-
sible to distinguish clearly which of the two volume fractions
(Equation (3) or (4)) best approximates the actual volume
fraction (Equation (2)). Even if, on average over the 301
cross-sections, the norm of the absolute error tensor (Equa-
tion (11)) is 0.14 for the AW fabric and 0.20 for the EW fabric,
the difference between the AW and the EW volume fractions
cannot be ascertained.

However, for the anisotropic fabric, according to the di-
agonal terms of the orientation tensor, the AW fabric is
clearly closer to the actual fabric. For this simulation of the
c-axis orientations, on average over the 301 cross-sections,
the norm of the absolute error tensor (Equation (11)) is 0.15
for the AW fabric and 0.32 for the EW fabric.

Curves for the AW fabric are smoother than for the EW
and VW fabrics. This can be explained by the fact that for
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one grain the volume fraction varies continuously as a func-
tion of the cross-section number when it is defined using the
AW, whereas it is almost constant for both EW and VW, in-
ducing a discontinuity in the first cross-section where the
grain appears.

Note that the non-diagonal terms (not plotted) of the
orientation tensor for the three volume-fraction definitions
are very close, but not equal, to zero. The error on these
terms is implicitly taken into account when plotting the
norm of the error tensor.

Since the results presented above depend on a random
simulation of the c-axis orientations, one should perform
many simulations of the orientations to obtain an adequate
statistical treatment of the results. Figure 6 presents the
probability distributions of the diagonal terms and the norm
of the absolute error tensor (Equation (11)) for the 1000
simulations of c-axis orientations of the isotropic and aniso-
tropic fabrics. As shown previously, for isotropic fabrics the
AW distribution gives a better estimation of the actual fabric
than the EW distribution. For the anisotropic fabric set, the
distribution of the absolute error is clearly better for the AW
fabric than for the EW fabric. For all the data (1000 simula-
tions and 301 sections, i.e. 301 000 in all), the average of the
norm of the absolute error tensor (Equation (11)) for the EW
fraction is 3.2 times larger than that of the AW fraction. As
shown in Figure 6, for the isotropic set, the probability dis-
tributions of the three diagonal terms are similar, whereas
for the anisotropic set they are different for both the AW
and EW fabrics, depending on the value of the imposed
terms 5X .

Table 1 presents the average values of the diagonal terms
of the orientation tensor taken over the 1000 simulations
and the 301 sections. The values obtained with the AW frac-
tion are close to the actual values, whereas the EW fraction
results are significantly different, especially when the fabric
is not isotropic. Since observed fabrics are mostly aniso-
tropic, one should expect such differences for natural fabrics
measured in ice cores from Antarctica and Greenland.

Note that it would be expected that the average of the
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Irg. 7 Isolines of the average of the absolute error tensor norm ( Equation (11) ) for the AW fabrics (a) and the EW fabrics (b) as
a function of @Y, and Gy, . The average for one point is done over 50 simulations of the orientations times the 301 cross-sections.
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Fig. 8 Variation with depth of the components of the orientation tensor for the AW a®? (O ) and the EW a® (01) fabrics

measured in the NorthGRIP ice core.

orientation tensor over the 301 cross-sections (aV) is not ex-
actly equal to that imposed for the whole polycrystal aV.
Since the large grains appear in more cross-sections than
the small grains, they are counted more often when per-
forming the average over the 301 cross-sections.

In order to quantify how the error evolves with the fab-
ric, the error tensor (Equation (11)) was calculated on a grid
of the possible values of @); and @y, i.c. on the domain
0<a); <1,0<ay, <landay, +ay, <1 Ateachgrid-
point, 50 random simulations of the c-axis orientations cor-
responding to the values of the dx at that point were
performed. Then, at each gridpoint, we calculated the aver-
age of the error tensor over the 50 simulations and the 301
cross-sections. We verified that 50 simulations are enough to
obtain a good approximation of the average value of the
error tensor.

Figure 7 presents the isolines of the average of the norm
of the error tensor (Equation (11)) for both the AW and EW
fabrics. As observed in the previous results, the difference
between the two errors is lower for the isotropic fabric, i.e.
for @}, = 1/3 (no sum), but for the AW fabric it corresponds
to the absolute maximum error whereas for the EW fabric it
is found to be a local minimum. Note that, as shown in Fig-
ure 6, this minimum local error is still larger than the abso-
lute maximum error for the AW fabric. More generally, for
any fabrics, it is found that the absolute error for the EW
fabric is, on average, 2.5 times larger than that for the AW
fabric and, statistically, the AW fabric is closer to the actual
fabric than is the EW fabric.

Note that where one of the @, is equal to 1 and the two
others are equal to zero, both errors are equal to zero, i.e. all
the volume-fraction definitions give the same results. This is
because this case does correspond to a fabric where all the
grains have the same orientation.

From the eight NorthGRIP fabrics, one should expect to
quantify the difference between EW and AW of natural fab-
rics. Following Kizaki (1969) and Vallon and others (1976)

we tried to find some correlations between the grain-sizes
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and their orientations. For the eight NorthGRIP data, we
did not observe any correlation, contrary to what had been
observed by Vallon and others (1976) for ice in temperate
glaciers. This may be because not all the grains on the thin
section, but only about 200, were measured. A second
explanation for the lack of correlation is that the recrystalli-
zation phenomena, which could explain such correlation
between size and orientation, play a much more significant
role in temperate than in cold glaciers.

Nevertheless, these NorthGRIP samples should give
some idea of the quantitative influence of the grain-size on
the fabric characteristics. Figure 8 shows the evolution with
depth of the six terms of the orientation tensor (Equa-
tion (10)) for the AW and EW fabrics. The maximum abso-
lute difference between the AW and EW definitions is about
0.1, and the average difference for the eight fabrics and the
six terms 1s 0.03. One must remember that the terms of the
orientation tensor are close to 1 (the eigenvalues of the ten-
sor are between 0 and 1), and from these results one may
conclude that the use of the AW can lead to significant differ-
ences (10%) compared to the classical EW.

6. CONCLUSION

In order to quantify the difference between volume fractions
defined by the use of the cross-sectional area and equal
volume fractions, a 3-D microstructure obtained with a
Potts model was used. Based on the ability of the Potts model
to reproduce a real microstructure, and from a statistical
point of view, the use of the cross-sectional area as a weight
of the polycrystal constituents clearly improves the descrip-
tion of the observed fabric. Moreover, as shown by our
results, the equal volume fraction is certainly not the actual
volume fraction. Therefore, since the area measurement is
no more time-consuming or difficult, it is proposed that the
measured cross-sectional area be used as the statistical
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weight of the polycrystal constituents in order to improve
the fabric description.

The following recommendations are made for future
crystallographic measurements. All the crystals in the thin
section should be identified. For each crystal the orientation,
the cross-sectional area (and other shape parameters) and
the neighbouring numbers should be measured. The latter
information will be useful for determining the influence of
neighbouring grains on grain growth and fabric develop-
ment.
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